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INCENTIVE MECHANISM DESIGN IN MOBILE CROWDSENSING SYSTEMS

by

Zhuojun Duan

Under the Direction of Zhipeng Cai, Ph.D. and Wei Li, Ph.D.

ABSTRACT

In the past few years, the popularity of Mobile Crowdsensing Systems (MCSs) has been

greatly prompted, in which sensory data can be ubiquitously collected and shared by mobile

devices in a distributed fashion. Typically, a MCS consists of a cloud platform, sensing

tasks, and mobile users equipped with mobile devices, in which the mobile users carry out

sensing tasks and receive monetary rewards as compensation for resource consumption ( e.g.,

energy, bandwidth, and computation) and risk of privacy leakage ( e.g., location exposure).

Compared with traditional mote-class sensor networks, MCSs can reduce the cost of deploy-

ing specialized sensing infrastructures and enable many applications that require resources

and sensing modalities beyond the current mote-class sensor processes as today’s mobile de-

vices (smartphones (iPhones, Sumsung Galaxy), tablets (iPad) and vehicle-embedded sens-

ing devices (GPS)) integrate more computing, communication, and storage resources than

traditional mote-class sensors. The current applications of MCSs include traffic congestion

detection, wireless indoor localization, pollution monitoring, etc . There is no doubt that

one of the most significant characteristics of MCSs is the active involvement of mobile users

to collect and share sensory data.



In this dissertation, we study the incentive mechanism design in mobile crowdsensing

system with consideration of economic properties.

Firstly, we investigate the problem of joining sensing task assignment and scheduling in

MCSs with the following three considerations: i) partial fulfillment, ii) attribute diversity,

and iii) price diversity. Then, we design a distributed auction framework to allow each task

owner to independently process its local auction without collecting global information in

a MCS, reducing communication cost. Next, we propose a cost-preferred auction scheme

(CPAS) to assign each winning mobile user one or more sub- working time durations and

a time schedule-preferred auction scheme (TPAS) to allocate each winning mobile user a

continuous working time duration.

Secondly, we focus on the design of an incentive mechanism for a MCS to minimize

the social cost. The social cost represents the total cost of mobile devices when all tasks

published by the MCS are finished. We first present the working process of a MCS, and

then build an auction market for the MCS where the MCS platform acts as an auctioneer

and users with mobile devices act as bidders. Depending on the different requirements of

the MCS platform, we design a Vickrey-Clarke-Groves (VCG)-based auction mechanism for

the continuous working pattern and a suboptimal auction mechanism for the discontinuous

working pattern. Both of them can ensure that the bidding of users are processed in a truthful

way and the utilities of users are maximized. Through rigorous theoretical analysis and

comprehensive simulations, we can proof that these incentive mechanisms satisfy economic

properties and can be implemented in reasonable time complexcity.

Next, we discuss the importance of fairness and unconsciousness of MCS surveillance ap-

plications. Then, we propose offline and online incentive mechanisms with fair task schedul-

ing based on the proportional share allocation rules. Furthermore, to have more sensing tasks

done over time dimension, we relax the truthfulness and unconsciousness property require-

ments and design a (ε, µ)-unconsciousness online incentive mechanism. Real map data are

used to validate these proposed incentive mechanisms through extensive simulations.

Finally, future research topics are proposed to complete the dissertation.



INDEX WORDS: Mobile Crowdsensing System(MCS), Incentive Mechnism, Eco-
nomic property, Internet of Things(IoT)
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Chapter 1

INTRODUCTION

1.1 Background and Motivations

The highly distributed wireless network paradigm extends ubiquity of the Internet

through integrating every terminal for interaction via embedded systems, in which all the

physical terminals can collect and exchange data. In network, the new emerging techniques

integrate multiple types of sensors and high-performance processors into physical termi-

nals, e.g., smartphones (iPhones, Sumsung Galaxy, etc.), tablets (iPad, etc.), and vehicle-

embedded sensing terminals (GPS). These mobile terminals can be used to sense and collect

data, so that become data sources. All above mentioned properties promote the development

of Mobile Crowdsening System (MCS). In an MCS, a complicated sensing job is divided into

several simpler tasks. Each participated mobile physical terminal can undertake one or more

simpler sensing tasks. The most attractive properties of MCSs is that it aims at letting the

regular mobile physical terminals work for the complicated job, while keeping the users of

these mobile physical terminals unconscious. In tradition, however, the job must be done

by professional experts and the sensors have to be deployed in advance. The great potential

of MCSs enables numerous applications, such as Common Sense [1] for air quality informa-

tion collection, Nericell [2] for traffic information acquisition, and BikeNet [3] for the cyclist

experience mapping.

High quality of sensing service in MCSs is heavily reliant on the number of partic-

ipated users. Monetary incentive is the most popular and effective way to attract ade-

quate users’ participation and compensate their resource consumption (e.g, battery and

computing) and risk of privacy leakage (e.g., location exposure) during the participation

in MCSs. Recently, to effectively incentivize mobile users to participate in sensing ser-

vices, a number of auction-based incentive mechanisms have been proposed [4–13]. Accord-
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ing to the design objective, the existing works can be classified into two major categories:

(i) social welfare/utility/profit/revenue maximization for the cloud platform [4–7]; and (ii)

cost/payment minimization for the cloud platform [8–11]. Meanwhile, in different scenarios,

some works also consider various assignment constraints, including data quality [4,5], buyer

budget [14,15], and data sensing area coverage [9], etc.

Firstly, we investigate the problem of joining sensing task assignment and scheduling

in MCSs with the following three considerations : i) partial fulfillment, which means that a

sensing task can get assigned if it can be partially completed by one or more mobile users

in the time domain; for example, if a task requests the sensory data at a certain location

from 9:00am to 11:00am and a mobile user who is the only user in the mobile system

can collect the required data from 9:30am to 10:30am, the task will be assigned to the

mobile user; ii) attribute diversity, which indicates that the implementation requirements

of tasks and the availability of mobile users vary in task attributes, including location,

starting time, ending time, and types of sensors; and iii) price diversity, which says that

each mobile user could ask different prices for performing different tasks. Notice that the

existing auction schemes [4, 9, 16–21] do not consider task scheduling in the time domain,

thus they cannot be applied to solve our problem. Moreover, extending such auctions to

consider partial fulfillment, attribute diversity, and price diversity is nontrivial. Therefore,

designing a truthful auction for task assignment and scheduling while taking into account

partial fulfillment, attribute diversity, and price diversity is very challenging.

To overcome these challenges, we first formulate the joint problem of task assignment

and scheduling as a reverse auction, in which partial fulfillment, attribute diversity, and price

diversity are considered. Next, we design a distributed auction framework, in which each

task owner independently controls its local auction. Based on such a framework, we propose

two distributed auction schemes, cost-preferred auction scheme (CPAS) that schedules tasks

according to the non-decreasing order of mobile users’ asking prices and time schedule-

preferred auction scheme (TPAS) that schedules tasks according to the non-decreasing order

of mobile users’ arrival time. Furthermore, via rigorous theoretical proof, we show that
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both CPAS and TAPS can achieve computational efficiency, individual rationality, budget

balance, and truthfulness. Finally, our intensive simulation results confirm the effectiveness

of the proposed auction schemes CPAS and TPAS.

Secondly, we focus on the design of an incentive mechanism for a MCS to minimize

the social cost. The social cost represents the total cost of mobile devices when all tasks

published by the MCS are finished. To achieve the objective in the MCS, we confront several

challenges: i) True cost revelation. The cost of each mobile device for finishing a task is

private. It is difficult to encourage all participants to report their real costs; ii) Minimal

cost optimization. Assume all users report their true costs to the MCS. Since mobile devices

may vary in capacities and costs, it is hard to select the optimal set of users; iii) Incentive

mechanism. As discussed, the MCS platform should reward each user who works for it

as incentives. Within the budget, the reward should be greater than the cost of the user.

Deciding a proper reward for each participant is still challenging.

These challenges lead us to investigate an auction mechanism that concentrates on the

trade between the MCS platform and mobile users. This work begins with the assumption

that the MCS platform publishes only one task in one round and the task consists of pieces of

sub-tasks. Each user with a mobile device can work for one or more sub-tasks. The auction

mechanism in our paper aims to minimize the social cost of mobile users while guaranteeing

the truthful cost of bidding from each participating user.

Depending on the requirements of a MCS platform, there are two different working

patterns. The first one is the continuous working pattern, which requires each participant

to work on a set of continuous sub-tasks. We call another working pattern the discontinuous

working pattern, where a participant can work for any set of sub-tasks. Depending on the

different requirements of the MCS platform, we design a Vickrey-Clarke-Groves (VCG)-based

auction mechanism for the continuous working pattern and a suboptimal auction mechanism

for the discontinuous working pattern. Both of them can ensure that the bidding of users

are processed in a truthful way and the utilities of users are maximized.
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Thirdly, motivating the mobile users to participate in sensing services for efficient data

generation and collection is one of the most critical issues in mobile crowdsensing systems.

Auction based mechanisms are seen to be promising and effective solutions to incentivize

mobile users. Participant’s preference for different sensing tasks is a pivotal factor which

should be considered in the auction mechanisms as assigning the least favorite tasks dis-

courages them to participate in future sensing tasks. Unfortunately, participant’s preference

have been overlooked by all the existing works, which motivates us to fill this gap in this

paper. We first propose a new concept “mutual preference degree” to capture participant’s

preference and then design a preference-based auction mechanism (PreAM) to simultane-

ously guarantee individual rationality, budget feasibility, preference truthfulness, and price

truthfulness. Finally, both the theoretical analysis and simulation results demonstrate the

effectiveness of PreAM.

1.2 Organization

The rest of this dissertation is organized as follows: Chapter 2 summarizes the related

literature. Chapter 3 investigates the distributed auctions for task assignment and scheduling

in mobile crowdsensing systems. Chapter 4 studies the problem of minimizing social cost

in mobile crowdsensing systems. Chapter 5 studies the problem of preference-based auction

mechanism which can simultaneously guarantee individual rationality, budget feasibility,

preference truthfulness, and price truthfulness. Chapter 6 conducts the future research

directions. And the last chapter concludes this dissertation.
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Chapter 2

RELATED WORKS

In this chapter, existing literature related to our research are summarized.

2.1 Applications of MCS

Recently, many commercial MCS applications have been released. These applications

can be installed on mobile devices carried by users. After installation, these mobile users

are able to undertake computational or sensing tasks. Then, all the results or information

generated by the applications will be transmitted to a service center for final process. For

example, GigWalk [22] can assist users in verifying the service quality and product placement.

It can also provide reports about the graffiti at bus or train stations to the government.

Additionally, GigWalk could work for real estate, consumer research, travel, advertising,

and so on. Field Agent [23] is an application used for businesses. It can work for two tasks:

audit and research. The audit task mainly focuses on information collection, which allows

manufacturers and retailers to attract customers and spread information. The research task

is interested in gathering customers’ feedback on products or services, so the businessmen can

have a better insight of the market. In [1], the authors introduce a MCS application named

Common Sense, which is used for pollution monitoring. Nericell [2] can be used to determine

the average speeds or traffic delays, and DietSense [24] is proposed for health control. These

applications suggest that the importance of MCS is growing in practical business fields.

2.2 Distributed incentive mechanism design

Note that an auction can be performed in a centralized way [4, 9, 16–19], in which an

auctioneer gathers global information and computes the auction results. In [16], a user-

centric combinatorial auction was designed, in which each mobile user bids for a set of
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sensing tasks with an asking price and the crowdsourcer aims to maximize its utility via

user selection. Feng et al. [9] proposed a reverse auction for the platform to minimize its

cost, in which a sensing task can be done by a smartphone if the location of the sensing

task is within the service coverage of the smartphone. Jin et al. [4] designed a single-

minded reverse combinatorial auction and a multi-mined reverse combinatorial auction by

considering the quality of information of mobile users. In [17], via considering that the

sensing tasks are randomly published and the mobile users dynamically arrive in an MCS,

an offline auction and an online auction were proposed. Zhang et al. [18] studied three

auction schemes respectively corresponding to the following three scenarios in MCSs: i)

single-requester single-bid model; ii) single-requester multiple-bid model; and iii) multiple-

requester multiple-bid model. Ji et al. [19] investigated the discretization in crowdsensing

systems and designed two auction-based incentive mechanisms, in which each user has a

uniform sensing subtask length. However, in the auction models of the above work [4,9,16–

19], for each sensing task, the requirements of working time and types of sensors are not

taken into account.

To the best of our knowledge, the only existing work on distributed incentive mechanisms

for task allocation in MCSs is [20]. In [20], the authors first formulated the problem of task

selection for mobile users as a non-cooperative task selection game and then investigated

the equilibriums and convergence of the game. In the proposed game, the objective is to

maximize each mobile user’s utility by finding an order to complete one or more sensing

tasks that locate at different places.

Different from all the above prior work, we propose to design distributed truthful auction

schemes for task assignment and scheduling in MCSs while considering partial fulfillment,

attribute diversity, and price diversity.

2.3 Truthful Incentive Mechanisms for Social Cost Minimization

Many studies have been done on task allocation in MCSs. Most of them target the max-

imization of system efficiency. In [25], the authors design a fair energy-efficient allocation
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framework and propose two sensing task allocation algorithms: one is an offline allocation

algorithm and the other is an online allocation algorithm. Ho and Vaughan [26] formalize

the online task assignment problem, which makes the allocation decision upon arrival of each

worker. Then, a two-phase exploration–exploitation assignment algorithm is proposed. Au-

thors of [27] investigate the problem of task assignment and label inference for heterogeneous

classification tasks. They derive a probably near-optimal adaptive assignment algorithm by

applying online primal-dual techniques. An architectural model using the SLURM tool for

efficient management in the MCS is outlined in [28]. The authors propose a novel idea of

adaptive task scheduling which is based on the feedback of customer satisfaction. However,

they don’t consider the incentive mechanisms.

A handful of researchers put effort on the design of incentive mechanisms for the MCS.

Yang et al. [29] consider two types of incentive mechanisms: platform-centric incentive mech-

anisms and user-centric incentive mechanisms. The first one is based on the Stackelberg

game, in which the MCS platform has absolute control over the total budget to users, and

users can only adjust their actions to meet the requirements of the platform. The roles of

the platform and users are reversed in the user-centric incentive mechanisms. Each user

reports the lowest price for selling a service to the MCS platform. In [30], the authors

design a reward-based collaboration mechanism. The client publishes a total reward to be

shared among collaborators. The collaboration is successful when enough users are willing

to collaborate. In order to attract more users to participate, [31] designs a novel Reverse

Auction-based Dynamic Price (RADP) incentive mechanism. In this mechanism, users can

sell their sensing data to a service provider by their claimed bid prices. Singla and Krause [32]

exploit a link between procurement auctions and multi-armed bandits. Its mechanism de-

sign is budget feasible. In conclusion, most of the existing works concentrate on maximizing

social efficiency and achieving fairness in MCSs.
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Chapter 3

DISTRIBUTED AUCTIONS FOR TASK ASSIGNMENT AND

SCHEDULING IN MOBILE CROWDSENSING SYSTEMS

3.1 Introduction

In the past few years, the popularity of Mobile Crowdsensing Systems (MCSs) has been

greatly prompted, in which sensory data can be ubiquitously collected and shared by mobile

devices in a distributed fashion. Typically, a MCS consists of a cloud platform, sensing tasks,

and mobile users equipped with mobile devices, in which the mobile users carry out sensing

tasks and receive monetary rewards as compensation for resource consumption ( e.g., energy,

bandwidth, and computation) and risk of privacy leakage ( e.g., location exposure). Com-

pared with traditional mote-class sensor networks, MCSs can reduce the cost of deploying

specialized sensing infrastructures and enable many applications that require resources and

sensing modalities beyond the current mote-class sensor processes as today’s mobile devices

(smartphones (iPhones, Sumsung Galaxy), tablets (iPad) and vehicle-embedded sensing de-

vices (GPS)) integrate more computing, communication, and storage resources than tradi-

tional mote-class sensors [33]. The current applications of MCSs include traffic congestion

detection, wireless indoor localization, pollution monitoring, etc [20, 33, 34]. There is no

doubt that one of the most significant characteristics of MCSs is the active involvement of

mobile users to collect and share sensory data. In other words, for any MCS, one of the most

important problems is “ how to get mobile users involved in sensing tasks?”

Thus, to effectively incentivize mobile users to join mobile crowdsening, auction that is

a powerful game-theoretical incentive mechanism [35–40] has been widely applied to design

market-based sensing task assignment schemes [4, 9, 16–21]. Unfortunately, several critical

issues are ignored by most of the existing work: i) in the proposed auction models [9, 17–

19,21, 41, 42], a sensing task is assigned to a mobile user if and only if the task can be fully
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completed by the mobile user, which is impractical in some scenarios; in reality, a sensing

task might not be fully completed by one mobile user at a time ( e.g., pollution monitoring

within an area during a time period) as a mobile user’s available working time in an MCS

is limited; ii) heterogeneity in MCSs is not fully explored – sensing tasks may have different

requirements in terms of location, starting time, ending time, types of sensors, etc, and

mobile users also vary in their locations, available starting time, available ending time, set

of equipped sensors, etc; iii) due to the aforementioned diversities of task requirement

and user availability, the prices asked by a mobile user to process different tasks are also

different [43–52].

Motivated by the above observations, in this work, we investigate the problem of joining

sensing task assignment and scheduling in MCSs with the following three considerations : i)

partial fulfillment, which means that a sensing task can get assigned if it can be partially

completed by one or more mobile users in the time domain; for example, if a task requests

the sensory data at a certain location from 9:00am to 11:00am and a mobile user who is

the only user in the mobile system can collect the required data from 9:30am to 10:30am,

the task will be assigned to the mobile user; ii) attribute diversity, which indicates that

the implementation requirements of tasks and the availability of mobile users vary in task

attributes, including location, starting time, ending time, and types of sensors; and iii) price

diversity, which says that each mobile user could ask different prices for performing different

tasks. Notice that the existing auction schemes [4,9,16–21] do not consider task scheduling in

the time domain, thus they cannot be applied to solve our problem. Moreover, extending such

auctions to consider partial fulfillment, attribute diversity, and price diversity is nontrivial.

Therefore, designing a truthful auction for task assignment and scheduling while taking into

account partial fulfillment, attribute diversity, and price diversity is very challenging.

In this work, to overcome the above challenges, we first formulate the joint problem of

task assignment and scheduling as a reverse auction, in which partial fulfillment, attribute

diversity, and price diversity are considered. Next, we design a distributed auction frame-

work, in which each task owner independently controls its local auction. Based on such
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a framework, we propose two distributed auction schemes, cost-preferred auction scheme

(CPAS) that schedules tasks according to the non-decreasing order of mobile users’ asking

prices and time schedule-preferred auction scheme (TPAS) that schedules tasks according to

the non-decreasing order of mobile users’ arrival time. Furthermore, via rigorous theoretical

proof, we show that both CPAS and TAPS can achieve computational efficiency, individual

rationality, budget balance, and truthfulness. Finally, our intensive simulation results con-

firm the effectiveness of the proposed auction schemes CPAS and TPAS. To sum up, our

multi-fold contributions are as follows [53]:

• To the best of our knowledge, we are the first to establish a reverse auction model incor-

porating sensing task assignment and scheduling while considering partial fulfillment,

attribute diversity, and price diversity.

• We design a distributed auction framework to allow each task owner to independently

process its local auction without collecting global information in an MCS, reducing

communication cost.

• We propose a cost-preferred auction scheme (CPAS) to assign each winning mobile user

one or more sub-working time durations and a time schedule-preferred auction scheme

(TPAS) to allocate each winning mobile user a continuous working time duration.

• We perform comprehensive theoretical analysis and prove that both CPAS and TAPS

are computationally efficient, individually rational, budget balanced and truthful.

• The simulations are well conducted to validate the performance of CPAS and TPAS

in terms of allocation efficiency, working time utilization, utility, and truthfulness.

The rest of this chapter is organized as follows. Then the system model and problem

formulation are presented in Section 3.2. The cost-preferred auction scheme and the time

schedule-preferred auction scheme are proposed in Section 3.3 and Section 3.4, respectively.

After evaluating the performance of the two proposed auction schemes in Section 3.5, we

conclude this paper in Section 3.6.
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3.2 System Model and Problem Formulation

3.2.1 System Model

We consider an MCS consisting of a cloud platform, multiple sensing task owners

(STOs), and multiple mobile users equipped with smart devices (MUDs). In an MCS, each

STO acts as a buyer demanding sensing task service and each MUD acts as a seller offering

sensing task service. Both the STOs and the MUDs can connect to the platform via cloud.

The cloud platform allows the STOs to periodically publish their sensing requests.

Suppose that there are m STOs and each one owns a sensing task to be done. Let

Π = {π1, π2, · · · , πm} be the set of all STOs’ tasks. In this work, “STO i’s task” and

“task πi” are interchangeable as each STO has only one task request. Each sensing task

is associated with four attributes: locations, starting time, ending time, and resources

(e.g., camera and gyroscope). These four attributes indicate the specific requirements of

sensing task implementation and are determined by the STOs. Each STO i’s sensing task

information, denoted by fπi , includes the four task attributes and can be formally represented

as follows:

fπi = (Lπi , [α
π
i , β

π
i ], Rπ

i ),

where Lπi is the required location to perform task πi, α
π
i and βπi are respectively the starting

time and the ending time to perform task πi, and Rπ
i presents a set of required resource to

implement task πi. In addition, STO i has budget bi to complete task πi per unit time slot.

In other words, STO i requests that task πi needs to be implemented at location Lπi during

time period [απi , β
π
i ] by consuming a set of resource Rπ

i with a maximum unit payment bi.

On the other hand, there exist n MUDs denoted by Γ = {γ1, γ2, · · · , γn}. Each MUD

γj is allowed to work for at most one STO and has its initial location Lγj , available starting

time αγj , available ending time βγj , a set of resource Rγ
j embedded into its smart device, and

an average moving rate λγj . Formally, each MUD γj’s sensing service information is defined

to be

fγj = (Lγj , [α
γ
j , β

γ
j ], Rγ

j , λ
γ
j ).
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Obviously, to implement each task πi, a cost of moving from location Lγj to location Lπi and

a cost of consuming resource in Rγ
j will be brought to each MUD γj. Thus, each MUD γj

has an asking price vector Aj =< a1j, a2j, · · · , amj >, in which every aij (1 ≤ i ≤ m) is an

asking price per unit time slot indicating the costs of movement and resource consumption

to process task πi .

Since task πi’s location Lπi may be different from MUD γj’s location Lγj , MUD γj

should first move from Lγj to Lπi and then start the required sensing task. Let d(Lπi , L
γ
j ) be

the Euclidean distance between locations Lπi and Lγj . With moving rate λγj , MUD γj arrives

at location Lπi at time tαij =
d(Lπi ,L

γ
j )

λγj
+ αγj . For simplicity, we assume that an MUD can start

working as soon as it arrives at a task’s required location. Indeed, this assumption does not

affect the performance of our proposed model and schemes. Let Tij be MUD γj’s maximum

available working time duration for πi and |Tij| be the number of time slots of time duration

Tij. For each MUD γj and each task πi, Tij can be calculated via the following six cases:

1. If tαij ≥ βπi , task πi is finished when MUD γj arrives and thus MUD γj cannot perform

task πi, i.e., Tij = ∅.

2. If βγj ≤ απi , task πi starts when MUD γj’s available time ends. Therefore, MUD γj

cannot perform task πi and we have Tij = ∅.

3. If απi ≤ tαij < βγj < βπi , it means that MUD γj arrives when/after task πi begins and

that MUD γj’s available time ends before task πi’s ending time. Accordingly, we have

Tij = [tαij, β
γ
j ].

4. If απi ≤ tαij < βπi ≤ βγj , MUD γj arrives when/after task πi begins and MUD γj’s

available time ends when/after task πi’s required working time terminates. Thus, the

maximum available working time duration is Tij = [tαij, β
π
i ].

5. If tαij < απi < βγj < βπi , MUD γj arrives before task πi begins and MUD γj’s available

time ends before task πi’s ending time. In this case, Tij = [απi , β
γ
j ].
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6. If tαij < απi < βπi ≤ βγj , MUD γj arrives before task πi begins and MUD γj’s available

time ends when/after task πi’s required working time terminates. As a result, we have

Tij = [απi , β
γ
j ].

3.2.2 Problem Formulation

When competing for task πi with other MUDs, MUD γj is scheduled an actual working

time duration T sij by STO i. Correspondingly, denoted by |T sij| the number of time slots of

T sij. Note that Tij is the maximum available working time duration of MUD γj for task πi,

thus we obtain the following relationships: i) T sij ⊆ Tij; and ii) 0 ≤ |T sij| ≤ |Tij|. We use a

0-1 binary variable xij ∈ {0, 1} to indicate the task assignment, i.e., γj processes task πi if

and only if xij = 1. Since each MUD γj is allowed to work for at most one STO, we have∑m
i=1 xij ≤ 1. If γj is allocated to perform task πi, γj can obtain a payment pij from task

owner STO i as a reward and receive a utility Uγ
j that is computed through Eq. (3.1).

Uγ
j =

m∑
i=1

uγij =
m∑
i=1

xij(pij − aij|T sij|). (3.1)

In this work, we consider a practical scenario, in which each STO i independently

controls its local task auction to determine the winning MUDs and to schedule their working

time. Thus, each STO i also works as an auctioneer of its local task auction which can be

formulated to be a reverse auction as presented in Eq. (3.2).

min
n∑
j=1

xijaij|T sij|, (3.2a)

s.t.
n⋃
j=1

xijT
s
ij ⊆ [απi , β

π
i ], (3.2b)

n∑
j=1

xij|T sij| ≤ |βπi − απi |, (3.2c)

xij ∈ {0, 1}, 1 ≤ j ≤ n, (3.2d)

T sij ⊆ Tij, 1 ≤ j ≤ n. (3.2e)
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In the above reverse auction Eq. (3.2), each STO i’s objective is to minimize the cost for

sensing task assignment and scheduling such that the following conditions can simultaneously

hold: i) condition Eq. (3.2b) requires that the union of scheduled working time durations

cannot exceed the task’s time duration; ii) condition Eq. (3.2c) indicates that the total

allocated time slots cannot be more than the number of slots of the task’s time duration; iii)

conditions Eqs. (3.2d) and (3.2e) show the ranges of assignment variable xij and schedule

variable T sij, respectively.

3.2.3 Auction Economic Properties

In an auction scheme, the following economic properties are typically considered [35]:

• Individual-rationality. This states that no buyer/seller obtains a negative utility,

i.e., in this work, Uγ
j ≥ 0 for all γj ∈ Γ.

• Budget-balance. In a double-side auction, the auctioneer’s budget is the difference

between the total charge collected from all buyers and the total payment paid to all

sellers. Notice that each STO i has a budget bi in its single-side reverse auction and

works as both a buyer and an auctioneer at the same time. Therefore, in each STO i’s

auction, budget-balance is defined as:
n∑
j=1

xijbi|T sij| −
n∑
j=1

xijpij ≥ 0 for all 1 ≤ i ≤ m.

• Incentive-compatibility. This is also called “truthfulness” or “strategy-proof”,

which indicates that no bidder can improve its received utility via lying about its

bid price. In each STO i’s auction, incentive-compatibility ensures that each MUD

γj ∈ Γ can receive a maximum utility if and only if its asking price satisfies aij = āij

for all πi ∈ Π, where āij denotes the true asking price of MUD γj for task πi.

If an auction can simultaneously achieve individual-rationality, budget-balance, and

truthfulness, it is called economic-robust auction.
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Figure 3.1. A distributed auction framework.

3.2.4 Distributed Auction Framework

In this chapter, we propose to design distributed auction schemes containing four ma-

jor stages that are presented in Fig. 3.1. These four stages are briefly summarized in the

following:

• Stage 1: Publish Task Information. At the beginning, each STO i publishes

its task information fπi and the deadline of accepting bids from MUDs on the cloud

platform. The bid submitted by an MUD after the deadline will be rejected.

• Stage 2: Submit Service Information & Price. After receiving the task informa-

tion, each MUD γj submits its service information fγj and asking price aij to STO i if

it is interested in task πi.

• Stage 3: Announce Auction Results. Each STO i collects service information and

asking prices from the MUDs, schedules working time, decides the potential winners,

and payments. Then, each STO i announces the auction results and a deadline of

submitting final decision to the MUDs who have submitted information and prices.

Each MUD should reply its final decision to the STOs who have chosen it as a potential

winner before the deadline.

• Stage 4: Reply Final Decision. If MUD γj is chosen as a potential winner by one

or more STOs, it should reply its final decision to the STOs who have chosen it as a

potential winner.
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From the above four stages, one can see that an STO may be rejected by the MUDs.

Thus, to complete the sensing task, each STO continues to conduct its reverse auction

to schedule the remaining unassigned working time slots in a multi-round manor until its

task time duration has been fully scheduled or no potential winning MUD can be selected.

Meanwhile, if an MUD is successfully scheduled to a task, it exits the auction; otherwise, it

continues to compete for working until no task information is published.

Furthermore, under the proposed auction framework, two different policies can be used

to perform task assignment and scheduling: i) cost-preferred policy: the STOs determine

the potential winners according to the non-decreasing order of the MUDs’ asking prices; and

ii) time schedule-preferred policy: the STOs determine the potential winners based on

a first-come-first-serve manor. The adoption of the policy is determined through MUDs’

negotiation before conducting the auction. The auction schemes corresponding to the two

policies are detailed in Sections 3.3 and 3.4, respectively.

3.3 Cost-Preferred Auction Scheme

In this section, a Cost-Preferred Auction Scheme termed CPAS is proposed, in which

each STO i greedily performs sensing task assignment and scheduling according to the non-

decreasing order of the MUDs’ asking prices. The stages of CPAS for each STO i is outlined

in Algorithm 1.

Since the auction scheme CPAS is performed in a multi-round manor and the auction

process of each round is the same, we just demonstrate the auction process of a round in the

following part of this section.

3.3.1 Information Publication & Collection

At the beginning of an auction, each STO i publishes its task information fπi on the

cloud platform. After obtaining all the STOs’ task information, each MUD γj submits its

service information fγj and asking price aij to STO i. Note that an MUD could be interested
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Algorithm 1: Cost-Preferred Auction Scheme for STO i

input : fπi , [απi , β
π
j ]

output: {xij}, {T sij}

1 Set {xij} = {0}, {T sij} = {∅}, and T ui = [απi , β
π
j ];

2 REPEAT
3 Publish sensing task information fπi ;
4 Receive sensing service information {fγj } and asking prices {aij} from the

MUDs;
5 Run Alg. 2 to determine potential winners, schedule working time,

compute payments, and announce the results;
6 Collect replies from the MUDs, record the values of {xij}, and update

T ui = T ui \
⋃n
j=1 xijT

s
ij;

7 UNTILT ui = ∅ or no potential winner is selected.

in more than one sensing task and send its service information and asking price to the

corresponding STOs at the same time.

3.3.2 Potential Winner Determination and Payment Calculation

When STO i receives service information {fγj } and asking price {aij} from one or more

MUDs, based on {fγj }, {aij}, fπi , and bi, STO i forms a set of available MUDs as

Γc(πi) = {γj|(Tij ∩ T ui ) 6= ∅, Rγ
j ⊆ Rπ

i , and aij ≤ bi},

in which T ui denotes the un-scheduled time duration for task πi at the current round of

auction. This computation is implemented in lines 2-7 of Algorithm 2.

Potential Winner Determination Initially, the set of potential winners is W (πi) =

∅. To schedule working time, STO i first sorts all the available MUDs in Γc(πi) in a non-

decreasing order in terms of their asking prices and gets a sorted set Γc′(πi) (see line 8 in

Algorithm 2). Next, STO i scans the available MUDs in Γc′(πi) and allocates un-scheduled

time slots in a greedy manor. Specifically speaking, if MUD γj’s current available working

time duration (Tij ∩ T ui ) has not been fully scheduled to other available MUDs, i.e., (Tij ∩
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T ui )∩ (
⋃

γj′∈W (πi)

T sij′) 6= (Tij ∩ T ui ), MUD γi can be chosen as a potential winner and assigned

a set of time slots that has not been allocated to current potential winners in W (πi), i.e.,

T sij = (Tij ∩ T ui )\(Tij ∩ T ui ∩ (
⋃

γj′∈W (πi)

T sij′)) (see lines 9-14 in Algorithm 2).

Payment Calculation After completing task scheduling, STO i computes the pay-

ment for each potential winning MUD γj via identifying γj’s critical neighbor, which is

defined to be the MUD γk in Γc(πi) where if aij is higher than aik, γj can not be scheduled.

Different from the previous works [9, 17–19, 21, 41, 42] in which each winner has only one

critical neighbor, each winning MUD γj in the auction CPAS has one or more critical neigh-

bors because the time slots of T sij could be scheduled to one or more other available MUDs

if MUD γj does not join the auction (see lines 17 - 32 of Algorithm 2). Thus, the payment

is calculated according to every critical neighbor of winner γj. In order to find the critical

neighbors, STO i sorts all the MUDs in Γc−γj(πi) = Γc(πi) \ γj in the non-decreasing order in

terms of their asking prices, selects winners again in the sorted set Γc′−γj(πi), and schedules

working time to them. Any MUD γk is a critical neighbor of MUD γj if their allocated time

durations are overlapping, i.e., T s′ik ∩ T s′ij 6= ∅, where T s′ik is the time duration assigned to

MUD γk and T s′ij records the remaining time duration in T sij that is not allocated to others.

So the corresponding critical payment is aik|T s′ik ∩ T s′ij |. But, if no critical neighbor is found

for MUD γj, its critical payment is STO i’s budget bi|T s′ij |.

Then, STO i announces the auction results {T sij} and {pij} to the MUDs.

Remark: Via Algorithm 2, each potential winning MUD can receive a working time

duration T sij that contains one or more sub-time durations. For example, the time du-

ration of task πi is from 1:00pm to 5:00pm, winner γj’s working time duration is T sij =

{[2:00pm, 3:00pm], [4:30pm, 5:00pm]} containing two sub-time durations, and the number

of working time slots is |T sij| = 90 minutes.
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Algorithm 2: Cost-Preferred Task Scheduling & Pricing for Task πi
input : fπi , bi, T

u
i ,Γ, {f

γ
j }, {aij}

output: W (πi), {T sij}, {pij}

1 Set Γc(πi) = ∅,W (πi) = ∅, {T sij} = {∅}, and {pij} = {0};
2 for each γj ∈ Γ with submitted fγj and aij do
3 Calculate Tij;
4 if (Tij ∩ T ui ) 6= ∅, Rγ

j ⊆ Rπ
i , and aij ≤ bi then

5 Γc(πi) = Γc(πi) ∪ γj;

6 Sort all MUDs in Γc(πi) in non-decreasing order based on {aij} and obtain the
sorted set Γc′(πi);

7 for j = 1 to |Γc′(πi)| do
8 if (Tij ∩ T ui ) ∩ (

⋃
γj′∈W (πi)

T sij′) 6= (Tij ∩ T ui ) then

9 W (πi) = W (πi) ∪ γj;
10 T sij = (Tij ∩ T ui )\(Tij ∩ T ui ∩ (

⋃
γj′∈W (πi)

T sij′));

11 for each γj ∈ W π
i do

12 Set {T s′ik} = {∅} and T s′ij = T sij;

13 Sort all the MUDs in Γc(πi)\γj in a non-decreasing order based on {aik} and
obtain the sorted set Γc′−γj(πi);

14 Set k = 1 and W−γj(πi) = ∅;
15 while k ≤ |Γc′−γj(πi)| and T s′ij 6= ∅ do

16 if (Tik ∩ T ui ) ∩ (
⋃

γj′∈W−γj (πi)

T s′ij′) 6= (Tik ∩ T ui ) then

17 W−γj(πi) = W−γj(πi) ∪ γk,
18 T s′ik = (Tik ∩ T ui )\(Tik ∩ T ui ∩ (

⋃
γj′∈W−γj (πi)

T s′ij′));

19 if T s′ik ∩ T s′ij 6= ∅ then
20 pij = pij + aik|T s′ik ∩ T s′ij |,
21 T s′ij = T s′ij \(T s′ik ∩ T s′ij );

22 k = k + 1;

23 if T s′ij 6= ∅ then
24 pij = pij + bi|T s′ij |.
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3.3.3 Final Service Decision

Each MUD γj independently makes its service decision when it obtains the auction

results from the STOs. Let Π(γj) be the set of tasks of which their owners select MUD γj

as a potential winner, which is defined as

Π(γj) = {πi|γj ∈ W (πi) and πi ∈ Π}.

The decision process is described as follows.

• If |Π(γj)| = 0, MUD γj is a loser in each STO i’s local auction scheme CPAS, does not

need to send a reply, and remains in the auction until no task request is published.

• If |Π(γj)| = 1, MUD γj is a potential winner in an STO i’s location auction, accepts

the service request, and exits the auction.

• If |Π(γj)| > 1, MUD γj is selected as a potential winner by multiple STOs and accepts

the STO who brings γj the maximum utility. That is, the accepted task request πi is

decided as

πi = arg max
πh∈Π(γj)

{(phj − ahj|T shj|)}.

Then, MUD γj exits the auction.

Finally, each STO i sets the values of {xij} based on W (πi) and the MUDs’ replies.

3.3.4 Property Analysis

In this subsection, we theoretically analyze the performance of auction mechanism CPAS

in terms of computational efficiency, individual-rationality, budget-balance, and truthfulness.

Lemma 1. The cost-preferred scheduling scheme, Algorithm 2, can terminate within

O(n2 log(n)).

Proof: From line 2 to line 7, the running time of forming set Γc(πi) is at most n that is

the number of MUDs in set Γ. In line 8, sorting the MUDs in Γc(πi) costs at most n log(n)
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time. The potential winner determination, in lines 9-14, has a time complexity of O(n).

Similarly, we know that the sorting process of line 17 has a time complexity of O(n log(n))

and that finding critical neighbors terminates within O(n). Additionally, the “for” loop from

line 15 to line 33 contains at most n iterations and can end within O(n2 log(n)). To sum up,

the time complexity of Algorithm 2 is O(n2 log(n)).

Theorem 1. The proposed auction scheme CPAS is computationally efficient with a time

complexity of O(n3 log(n)).

Proof: From Algorithm 1, one can see that each STO i stops if and only if either of the

two conditions satisfies: i) T ui = ∅; and ii) no potential winner is selected. Let us consider

the worst case for any STO i: STO i picks only one potential winner at each round but is

rejected by the potential winner. Under this situation, the potential winner definitely accepts

another STO’s task request and then exits the auction. Thus, after at most n rounds, STO

i ends its auction as no potential winner can be chosen. From Lemma 1, we obtain the

conclusion that the time complexity of CPAS is O(n3 log(n)).

Theorem 2. The auction scheme CPAS ensures individual-rationality for all MUDs.

Proof: If MUD γj is a loser for all the tasks in an auction, we have
m∑
i=1

xij = 0 and

Uγ
j = 0.

If MUD γj is a winner for task πi in an auction, xij = 1 and T sij > 0. Due to the

definitions of critical neighbor and set Γc(πi), we have aik ≥ aij for γj’s every critical neighbor

γk and bi ≥ aij for STO i, indicating that pij ≥ aij|T sij| (see line 24 and line 31 of Algorithm 1).

Therefore, Uγ
j =

m∑
i=1

uγij =
m∑
i=1

xij(pij − aij|T sij|) ≥ 0.

Theorem 3. The auction scheme CPAS is budget-balanced for all STOs

Proof: From Algorithm 1, it can be seen that all the potential winners are selected

from set Γc(πi) and aij ≤ bi for all γj ∈ Γc(πi). In addition, from line 24 and line 31 of

Algorithm 1, we have bi ≥ pij for each winner γj. Thus,
n∑
j=1

xijbi|T sij| −
n∑
j=1

xijpij ≥ 0, i.e.,

CPAS achieves budget-balance for each STO i.
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Lemma 2. In each STO i’s auction CPAS, if MUD γj is selected as a potential winner with

a price aij, it can still be a potential winner with a smaller price a1
ij < aij and T sij ⊆ T s1ij ,

where T s1ij is the assigned working time duration corresponding to a1
ij.

Proof: Suppose that pos(a1
ij) and pos(aij) are the positions of MUD γj in the sorted set

Γc′(πi) when bidding with a1
ij and aij, respectively. Since a1

ij < aij, pos(a
1
ij) ≤ pos(aij). From

the methods of scheduling and pricing (see Algorithm 2), it is seen that MUD γj submitting

as1ij can be successfully scheduled a time duration T s1ij and T sij ⊆ T s1ij .

Theorem 4. The auction scheme CPAS guarantees truthfulness for all MUDs.

Proof: To prove this theorem, it is equivalent to prove that in each STO i’s local auction

CPAS, each MUD γj ∈ Γ cannot enhance its utility by submitting an asking price aij 6= āij.

This can be analyzed through the following cases.

Case 1: aij < āij (or aij > āij) and MUD γj loses the auction with both aij and āij.

In this case, γj’s utility received from STO i’s auction is zero.

Case 2: aij < āij and MUD γj can win the auction with both aij and āij. According

to Lemme 2, we have T̄ sij ⊆ T sij and |T̄ sij| ≤ |T sij|, where T̄ sij and |T̄ sij| respectively denote the

assigned time duration and the number of time slots of T̄ sij corresponding to āij. Accordingly,

the payment pij can be re-computed via two parts: i) the payments p̄ij paid for time duration

T̄ sij that is the same for both āij and aij; and ii) payment ∆pij paid for time duration T sij \ T̄ sij,

in which aij|T sij \ T̄ sij| ≤ ∆pij ≤ āij|T sij \ T̄ sij| as aij ≤ aik ≤ āij for γj’s every critical neighbor

γk. Correspondingly, the received utility is uγij = pij − āij|T sij| = (p̄ij − āij|T̄ sij|) + (∆pij −

āij|T sij \ T̄ sij|). Since aij|T sij \ T̄ sij| ≤ ∆pij ≤ āij|T sij \ T̄ sij|, we have (∆pij − āij|T sij \ T̄ sij|) ≤ 0.

As a result, we obtain uγij = pij − āij|T sij| ≤ p̄ij − āij|T̄ sij|, i.e., MUD γj cannot get a higher

utility by bidding aij.

Case 3: aij < āij and MUD γj wins with aij but loses with āij. In this case, we know

that āij is higher than its critical neighbors’ asking prices {aik} or is higher than STO i’s

budget bi. That is, āij|T̄ sij| ≥ pij. Therefore, we have uγij = pij − āij|T̄ sij| ≤ 0.

Case 4: aij > āij and MUD γj wins with āij but loses with aij. In this case, uγij = 0

which cannot be higher than the utility corresponding to āij.
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Case 5: aij > āij and MUD γj wins the auction with both āij and aij. Similar to the

analysis of Case 2, we have T sij ⊆ T̄ sij and |T sij| ≤ |T̄ sij|. In addition, payment p̄ij consists of

two parts: i) the payments pij paid for time duration T sij that is the same for both āij and

aij; and ii) the payment ∆p̄ij paid for time duration T̄ sij \T sij, in which āij|T̄ sij \T sij| ≤ ∆p̄ij ≤

aij|T̄ sij \T sij| as āij ≤ aik ≤ aij for γj’s every critical neighbor γk. Thus, the received utility is

uγij = pij − āij|T sij| ≤ (pij − āij|T sij|) + (∆p̄ij − āij|T̄ sij \ T sij|); that is, MUD γj’s utility cannot

be enhanced by submitting aij > āij.

In summary, each STO i’s auction CPAS is truthful for all MUDs. Furthermore,

from Subsection 3.3.3, we can conclude that each MUD γj cannot increase the value of

max
πi∈Π(γj)

{(pij − aij|T sij|)} via cheating on its asking price aij for each task πi. Therefore, the

auction scheme CPAS can achieve truthfulness for all MUDs.

3.4 Time Schedule-Preferred Auction Scheme

Notice that in the auction CPAS, a winning MUD’s working time duration contains one

or more sub-time durations. To allocate one single continuous time duration to each MUD,

we propose a time schedule-preferred auction scheme termed TPAS, in which an STO first

schedules the MUDs based on a first-come-first-serve manor in the time domain and then

computes the payment for each winning MUD. The stages of TPAS for each STO i are

outlined in Algorithm 3.

3.4.1 Information Publication & Collection

In this stage, each STO i publishes its task information fπi on the platform. Then,

each MUD i submits its service information fγj and asking price aij to STO i if the MUD is

interested in task πi.
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Algorithm 3: Time Schedule-Preferred Auction Scheme for STO i

input : τ , k, g, δm
output: seed set S

1 Set {xij} = {0}, {T sij} = {∅}, and T ui = [απi , β
π
j ];

2 REPEAT
3 Publish sensing task information fπi ;
4 Receive sensing service information {fγj } and asking prices {aij} from the

MUDs;
5 Run Alg. 4 to determine potential winners, schedule working time,

compute payments, and announce the results;
6 Collect replies from the MUDs, record the values of {xij}, and update

T ui = T ui \
⋃n
j=1 xijT

s
ij;

7 UNTIL T ui = ∅ or no potential winner is selected.

3.4.2 Potential Winner Determination & Payment Calculation

After obtaining the submitted service information, each STO i computes the set of

available MUDs, Γt(πi), as follows:

Γt(πi) = {γj|(Tij ∩ T ui ) 6= ∅ and Rγ
j ⊆ Rπ

i }.

Potential Winner Determination According to the first-come-first-serve policy,

each STO i greedily assigns a working time duration to each available MUD γj according

to the non-decreasing order in terms of the MUDs’ arrival time tαij = {d(Lπi , L
γ
j )

λγj
+ αγj } until

no available MUD can be selected or its unassigned working time duration T ui becomes

empty. More specifically, in order to schedule an as long continuous working time duration

as possible, STO i assigns each available MUD γj ∈ Γt(πi) a time duration from γj’s prior

MUD’s ending working time to the time min{βπi , β
γ
j } if this time duration is unassigned.

The pseudo-code of the scheduling scheme is presented in Algorithm 4.

Payment Calculation After completing task scheduling, each STO i first sorts all

the available MUDs’ asking prices in the non-decreasing order. Without loss of generality,
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Algorithm 4: Time Schedule-Preferred Task Scheduling for Task πi
input : fπi , T ui , Γ, {fγj }
output: {T sij}

1 Set Γt(πi) = ∅ and {T sij} = {∅} for ∀γj ∈ Γ(πi);

2 for each γj ∈ Γ with submitted fγj and aij do
3 Calculate tαij and Tij;

4 if (Tij ∩ T ui ) 6= ∅ and Rγ
j ⊆ Rπ

i then
5 Γt(πi) = Γt(πi) ∪ γj;

6 Sort all MUDs in Γt(πi) in the non-decreasing order based on {tαij} and get the
sorted set Γt′(πi);

7 Set Start = απi ;
8 for j = 1 to |Γt′(πi)| do

9 if Start < min{βγj , βπi } and (Tij ∩ T uij) ∩ (
j−1⋃
j′=1

T sij′) 6= (Tij ∩ T uij) then

10 T sij = [Start,min{βγj , βπi }];
11 Start = min{βγj , βπi }.

in set Γt(πi), we simply assume that

a1 ≤ a2 ≤ · · · ≤ a|Γt(πi)|.

Then, each STO i searches for a maximum index kπi such that akπi ≤ bi < akπi +1, initializes

the set of potential winners W (πi) = ∅, and determines winners according to the following

two cases.

• Case 1: T sikπi 6= ∅. If γj ∈ Γt(πi), 1 ≤ j ≤ kπi , and T sij 6= ∅, set W (πi) = W (πi) ∪ γj and

pij = bi|T sij|. Moreover, in this case, bi is the critical price of all he MUDs in STO i’s

auction.

• Case 2: T sikπi = ∅. If γj ∈ Γt(πi), 1 ≤ j < kπi , and T sij 6= ∅, set W (πi) = W (πi) ∪ γj and

pij = aikπi |T
s
ij|. In this case, MUD γkπi and aikπi are the critical neighbor and the critical

price of all the MUDs in STO i’s auction, respectively.

Next, each STO i notifies the MUDs of the auction results.
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3.4.3 Final Service Decision

When learning the auctions results, each MUD γj makes its final decision using the

method the same as that of Subsection 3.3.3. Finally, the results of {xij} can be obtained.

3.4.4 Property Analysis

In this subsection, we theoretically prove the performance of the auction scheme TPAS

in terms of computational efficiency, individual-rationality, budget-balance, and truthfulness.

Lemma 3. The computational complexity of the scheduling scheme Algorithm 4 is O(n log(n)).

Proof: From line 4 to line 9, the construction of set Γt(πi) can be done within O(n). In

line 10, the sorting process can be completed within O(n log(n)). From line 12 to line 17, the

scheduling process contains at most n iterations and each iteration has a time complexity of

O(1). Therefore, the computational complexity of Algorithm 4 is O(n log(n)).

Lemma 4. The computational complexity of payment calculation in the auction scheme

TPAS is O(n).

Proof: To compute the payments, each STO i has to search for a maximum index kπi

by scanning set Γt(πi). As |Γt(πi)| ≤ n, the computation complexity of payment calculation

is O(n).

Theorem 5. The proposed auction scheme TPAS achieves computational efficiency with a

time complexity of O(n2 log(n)).

Proof: From Lemmas 3 and 4, and the analysis of Theorem 1, this theorem

Theorem 6. The proposed auction scheme TPAS is individually-rational for all MUDs.

Proof: When all STOs’ auctions end, there are two cases for each MUD γj:

• If
m∑
i=1

xij = 0, we have pij = 0 and |T sij| = 0 for each πi ∈ Π. Thus, Uγ
j = 0.

• If ∃πi ∈ Π, xij = 1, we have Uγ
j = uγij = pij − aij|T sij| ≥ 0 as pij ≥ aij|T sij| and |T sij| > 0.
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Therefore, we can conclude that TPAS achieves individual rationality for all MUDs.

Theorem 7. The proposed auction scheme TPAS is budget-balanced for all STOs.

Proof: If sensing task πi is successfully assigned to one or more MUDs, we have
n∑
j=1

xij ≥

1,
n∑
j=1

xij|T sij| > 0, and pij ≤ bi|T sij| for every winning MUD γj. Thus, for STO i, we have

n∑
j=1

xijbi|T sij| −
n∑
j=1

xijpij ≥ 0, indicating that TPAS can ensure budget-balance for all STOs.

Lemma 5. For each STO i, the scheduling results {T sij} of Algorithm 4 are independent of

all MUDs’ asking prices {aij}.

Proof: From line 12 to line 16 of Algorithm 4, one can see that the computation of γj’s

working time duration T sij does not depend on its asking price aij. Therefore, this theorem

holds.

Lemma 6. In each STO i’s location auction TPAS, if MUD γj is a potential winner with

bidding a price aj, it can also become a potential winner with a smaller price a1
ij < aij.

Proof: When MUD γj submits a smaller price a1
ij, γj’s position in set Γt(πi) changes

from j to j1. Since a1
ij < aij, we have j1 ≤ j ≤ kπi . In addition, according to Lemma 5, the

assigned working time duration T sij remains the same for MUD γj. As a result, γj can be

still selected as a potential winner by STO i for task πi.

Theorem 8. The proposed auction scheme TPAS can achieve truthfulness for all MUDs.

Proof: Proving this theorem is equivalent to prove that in each STO i’s local auction

TPAS, each MUD γj ∈ Γ cannot improve its utility uγij by asking for a price aij 6= āij, in

which there are five cases to be considered for each MUD γj.

Case 1: aij < āij (or aij > āij) and MUD γj loses the auction with both aij and āij.

In this case, γj’s utility received from STO i is zero.

Case 2: aij < āij and MUD γj wins the auction with both aij and āij. Through

Lemma 5, we know that the assigned time duration is T sij for MUD γj with both aij and

āij. In addition, from the property of the pricing method in TPAS and Lemma 6, we have



28

aij < āij ≤ aikπi ≤ bi, i.e., aij|T sij| < āij|T sij| ≤ pij. Therefore, the utility also remains the

same, i.e., uγij = pij − āij|T sij|.

Case 3: aij < āij and MUD γj wins with aij but loses with āij. In this case, āij

is higher than the critical price aikπi or is higher than STO i’s budget bi. Thus, we have

āij|T sij| ≥ pij according to the pricing method in Subsection 11. As a result, the utility is

uγij = pij − āij|T sij| ≤ 0.

Case 4: aij > āij and MUD γj wins with āij but loses with aij. In this case, uγij = 0

which cannot be higher than the utility corresponding to āij.

Case 5: aij > āij and MUD γj wins the auction with both āij and aij. Similar to

Case 2, we have the following relationships: i) T sij for MUD γj with both aij and āij from

Lemma 5; and ii) āij < aij ≤ aikπi ≤ bi due to the property of the pricing method in TPAS

and Lemma 6. Thus, the utility is unchanged, i.e., uγij = pij − āij|T sij|.

The above five cases indicate that each STO i’s auction is truthful for all MUDs. More-

over, from Subsection 3.3.3, one can see that each MUD γj cannot increase the value of

max
πi∈Π(γj)

{(pij − aij|T sij|)} via cheating on its asking price aij for each task πi. Therefore, the

auction scheme TPAS can ensure truthfulness for all MUDs.

Remark: In the auction scheme TPAS, the process of task scheduling is independent

of the MUDs’ asking prices. As a result, an MUD that has been assigned a non-empty time

duration cannot win the auction if the MUD’s asking price is higher than the corresponding

critical price. In fact, any price-independent scheduling algorithm can be applied in TPAS

to obtain {T sij}, without any impact on truthfulness for the MUDs.

3.5 Performance Evaluation

3.5.1 Simulation Settings

We evaluate the performance of the cost-preferred auction scheme (CPAS) and time

schedule-preferred auction scheme (TPAS) based on a synthetic data set. The number of

sensing tasks varies from 5 to 30, and the number of MUSs varies from 50 to 150. The
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locations of all sensing tasks are randomly and uniformly distributed within a rectangular

area of 6km×6km. The locations of all MUDs are set according to two kinds of distributions:

i) uniform: the locations are uniformly deployed within the rectangular area of 6km× 6km

at random; and ii) hotspot: the location of each task is viewed as a circle-centered hotspot

with a radius of 0.7km, and the MUDs randomly locate within these hotspot areas. We

consider 10 types of sensors and the number of each type of sensor is one. Each sensing

task requests a number of different sensors, which is a random number uniformly picked

from [3, 10]; similarly, each MUD is equipped with a number of different sensors, which is

a random number uniformly chosen from [1, 10]. In the simulation, the unit time slot is

one minute and the longest time duration is 5 hours. More specifically, each sensing task

(and each MUD’s available time) randomly begins at or after 1:00pm and ends at or before

5:00pm; that is, for any task (and any MUD), the working time duration is at most 5

hours containing 300 time slots. Each STO’s budget (and each MUD’s asking price) is an

integer that is uniformly selected from [10, 25] at random. Suppose that all the MUDs are

pedestrians with mobile devices, so the moving rate of each MUD is randomly and uniformly

chosen within [4.5, 5.4]km/hour [54].

We use the following metrics to evaluate the performance of the two proposed auction

schemes.

• Allocation Efficiency. The allocation efficiency of a sensing task is defined to be the

ratio of the total number of assigned working time slots to the number of requested

working time slots. Formally, the average allocation efficiency of all sensing tasks is

calculated as

1

m
(
m∑
i=1

n∑
j=1

xij|T sij|

βπi − απi
).

• Working Time Utilization. The working time utilization of an MUD is the ratio

of the number of assigned working time slots to the number of available working time
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Figure 3.2. Average tasks’ allocation
efficiency (m=10).

Figure 3.3. Average tasks’ allocation
efficiency (m=20).

slots. Thus, the average working time utilization of all MUDs is computed by

1

n
(
n∑
j=1

m∑
i=1

xij|T sij|

βγj − α
γ
j

).

• Utility. We also compare the average utility of all MUDs.

• Truthfulness. At each time, we randomly pick an MUD, set fake asking prices to it,

and examine its received utility when biding truthfully and untruthfully.

3.5.2 Simulation Results and Analysis

We first check the average allocation efficiency of all sensing tasks with the number of

STOs changing from 10 to 20 and the number of MUDs increasing from 50 to 150 under the

uniform and hotspot distributions. The results are presented in Fig. 3.2 and Fig. 3.3. As

shown in Fig. 3.2 and Fig. 3.3, the average allocation efficiency increases when the number

of MUDs increases. This is because if more MUDs participate in the auction, each STO

can find more MUDs to implement its sensing task. Besides, in both Fig. 3.2 and Fig. 3.3,

CPAS performs better than TPAS. The reason lies in the following two aspects: i) CPAS

assigns each MUD one or more working time durations while TPAS assigns each MUD at
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most one working time duration; ii) the working time scheduling of TPAS is independent of

the MUDs’ asking prices, leading to that some MUDs who have been scheduled a working

time duration may be losers if their prices are higher than the critical price. In other

words, in CPAS, a larger portion of required working time duration can be scheduled to

the MUDs, getting a higher allocation efficiency for each STO. Moreover, CPAS under the

uniform distribution can achieve a higher allocation efficiency than CPAS under the hotspot

distribution. The same situation also occurs to TPAS. This is due to the fact that under the

hotspot distribution, the number of MUDs that are near to any STO is reduced, indicating

that the number of available MUDs becomes smaller for each STO.

Next, we analyze the average working time utilization and the average utility of all

MUDs with 110 MUDs and the number of sensing tasks increasing from 5 to 30. The results

of the average working time utilization and the average utility are plotted in Fig. 3.4 and

Fig. 3.5, respectively. From Fig. 3.4 and Fig. 3.5, we obtain the following two observations.

First, one can see that the average working time utilization and the average utility gradually

increase as more and more sensing tasks are published, because it becomes less competitive

for the MUDs to be assigned more working time slots when more tasks are available. Second,

CPAS (respectively TPAS) under the uniform distribution obtains a larger average working

time utilization and a higher average utility than CPAS (respectively TPAS) under the

hotspot utilization. The reason is that an MUD is usually selected by an STO who is near

to it but under the hotspot distribution, and the number of STOs who are near to any MUD

is decreased, i.e., the probability of becoming a winner is reduced for each MUD.

Furthermore, we verify truthfulness of CPAS and TPAS, in which there are 20 tasks

and 110 MUDs under each distribution scenario. In the simulation, we randomly pick one

MUD at a time, set fake asking prices to the picked MUD, and compare its received utilities

when truthful bidding and untruthful bidding. We totally select five different MUDs under

each distribution scenario and present the results in Figs.3.6-3.9. Notice that all the selected

MUDs cannot receive higher utilities via cheating on asking prices. For example, in Fig.3.6,

the selected MUDs are the 3rd MUD, the 25th MUD, the 36th MUD, the 89th MUD, and
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Figure 3.4. Average MUDs’ working time
utilization.

Figure 3.5. Average MUDs’ utility.

Figure 3.6. MUDs’ truthfulness in CPAS
under uniform distribution.

Figure 3.7. MUDs’ truthfulness in CPAS
under hotspot distribution.
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Figure 3.8. MUDs’ truthfulness in TPAS
under uniform distribution.

Figure 3.9. MUDs’ truthfulness in TPAS
under hotspot distribution.

the 99th MUD. More specifically, the situations of the five MUDs are illustrated in the

following: i) the 3rd MUD is a winner when truthful bidding but a loser when cheating; ii)

the 25th MUD wins the auction when bidding truthfully and untruthfully, but its utility is

reduced when bidding untruthfully; iii) the 36th MUD receives the same utility when bidding

truthfully and untruthfully; iv) the 89th MUD obtains a zero utility with truthful prices but

a negative utility with fake prices; and v) the 99th MUD’s utility is reduced to a negative

value when cheating.

3.6 Summary

To motivate mobile users to join sensing tasks in MCSs, we propose a reverse auction

model and two novel distributed auction schemes, CPAS and TPAS, for task assignment and

scheduling. Specifically speaking, the novelty of the proposed auction model and auction

schemes lies in the following aspects: i) the auction model is practical taking into account

partial fulfillment, attribute diversity, and price diversity; ii) the two auction schemes can

be implemented within a well-designed distributed auction framework; iii) both two auction

schemes are proved to be computationally efficient, individually rational, budget balanced,

and truthful.
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Chapter 4

TRUTHFUL INCENTIVE MECHANISMS FOR SOCIAL COST

MINIMIZATION IN MOBILE CROWDSOURCING SYSTEMS

4.1 Introduction

Nowadays, new emerging embedded technology drives the rapid growth of mobile de-

vices. With powerful processors, mobile devices such as smartphones, tablets, and watches

can be used as portable computers to undertake heavy computational tasks. With the help

of embedded sensors like Global Position System (GPS), accelerometers, and cameras, mo-

bile devices can be used to sense and deliver information. On the other hand, the utilization

of mobile devices is ubiquitous. Some works [55, 56] show that almost 64% of adults own

a smartphone and 42% of adults own a tablet in America as of October 2014. All of the

above conditions, along with the mobility of users who carry these mobile devices and the

convenient communication infrastructures enable mobile devices to connect to the Internet,

stimulating the development of Mobile Crowdsourcing Systems (MCSs). The MCS is a new

system model used to outsource tasks. Generally speaking, two types of participants exist in

a MCS. One is the crowdsourcing platform, which acts as the server to publish tasks, deter-

mine the set of mobile devices to work on the tasks, and collect the final results. The other

participants consist of users with mobile devices. They can participate to finish the tasks

published by the crowdsourcing platform and get payments as rewards. Lots of tasks can

be done by a MCS, such as information collection, environmental monitoring, or customized

survey. These tasks used to be performed by a specialist or an expert, but now through the

MCS can be done by a group of undefined users with mobile devices.

A variety of MCS applications can be found in our daily life, among which applica-

tions focusing on the environment, infrastructure, and social activities are the three most

popular categories. In the environmental MCS applications, such as Common Sense and



35

Creek watch (introduced in [1,57], respectively), mobile devices can be used to monitor the

environmental pollution levels. For example, microphones on mobile devices can monitor

the noise information of a place and pictures can be taken by cameras to show the amount

of trash in a park in Common Sense. Existing applications of the Infrastructure interested

in the detection of traffic congestion, parking availability, and outages of public works. For

example, mobile devices with CarTel [58] installed on cars can detect the speed and location

of cars, and send the detected information to a data center. ParkNet [59] can help cars

to find available parking places. Applications regarding social activities take advantage of

users’ willingness to share sensed information with each other [3, 24]. All MCS applications

require the participation of hundreds or thousands of mobile devices without deploying any

static sensors or machines.

The enormous utilization potential of MCSs attracts lots of attention from researchers

[34,38]. One of the most popular topics in MCSs is how to determine the best set of mobile

devices to allocate the tasks (such as computational or sensing tasks) published by a MCS

platform so that a predefined objective can be achieved. A commonly used objective is to

optimize the social efficiency, such as maximizing social welfare or minimizing social cost.

The fundamental of a MCS is to have enough participants. However, working for MCS

platforms will consume users’ resources, including execution capacity and battery. Joining

a MCS will also put a threat on users’ privacy. For example, the results submitted to

MCS platform may expose users’ locations. Considering the above-mentioned facts, some

users may refuse to participate in the MCS. If the number of users with mobile devices is

insufficient, the objective is impossible to be achieved. Thus, a MCS platform should provide

enough reward for participants for incentive purposes.

In this chapter, we focus on the design of an incentive mechanism for a MCS to minimize

the social cost. The social cost represents the total cost of mobile devices when all tasks

published by the MCS are finished. To achieve the objective in the MCS, we confront several

challenges:
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• True cost revelation. The cost of each mobile device for finishing a task is private. It

is difficult to encourage all participants to report their real costs.

• Minimal cost optimization. Assume all users report their true costs to the MCS. Since

mobile devices may vary in capacities and costs, it is hard to select the optimal set of

users.

• Incentive mechanism. As discussed, the MCS platform should reward each user who

works for it as incentives. Within the budget, the reward should be greater than the

cost of the user. Deciding a proper reward for each participant is still challenging.

These challenges lead us to investigate an auction mechanism that concentrates on the

trade between the MCS platform and mobile users. This paper begins with the assumption

that the MCS platform publishes only one task in one round and the task consists of pieces of

sub-tasks. Each user with a mobile device can work for one or more sub-tasks. The auction

mechanism in our paper aims to minimize the social cost of mobile users while guaranteeing

the truthful cost of bidding from each participating user.

Depending on the requirements of a MCS platform, there are two different working

patterns. The first one is the continuous working pattern, which requires each participant

to work on a set of continuous sub-tasks. We call another working pattern the discontinu-

ous working pattern, where a participant can work for any set of sub-tasks. The detailed

definition of the two working patterns are discussed in Section 4.3.

The main contributions of this chapter are as follows [60]:

1. The social cost minimization problem in a MCS has been discussed. We first present

the working process of a MCS, and then build an auction market for the MCS where

the MCS platform acts as an auctioneer and users with mobile devices act as bidders.

2. Depending on the different requirements of the MCS platform, we design a Vickrey-

Clarke-Groves (VCG)-based auction mechanism for the continuous working pattern

and a suboptimal auction mechanism for the discontinuous working pattern. Both of
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them can ensure that the bidding of users are processed in a truthful way and the

utilities of users are maximized.

3. Experiments are conducted to verify performances of the proposed mechanisms. Re-

sults suggest that the two auction mechanisms achieve truthfulness and utility maxi-

mization. In addition, the VCG-based mechanism could guarantee the minimum social

cost and the suboptimal mechanism is more computationally efficient.

The remainder of this chapter is organized as follows: In Section 4.2, we present the

MCS model and analyze its working process. The auction problem is defined in Section 4.3,

followed by two truthful auction mechanisms presented in Section 4.4. The experimental

results and discussions are provided in Section 4.5. Conclusions and future works are shown

in the last section.

4.2 System Model Overview

Figure 5.1 demonstrates an example of the Mobile Crowdsourcing System (MCS). The

model includes two types of participants: a Crowdsourcing Platform (CP) and lots of Mobile

Users with Devices (MUDs). The CP consists of several servers, which are deployed in the

cloud and provide services for clients. A smartphone or a tablet carried by a user is regarded

as a MUD. The CP communicates with MUDs via cellular networks or WiFi. The CP

publishes a computational or a sensing task which contains a series of sub-tasks. Each sub-

task only occupies a time slot. Any two time slots have no intersection. Each MUD is allowed

to work on one or more time slots and provide computational or sensing services to the CP

during these time slots. The concepts sub-task and time slot are used interchangeably in

this chapter. Working for computational or sensing tasks will bring battery consumption,

computing capacity consumption, and privacy threats to MUDs. Thus, in order to stimulate

MUDs’ participation, the CP rewards these users who have been selected to provide serves.

For simplicity, we assume that the CP publishes one task in each round.
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In general, as shown in Figure 4.2, the interactive process between the CP and MUDs

have three stages in each round, including the publishing stage, auction stage, and working

stage:

Publishing stage. In this stage, the CP decides the task that it plans to finish in this

round. It generates the description of the task according to predefined functions and then

publishes it among all participated MUDs.

Auction stage. After receiving the task description and requirements, each MUD decides

its working plan. That is the subset of sub-tasks of task k it can work for. If a MUD can

work for task k, it will continue to evaluate its cost. The MUD calculates its base price

and submits a bid to the CP. The bid of a MUD consists of its working plan and the base

price. After receiving the bids from MUDs, the CP will choose the winner set of MUDs,

make the work schedule, determine their rewards and then announce the auction results to

all participated MUDs.

Working stage. For each task k, its working stage starts at the start time ak and ends

at the end time dk. During this stage, the CP will activate the MUDs in the winner set one

by one based on its working schedule. Once activated, a MUD begins to work according to

the requirements and then submits the result to the CP. The reward is given to the MUD

once it finishes its claimed sub-tasks.

Different from the auction stage, the other three stages in the MCS are beyond the scope

of this chapter. We focus on designing efficient and effective auction mechanisms. Table 4.1

lists frequently used notations.

4.3 Problem Formulation in Auction Stage

The working process of a MCS can be divided into infinite rounds with time. For any

two rounds, their tasks are independent and the available MUDs are independent as well.

Thus, we focus our investigation on the discussion of one round in detail. Assume there is a

dense set of MUDs, represented as Vk = {v1, v2, ... , vi, ... , vN}, where |Vk| = N . At the

beginning of round k (k is an integer denoting the identifier of one round), the CP publishes
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the task description Rk, defined as:

Rk = {ak, dk,Tk,Ωk, Πk},

where ak and dk are the start and end time of task k, respectively. Tk = {τk1, τk2, ..., τkj, ..., τkM}

represents the set of sub-tasks of task k. Each time slot represents a sub-task of task k. M is

the size of Tk (the number of sub-tasks in task k). The CP requires MUDs to work for task

Tk. As shown in Figure 4.3, on the one hand, the durations of any two time slots τki ∈ Tk

and τkj ∈ Tk, where i 6= j, may vary from each other. On the other hand, all these time

slots are distributed over the time line. The interval between two adjacent time slots could

be larger than or equal to 0, but not smaller than 0, which means that no overlapping time

interval exists between any two adjacent time slots. Ωk indicates the hardware requirements

of task k on MUDs. Hardware requirements contain minimum computation speed, free stor-

age capacities, and sensor types. It requires that only the MUDs satisfying the requirements

can bid for the sub-tasks at this round. Πk indicates the requirement of task k regarding

MUDs’ working patterns. There are two kinds of working patterns: the continuous pattern

(Πk = C) and the discontinuous pattern (Πk = C̄).

Continuous case (C): ∀ vi ∈ Vk, this working pattern requires the sub-tasks set Si

claimed by vi are continuous (Si represents the set of sub-tasks vi can work for). That is, vi

is able to work continuously from the earliest sub-task to the last sub-task in Si. For example,

suppose five sub-tasks are included in task k, as shown in Figure 4.3. Si = {τk2, τk3, τk4} is

an example that vi works in a continuous working pattern, while Si = {τk2, τk3, τk5} is not.

Discontinuous case (C̄): ∀ vi ∈ Vk, in this case, vi can work for any subset of Tk. For

example, both Si = {τk2, τk3, τk4} and Si = {τk2, τk3, τk5} can be regarded as examples of

discontinuous working patterns.

∀ vi ∈ Vk, after receiving a task description from the CP, if its hardware qualifies, vi

will decide the subset of sub-tasks, denoted as Si ⊆ Tk according to the working patterns
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requirements of task k. Then, ∀ vi ∈ Vk, the bid of vi can be represented as,

bi = {Ωi, Πi, Si, Ai },

where Ai is vi’s asking price when it works on the sub-tasks in Si for the CP, which is also the

base price. Because auction mechanisms are expected to be truthful, so Ai = ci. In practice,

the value of ci can be estimated by vi. Ai and ci are used interchangeably in this chapter.

For convenience, all MUDs’ costs are restricted to follow simple cost functions which makes

all MUDs single-minded MUDs.

Definition 4.3.1. A cost function C is called single-minded if there exists a set of sub-tasks

S ⊆ Tk and a cost c, C(S∗) = c for all allocations S∗ ⊆ S and C(S∗) =∞ for all other S∗.

A MUD bids with S and c is single-minded.

Definition 1 shows that the base price of each vi will be same even though the set of

sub-tasks S∗i allocated to vi is a subset of Si in its bid after the auction stage. One step

further, the MUD vi wouldn’t accept any allocation S∗, where ∃ τ ∈ Tk, τ ∈ S∗ but τ /∈ S.

In the auction stage, the CP can be regarded as an auctioneer who makes the decision

for the sub-tasks allocation and payment. MUDs act as bidders to make bids. We are

interested in minimizing the social cost from a macroscopic and social perspective in this

chapter. The social cost is defined as the cost brought by the trading within the MCS.

Formally, the objective can be written as,

Minimize
∑

vi∈Wk

(Pi + (ci − pi))

s.t. Wk ⊆ Vk, Tk =
⋃

vi∈Wk

Si

(4.1)

where Wk is the set of winner MUDs in this round. Pi is the price paid by the CP for using

the computational or sensing services provided by vi, which can be regarded as the cost of

the CP. pi is the payment winner vi received from the CP when the assigned sub-tasks are
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done, and ci is the cost of vi. So, the social cost of winner vi is ci − pi. For effectiveness,

each sub-task τ in Tk needs at least one MUD to work.

Based on the predefined model, we have Pi = pi for each vi ∈ Wk. Hence, the objective

above can be rewritten as

Minimize
∑

vi∈Wk

ci,

s.t. Wk ⊆ Vk, Tk = ∪
vi∈Wk

Si.

(4.2)

Within the auction stage, the auctioneer CP should design a proper auction mechanism

with efficient sub-tasks allocation and rewards determination to minimize the social cost.

Under the auction mechanism chosen by the CP, each participated MUD bids with a strategy

which maximizes its utility. The utility of vi (denoted by Ui) in one round can be defined

as:

Ui =


pi − ci vi wins,

0 otherwise.

(4.3)

In order to achieve the objective in an efficient and effective way, the auction mechanisms

used by the CP should have the following properties:

Individual Rationality. All MUDs are self-interested to benefit themselves. Thus,

the utility of any MUD in each round should be non-negative: Ui ≥ 0.

Truthfulness. The mechanisms are considered truthful when the four values

(Ωi, Πi, Si, Ai) in the bid of each MUD are truthful. The utility of vi will be maximized

when it bids truthfully and vi cannot improve its utility through any misreport,

Ui(bi,b−i) ≥ Ui(b̂i,b−i), (4.4)

where b−i = {b1, ... , bi−1, bi+1, ... , bn } represents the set of truthful bids of all MUDs

excluding vi. bi is the truthful bid of vi, and b̂i 6= bi. If an auction mechanism satisfies
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this property, Nash Equilibrium exists [61]. Misreports of the first two values (hardware

parameters and working pattern of a MUD) in a bid can be easily detected by the CP

through the submitted results from MUDs. Thus, the truthfulness of the first two values

is guaranteed. We focus on the truthfulness of the last two values in a bid: claimed set of

sub-tasks and asking price.

Computational Efficiency. An auction mechanism is considered computationally

efficient if the task allocation and payment decision can be made in polynomial time.

Only when the above three properties are satisfied at the same time can an auction

mechanism be regarded as useful. Without individual rationality, a MUD may receive neg-

ative utility and refuse to participate in the MCS. Then, because the ci in bid bi is private

to vi, the CP wouldn’t know it. If an auction mechanism is truthful, all MUDs only need to

bid with their true costs: Ai = ci, which not only simplifies the strategies, but also avoids

manipulation. Finally, computational efficiency will guarantee that the auction mechanism

can be practically implemented.

4.4 Design of Incentive Auction Mechanisms

Formally, an auction mechanism contains two phases: winner MUDs set the selection

and payment decision. Specifically, the most challenging and important part of the auction

mechanism design is truthfulness. According to the characterization of truthful auction

mechanism concluded in [61], we have:

Theorem 9. For any fixed bids b−i, an auction mechanism is truthful to MUD vi if and only

if the winner MUDs set selection algorithm is monotone and the payment for each winner

MUD is critical.

If the MUD vi is selected as a winner when it bids with S∗i and A∗i , and vi will still

be selected for any (S ′i, A
′
i), where S ′i ⊇ S∗i and any bid with A′i ≤ A∗i . The process in the

selection of winner MUDs set is monotone.
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There exists a critical payment cci for each winner MUD vi, which is independent to

the asking price ai in its bid. vi will win when it bids with any (Si, A
′
i), where A′i ≤ cci.

Otherwise, vi loses.

4.4.1 Mechanism with Optimal Social Cost

Based on Section 4.3, we can tell that different tasks may have different working pattern

requirements. If a task k requires MUDs to work in the continuous pattern (Πk = C),

the optimal solution to the minimization Problem (4.2) can be achieved through dynamic

programming. Thus, in this case, a well known VCG-based auction mechanism is a good

choice. The detailed design is as follows:

Step 1, Given the bids of all candidate MUDs, use the dynamic programming method,

shown in Algorithm 1, to compute the optimal winner set W . In Algorithm 1, Line (8)

represents the optimal substructure, recording the minimal cost for sub-task τ in T if adding

the vn to the winner set W . Notation τ.MUD is used to indicate that the winner MUD will

work for the sub-task τ . This algorithm returns three results: the winner set W , the work

schedule, and minimal social cost of MUDs in W .

The complexity of Algorithm 1 is O(mn), which indicates that the VCG-based auction

is practical.

Step 2, Calculate the payment pi of each vi in the winner set W . The payment for each

winner vi is defined as the increase in the total social cost brought by its contribution, as

pi =
∑

vj∈W−i

cj −
∑

vj∈W, vj 6=vi

cj, (4.5)

where Wi is the obtained winner set without vi’s participation.

The truthfulness and individual rationality of VCG-based mechanisms have been proven

in [61].
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4.4.2 Mechanism with Suboptimal Social Cost

If the working pattern is discontinuous, the winner set determination Problem (4.2)

can be regarded as a classical set cover problem. Because the set cover problem has been

proven to be NP-hard, it is impossible to obtain the optimal solution in a MCS with large

scale. Without optimal winner selection, truthfulness cannot be guaranteed by VCG-based

auction mechanism. Therefore, we propose another mechanism with suboptimal social cost,

acceptable computational complexity, and truthfulness.

Algorithm 5: Optimal Winner MUDs Set Selection

input : T , |T | = M , (S1, c1), ..., (Si, ci), ..., (SN , cN
output: miniCost, Winner set W , τ.MUD, ∀τ ∈ T .

1 for each τ in T do
2 τcost= MAX.VALUE;

3 for each τ in T do
4 for each vi in V do
5 if τ is in Si then
6 currentMini = (τ0 == τi = Si.f irst)? ci : (ci + τi−1.cost);

7 if currentMini < τ.cost then
8 τ.cost = currentMini;
9 τ.MUD = vi;

10 for each τ ′ in Sn do
11 τ ′.cost = currentMini;
12 τ ′.MUD = vi;

13 for each τ in T do
14 Put τ.MUD into W ;

15 miniCost = T.last.cost;

The detailed winner set determination algorithm is shown in Algorithm 2. It consists

of two steps. First, sort all MUDs in ascending order, according to their average cost ci
|Si| (as

shown in line (2)). Then, MUDs will be added to winner set W one by one, according to the

ascending order derived in the last step, until all sub-tasks in T are covered, as shown in lines

(4–13). The payment of each winner vi is determined based on Algorithm 3. Specifically, it

first reorders all MUDs, excluding vi, in ascending order based on their average cost
cj
|Sj | (as
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shown in line (2)). Then find the least position j in the order that: vi may lose in the case

of ci
|Si| >

cj
|Sj | .

Lemma 7. The winner MUDs set selection provided in Algorithm 2 is monotonic.

Proof: Suppose vi is selected as a winner by bidding with ci and Si, its average cost

is αi = ci
|Si| . Let c′i ≤ ci, and Si remain unchanged, we should prove that vi would still win

when bidding with c′i and Si. The new average cost is α′i =
c′i
|Si| . Since α′i ≤ αi, vi will be

selected earlier by Algorithm 2. It is easy to know that vi will continue to win with bidding

with ci and S ′i, where S ′i ⊇ Si. For the reason that the new average cost α′i = ci
|S′i|

is smaller

than αi = ci
|Si| .

Lemma 8. The payment pi to each vi ∈ W is equal to its critical cost cci .

Algorithm 6: Suboptimal Winner Set Selection

input : T , (S1, c1), ..., (Si, ci), ..., (SN , cN)
output: MiniCost, W , τ.MUD, ∀τ ∈ T

1 ∀ vi ∈ V , sort ascendingly:

c1

|S1|
≤ c2

|S2|
≤ ... ≤ cN

|SN |
,

2 set U = ∅, j=1;
3 while U 6= T do
4 if U ∩ Sj! = Sj then
5 put vj into W , U = U

⋃
Sj,

6 miniCost = miniCost+ cj;

7 for Each τ in Sj do
8 τ.MUD = vj;

9 j++;

Proof: Assume that critical cost of each MUD is equal to its payment, that is, ∀ vi ∈

W, cci = pi. Based on Algorithm 3, cci = pi =
cj
|Sj | |Si|, where Si ⊂

⋃
i′=1,...,j

Si′ . If vi bids with

c′i > cci , then
c′i
|Si| >

cj
|Sj | , indicating that the average cost of vi is larger than the average cost

of vj, the position of vj in this new order is before vi. In this case, once the vj is in W , vi
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Algorithm 7: Price Determination

input : T , (S1, c1), ..., (Si, ci), ..., (SN , cN), W ;
output: pi,∀vi ∈ W

1 for each vi in W do
2 ∀ vj ∈ V \vi, sort ascendingly:
3

c1

|S1|
≤ c2

|S2|
≤ ... ≤ cN−1

|SN−1|
;

4 Find the least index j that Si ⊂
⋃

i′=1,...,j

Si′ ;

5 The payment for MUD vi is:

pi =
cj
|Sj|
|Si| ;

will have no chance to be selected as a winner. On the other hand, if vi bids with c′i ≤ cci , it

will still be a winner according to Lemma 7. Thus the assumption is verified.

Theorem 10. The suboptimal cost mechanism is truthful.

Proof: With Lemmas 7 and 8, this theorem can be proven based on Theorem 9.

Theorem 11. The suboptimal cost mechanism is individual rational.

Proof: For ∀ vi ∈ Vk, its payment pi is equal to its critical cost cci . If vi wins, there must

be ci ≤ cci . Hence, Ui = pi − ci ≥ 0. Or vi loses, its utility is 0. Individual rationality is

guaranteed.

Theorem 12. The suboptimal cost mechanism is computationally efficient.

Proof: The complexity of Algorithm 2 is O(n2). The complexity of Algorithm 3 is

O(n2).

4.5 Performance Evaluation

To evaluate the performance of the incentive auction mechanisms proposed in this chap-

ter, experiments are conducted.
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4.5.1 Continuous Working Pattern

We set the number of sub-tasks in one round to vary from 50 to 100. The number of

MUDs is fixed as 30 (F = 30). Each selects a subset of continuous sub-tasks and the size of

the subset is randomly chosen from [3, 15]. The cost of each MUD is distributed over [10,

15] uniformly. The VCG-based auction mechanism is designed for the continuous working

pattern. Because the continuous case can be regarded as a special case of discontinuous

working pattern, the suboptimal auction mechanism can also be used to solve the problem

here. Both the VCG-based auction mechanism and suboptimal auction mechanism are

evaluated in this section.

In this experiment, the number of sub-tasks changes from 50 to 100, the remaining

parameters are set as above. We first compare the performances of the VCG-based auction

mechanism and the suboptimal auction mechanism regarding the social cost and running

time. The results of the social costs of the two auction mechanisms are shown in Figure

4.4a. The social cost of the VCG-based mechanism is smaller than the suboptimal auc-

tion mechanism because the dynamic winner set selection algorithm used in the VCG-based

mechanism can find the subset of MUDs which is able to minimize the social cost. However,

when considering the running times, as shown in Figure 4.4b, the suboptimal auction mech-

anism outperforms the VCG-based auction mechanism. We can also observe that with the

increase of the number of total sub-tasks, both the cost and running time increase. When

the number of sub-tasks increases, the running time of the VCG-based auction mechanism

and the suboptimal auction mechanism increase by 700% and 200%, respectively. However,

the difference of social costs between two mechanisms keeps steady at the same time. Thus,

it is better to use the VCG-based auction mechanism in the continuous working pattern on

the condition that a task has fewer sub-tasks.

Then we try to observe the utilities of winner MUDs by the VCG-based auction mech-

anism. For simplicity, we choose two MUDs randomly, denoted as MUD 2 and MUD 3. We

allow the two MUDs to ask different prices and show the truthfulness in Figure 4.5a. It is

shown that both the MUD 2 and MUD 3 will reach their maximal utilities when they ask



48

the prices truthfully: A2 = c2 = 10 and A3 = c3 = 9. Figure 4.5b presents the utilities of

MUD 9 and MUD 17 in the suboptimal auction mechanism. Note that MUD 9 and MUD

17 are chosen randomly too. Similarly, they will also achieve their maximal utilities when

acting truthfully: A9 = c9 = 9 and A17 = c17 = 5.

4.5.2 Discontinuous Working Pattern

The experimental setting of the discontinuous working pattern is similar to the contin-

uous working pattern. Besides, each MUD could select the subset of sub-tasks randomly.

Figure 4.6a,b show the results of suboptimal auction mechanism of the social cost and run-

ning time when the number of MUDs is 30 and 50 (F = 25 and F = 50), respectively.

Because the more sub-tasks that are contained within a task, the more works need to be

done. We can see that when the number of sub-tasks of a task changes from 50 to 100, both

the social cost and the running time increase (see Figure 4.6a,b). So, it is a trade-off between

objective and efficiency in the suboptimal auction mechanism.

Then we try to verify the truthfulness of the suboptimal auction mechanism in the

discontinuous working pattern. MUD 16 and MUD 19 are picked randomly, where c16 = 14

and c19 = 10. Let the two MUDs ask different prices from their true costs, their utilities

are shown in Figure 4.7. We can see that both MUDs will get their maximal utilities when

asking prices truthfully.

4.6 Summary

In this chapter, we investigate the incentive auction mechanisms for mobile crowdsourc-

ing systems. We consider two working patterns in works allocation: the continuous working

pattern and the discontinuous working pattern. The objective of the MCS platform is to

minimize the social cost in both cases. To achieve the truthfulness, individual rationality,

and computational efficiency, we design a VCG-based auction mechanism for the continuous

case and a suboptimal auction mechanism for the discontinuous case. We have proven that

the two mechanisms can implement the three properties simultaneously. In the future, we
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plan to design an online incentive mechanism to minimize the social cost and try to maximize

the utility of each participated MUD.
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Figure 4.1. An overview of a Mobile Crowdsourcing System (MCS).

bkak

t

Round k (Rk)   …  Round k-1 (Rk-1) Round k+1 (Rk+1)  …

Publishing 
Stage

Working Stage

Auction 
Stage

Figure 4.2. The interactive process between the crowdsourcing platform (CP) and mobile
users with devices (MUDs).

Table 4.1. Table of Notations.
Notation Description

CP Crowdsourcing Platform

MUD Mobile User Device

V , vi set of MUDs and MUD

k round and task identifier

Rk description of task k

ak, dk the start time and end time of task k

Tk, set of sub-tasks in task k

τki, τ sub-task in task k, sub-task

Ωk, Πk hardware parameters and working patterens

bi bid of MUD vi
b−i bids of all MUDs except vi

ci, pi, Ui cost, payment and utility of MUD vi
Ai asking price of MUD vi
Si subset of sub-tasks MUD vi can work for

Wk set of winner MUDs

F number of MUDs
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tak bk

τk1 τk2 τk3 τk4 τk5

Working Stage of kth task

Figure 4.3. An example of sub-tasks in one round.

(a) (b)

Figure 4.4. (a) The social cost of two auction mechanisms in continuous working pattern;
(b) The running time of two auction mechanisms in continuous working pattern. VCG:
Vickrey–Clarke–Groves.

(a) (b)

Figure 4.5. (a) The utility of MUD 2 and MUD 3 by VCG-based auction mechanism in
continuous working case; (b) The utility of MUD 9 and MUD 17 by suboptimal auction
mechanism in continuous working case.
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(a) (b)

Figure 4.6. (a) The social cost of suboptimal auction mechanism in discontinuous working
pattern; (b) The running time of suboptimal auction mechanism in discontinuous working
pattern.

Figure 4.7. The utility of MUD 16 and MUD 19 by suboptimal auction mechanism in
discontinuous case.
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Chapter 5

PRACTICAL INCENTIVE MECHANISMS FOR IOT-BASED MOBILE

CROWDSENSING SYSTEMS

5.1 Introduction

The highly distributed paradigm Internet of Thing (IoT) extends ubiquity of the Internet

through integrating every terminal for interaction via embedded systems, in which all the

physical terminals can collect and exchange data. IoT will be the fast-growing, largest market

potential and the most attractive emerging economy according to the Top 10 Predictions of

2014 by Gartner. In IoT, the new emerging techniques integrate multiple types of sensors and

high-performance processors into physical terminals, e.g., smartphones (iPhones, Sumsung

Galaxy, etc.), tablets (iPad, etc.), and vehicle-embedded sensing terminals (GPS). These

mobile terminals can be used to sense and collect data, so that become data sources. All

above mentioned properties make IoT a perfect choice for the Mobile Crowdsening System

(MCS). In an MCS, a complicated sensing job is divided into several simpler tasks. Each

participated mobile physical terminal can undertake one or more simpler sensing tasks. The

most attractive properties of MCSs is that it aims at letting the regular mobile physical

terminals work for the complicated job, while keeping the users of these mobile physical

terminals unconscious. In tradition, however, the job must be done by professional experts

and the sensors have to be deployed in advance.

The MCSs have already been applied to our daily life. It can be used to collect infor-

mation around the city and then contributes to the intelligent operation of public services.

In detail, it tracks public vehicles and map bumps on the road for the urban transportation

systems in a city. The Microblogs provide a mechanism where mobile physical terminals can

share their information (like travel, restaurants, and news) through a universal platform.

Then, the center server in the platform processes and analyzes the shared data and provides
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an alternative solution for problems or helps to make decisions. MCSs can also be used

in surveillance applications, such as monitoring pollution levels or traffic, measuring water

levels, and collecting wildlife habitats. Practical surveillance applications include Common

Sense and CreekWatch [62–72].

However, users of these mobile physical terminals participating in an MCS will suffer

from extra resource consumption (battery and computing capacities) and the risk of privacy

exposure (location exposure). So effective and efficient incentive mechanisms are needed

in MCSs to attract enough mobile physical terminals’ participation. A common strategy

designed in MCSs is to give rewards to participated users as compensation and stimulation.

Lots of works can be found on incentive mechanisms and most of them are based on game

theory. We classify the existing works into two categories: the offline incentive mechanisms

and the online incentive mechanisms. The former will collect the information of all partici-

pants before making the decision, while the latter decides whether to accept a new arriving

participant sequentially without the information of next following participants. After ana-

lyzing these existing works, we find they are not appropriate to surveillance applications for

the following reasons: i) the tasks allocation algorithms are unfair over the time dimension.

Most of the surveillance applications require continuous sensing information for a period of

time. Taking the noise level monitoring application as an example, if a cloud center wants to

surveil the noise level of a place, it expects to get noise data of the place for a period of time.

Generally speaking, more than one mobile physical terminal will participate in the sensing

task. It is better to evenly schedule sensing tasks among a set of mobile physical terminals

over the particular period of time. However, mechanisms proposed in existing works [1] may

lead to the situation that several mobile physical objects are assigned to sense the noise at

the same time incidentally. ii) existing mechanisms require deep interaction between partic-

ipated users and their mobile physical terminals. That is, sometimes participated users are

required to pay lots of attention to their devices or forced to change their own schedule when

working for the MCS. For example, the working schedules of users are decided by the MCS.

The significant advantage of MCSs over Wireless Senor Networks (WSNs) is that we don’t
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need to deploy the sensors or workers in advance. However, the required deep interaction

will interfere participants’ original plan which should be avoided. The incentive mechanisms

investigated in this work try to overcome the two weaknesses.

We consider an MCS on surveillance applications from both the time and space di-

mensions. Each sensing task published by the MCS is tagged with a location requirement

and a period of time requirement. Once being published, the sensing task is required to

be done multiple times over the time period at the specific location. For fairness over the

time dimension, a time period is divided into smaller time slots and the sensing task will

be processed periodically over these time slots. The participants of the MCS are the mobile

vehicles with sensors installed and are able to work for sensing tasks. The device on the

vehicle will communicate with cloud servers by 3G or LTE techniques. The drivers of these

vehicles are general office workers commuting between home and office. Their routes are

relatively stable and they will let the servers know their routes in advance. When a vehicle

passes through a location where a sensing task is required, the sensors can work for the

sensing task automatically. The objective of the MCS is to select a set of qualified vehicles

with devices so that as many tasks can be done evenly over time.

In this paper, we first design an offline incentive mechanism where the proportional

share allocation rule is applied. Then we consider the realistic situations and propose online

auction mechanisms where each winner vehicle will be decided relying on the information of

the vehicle itself and the vehicles arriving before it. The contributions of this paper are as

follows [73]:

• We first discuss and investigate the importance of unconsciousness in MCSs and get

the conclusion that the frequencies of interaction between participants and cloud center

should be minimized.

• We introduce the MCS model on surveillance applications. After that, the design of in-

centive mechanisms under the offline and online cases are designed. The task allocation

algorithms are implemented fairly considering practical property requirements.
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Figure 5.1. An overview of a Mobile Crowdsensing System (MCS).

• In order to improve the performance of the online incentive mechanism, we relax the

truthfulness and unconsciousness requirements and propose a (ε, µ)-unconsciousness

online incentive mechanism.

In the rest of the paper, we present and discuss previous works in section ??. Then the

MCS system model and problem are formulated in section 5.2. Incentive mechanisms for

the offline and online cases are introduced in section 5.3 and section 5.4, respectively. We

evaluate the performance of these proposed incentive mechanisms in section 5.5 and conclude

the paper in section 5.6.

5.2 System model and problem formulation

5.2.1 Problem Formulation

Considering a Mobile Crowdsensing System (MCS) (as shown in Fig. 5.1) which is

able to undertake sensing tasks such like traffic surveillance and environmental pollution

monitoring. In the MCS, a Crowdsensing Platform (CP) publishes a set of sensing tasks

Γ = {τ1, τ2, ..., τm} (|Γ| = m). Each sensing task τ ∈ Γ is defined by a collection of features:

τ = (lτ , rτ ),
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where lτ ∈ L specifies the location of the sensing task and L represents the set of locations

which are along routes. rτ represents the reward that the CP would like to pay if the sensing

task τ is done. Each sensing task in Γ is required to be sensed during time T . For simplicity,

T is divided into multiple time slots T = {t1, t2, ..., t|T |}. Let V = {v1, v2, ..., vn} be the

set of Mobile Vehicles with Devices (MVDs). These mobile vehicles move on routes and

will pass through one or more locations of sensing tasks. Corresponding sensing tasks will

be performed by the devices installed on MVDs automatically. Given an MVD v ∈ V , its

features can be denoted as

v = {ρv, cv, γv},

where ρv is the route of v and is defined as discrete location-time points information

ρv = {(lav , tav), (l1v, t1v), ..., (liv, tiv), ..., (ldv , tdv)}. Each element (liv, t
i
v) in ρv indicates v will pass

through location lv at time slot tiv by estimation. (lav , t
a
v) and (ldv , t

d
v) are used to represent

v’s starting and destination location-time points, respectively. Assume a vehicle would not

visit a location more than once in T . An MVD is able to finish any sensing task if the MVD

passes through the location of the sensing task. Let cv be the cost of v if v works for all the

sensing tasks located in its route. γv is v’s driving speed which determines how many time

slots are required for v to move between any two different sensing tasks.

All these surveillance sensing tasks (traffic surveillance or environmental pollution mon-

itoring) require to be sensed multiple times in T. However, it is difficult to persuade an

MVD to stay at a location without influencing its original routine. Alternatively, a sensing

task could be sensed multiple times by different MVDs over different time slots. We call the

number of times a sensing task required to be sensed as its space-time coverage requirement.

To be fair, for each sensing task, its space-time coverage requirement is distributed over the

time slots in T evenly. Matrix F = [fτ,t] ∈ (0, 1)Γ×T is used to represent the space-time

coverage requirements of all sensing tasks over the time dimension. For example, fτ,t = 1

represents that the sensing task τ needs to be sensed once in time slot t. Otherwise, fτ,t = 0.

The objective of the CP is to choose winner MVDs, set W that can reach the best coverage
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requirements over all sensing tasks. The problem can be defined as,

Maximize
∑
v∈W

∑
τ∈Γ

∑
t∈T

fτ,txv,τ,t

s.t. xv,τ,t ∈ {0, 1}

∑
v∈V

xv,τ,t ≤ fτ,t, ∀ τ ∈ Γ, t ∈ T

W ⊆ V

(5.1)

where W is the winner MVDs. Matrix xv = [xv,τ,t] ∈ (0, 1)Γ×T represents the allocated

working schedule for v. xv,τ,t = 1 indicates v is allocated to work for sensing task τ in time

slot t, otherwise xv,τ,t = 0. The second constraint specifies that a sensing task should be

allocated to no more than one MVD in a specific time slot.

5.2.2 Reverse Auction Model Design

Working for sensing tasks brings extra battery consumption, hardware loss and privacy

threats to MVDs. Therefore, the winner MVDs expect to receive monetary rewards from

the CP as stimulation and compensation. We apply reverse auction model to the interaction

between the CP and MVDs, where the CP acts as the buyer and auctioneer at the same

time. The roles of MVDs in the model are sellers.

After the CP publishes the sensing tasks, each v ∈ V submits its bid, which can be

denoted as,

bv = {ρ̂v, Av}

where ρ̂v is the set of location-time points that v will pass through. Av is the asking price

when v is selected as a winner to work for these sensing tasks on its route. If the reverse

auction mechanism is truthful, ρ̂v = ρv and Av = cv. That is all MVDs will submit their



59

real route and take the asking price as their base price. Assume, all MVDs are single-minded

(Definition 1) so that they have simple cost functions.

Definition 1. A cost function c(·) is called single-minded if there exists a sensing tasks’

allocation S∗ ⊆ Γ and a cost c∗ such that c(S) = c∗ for any S ⊆ S∗ ⊆ Γ and c(S) = ∞ for

all other S.

For each MVD v ∈ V in our model, S∗ = {(τ, t)|(τ, t) ∈ ρv} is the set of sensing tasks

can be done by v and S denotes the sensing tasks allocated to v by the CP when v wins in

the auction. Therefore, once a winner v is allocated any set of sensing tasks which v is able

to sense, its cost is a consent value. If the allocated sensing task set includes one or more

sensing tasks which v can not sense, v will reject the allocation and the cost of v is set as

infinity for clarity. Each v sets its bid according to the strategy aiming to maximize its own

utility. Uv is used to denote the utility of v and defined as:

Uv =


pv − cv vv wins,

0 otherwise.

(5.2)

Generally speaking, the incentive mechanism should satisfy several properties to guar-

antee its efficiency and effectiveness.

Individual Rationality. Because all MVDs are self-interest to benefit themselves, the

utility of any v ∈ V should be non-negative: Uv ≥ 0.

Truthfulness. An auction mechanism is called truthful if all MVDs bid with their true

value (real cost). The utility of vj will be maximized when it reports true values in its bid

and vj cannot improve its utility through any misreport:

Uvj(bvj ,bv−j) ≥ Uvj(b̂vj ,bv−j), (5.3)

where, bv−j = {bv1 , ... , bvj−1
, bvj+1

, ... , bvn} represents the set of truthful bids of all

MVDs excluding vj. bvj is the truthful bid of vvj , and b̂vj 6= bvj . If an auction mechanism



60

satisfies this property, Nash Equilibrium exists.The misreports of first value (route) in a

bid can be easily detected by the CP through the submitted results of their works. Thus

the truthfulness of the first value is guaranteed. We focus on the truthfulness of the second

value in a bid: asking price.

Budget Balance. The upper bound of the total payments for all the MVD winners

is B=
∑
τ∈Γ

rτ , and we call B as the budget constraint of the CP. In other word, the auction

mechanism should be budget balance: B ≥
∑
v∈W

pv.

Unconsciousness. Participation for the MCS are subordinate to MVDs’ original tar-

get. In detail, the route of each MVD has been scheduled before the CP publishes the sensing

tasks. An MVD will not change its route for the reward. On the other hand, when an MVD

passes through the location of a sensing task, the sensors installed on the MVD should work

automatically without requiring operation from the driver. We call this kind of participation

as unconsciousness.

Computational Efficiency. An auction mechanism is considered computationally

efficient if the task allocation and payment decision can be implemented in polynomial time.

When the above properties are all satisfied, an auction mechanism can be considered

as useful. Without individual rationality, an MVD may receive negative utility, and refuses

to participate in the MCS. Then, because the cv in bid bv is private to v, the CP wouldn’t

know it. If an auction mechanism is truthful, all MVDs just need to bid with their true

costs: Ai = ci, which not only simplify the strategies, but also avoid possible manipulation

from some MVDs. Budget balance make all winner MVDs get their deserved payments.

Unconsciousness attracts more MVDs to participate in the MCS. Finally, computational

efficiency will guarantee that the auction mechanism can be practically implemented.
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Figure 5.2. Offline interaction process between the CP and MVDs.

5.3 Offline auction mechanism

5.3.1 Offline Working Process of MCSs

In this section, we first focus on the design of offline incentive mechanisms. The working

process of an offline MCS can be divided into three stages: publishing stage, auction stage

and working stage, as shown in Fig. 5.2.

Publishing stage. In this stage, the CP decides the sensing tasks that it plans to finish

within T . Then it publishes the description of these sensing tasks among the MVDs.

Auction stage. After receiving requirements of sensing tasks and their description, each

MVD generates location-time points sequence according to its original scheduled route. The

sequence of location-time points implies the set of sensing tasks an MVD can take. If an

MVD is able to work for a set of sensing task τ , it will further evaluate the cost caused by

them. An MVD calculates its cost as the base price and submits a bid to the CP. The bid

submitted by an MVD consists of its location-time points sequence and the base price. After

receiving bids from all participating MVDs, the CP will choose a set of winner, make the

work schedule, determine each winner’s reward and then announce the auction result to all

participated MVDs.

Working stage. According to the working schedules, each MVD winner will be activated

by the CP while passing through a specific location at a specific time. The reward is given

to an MVD once it finishes all allocated sensing tasks.

In this work, our focus is the design of efficient and effective incentive mechanisms

during the auction stage. The other two stages are omitted.
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5.3.2 Modified Proportional Share Auction Mechanism

The design of an offline incentive mechanism for problem (5.1) is more complex than our

past work because the consideration of the budget balance property. We rewrite the problem

function in (1) as a new form g(W ) = | ∪
v∈W

S∗v |, where S∗v = {(τ, t)|(τ, t ∈ ρv, fτ,t = 1)} and

find an interesting point: it is a nondecreasing submodular function.

Definition 2. A function h(·) is submodular if:

h(ω ∪ {v})− h(ω) ≥ h(X ∪ {v})− h(X),

where Λ is a finite set, ω ⊆ X ⊆ Λ and v ∈ Λ\X, and h(·) : 2V → R+.

Theorem 13. The objective function g(W ) is a nondecreasing submodular function.

Proof: For any W ⊆ X ⊆ V and v ∈ V \X, there have ∪
v′∈W

S∗v′ ⊆ ∪
v′∈X

S∗v′ and S∗v ∩

( ∪
v′∈W

S∗v′) ⊆ S∗v ∩ ( ∪
v′∈X

S∗v′), so we can get

g(W ∪ v)− g(W ) = |S∗v | − |S∗v ∩ ( ∪
v′∈W

S∗v′)|

≥ |S∗v | − |S∗v ∩ ( ∪
v′∈X

S∗v′)|

= g(X ∪ v)− g(X).

Then,it is easy to obtain a conclusion

g(X)− g(W ) = |( ∪
v′∈X\W

S∗v′) ∩ ( ∪
v∈W

S∗v)| ≥ 0,

so g(W ) is nondecreasing.

Based on the above analysis, we apply the modified proportional share auction mecha-

nism proposed in [74], which is based on the proportional share allocation rule. The auction

mechanism has two stages: winner set determination and payment decision.
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Algorithm 8: Winner set determination

input : {B; F ; (bv, v ∈ V )}
output: {W ; pv and xv, v ∈ W}

1 Initialization:

2 W = ∅, v ← arg maxv′∈V (gv′(W )/Av′).
3 xv,τ,t = 0, ∀v ∈ V , τ ∈ Γ, t ∈ T ;
4 yτ,t = 0, ∀τ ∈ Γ, t ∈ T .
5 while Av ≤ gv(W )B

g(W∪v)
do

6 W = W ∪ v;
7 v ← arg maxv′∈V \W (gv′(W )/Av′). for each (lv, tv) ∈ ρv, each τ ∈ Γ do
8 if lτ is same to lv and yτ,tv == 0 then
9 xv,τ,tv = 1, yτ,tv = 1.

The winner set determination process is shown in algorithm 1, where gv(W ) denotes

the marginal contribution of v to the coverage requirements, and is calculated as:

gv(W ) = g(W ∪ v)− g(W ).

The winner set determination algorithm iteratively selects the MVD who has the largest

marginal contribution to the coverage requirement until condition Av ≤ gv(W )B
g(W∪v)

becomes

false.

Once the winner set is identified, payment of each winner v in W will be calculated as

follows. Firstly, sort all vj ∈ W\v in the non-increasing sorting as,

g−vv1 (O0)

Av1
≥
g−vv2 (O1)

Av2
≥ ...

g−vvj (Oj−1)

Avj
≥ ...

g−vvn−1
(On−2)

Avn−1

, (5.4)

where Oj represents the set of first j MVDs in the sorting result (O0 = ∅) and g−vvj (Oj−1) is

the marginal contribution of vj when v is removed. Then find the MVD v′ ∈ W\v in the

position z of the sorting result which satisfies Avz ≤
g−vvz (Oz−1)B

g(Oz)
. The payment of v will be
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Figure 5.3. Online interaction process between the CP and MVDs.

determined by,

pv = max
j∈[1,2,...,z+1]

{min{
g−vv(j)(Oj−1)Avj

gvj(Oj−1)
,

g−vv(j)B

g(Oj−1 ∪ {v})
}}, (5.5)

where g−vv(j)(Oj−1) = g(Oj−1 ∪ {v}) − g(Oj−1) represents the marginal contribution of v at

position j in the sorting result.

Theorem 14. The modified proportional share auction mechanism satisfies: individual ra-

tionality, truthfulness, Budget Balance, and computational efficiency [74].

Theorem 15. Participation in the MCS are unconscious to all MVDs.

Proof: The working scheduling for each winner MVD is on its predefined route and the

MVD will be triggered automatically, so theorem 15 is true.

5.4 Online reverse auction mechanism

5.4.1 Online Working Process of MCSs

In this section, we try to solve the problem formulated in section 5.2 online. Compared

with the offline interactions process in MCSs, the online interaction between the CP and

MVDs are more flexible. The auction stage and working stage are mixed, as shown in Fig.

5.3. The CP will publish the sensing tasks in advance. Then for any MVD, it can participate

in the MCS and submit its bid at anytime within T . Once the CP receives the bid, it will

immediately determine whether the MVD wins or not. If the MVD wins, the CP will make

the working schedule and determine the payment for this MVD. Then the MVD will work
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for the sensing tasks according to the received working schedule. After all scheduled sensing

tasks are done, the CP will make payment to the MVD.

5.4.2 Simple Online Incentive Mechanism

When design online incentive mechanisms, one precondition should be kept in mind:

the CP has no knowledge about the upcoming MVDs and isn’t able to make predictions

about that. In order to satisfy these property requirements discussed in section 5.2, we

first propose a simple online incentive mechanism, which is also based on the proportional

share allocation rule as shown in algorithm 2. For each new coming v, we first calculates a

temporary payment p′v for v which is proportional to the marginal contribution of v over all

coverage requirements (line (1)). If p′v isn’t smaller than the asking price Av, v will win. Its

payment pv = p′v and its working schedule will be set (line (5-6)).

Algorithm 9: Simple Online Incentive Mechanism (Simple−OIM)

input : {B; F ; W ; bv; Y }
output: {W ; pv; xv; Y ; B}

1 p′v = gv(W )
g(F)

B; pv = 0;

2 if p′v ≥ Av then
3 W = W ∪ v, pv = p′v;
4 for each (lv, tv) ∈ ρv, each τ ∈ Γ do
5 if lτ is same to lv and yτ,tv == 0 then
6 xv,τ,tv = 1, yτ,tv = 1, B = B − pv;

As shown in theorem 4, the simple auction mechanism presented in algorithm 2 satisfies

all the desired auction mechanism properties proposed in section 5.2.

Theorem 16. Simple-OIM satisfies the desired individual rationality, truthfulness, budget

balance, unconsciousness and computational efficiency.

Proof: Individual rationality : an MVD becomes a winner only under the condition that

p′v ≥ Av, then there always has Uv = pv −Av ≥ 0 because pv = p′v. So individual rationality
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property is guaranteed;

Truthfulness : an MVD v wins in the case that p′v = gv(W )
g(F)

B ≥ Av. If v bids with

A′v ≤ Av, it will still win. Thus we can say the incentive mechanism in algorithm 2 is

monotone. On the other hand, if Av ≤ p′v, v will win with payment pv = p′v. v will lose

otherwise. So p′v can be regarded as the critical value for v. Therefore, according the theorem

5, algorithm 2 is truthfulness;

Budget balance: for each winner v ∈ W , its payment is calculated based on line (1) of

algorithm 2 and it is easy to get
∑
v∈W

pv =
∑
v∈W

gv(W )
g(F )

B ≤ B;

Unconsciousness : the route of each MVD doesn’t change due to its participation in

the MCS and the mobile physical objects of winner MVDs will be triggered automatically

according to their working schedules;

Computational efficiency : the number of location-time points in ρv is bounded by m.

So the time complexity of algorithm 2 is O(m ∗m).

Theorem 17. An incentive mechanism is truthful if and only if it is monotone and the

payment for each winner is a critical value [61].

5.4.3 (ε, µ)-unconsciousness Online Incentive Mechanism

Simple-OIM is simple and able to determine the winner MVD set and make payment

decision. In order to further improve the performance, a new online incentive mechanism is

proposed which targets at covering more sensing tasks over time with relaxed truthfulness

and unconsciousness requirements. Our new online incentive mechanism is motivated by

the following two facts. First, most of the incentive mechanisms achieve truthfulness at the

expense of effectiveness. Our objective is to get as many sensing tasks covered over time as

possible within a limited budget. Based on this concern, the real cost of each MVD is not

crucial to the CP. Second, the most sensitive information of a route are the source location,

destination location, and the total time duration. Taking a commuter as an example. Most

of the time, a commuter will drive from home in the morning. He or she should arrive at

office within a specific time duration. With a reasonable reward, the commuter probably
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accepts to take a new route from home to the office if the commuting time isn’t extended

strongly. Thus, the idea of the new online incentive mechanism is to recommend another

alternative candidate route for losing MVDs based on Simple-OIM. The candidate route

should maintain the lowest influence on the participating MVDs’ unconsciousness. One step

further, the candidate route should be as close to the original route of the commuter as

possible. In this way, more sensing tasks are expected to be covered by MVDs over time and

the utility of the losing MVD can also be increased if it accepts the recommended candidate

route. So the decision of candidate route is a trade-off between utility and effectiveness. For

simplicity, two new definitions are introduced here.

Definition 3. (ε, µ)-Potential Route (ρ(ε,µ)). The ρ(ε,µ) of route ρ={(l0, t0), (l1, t1), ..., (l|ρ|, t|ρ|)}

should satisfy:

i) ρ and ρ(ε,µ) should start at the same location-time points and end at the same destinations.

ii) the similarly degree between ρ and ρ(ε,µ) should be larger than ε (ε ∈ [0, 1]). The similarity

degree is calculated as,

|{l = l′|l ∈ (l, t) and (l, t) ∈ ρ, l′ ∈ (l′, t′) and (l′, t′) ∈ ρ(ε,µ)}|
|{l|l ∈ (l, t) and (l, t) ∈ ρ}|

, (5.6)

where l = l′ means that l and l′ are the same location.

iii) the total travel time of ρ(ε,µ) is no more than the total travel time of ρ plus a delay

tolerance threshold µ (µ ≥ 0),

(

|ρ(ε,µ)|∑
n=1,

(ln,tn)∈ρ(ε,µ)

(tn − tn−1))−
|ρ|∑
n=1,

(ln,tn)∈ρ

(tn − tn−1) ≤ µ. (5.7)

Definition 4. Candidate Route (CR). ∆
(ε,ρ)
ρ represents the set of potential routes for ρ.

Candidate route ρCR in ∆
(ε,ρ)
ρ is the (ε, µ)-Potential Route of ρ with largest marginal con-

tributions, that is ρCR ← arg max
ρ(ε,µ)∈∆

(ε,ρ)
ρ

(gρ(ε,µ)(W )).
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Based on the above discussion, we propose an online incentive mechanism: (ε, µ )-OIM.

For each v, let a symmetric matrix Dv = [dvl,l′ ] ∈ [Z+]L×L represent the number of time slots

needed by v to travel between any two locations in L. Specifically, values of Dv are based

on the speed of v, denoted by γv. In the online incentive mechanism, each v submits its bid

in a new form:

bv = {ρv, Av, Dv}.

The detailed design of (ε ,µ )-OIM is shown in algorithm 3. It first applies the Simple-

OIM for each new coming v (line (1)). If v wins, v’s payment and work schedule will be

decided by the Simple-OIM. Otherwise, a candidate route will be found by tweaked Depth

First Search (DFS) and recommended to v (line (3)). Here the tweaked DFS is a traversal

algorithm which can find all routes between two specific locations. If the candidate route

exists, the payment and work schedule of v is decided as shown in line (6-12).

Algorithm 10: (ε, µ)-unconsciousness Online Incentive Mechanism ((ε, µ)−OIM)

input : {B; F ; W ; bv; Y ; ε; µ}
output: {W ; pv; xv; Y ; B}

1 (B, W , pv, Y , xv)=Simple−OIM(B, F , W , bv, Y );
2 if v /∈ W then
3 Adopt the tweaked Depth F irst Search to find the candidate route ρCRv for v;

4 if
g
ρ(ε,µ)

(W )

g(F )
B ≥ Av then

5 pv =
g
ρ(ε,µ)

(W )

g(F )
B

6 W = W ∪ v;
7 for each (lv, tv) ∈ ρCRv , each τ ∈ Γ do
8 if lτ is same to lv and yτ,tv == 0 then
9 xv,τ,tv = 1, yτ,tv = 1, B = B − pv;

(ε, µ)-OIM gives MVDs who lose in the Simple-OIM another opportunity to win. This

leads to more MVDs working for the CP and more tasks can be done.

Theorem 18. (ε, µ)-OIM satisfies the individual rationality, budget balance, and (ε, µ)-

unconsciousness property requirements.
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Figure 5.4. The locations distribution of tasks over Atlanta metropolitan area
(30km*40km).

Proof: The proof is similar to theorem 4.

5.5 Performance evaluation

5.5.1 Evaluation of the offline case

The sensing region is 30km*40km and located in the Atlanta metropolitan area. We

mark 22 popular locations within the region in Google map as sensing task locations (shown

in Fig. 5.4). Then the budget B varies from 2000 to 14000. The number of MVDs varies

from 50 to 250. For each MVD, its speed and cost are randomly generated from [25km/h,

60km/h] and [10, 30], respectively. The total time (T = 2.5h) is divided into 150 time slots.

The route of each MVD is a sequence of locations on the map and the time at when the

MVD will pass through them is obtained based on its speed. One step further, the starting

time of the route is distributed over T .

The total number of tasks covered by winner MVDs in the offline incentive mechanism

is shown in Fig. 5.5. We observe that more tasks can be done with the increase of either
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Figure 5.5. The total number of tasks covered by the offline incentive mechanism.
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Figure 5.6. (a)The location-time points coverage by offline incentive mechanism. (b)The
location-time points coverage.

the number of MVDs or the budget, respectively. Secondly, we compare the coverage of

sensing tasks in our proposed offline incentive mechanism with the mechanism which hasn’t

considered the time dimension. The results are shown in Fig. 5.6(a) and 5.6(b), separately.

We can see the covered location-time points in Fig. 5.6(a) is denser than that in Fig. 5.6(b)

by about 20 percent. The result shows that the offline incentive mechanism in our paper

gets more sensing tasks done over the space and time dimensions. The reason for the sparse

coverage in Fig. 5.6(b) is the overlapping: a sensing task may be covered by more than one

MVD at a specific time slot.
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Figure 5.7. The coverage of online incentive mechanisms

Figure 5.8. The average running time of online incentive mechanisms.
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5.5.2 Evaluation of the online case

To evaluate the performance of online incentive mechanisms designed in this paper,

we take the secretary mechanism as a benchmark which is based on the classical secretary

algorithm. That can be summarized as:

Secretary mechanism. Let the first k arrived MVDs as set K, reject the MVDs in K, and

calculate δ = max
v∈K
{gv(K)

cv
} as threshold. Then for each new coming MVD denoted as v′ which

satisfies
gv′ (w)

cv′
≥ δ, calculate its temporary payment p′v′ =

gv′ (w)

δ
. v′ will be selected as a

winner (W = W ∪ v′) with payment pv′ = p′v′ if pv′ +
∑
v∈W

pv ≤ B.

The experimental setup of the online case is similar to the offline case. The MVDs

are required to submit bids at their starting time. We first compare the number of sensing

tasks covered by winner MVDs over time obtained from the two online incentive mechanisms

proposed in this paper with the secretary mechanism. The result is shown in Fig. 5.7. We

can observe that for each online incentive mechanism, its coverage increases with the increase

of participating MVDs. Then, the results of the secretary mechanism and the Simple-OIM

are almost same. However, first k MVDs is rejected in secretary mechanism which can not

guarantee sovereignty because these MVDs in K are excluded arbitrarily. The MCS should

make each MVD have the same opportunity to win. From this aspect, Simple-OIM is better

than the secretary mechanism. (ε, µ)-OIM outperforms the other two mechanisms because

it gives the losing MVDs one more chance to win. We know that ε and µ are used to constrain

the potential routes. Strict constraints (larger of ε and smaller of µ) will limit number of

potential routes and decrease running time. But loose constraints will lead to more tasks

covered over time. Thus, (0.3, 20)-OIM performs better than (0.7, 10)-OIM.

Then we test the performance of the four online incentive mechanisms under different

number of sensing tasks. The results of average running time for each MVD under different

setups are shown in Fig. 5.8. The average running time of each MVD in secretary mechanism

and the Simple-OIM turns out to be negligible with the increase of the number of sensing

tasks. Because the tweaked DFS is adopted to calculate the potential routes for each losing

MVD, the time complexity is high in (ε, µ)-OIM. So (0.3, 20)-OIM needs more time than
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(0.7, 10)-OIM. In order to guarantee the computational efficiency, the (ε, µ)-OIM should

choose larger ε and smaller µ even though the part of effectiveness will be sacrificed.

5.6 Summary

In this paper, we focus on incentive mechanisms design in IoT-based MCSs for surveil-

lance applications. We investigate practical requirements and the importance of fairness and

unconsciousness in winner MVDs selection. Two kinds of incentive mechanisms are pro-

posed which can be applied in realistic applications. Extensive simulations are conducted to

validate the performance of them.
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Chapter 6

FUTURE RESEARCH DIRECTIONS

6.1 Future Research Directions

In this section, we are discussing more future problems, challenges, and research direc-

tions.

Internet of Things (IoT) grows explosively, in which a number of devices are connected.

The connection magnifies individual data privacy threats, exposing the personal information

of millions devices.

The data collected in IoT can be published, enabling researchers and goverments to

analyze the data and learn important information which can benefit the society as a result.

Examples inculde inducement of a certain desease, effectiveness public policy formation,

guidance of drug research and development. That is to say, society can gain utility through

the published data from IoT. On the other hand, these data from IoT contains specific

information of devices or users of device. In other words, publishing data from Iot would

bring privacy loss for users whose devices are connected into the IoT. Consequently, the

privacy-preserving data publishing in IoT becomes a foundamental problem focusing on how

to make the proper trade-off between privacy and utility.

Game theory has been widely used to design data privacy to analyze users behaviors in

IoT since game theory can model situations of conflict and predict the behavior of users.
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CONCLUSION

This dissertation conducts the problem of incentive mechanism design in mobile crowd-

sensing system with consideration of economic properties. We study different models and

algorithms to provide explorations and resolutions.

To motivate mobile users to join sensing tasks in MCSs, we propose a reverse auction

model and two novel distributed auction schemes, CPAS and TPAS, for task assignment and

scheduling. Specifically speaking, the novelty of the proposed auction model and auction

schemes lies in the following aspects: i) the auction model is practical taking into account

partial fulfillment, attribute diversity, and price diversity; ii) the two auction schemes can

be implemented within a well-designed distributed auction framework; iii) both two auction

schemes are proved to be computationally efficient, individually rational, budget balanced,

and truthful.

Second, we investigate the incentive auction mechanisms for mobile crowdsourcing sys-

tems. We consider two working patterns in works allocation: the continuous working pattern

and the discontinuous working pattern. The objective of the MCS platform is to minimize

the social cost in both cases. To achieve the truthfulness, individual rationality, and compu-

tational efficiency, we design a VCG-based auction mechanism for the continuous case and

a suboptimal auction mechanism for the discontinuous case. We have proven that the two

mechanisms can implement the three properties simultaneously.

Thirdly, we focus on incentive mechanisms design in IoT-based MCSs for surveillance

applications. We investigate practical requirements and the importance of fairness and un-

consciousness in winner MVDs selection. Two kinds of incentive mechanisms are proposed

which can be applied in realistic applications. Extensive simulations are conducted to vali-

date the performance of them.

Besides, we also propose several very important and challenging potential further work

directions.
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