
1

R2 - Assignment of sensing tasks to IoT devices:
Exploitation of a Social Network of Objects

Luigi Atzori, Roberto Girau, Virginia Pilloni, Marco Uras
DIEE, University of Cagliari, CNIT UdR of Cagliari, Italy

{l.atzori,roberto.girau,virginia.pilloni}@diee.unica.it, marco.uras.it@ieee.org

Abstract—The Social Internet of Things (SIoT) is a novel com-
munication paradigm according to which the objects connected
to the Internet create a dynamic social network that is mostly
used to implement the following processes: route information
and service requests, disseminate data, and evaluate the trust
level of each member of the network. In this paper, the SIoT
paradigm is applied to a scenario where geolocated sensing tasks
are assigned to fixed and mobile devices, providing the following
major contributions. The SIoT model is adopted to find the
objects that can contribute to the application by crawling the
social network through the nodes profile and trust level. A new
algorithm to address the resource management issue is proposed
so that sensing tasks are fairly assigned to the objects in the SIoT.
To this, an energy consumption profile is created per device and
task, and shared among nodes of the same category through the
SIoT. The resulting solution is also implemented in the SIoT-
based Lysis platform. Emulations have been performed, which
showed an extension of the time needed to completely deplete
the battery of the first device of more than 40% with respect to
alternative approaches.

Index Terms—Social Internet of Things; Mobile CrowdSens-
ing; resource allocation

LIST OF MAIN SYMBOLS AND ACRONYMS
DG Geofence size
Ei,k Energy consumption for task k in node i
Eres

i Residual energy for node i
fi,k Frequency at which node i performs task k
FMSF
k Minimum Sampling Frequency for task k
G Reference geofence
P drain
i Power consumption due to node i’s functioning
si Speed of node i
Xk Set of nodes that can contribute to task k
τi Lifetime for node i
CS-ME CrowdSensing Micro Engine
MCS Mobile CrowdSensing
ME Micro Engine
MEC Micro Engine Controller
MSF Minimum Sampling Frequency
PD Physical Devices
POR Parental Object Relationship
RWO Real World Objects
SIoT Social Internet of Things
SVO Social Virtual Object

A preliminary version of this paper has been presented at the ICIN
conference in Paris, 7-9 March 2017.
This work was partially supported by Italian Ministry of University and Re-
search (MIUR), within the Smart Cities framework (Project CagliariPort2020,
ID: SCN 00281 and Project Netergit, ID: PON04a200490)

I. INTRODUCTION

The ubiquitous and pervasive deployment of Internet of
Things (IoT) objects is contributing to significantly increase
the amount of data collected from the surrounding envi-
ronment, without the need to build new infrastructures [1].
Technology embedded in everyday objects has raised the
number of sensor-enhanced Internet-enabled devices that users
take with them, from wearable devices to smartphones [2],
from RFID to smart vehicles [3]. Data acquisition can be
achieved either in a participatory way, where users actively
contribute to the sensing task (e.g. taking a picture, twitting
an earthquake), or in an opportunistic way, where sensing
tasks are automatically performed by devices without the
explicit involvement of users [4] (e.g. temperature monitoring,
geolocation). The acquired data can be shared with other
devices or delivered to the cloud, where it can be further
aggregated to get what can be defined as crowd wisdom or
collective intelligence [5][6]. Not only can sensing tasks be
assigned to the connected and available objects, but actuating
tasks as well. This is the case for instance of the local storage
and transport (by moving devices) of data or the processing of
a flow of data to detect events of interest happening locally.
This could happen with the involvement of just the local
wireless sensor network [7] or exploiting other additional
services accessible through the Internet [8].

Within this context, one of the main issues is related to
the fact that most of the involved objects are characterized
by limited amounts of resources, such as energy, processing
power, storage capacity, and transmission bandwidth. There-
fore, resource management is of paramount importance, as
it is confirmed by the high number of different approaches
proposed in the literature to address this issue [9–12]. Another
key issue is related to the involvement of the devices that
should perform the sensing tasks, which requires a description
of the available capabilities and the way to transfer this
information to either the community of involved objects (for
distributed approaches) or to the central controller.

To assign the tasks to the sensing devices, a typically
adopted approach consists in developing platforms specifically
devoted to this purpose, so that the IoT devices should
register to this system for the specific objective of sending
the sensed data to the central system, which then provides
the client applications with the crowd view [13][14]. This
centralized approach has key limitations in terms of scalability
when handling increasing numbers of potential sensors and

2

requesting applications. Additionally, this strategy requires
the objects to register to several other platforms when tak-
ing part in other applications (e.g. smart building, energy
management), increasing the complexity in management of
the objects participation to the different IoT applications. As
the Cloud Computing has become a leading field for secure
authentication, community sensing is in high demands of
security solutions to provide user authentication, authorization
and accounting for accessing legitimately the cloud services
[15].

This paper handles the mentioned issues by leveraging the
Social Internet of Things (SIoT), which is a novel commu-
nication paradigm according to which the objects connected
to the Internet create a dynamic social network that is mostly
used to implement the following processes: route information
and service requests, disseminate data, and evaluate the trust
level of each member of the network. The contributions of
the paper are the following: i) we define how the SIoT social
network can be used to find the objects that can contribute
to the distributed sensing operations and can collaborate in
the exchange of information about the energy consumption,
which is important when allocating tasks to the community of
nodes; ii) we present the implementation details by showing
how this application runs in the Lysis platform implementing
the SIoT paradigm; iii) we propose a new algorithm to address
the resource management issue so that sensing tasks are fairly
assigned to the objects and no node is overloaded with respect
to the others. Even though the algorithm can be applied to
other application scenarios, in this paper we often refer to
Mobile CrowdSensing (MCS), a pervasive sensing paradigm
where users’ mobile objects can often replace static sensing
infrastructures; iv) we illustrate the emulation-based experi-
ments showing the performance in terms of nodes lifetime
extension and sampling frequency accuracy.

The remainder of the paper is structured as follows. Sec-
tion II provides an overview of the background related to SIoT,
the Lysis platform and MCS past works. In Section III the
approach adopted to implement the MCS in the Lysis archi-
tecture is presented. Section IV describes the algorithm for
resource allocation and how the energy profile is created per
device. Tests results and performance evaluation are discussed
in Section V. Section VI draws final conclusions.

II. BACKGROUND

In the following, we briefly describe the SIoT paradigm and
the Lysis implementation. We also present the major works in
MCS.

A. The Social Internet of Things

Recently, some studies have addressed the issues related to
the management and effective exploitation of huge numbers
of heterogeneous devices and have found a solution in the use
of social networking concepts and technologies. For instance,
the object ability of having conversations like humans has
been introduced in [16]. In [17], explicitly, the Social IoT
(SIoT) concept is formalized, which is intended as a social
network where every node is an object capable of establishing

social relationships with other things in an autonomous way
according to rules set by the owner. The SIoT relies on some
key types of relations:
• Ownership Object Relationship (OOR): is created be-

tween objects of the same owner
• Co-location Object Relationship (CLOR): is created be-

tween still devices located in the same place
• Parental Object Relationship (POR): is created between

objects of the same model, vendor and production batch
• Co-work Object Relationship (CWOR): is created be-

tween objects that meet each other in the owners’ work-
place

• Social Object Relationship (SOR): is created as a conse-
quence of frequent encountering between objects, as can
happen between smartphones of students attending the
same class.

These relationships are created and updated on the basis
of the objects’ features (such as object type, computational
power, mobility capabilities, brand) and activity (frequency
in meeting the other objects, mainly). Recently, some works
have studied how the SIoT can be used to monitoring certain
types of smartphone activities to minimize the users’ concerns
about accessibility and tracking in smart social spaces [18].
The resulting objects social activity can also be used for the
management of the trust in the object-to-objects communica-
tions [19] [20].

B. The Lysis implementation of SIoT

The solution we proposed in this paper relies on the cloud
Social IoT architecture, named Lysis [21], that foresees a
four-level structure as shown in Figure 1. Its lowest layer is
populated by the Real World Objects (RWO). At this layer,
the Physical Devices (PD) directly access to the platform
via direct links to the Internet, while other objects (more
resource-constrained) need to rely on Gateways (GWs) for
the Internet connection, allowing them to send data to and
receive commands from the level above. PDs and GWs are
able to perform basic tasks, such as secure communication
with the respective virtual counterparts, as well as management
and presentation of data coming from sensors. On top of
this, the Virtualization layer directly interfaces with the real
world and is populated by the Social Virtual Objects (SVOs).
The virtualization functionalities are common to most IoT
cloud-based platforms to address most of the issues related
to the low level of resources the IoT objects are equipped
with [22]. In Lysis, these functions are also extended with
the social capabilities assigned to the agent implementing
the virtual objects so that it is able to establish and manage
friendships with other SVOs autonomously with respect to the
owner. Accordingly, a network of digital counterparts of the
physical devices is created and available at this layer. This
can be used to search objects and information they produce,
evaluate the trust level, create groups to foster collaboration.
The Aggregation layer is responsible for composing several
SVOs into entities with extended capabilities, called Micro
Engines (MEs); the ME is the entity that implements part of
the application logic performed at the upper layer. In each ME,

3

the output for a request coming from an application can be
reused to serve requests from different applications that require
the same information or service to save bandwidth and CPU.
Finally, at the Application layer, user-oriented macro services
are provided (APP).

Fig. 1: The four levels of the Lysis architecture

C. Mobile CrowdSensing
In the MCS paradigm, the objective is that of performing

an application, which needs large amounts of sensed data, by
gathering this data from a high number of devices, provided
that they are capable of fulfilling the application require-
ments [3]. These requirements typically include constraints
about the location and time interval where the data were
collected [23], which affect the accuracy of the overall mea-
sure [24].

A huge number of MCS-based applications have been
proposed in the literature. Thanks to its characteristics, the
MCS has proven to be particularly advantageous for, but not
limited to: ambient monitoring [25][26], pattern recognition,
mainly for healthcare analytics [27] or smart city and route
planning applications [28], and social-related applications,
where users share and compare data about themselves with
a community [29][30]. Heterogeneous networks offer new
opportunities for MCS technologies supporting connectivity,
collaborative monitoring and data routing / transmission. Rout-
ing protocols for wireless networks cannot handle a highly
dynamic topology typical of the MCS scenario. Fortunately,
recent advances in the Internet of Things offer optimized
routing solutions [31].

The impressive spread of smart mobile devices such as
smartphones, tablets and smart watches, have contributed to
the development of MCS, which, compared to traditional
sensor networks, entails significant advantages, in particular
with reference to deployment costs and coverage extension [4].
Indeed, since any smart mobile device is equipped with many
different sensors (e.g. GPS, camera, microphone, light), any
device that is in the right place at the right time and which
information quality requirements are satisfactory can be used
to contribute to MCS data collection. Considering that those
devices are typically provided with networking functionalities
(e.g. WiFi, 3G, Bluetooth), spending money and time on
deploying new infrastructures to cover new areas is not needed.

Nevertheless, MCS inherited one of the major issues of
traditional sensor networks: the limited amount of resources
available on devices [32] (e.g. available energy, storage ca-
pacity, computing speed). Fair resource allocation mechanisms
can be applied to overcome this problem. Some examples are
provided by the studies presented in [9–12]. The Context-
aware Mobile Sensor Data EngiNe (C-MOSDEN), a scalable
energy-efficient data analytics platform for on-demand dis-
tributed mobile crowd, is proposed in [9]. The C-MOSDEN
platform collects data only when they are relevant to the
required context, and it is able to autonomously configure,
e.g. selecting the most appropriate communication channel,
or sampling rate. A similar approach is used in [10], where

TABLE I: Major approaches for MCS

Ref. Energy
Awareness

Sensing service description

Ruge et al. [25] No ambient monitoring
Predić et al. [26] No activity based participation
Lathia et al. [27] No context-based
Goldman et al. [28] No smart city
Wang et al. [29] No community based
Eisenman et al. [30] No social vectors based
Perera et al. [9] Yes location and activity-aware
Skorin-Kapov et al. [10] Yes cloud-based quality-driven

management
Bradai et al. [11] Yes expected opportunity based
Hu et al. [12] Partially application-oriented service

collaboration
Capponi et al. [33] Partially based on sensing potential

and data collection utility

particular attention is put on satisfying global sensing coverage
requirements and avoiding redundant sensory activities. In
[33], a distributed framework for data collection is proposed
to minimize the cost of sensing by estimating the sensing
potential and the data collection utility. The former defines
the best candidate among participants to perform sensing. The
latter is computed by accounting the sensing interest of the
involved applications. Energy efficiency and battery saving
are the main objectives of Re-OPSEC [11], where tasks are
assigned to smartphones according to their expected oppor-
tunity of succeeding in the sensing task, and their residual
battery charge. In [12], the concept of social vector, where
node attributes are defined, is introduced. Social vectors are
used to find the most accurate matching between a task with its
requirements and a node with its resources. However, none of
the analyzed strategies (summarized in Table I) exploits social
relations among objects to improve the system performance.

III. EXPLOITING THE SOCIAL IOT FOR SENSING TASK
ASSIGNMENT IN IOT

This Section presents our solution which exploits the SIoT
paradigm to assign sensing task to IoT devices and relies
on the Lysis platform. As stated in the Introduction, we refer
to this objective of sensing task assignment as an important
function of the MCS, which is often cited as a reference
scenario for our treatment. However, the proposed solution
can be also applied to other application scenarios characterized
by geolocated sensing tasks that need to be performed by a
conspicuous number of devices.

4

A. Preliminaries

As shown in the previous Section, in Lysis the socialization
algorithms are implemented in the second level where the
resulting social relations are created and managed. All the
applications running in Lysis pass through the MEs, which
represent simple processes that exploit the information and
the services provided by the SVOs. Clearly, in our view, all
the mobile devices that take part in the MCS operations need
to be registered to the platform and need to have their own
SVO running. The MCS is one of the MEs that can be used
by the applications running in the IoT platform.

Any application can then exploit the SIoT social graph for
the major tasks that are needed when a huge and heterogeneous
community of objects is involved: find the potential provider
of information and services, evaluate the trust level of each
object, and disseminate information, just to cite the major
ones. As far as the MCS operation is concerned, the search
of potential sources of data is the operation of major interest.
Indeed, to find the required resources each application sends
a query with the semantic description of the needed resources
to the ME Controller (MEC), as shown in Figure 2. The MEC
is in charge of forwarding the query to a special SVO called
SVO-Root (SVO-R) which forwards the query to its friends
and friends of friends in order to get a reply with a list of
resources and their access keys. This happens also to the
MCS ME, which is inquired with the tags that describe the
information that each node should be able to provide, e.g., the
physical magnitude of interest, the geographical position, the
sensing accuracy.

Fig. 2: Configuration chain

After having found the required SVOs, the MEC links them
in the ME devoted to the MCS, which then handles the SVOs
for the processing needed by the requiring application (those
requiring MCS services). For our specific applications, this
processing means inquiring about the selected nodes on the
basis of the algorithm described in the following Section and
compute the crowd view. The ME is able to configure each
SVO to either perform some operations in the background or to
trigger their resources so as to provide an active participation
in the required crowdsensing process.

B. The CrowdSensing Micro-Engine

We refer to the ME in charge of implementing the crowd-
sensing algorithm as CrowdSensing ME (CS-ME). This is

the one that provides the applications running in the Lysis
platform with the services to get the view from objects mobile
crowd about a given physical magnitude. These services are
accessible through different queries, that are handled by the
MEC in JSON format and that are passed to the CS-ME. The
most important query allows the application to specify the
maximum number of requested resources (limit), the depth
of search in the social graph (hop), the coordinates of the
geofence where the search should be performed, a description
of the resources in text format in the description parameter,
and the type of relationship which can be exploited by the SVO
search process is specified in the relationship field, as shown
in Listing 1. The query also includes different parameters to
control the amount of resources for a given crowd sensing
task or the required accuracy. In the example of Listing 1,
the minimum sampling frequency (MSF) is used, which is the
minimum number of samples per second to be provided by
the crowd for this task. Note that this parameter is also the
one we consider in the following of the analysis. From the
Figure, you can note also the owner-key field, which is the
one that identifies the user that has generated the query and
somehow drives determine the amount and which resources
the application is entitled to access to.

{"owner-key":"ovdsljvdsoibewdp",
"owner-id": "user@gmail.com",
"limit": "20",
"hops": "2",

"longitude":"9.109900",
"latitude":"39.229055",
"range":"30",
"MSF":"0.4"
"description":"sensor brightness

temperature pressure",
"relationship":[{"type":"SOR"}]
}

Listing 1: Textual description of the resources requested by an
application

It may happen that the same query was already generated by
another application, which would mean that another instance
of the CS-ME would be running to do the same job. No to
waste resources, this event is checked so as the same instance
is used to satisfy two (or more) applications with the same
MCS need. If this is the case, the MEC says to the CS-ME to
add the new query ID to the previous one(s) to respond to the
new request with the data produced for the previous requests.
Clearly, the CS-ME has to check if the input resources and
the geofence are the same as the previous requests. If so, the
MSF is set to the highest requested value, while the output of
the crowdsensing process is returned also to the applications
with less stringent requirements.

If it is not the case and a new instance needs to be created,
the CS-ME executes the SVO search process to find the
needed resources. The SVO search process then sends to
the CS-ME the reference to the found resources. Listing
2 shows an excerpt of the JSON configuration sent to the
CS-ME after the search process terminates. For each resource,

5

access permissions (Permission), the API key (Key), the URL
of the SVO (ResourceURL) and the SVO’s sensor name
(FeatureName) are indicated. In the excerpt in Listing 2, the
first resource is public and does not require any access key,
whereas the second SVO can share its resource only with
friends and therefore it asks to specify the API key in the
JSON configuration file.

{"input-id":"1",
"resources": [
{
"Permission":"public",
"Key":"",
"ResourceURL":"svotest100.appspot.com",
"FeatureName":"BRIGHTNESS"
},
{
"Permission":"friend",
"Key":"thisisthe2ndfriendkey",
"ResourceURL":"svotest101.appspot.com",
"FeatureName":"TEMPERATURE"
}]
}

Listing 2: The list of SVOs which can participate in the
CrowdSensing process is sent by the MEC to the CS-ME

All the identified SVOs are asked by the CS-ME to provide
the power-profiles to all the participating SVOs. These are
also asked to alert the CS-ME whenever they exit or enter the
geofence of interest for this task. Since it is an event-driven
process, the CS-ME waits for any alerts from SVOs to assign
frequencies to the available SVOs according to the algorithm
described in Section IV and shown in Algorithm showed in
Figure 3. Accordingly, this ME continuously communicates
with the SVOs to re-assign tasks to satisfy the application
requests, according to the mobility of the mobile users and
their energy. It is also worth noting that the CS-ME has the
ability of self-healing, so that if a malfunction occurs in one or
more of the resources, it can ask to the MEC for a reallocation
of resources.

C. Advantages provided by SIoT

The SIoT paradigm relies on the construction of a peer-to-
peer social network which is built on the basis of inter-objects
interactions and similitudes. Such a network is exploited in
major phases of the MCS activities bringing major advantages:
• Search of nodes to be involved: each node advertises

its own functionalities that are then made available on
the SIoT social network for the benefits of the other
members. As explained in Section III-B, this is exploited
by the CS-ME to build the group of objects with the
required capabilities. As it is highlighted in the example
of Listing 1, the type of relationship is also used to
search for the objects that are useful for the crowdsensing
application. Each object (according to the rules set by
the owner) can decide to make each functionality private

(available only to the owner), friend (accessible only to
the friends) or public (anybody can access to). Whereas
all the relationships types can be used, the SOR and the
CLOR are the most useful.

• Trustworthiness evaluation: the trustworthiness of the
nodes is evaluated by the peers in the social network,
as it is explained in [20]. This is a functionality that is
made available for all the applications deployed on top of
the SIoT network and it is quite useful for the selection of
the nodes to be involved in the MCS applications. For this
feature, all the relationship types are used, with different
weights.

• Sharing of the device energy profile: as it will be made
clearer in the following, there is the need to create an
energy consumption profile per node involved. To avoid
repeating the same computation in each node, once it
is created by a node the profile is shared with all the
others with similar characteristics exploiting the POR
relationships (i.e., those with similar characteristics).

• Update of nodes status: the objects social network is also
exploited to exchange the changing context information
among groups of friends. The speed of the friend nodes
and the relevant battery status represent information of
interest for the MCS nodes and would make faster the
selection of which nodes to involve according to the
changing context. CLOR and SOR relationships are used
in this case.

Whereas some of these features are utilized in the current
proposal, some others have not been included in the implemen-
tation as the number of nodes in the running Lysis platform
is limited and would not allow for an efficient evaluation of
the relevant benefits.

IV. ENERGY-BASED SOURCE SELECTION

In this Section, we first describe the algorithm that has been
devised to select the crowd members for the required sensing
tasks and then we describe how we generate the device energy
profile.

A. The Resource Allocation Algorithm

The resource allocation strategy used in this paper relies on
an optimization algorithm where the ME decides the amount of
resources to allocate to a task, according to the requirements
coming from the higher layers and to the available resources.
This strategy starts by choosing which of the nodes inside or
close to a geofence can collaborate to get the answer to the
pending query. Then, the optimization algorithm described in
Figure 3 allocates the resources made available by the assigned
nodes, so that the task is performed in a way that affects the
system lifetime as little as possible.

To correctly select the set of nodes Xk that can contribute to
task k, the ME considers the ones that are less likely to cause
frequent reconfigurations of the system, among those that are
inside or close to the reference geofence. Starting from this
consideration, two features are considered to exclude nodes
from set Xk: I) residual battery charge that is considerably

6

Fig. 3: Flow chart of the proposed task allocation algorithm

lower than that of the other nodes; II) speed that is too high,
and that would quickly take the node out of the geofence.

With respect to the I exclusion rule, node i is not included
in the resource allocation process if its residual energy is
relatively too low, i.e. if the following inequality holds for
its residual energy Eres

i

Eres
i ≤ α · Ēres (1)

where 0 < α << 1 is a parameter that sets the relative
threshold for Eres

i , and Ēres is the average residual energy
for the considered set of nodes.

With reference to the II exclusion rule, node i is considered
to be too fast for the geofence G under evaluation if its speed
si is too high with respect to the geofence size DG and to the
MSF frequency FMSF

k for MCS task k, so that the exclusion
rule is defined as follows

si ≥ β ·DG · FMSF
k (2)

where 0 < β ≤ 1 is a parameter that sets the relative threshold
for si. Note that when β = 1, the threshold is set so that
the node is expected to be able to provide one sample when
crossing the geofence if it was asked to sample at frequency
FMSF
k . As the sensing task is shared with other nodes, this

parameter is set lower than 1. The impact on setting the two
parameters α and β is discussed in the experiments Section.

The nodes remaining in the set Xk are the nodes that pass
the exclusion rules. Accordingly, the ME optimally allocates
the resources made available by the nodes in Xk. The resource
allocation algorithm proposed in the following relies on the
principle used also in the algorithm proposed in [34], with
consists in setting the nodes sensing frequency so that the
resulting lifetime is equal in all the members. However, herein
the assignment of the frequencies is done in the platform
by the CS-ME which has the information about the status
of all the nodes involved. Differently, in the cited article
the allocation algorithm is distributed, and the nodes have
to adjust the sensing frequency according to the available
information about the status of the other nodes, which is
exchanged making use of a consensus-based algorithm. Ad-
ditionally, in [34] different types of resources are considered
when deciding for the frequency to assign to each node, i.e.,
lifetime, object lifetime, storage capacity, and processor and
data throughput. Differently, in the following, we focus on the
energy consumption caused by the sensing activity and the
transmission of the data at the assigned frequency.

As done in other papers (such as in [35]), we consider the
system’s lifetime τ as the time until the first node belonging
to that system depletes its residual energy

τ = min
i
τi (3)

where τi is node i’s lifetime, defined as

τi =
Eres

i

P drain
i +

∑
k Ei,kfi,k

(4)

with: P drain
i power consumption due to other activities of the

nodes that are not assigned by the ME (e.g. other tasks that are
started directly by the user); Ei,k is the energy consumption
needed by node i to perform task k, computed; fi,k is the
frequency at which node i performs task k. Equation (4) entails
that the ME is able to affect the lifetime of the system made
of the nodes of a geofence G, by appropriately adjusting the
frequency at which the involved nodes perform the required
tasks.

The objective of the framework proposed in this paper is
that of assigning tasks so that there is not a node that depletes
its available resources earlier than the others. When addressing
lifetime, this condition is satisfied when the workload is fairly
distributed among all the nodes, i.e. when all the nodes tend
to the same lifetime. In other words, taken any two nodes
{i, j} ∈ G, their workload is fairly distributed if, after the task
assignment, they have the same lifetime τi = τj = τ,∀{i, j} ∈
G. Therefore∑

k

γi,kfi,k +
P drain
i

Eres
i

=
∑
k

γj,kfj,k +
P drain
j

Eres
j

(5)

7

where γj,k = Ei,k/E
res
i . We define the total amount of power

consumption contributions of node i with the exception of task
k as δi,k =

∑
l 6=k γi,lfi,l + P drain

i /Eres
i . Substituting it in

Equation (5)

fj,k =
γi,k
γj,k
· fi,k +

δi,k − δj,k
γj,k

(6)

To satisfy accuracy requirements coming from the application
layer, the following relation about the FMSF

k has to be fulfilled

FMSF
k =

∑
j

fj,k =
∑
j

γi,k
γj,k
· fi,k +

∑
j

δi,k − δj,k
γj,k

(7)

Therefore, the ME can assign a frequency to each SVO i
for each task k, according to the following Equation

fi,k =
1

γi,k
·

(∑
j

1

γj,k

)−1

·

(
FMSF
k +

∑
j

δj,k
γj,k

)
− δi,k
γi,k

(8)

It may happen that the result of Equation (8) is negative: it is
the case of a node whose lifetime is so low it cannot take any
other load because its lifetime is already lower than that of
the others even assigning the whole task k to the other nodes.
Since a negative frequency does not have physical meaning,
in this case frequency fi,k is set to 0, and Equation (8) is
evaluated again for every node, excluding node i from the
computation.

In the following, we provide the pseudocode for Algorithm
1.

Algorithm 1 MCS task allocation algorithm

Require: |Xk| > 0
1: Inputs: Xk, FMSF

k , α, β, Ēres, DG
2: while alert do
3: Delete from Xk the nodes that don’t pass the I exclu-

sion rule (Eq.(1)) Eres
i ≤ α · Ēres

4: Delete from Xk the nodes that don’t pass the II
exclusion rule (Eq.(2)) si ≥ β ·DG · FMSF

k

5: if |Xk| > 0 then
6: if |Xk| = 1 then f1,k = FMSF

k

7: else
8: for all i ∈ Xk do
9: Set fi,k = Γ · FMSF

k + Φ (Eq. (8))
10: if fi,k < 0 then
11: Set fi,k = 0 and remove i from set Xk

12: Repeat from step 4
13: end if
14: end for
15: end if
16: end if
17: alert = false
18: end while

B. Generation of the Device Energy Profile

For the implementation of the described algorithm, for each
device type i and task k, we need to know the required energy
Ei,k. The last is made of two independent tasks: the sampling,
which requires an access to the physical sensor through the

system drivers; and data transmission, which is characterized
by the data connection configuration (mostly data rate and
connection technology). These two independent components
can be modeled with energetic consumption status diagrams,
both for the sensors as presented in [36] and the radio interface
referring to Radio Resource Control (RRC) protocol [37][38]
as follows

Ei,k = Esens
i,k + Etx

i,k. (9)

Each term on the right side in Equation (9) (Ex, with x =
sens, tx) is defined as follows [39] (we omit the subscript i
and k for presentation convenience)

Ex =
∑
s

Ex
s +

∑
s

∑
h,h6=s

Ex
s,h × Cx

s,h, (10)

where: observation and modeling time is divided in intervals
during which the status of the considered component (CPU,
antenna and sensor) does not change and s indexes these
periods; Ex

s represents the energy during each of these periods,
Ex

s,h is the energy to transfer from state s to state h; and
Cx

s,h counts the numbers of passages from state s to state
h. To better explain these aspects, in Figure 4 we show an
example of the energy required to perform a single sampling
of the brightness sensor and the transmission of the acquired
value. In this Figure, two phases have been detected, which are
highlighted in different colors. During each phase, we have a
different state for the sensor and the antenna and the relevant
energy components need to be considered, as expressed in
Equation (9). Note the different energy consumption rates
that characterize the two phases. This specifically refers to
a Motorola MotoG2015 when transmitting using the UMTS
radio interface. Accordingly, there is the need for a device
energy profile which is meant to be used to estimate the energy
consumption varying the activity performed by the device and
the data connection technology used.

Fig. 4: Battery drain before (while sampling the brightness
sensor) and during transmission

According to the previous considerations, we have built
an experimental based model which provides the energy
consumption per joint sensing and transmission tasks on the
basis of the transmission technology and RSSI (Received
Signal Strength Indicator) value. Specifically, we have built

8

TABLE II: Actions performed in the states

State Action

x1 Idle
x2 Base current estimation
x3 Transmission and sampling execution
x4 Computing task cost
x5 Send value to SVO

TABLE III: Events that trigger a state transition

Edge Event

e1 Already computed technology and RSSI level
e2 New technology and RSSI level detected
e3 Repeat N times
e4 End of transmissions pool

a lookup table which is used to identify the required energy:
{RSSIj , TTech

j , DModel
j } → Ej,k. In this notation TTech

j

indicates the transmission technology that, in our experiments,
we considered as the followings: UMTS, LTE and Wi-Fi.
DModel

j identifies the specific device model. Additionally, in
line with the previous consideration, the type of task k does
not influence the look-up process.

To model the dependence on the data transmission technol-
ogy, we relied on HTTPs transmissions from the device under
observation with a payload of 100KB under different received
signal conditions and different technologies (WiFi, UMTS
and LTE). For each technology and for each received power
level, the device performs a series of N HTTPs transmissions
while the battery discharge current is monitored by means
of the built-in API of the Android operating system. We
have found that N = 30 was experimentally sufficient for an
acceptable accuracy level. Sasu Tarkoma et al. in [40] show
different approaches to estimate the energy consumption. The
methodology adopted in this work does not require external
measurements or calibrations but only relies on the modeling
software that runs in the device. However, it has the drawback
that the measurements on the device introduce systematic
errors due to the overhead required to carry out the measure-
ment itself. Whereas the transmission and sampling energy
consumptions are estimated separately, the two operations are
performed one after the other when performing the N tests.

The steps of the power profile learning process are described
in the diagram in Figure 5. To support the explanation of

x1

x2

x3

x5 x4

e1

e3

e2

e4

Fig. 5: State diagram of energy profile learning process

the process, Tables II and III describe the process states and
the events triggering the transitions, respectively. The creation
of a new energy profile starts when required by the SVO
once it finds that it is not available among those already
created on the basis of the required transmission technology
and RSSI level. The first task performed (state x2) is the
estimation of the base current (i.e., the current absorbed when
no sampling and transmissions are performed), which is the
average amount of current delivered by the battery before
the transmission starts. This is considered as an offset to be
subtracted from the average value during transmission. Then,
the already mentioned N HTTP calls to the SVO are executed
(typically N = 30). The estimated energy needed per each
sampling and transmission task E is computed as follows

E =
1

N

N∑
r=1

Er (11)

with
Er = (ir − ibase)V∆tr (12)

where Er represents the energy consumption needed by
the node to perform the r-th HTTP test call to the SVO
and depends on the observed average current ir minus the
physiological absorption current ibase and the needed time
∆tj . Whereas the sensing and transmission procedures are
executed one after the other for each repetition, the estimation
of energy consumption is computed differently for these two
types of activities.

10:00
11:00

12:00
13:00

14:00
15:00

16:00
17:00

18:00
19:00

Time (hh:mm)

1000

1500

2000

2500

3000

3500

R
es

id
ua

lE
ne

rg
y

(m
A

h)

Battery Level

Measured (dynamic)
Estimated (dynamic)
Measured (static)
Estimated (static)

Fig. 6: Battery level: comparison of the measured values with
the estimated ones, for the static and dynamic cases

To evaluate the accuracy of the model, we compare the
model-based estimation with respect to the real measurement.
Figure 6 shows the estimated and measured values of residual
battery energy when the smartphone was either static or
moving, during one experimental run. We can see that the
estimation provides better results in the static case, as it was

9

TABLE IV: Average error for dynamic and static model

Brand and model Mean Error (Static Model - Dynamic Model)

Asus Zenfone 2 1.12% - 3.57%
Honor 9 3.74% - 6.95%

Xiaomi Redmi 4 Pro 3.81% - 6.89%
Huawei P20 Lite 4.86% - 5.76%

Samsung Galaxy S6 2.37% - 4.52%
Motorola MotoG 2015 4.59% - 6.54%

expected as fewer changes in the used transmission technolo-
gies happen. In fact, in the dynamic case, the smartphone
was moving around the university campus, which is partially
served by the Eduroam WiFi network and clearly in any place
by the cellular data service, so that horizontal and vertical
handovers happened. This has caused changes in the energy
consumption trend that were more difficult to follow than in
the static case, where no handover events occurred. Despite
the different state of mobility, the slopes of the two curves are
similar, as a whole. This is due to the fact that on average
the energy consumption for the different technologies resulted
to be equivalent. Additionally, the major causes of battery
discharge are due to the state of display, CPU workload,
radio interfaces and location services and the human-battery
interaction [41, 42] in both cases were similar. Finally, the
average error observed over 100 runs was of 4.59% and 6.54%
for the static and moving cases, respectively.

To investigate on the errors that could be introduced with
different device types, we performed the same test with other
smartphones whose results are shown in Table IV (recall that
the results in Figure 6 refer to the Motorola MotoG 2015
device). It resulted that the average errors for each device,
both for the dynamic and static cases, are very similar among
the different devices and always below 7%. This was expected
as the profiles have been created specifically for each tested
device. The limited differences in the average error are due to
the variability in energy consumption at the same device status
(in terms of communication technology and RSSI) which is
unpredictable and characteristic of each device model.

This learning process takes advantage of the SIoT network
to avoid repeating it when not needed so that the SVOs
exploit the social relationships among devices of the same
type. Specifically, the POR established among objects of the
same model and brand is the one that is used for this purpose.
Note that the energy profile needs to specifically match the
physical device model. In case the needed profile is found,
the smartphone just registered on the Lysis platform does not
have to start the energy profile learning process but borrows it
from its friends. If the power profile of friends is only partially
completed (e.g. a given transmission technology has not been
analyzed yet), the SVO sets the learning procedure on the
smartphone for the missing information. When a new profile
is built or finalized, it is forwarded to the first circle of friends
following the POR friendship. In this way, the power profile
learning effort is shared among the devices of the same type.

V. PERFORMANCE ANALYSIS

To evaluate the performance of the devised solution we
have performed several emulations, which are aimed to show

how the proposed strategy is able to achieve the objective
of avoiding the depletion of the device battery. The results
are referred to MCS, which is one of the possible application
scenarios for the proposed algorithm. We first describe the
testbed setup then we present the results.

A. Testbed setup
In crowdsensing, finding a good number of participants

available to perform different runs for long-time periods to
perform tests has always been a problem and the most adopted
solution is the exploitation of simulators for both applications
and devices [43]. For this reason, we decided to develop an
SVO emulator that leverages the observation of real devices in
terms of mobility, energy consumption and performed activi-
ties. Accordingly, we first acquired data from 20 real Android
devices owned by students and researchers, who spent most
of the day at the University campus. The Android app and the
MCS device driver used in this test are available on the Lysis
platform and require Android 5.0 or higher. By observing
data from real devices, we created the energy profiles for 6
different Android smartphone models and mobility traces of
people moving within the University campus.

In our prototype, the CS-ME is implemented and run on the
real Lysis platform, which communicates with the emulated
SVOs. The SVOs select the energy cost on the basis of the
used transmission technology and sensor using the created set
of energy profiles from the real devices. From the observation
of several typical days at the university campus where classes
in different rooms were held, we have been able to isolate
recurring patterns in the habits of students and researchers. We
used these patterns to build synthetic mobility traces to use in
our emulator (which included also the transmission technology
selected by the smartphones for each position).

In our emulations, the user path during the day is built by
composing parts of real patterns observed from the real users.
By combining randomly these patterns we could perform dif-
ferent runs and extend the sessions temporally. Specifically, the
initial points in the patterns were modified geographically and
temporally randomly in a range of (0, 10) meters and of (0, 10)
minutes, respectively. The battery drain was modeled through a
parametric function from the observed data of real smartphone
behavior. It depends on user usage, sampling frequency and
quality of the connection. The resulting emulator exposes the
same API of Lysis SVOs so that we are able to test a real
CS-ME to evaluate frequency error, latency in the setup phase
and capacity of the algorithm to quickly follow the changes
in the crowd availability.

Table V summarizes the initial setting of the major nodes’
parameters as it arises from the described analysis of the real
devices. These are distributed in three different geofences: the
Lidia building where classes are held, the MCLab laboratory
and the park, all located within the same Engineering campus.

B. Analysis of Results
To evaluate the performance of the algorithm, we executed

each run until all the devices ran out of battery. The case

www.lysis-iot.com

10

TABLE V: Initial setting of major nodes’ parameters

Name Range

Eres
i (3000,4200) mAh

P drain
i (150,450) mW
Ei,k (0.0095,0.035) mWh
si (0.5,10) m/s

0

5

10

15

20

25

0 2 4 6 8 10 12

Nu
m
be
r	o

f	r
un
-o
ut
-o
f-p

ow
er
	d
ev
ice

s

Time	(hours)

ESF CS-ME Re-OPSEC

Fig. 7: Comparison of the CS-ME algorithm with an equivalent
scenario where a constant sampling frequency is assigned to
each device taking part in the crowdsensing and with the Re-
OPSEC algorithm [11]

we consider here is the one where MSF was set to 0.067
Hz, which is compared with the case of crowdsourcing with
an equally set sampling frequency (ESF) of 0.067/20 Hz for
each node (the number of considered devices was constant
and equal to 20, all with the battery fully charged). We
further compared the algorithm with the Re-OPSEC algorithm
proposed in [11]. According to this approach, a single sensing
task is assigned to the most convenient sensing nodes at each
time period, i.e. the inverse of the MSF value. Convenience
is evaluated according to the difference between the oppor-
tunity and the cost to perform a given task. In our case, the
opportunity of each node i to perform task k is equal to 1
whenever the node is inside the geofence, equal to 0 otherwise.
The cost is equivalent to the decrease in lifetime required to
perform task k, i.e. (Eres

i − Ei,k)/Eres
i . Figure 7 shows the

number of devices that ran out of battery for the two cases.
It is evident that the CS-ME allows for longer lifetime values
for all devices, whereas the ESF causes device shutdowns in
just 5 hours and the Re-OPSEC in 3 hours. It results in an
extension of around 40% in the lifetime of the first device
whose battery runs out with respect to ESF, and an extension
of around 130% with respect to Re-OPSEC, mainly due to
the fact that using Re-OPSEC tasks are reassigned at each
time period, causing a conspicuous overhead. It is important to
note that ideally, using the CS-ME strategy, the devices should
have shut down (almost) together, but it did not happen due
to the fact that a real system has random components, such
as smartphone usage, signal strength, network congestion or
latency in acquiring the position, which are not predictable.
Those aspects introduce an error on the estimated battery drain
which accumulates during the day and affects the lifetime of

the device. To reduce the error between the predicted and
observed lifetime, the system should know every change on
each node. Of course, this information requires energy in order
to be sent to the SVOs and, consequently, it introduces a
global overhead resulting in a reduction of the total lifetime.
Therefore, there is a trade-off between the error on predicted
and effective lifetime.

50 100 150

Time (minutes)

1.5

2.0

2.5

S
am

p
lin

g
E
rr
or

(p
er
ce
nt
ag
e)

Sampling Error

4

6

8

10

12

14

16

N
od
es

Number of Nodes

Fig. 8: Relative error on the resulting sampling frequency and
participating number of devices in the geofence over the time

Figure 8 shows the relative error of the sampling rate in
percentage, which is measured as the difference in the number
of received samples per minute with respect to the target one.
In the same Figure, we are measuring the number of sensors
that were available in the considered geofence. Note that each
time a new device enters, the allocation algorithm is run again
by the CS-ME and the new sampling frequencies are assigned
to the devices. Whereas the error was always below 3%, it
quickly decreased when the number of devices grew. This
phenomenon is due to the fact that the frequency assigned
to each device decreased so that the impact of the latency in
the sampling and transmission operation in the physical device
was reduced.

To compare the adopted MSC policy with others, we have
considered the Collector Friendly (CFP) and the Smartphone
Friendly (SFP) policies implemented in an MSC framework
that relies on distributed algorithms where each device is
capable to locally compute all parameters required to take
local sensing decisions. The CFP is intended to make the
smartphone friendlier with the nodes community, causing the
device to spend more energy to improve data redundancy and
reliability. The SFP has been designed to avoid executing
unnecessary sensing tasks and energy is consumed only if
strictly necessary (the nodes a more selfish). These represent
two opposite polities, whereas the one we propose sits in
the middle. Indeed, the policy adopted by the proposed CS-
ME is a trade-off between the other two policies because the
workload is distributed among all the nodes with a logic that
is based on the global knowledge of all nodes status (battery
level, battery drain, connection technology, among others),

11

25% 50% 100%
Battery Level

0

2

4

6

8

10

12

14

16

18

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

10

13

15

8

9

10

9

10

12

CFP
SFP
CS-ME

Fig. 9: Comparison between different collecting polices, i.e.
Collector Friendly Policy (CFP), Smartphone Friendly Policy
(SFP) adopted in [33] and the energy-aware policy adopted by
our proposed CS-ME in terms of energy consumption

TABLE VI: Impact of the Minimum Sampling Frequency on
battery lifetime

Frequency FMSF (Hz) Mean Lifetime τ (HH:MM)

0.130 6:58
0.067 7:40
0.033 8:09

taking into account the real capabilities of each device. Figure
9 compares the energy consumption of three users for these
different collecting data policies, considering FMSF

k = 0.4
Hz during 10 minutes of simulation. Each user started from
different battery levels, i.e., 25%, 50% and 75%. It can be
noted as the proposed one stays in the middle. Whereas the
proposed algorithm consumes slightly more than the SFP, it
still guarantees that the necessary amount of sensed data has
been delivered, which is not the case for the SFP. On the other
hand, the CFP may introduce unnecessary sensing tasks when
not needed and also not fulfilling the FMSF

k requirement.
In Figure 10 we show the total amount of data generated

using the three polices during the 10-minute session; the
expected amount of data is also shown on the basis of the
required FMSF

k = 0.4 Hz. The produced information is
encoded in JSON format and transmitted as a string. The
amount of data generated for the temperature is higher than
that of the pressure because it has one more character on
average to be transmitted. It can be noted that the proposed
algorithm is much closer to the target rate with respect to the
alternative approaches and generates always a rate of samples
which is fulfilling the application requirements.

We also investigated the impact of frequency FMSF and
node speed on network lifetime. As expected the lower the
minimum sampling frequency the higher the lifetime of nodes

Fig. 10: Comparison between different collecting policies, i.e.
Collector Friendly Policy (CFP), Smartphone Friendly Policy
(SFP) adopted in [33] and the energy-aware policy adopted
by our proposed CS-ME in terms of data generated during the
10-minute session with FMSF

k = 0.4 Hz

TABLE VII: Impact of the nodes speed on battery lifetime

Speed (Km/h) Mean Lifetime τ (HH:MM)

5 7:40
10 6:29
15 5:50

(see Table VI); however, we observed that a reduction of
FMSF of 75% has brought to a quite lower increase in the
lifetime (around 15%). This is due to the fact that the MCS
tasks are only partially affecting the energy consumption in the
involved nodes. We also observed that the higher the average
speed of the nodes the lower the lifetime (see Table VII). The
reason is that in this case, it happens that the nodes need to
be reconfigured more frequently due to a higher number of
nodes leaving the entering the reference geofence.

In order to quantitatively assess how the mobility affects
the lifetime of the network, we have simulated a scenario by
varying the speed of the nodes so as to analyze the impact
of two important parameters in our algorithm, i.e., α and β,
which impact on the thresholds for accepting a node in the
MCS assignment on the basis of its residual energy and speed,
respectively (see equations 1 and 2). Figure 11 shows the net-
work lifetime with respect to α and β when varying in a range
of values for which the impact on the lifetime is maximum.
From this, we can make two important observations. The first
is related to the fact that increasing β we see an improvement
in the lifetime as more nodes are involved in the sensing
activity even if at increasing speed. However, this benefit soon
disappears due to the fact that it is compensated by an increase
in the consumption of the energy due to the management of
frequent entrance and exit of nodes in the process, which
entails for an increase in the energy wasted for management
updates rather than for useful crowdsensing activities. The
second observation is related to the area with high values of

12

β

0.020.040.060.080.100.120.140.160.18

α

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

τ

7.78
8.02
8.26
8.50

8.74

8.98

9.22

9.45

9.69

9.93

7.000

7.333

7.667

8.000

8.333

8.667

9.000

9.333

9.667

10.000

Fig. 11: Impact of α and β on network lifetime, expressed in
hours

(a) Case 1 β = 0.03 (b) case 2 β = 0.15

Fig. 12: Impact of β on the number of samples collected
outside the geofence

β: here we see that increasing α leads an improvement in
the lifetime because the accepted nodes have high residual
energy, so they can contribute more to reach the FMSF

k .
Keeping β high but decreasing α means accepting high-speed
nodes even if they have low residual energy, so their assigned
sampling frequencies fi,k are low. The other nodes have spent
energy to reconfigure the network, but the accepted nodes can’t
contribute enough to sampling activities in order to increase
the lifetime, because the Geofence’s crossing time is too short.
As already specified in the Introduction, our aim is not to
propose a new crowdsensing application but rather a new
specific functionality that several crowdsensing applications
can rely on. However, to qualitatively show how the proposed
system behavior may impact on the performance of a possible
crowdsensing application, we have considered the monitoring
of the local temperature per geofence. We have then analyzed

how the proposed algorithm can be accurate in collecting data
from the only devices that belong to the inquired geographical
area. In particular, we focused on two cases with different
values of the parameter β: in case 1 β = 0.03 and in case
2 β = 0.15 (α has been kept equal to 0.8). From Figure 12,
it can be noted that the number of measurements taken from
outside the geofence is higher in case 2 with respect to case
1 as faster nodes have been taken; indeed, high values of β
have a negative impact on both nodes lifetime and precision
in the identification of nodes in the geofence.

VI. CONCLUSIONS AND FUTURE WORKS

This paper addresses the issue of resource management
in geolocated sensing applications, proposing a solution that
relies on the SIoT Lysis platform. More specifically, we
focused our study to MCS applications. The Social IoT
model is exploited to find the potential members of the
crowdsensing population and to make the nodes exchange
the energy consumption profile among nodes with similar
characteristics. From the emulation-based experiments, we
observed the following results. We have been able to extend
the time needed to completely deplete the battery of the first
device of around 40% with respect to the case in which the
sampling frequency of all the nodes is kept equal and constant.
Additionally, due to the latency in performing the sampling
and transmission observed in real devices, we experienced
a sampling frequency error of around 2%, which decreases
as the number of devices increases. Future developments will
primarily focus on extending the resource allocation algorithm
to other types of resources.

Future developments will primarily focus on extending the
resource allocation algorithm to other types of resources.
Indeed, the system can be extended to actuators as well. In
this case, the energy models should be deeply modified so as
to account for the energy consumption due to acting devices.
Furthermore, more heterogeneous devices such as vehicles,
bicycles will be considered as participants with different needs,
resources and capabilities. Finally, a deeper analysis will be
performed over the different relation types so as to develop an
even more realistic emulator of social devices.

REFERENCES

[1] G. Fortino and P. Trunfio, Internet of things based on
smart objects: Technology, middleware and applications.
Springer, 2014.

[2] F. Al-Turjman, A. Betin-Can, E. Ever, and S. Alturjman,
“Ubiquitous cloud-based monitoring via a mobile app
in smartphones: An overview,” in Smart Cloud (Smart-
Cloud), IEEE International Conference on. IEEE, 2016,
pp. 196–201.

[3] B. Guo, Z. Wang, Z. Yu, Y. Wang, N. Y. Yen, R. Huang,
and X. Zhou, “Mobile crowd sensing and computing:
The review of an emerging human-powered sensing
paradigm,” ACM Computing Surveys (CSUR), vol. 48,
no. 1, p. 7, 2015.

[4] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing:
current state and future challenges.” IEEE Communica-
tions Magazine, vol. 49, no. 11, pp. 32–39, 2011.

13

[5] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio,
“Integration of agent-based and cloud computing for
the smart objects-oriented iot,” in Computer Supported
Cooperative Work in Design (CSCWD), Proceedings of
the 2014 IEEE 18th International Conference on. IEEE,
2014, pp. 493–498.

[6] G. Fortino, W. Russo, C. Savaglio, W. Shen, and
M. Zhou, “Agent-oriented cooperative smart objects:
From iot system design to implementation,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems,
no. 99, pp. 1–18, 2017.

[7] J. Yang, H. Zhang, Y. Ling, C. Pan, and W. Sun, “Task
allocation for wireless sensor network using modified
binary particle swarm optimization,” Sensors Journal,
IEEE, vol. 14, 2014.

[8] V. Pilloni, E. Abd-Elrahman, M. Hadji, L. Atzori, and
H. Afifi, “Iot prose: Exploiting 3gpp services for task
allocation in the internet of things,” Ad Hoc Networks,
vol. 66, 2017.

[9] C. Perera, D. S. Talagala, C. H. Liu, and J. C. Estrella,
“Energy-efficient location and activity-aware on-demand
mobile distributed sensing platform for sensing as a ser-
vice in iot clouds,” IEEE Transactions on Computational
Social Systems, vol. 2, no. 4, pp. 171–181, 2015.

[10] L. Skorin-Kapov, K. Pripužić, M. Marjanović, A. An-
tonić, and I. P. Žarko, “Energy efficient and quality-
driven continuous sensor management for mobile iot
applications,” in Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom), 2014
International Conference on. IEEE, 2014, pp. 397–406.

[11] S. Bradai, S. Khemakhem, and M. Jmaiel, “Re-opsec:
Real time opportunistic scheduler framework for energy
aware mobile crowdsensing,” in Software, Telecommuni-
cations and Computer Networks (SoftCOM), 2016 24th
International Conference on. IEEE, 2016, pp. 1–5.

[12] X. Hu, T. H. Chu, H. C. Chan, and V. C. Leung, “Vita:
A crowdsensing-oriented mobile cyber-physical system,”
IEEE Transactions on Emerging Topics in Computing,
vol. 1, no. 1, pp. 148–165, 2013.

[13] H. Ma, D. Zhao, and P. Yuan, “Opportunities in mo-
bile crowd sensing,” IEEE Communications Magazine,
vol. 52, no. 8, pp. 29–35, 2014.

[14] J. Soldatos, N. Kefalakis, M. Hauswirth, M. Serrano, J.-P.
Calbimonte, M. Riahi, K. Aberer, P. P. Jayaraman, A. Za-
slavsky, I. P. Žarko et al., “Openiot: Open source internet-
of-things in the cloud,” in Interoperability and Open-
Source Solutions for the Internet of Things. Springer,
2015, pp. 13–25.

[15] F. Al-Turjman, Y. K. Ever, E. Ever, H. X. Nguyen, and
D. B. David, “Seamless key agreement framework for
mobile-sink in iot based cloud-centric secured public
safety sensor networks,” IEEE Access, vol. 5, pp. 24 617–
24 631, 2017.

[16] A. M. Ortiz, D. Hussein, S. Park, S. N. Han, and
N. Crespi, “The cluster between internet of things and
social networks: Review and research challenges,” Inter-
net of Things Journal, IEEE, vol. 1, no. 3, pp. 206–215,
2014.

[17] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The
social internet of things (siot)–when social networks meet
the internet of things: Concept, architecture and network
characterization,” Computer Networks, vol. 56, no. 16,
pp. 3594–3608, 2012.

[18] F. Al-Turjman, “5g-enabled devices and smart-spaces in
social-iot: An overview,” Future Generation Computer
Systems, 2017.

[19] L. Ding, P. Shi, and B. Liu, “The clustering of internet,
internet of things and social network,” in 2010 Third
International Symposium on Knowledge Acquisition and
Modeling, 2010, pp. 417–420.

[20] L. Militano, A. Orsino, G. Araniti, M. Nitti, L. Atzori,
and A. Iera, “Trust-based and social-aware coalition for-
mation game for multihop data uploading in 5g systems,”
Computer Networks, vol. 111, pp. 141–151, 2016.

[21] R. Girau, S. Martis, and L. Atzori, “Lysis: a platform
for iot distributed applications over socially connected
objects,” IEEE Internet of Things Journal, vol. PP, no. 99,
pp. 1–1, 2016.

[22] M. Nitti, V. Pilloni, G. Colistra, and L. Atzori, “The
virtual object as a major element of the internet of
things: a survey,” IEEE Communications Surveys Tutori-
als, vol. PP, no. 99, pp. 1–1, 2015.

[23] M. Zhang, P. Yang, C. Tian, S. Tang, X. Gao,
B. Wang, and F. Xiao, “Quality-aware sensing coverage
in budget-constrained mobile crowdsensing networks,”
IEEE Transactions on Vehicular Technology, vol. 65,
no. 9, pp. 7698–7707, 2016.

[24] S. Delpriori, V. Freschi, E. Lattanzi, and A. Bogliolo,
“Efficient algorithms for accuracy improvement in mo-
bile crowdsensing vehicular applications,” in UBICOMM
2015, 2015, p. 158.

[25] L. Ruge, B. Altakrouri, and A. Schrader,
“Soundofthecity-continuous noise monitoring for
a healthy city,” in Pervasive Computing and
Communications Workshops (PERCOM Workshops),
2013 IEEE International Conference on. IEEE, 2013,
pp. 670–675.

[26] B. Predić, Z. Yan, J. Eberle, D. Stojanovic, and
K. Aberer, “Exposuresense: Integrating daily activities
with air quality using mobile participatory sensing,” in
Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2013 IEEE International Con-
ference on. IEEE, 2013, pp. 303–305.

[27] N. Lathia, V. Pejovic, K. K. Rachuri, C. Mascolo,
M. Musolesi, and P. J. Rentfrow, “Smartphones for large-
scale behavior change interventions.” IEEE Pervasive
Computing, vol. 12, no. 3, pp. 66–73, 2013.

[28] J. Goldman, K. Shilton, J. Burke, D. Estrin, M. Hansen,
N. Ramanathan, S. Reddy, V. Samanta, M. Srivastava,
and R. West, “Participatory sensing: A citizen-powered
approach to illuminating the patterns that shape our
world,” Foresight & Governance Project, White Paper,
pp. 1–15, 2009.

[29] Z. Wang, D. Zhang, X. Zhou, D. Yang, Z. Yu, and Z. Yu,
“Discovering and profiling overlapping communities in
location-based social networks,” IEEE Transactions on

14

Systems, Man, and Cybernetics: Systems, vol. 44, no. 4,
pp. 499–509, 2014.

[30] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson,
G.-S. Ahn, and A. T. Campbell, “Bikenet: A mobile
sensing system for cyclist experience mapping,” ACM
Transactions on Sensor Networks (TOSN), vol. 6, no. 1,
p. 6, 2009.

[31] M. Z. Hasan and F. Al-Turjman, “Optimizing multipath
routing with guaranteed fault tolerance in internet of
things,” IEEE Sensors Journal, vol. 17, no. 19, pp. 6463–
6473, 2017.

[32] Ö. Yürür, C. H. Liu, Z. Sheng, V. C. Leung, W. Moreno,
and K. K. Leung, “Context-awareness for mobile sens-
ing: A survey and future directions,” IEEE Communi-
cations Surveys & Tutorials, vol. 18, no. 1, pp. 68–93,
2016.

[33] A. Capponi, C. Fiandrino, D. Kliazovich, P. Bouvry,
and S. Giordano, “A cost-effective distributed framework
for data collection in cloud-based mobile crowd sensing
architectures,” IEEE Transactions on Sustainable Com-
puting, vol. 2, no. 1, pp. 3–16, Jan 2017.

[34] V. Pilloni, L. Atzori, and M. Mallus, “Dynamic involve-
ment of real world objects in the iot: a consensus-based
cooperation approach,” Sensors, vol. 17, no. 3, p. 484,
2017.

[35] Y. Yun, Y. Xia, B. Behdani, and J. C. Smith, “Distributed
algorithm for lifetime maximization in a delay-tolerant
wireless sensor network with a mobile sink,” Mobile
Computing, IEEE Transactions on, vol. 12, no. 10, pp.
1920–1930, 2013.

[36] M.-R. Ra, B. Priyantha, A. Kansal, and J. Liu,
“Improving energy efficiency of personal sensing
applications with heterogeneous multi-processors,” in
Proceedings of the 2012 ACM Conference on Ubiquitous
Computing, ser. UbiComp ’12. New York, NY,
USA: ACM, 2012, pp. 1–10. [Online]. Available:
http://doi.acm.org/10.1145/2370216.2370218

[37] “3gpp ts 25.331, radio resource control (rrc); protocol
specification, may 1999.”

[38] “3gpp ts 36.331, e-utra; radio resource control (rrc)
protocol specification, may 2008.”

[39] S. Tarkoma, M. Siekkinen, E. Lagerspetz, and Y. Xiao,
Smartphone energy consumption: modeling and opti-
mization. Cambridge University Press, 2014.

[40] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and
S. Tarkoma, “Modeling, profiling, and debugging the
energy consumption of mobile devices,” ACM Computing
Surveys (CSUR), vol. 48, no. 3, p. 39, 2016.

[41] A. Rahmati and L. Zhong, “Human–battery interaction
on mobile phones,” Pervasive and Mobile Computing,
vol. 5, no. 5, pp. 465–477, 2009.

[42] N. Vallina-Rodriguez, P. Hui, J. Crowcroft, and A. Rice,
“Exhausting battery statistics: understanding the energy
demands on mobile handsets,” in Proceedings of the sec-
ond ACM SIGCOMM workshop on Networking, systems,

and applications on mobile handhelds. ACM, 2010, pp.
9–14.

[43] G. Fortino, R. Gravina, W. Russo, and C. Savaglio,
“Modeling and simulating internet-of-things systems: a
hybrid agent-oriented approach,” Computing in Science
& Engineering, vol. 19, no. 5, pp. 68–76, 2017.

Luigi Atzori (SM’09) is Associate Professor at the
Department of Electrical and Electronic Engineer-
ing at the University of Cagliari (Italy), where he
leads the laboratory of Multimedia and Communi-
cations. His interests are in: multimedia communi-
cations, NGN service management, and IoT. He is
the coordinator of the Marie Curie Initial Training
Network on QoE for multimedia services (qoenet-
itn.eu), which involves ten European Institutions in
Europe and one in South Korea. He is member
of the steering committee for the IEEE Trans. on

Multimedia, member of the editorial board of the IEEE IoT, the Elsevier
Ad Hoc Networks and the Elsevier Digital Communications and Networks
journals.

Roberto Girau is Assistant Professor at the Uni-
versity of Cagliari, Italy. Dr. Girau received his
Ph.D. degree in electronic engineering and computer
science from the University of Cagliari in 2016. His
main research interests are on Cloud Networking and
Internet of Things (IoT), particularly on the creation
of a network infrastructure to allow the objects to
organize themselves according to a social structure.

Virginia Pilloni (S’11, M’14) is an Assistant Pro-
fessor at the University of Cagliari. She was awarded
with the Master Degree in Telecommunication En-
gineering with full marks in 2009 at the University
of Cagliari. From November 2011 to April 2012
she was a visiting PhD student at the CCSR at
the University of Surrey. She has been involved in
several research projects, among which ACCUS and
DEMANES (funded by FP7, Artemis-JU). In 2013
she was awarded with the PhD degree with Doctor
Europaeus mention. Her main research interests are

Internet of Things and Wireless ad-hoc networks, with particular attention to
the improvement of their performance through task allocation.

Marco Uras is an Assistant Researcher at the Uni-
versity of Cagliari. He received his BSc. in Elec-
trical and Electronic Engineering at the University
of Cagliari in September 2016, defending a thesis
entitled ’Development of energy-aware and location-
aware algorithms for Mobile Crowdsensing’. He is
currently enrolled in the master’s degree program
of Telecommunication Engineering at University of
Cagliari. Since November 2016 he has been working
for the Department of Electrical and Electronic En-
gineering of the University of Cagliari. In the same

year he started a collaboration with MCLab research group, in the area of
IoT and Mobile Crowdsensing.

