5 research outputs found

    Simulación del retraso en la transmisión de datos en una red celular debido al Handoff

    Get PDF
    This paper presents the outputs of numerical simulation of the effect of a mobile device's speed in delay of data transmission in a cellular network, because of Handoff. Code generation and simulations was done using Matlab's development environment. As a result, the responses of cellular network system by varying the parameters of mobile speed and time of completion of the test were analysed, and a model of the proposed system for determining the delay based on these two parameters was obtained.El presente artículo presenta el resultado de la simulación numérica del efecto de la velocidad de un dispositivo móvil en el retraso de la transmisión de datos en una red celular debido a Handoff. La generación del código y realización de las simulaciones se hizo por medio del entorno integrado de desarrollo Matlab. Como resultado se analizaron las respuestas del sistema de red celular al variar los parámetros de velocidad del dispositivo móvil y tiempo de realización de la prueba, y se obtuvo un modelo del sistema planteado que permite determinar el retraso en función de estos dos parámetros

    Simulation of delay in data transmission in a cellular network due to Handoff

    Get PDF
    RESUMEN: El presente artículo presenta el resultado de la simulación numérica del efecto de la velocidad de un dispositivo móvil en el retraso de la transmisión de datos en una red celular debido a Handoff. La generación del código y realización de las simulaciones se hizo por medio del entorno integrado de desarrollo Matlab. Como resultado se analizaron las respuestas del sistema de red celular al variar los parámetros de velocidad del dispositivo móvil y tiempo de realización de la prueba, y se obtuvo un modelo del sistema planteado que permite determinar el retraso en función de estos dos parámetros.ABSTRACT: This paper presents the outputs of numerical simulation of the effect of a mobile device's speed in delay of data transmission in a cellular network, because of Handoff. Code generation and simulations was done using Matlab's development environment. As a result, the responses of cellular network system by varying the parameters of mobile speed and time of completion of the test were analysed, and a model of the proposed system for determining the delay based on these two parameters was obtained

    Provisioning Quality of Service of Wireless Telemedicine for E-Health Services: A Review

    Get PDF
    In general, on-line medical consultation reduces time required for medical consultation and induces improvement in the quality and efficiency of healthcare services. The scope of study includes several key features of present day e-health applications such as X-ray, ECG, video, diagnosis images and other common applications. Moreover, the provision of Quality of Service (QoS) in terms of specific medical care services in e-health, the priority set for e-health services and the support of QoS in wireless networks and techniques or methods aimed at IEEE 802.11 to secure the provision of QoS has been assessed as well. In e-health, medical services in remote places which include rustic healthcare centres, ships, ambulances and home healthcare services can be supported through the applications of e-health services such as medical databases, electronic health data and the transferring of text, video, sound and images. Given this, a proposal has been made for a multiple service wireless networking with multiple sets of priorities. In relation to the terms of an acceptable QoS level by the customers of e-health services, prioritization is an important criterion in a multi-traffic network. The requirement for QoS in medical networking of wireless broadband has paved the way for bandwidth prerequisites and the live transmission or real-time medical applications. The proposed wireless network is capable of handling medical applications for both normal and life-threatening conditions as characterized by the level of emergencies. In addition, the allocation of bandwidth and the system that controls admittance designed based on IEEE 802.16 especially for e-health services or wireless telemedicine will be discussed in this study. It has been concluded that under busy traffic conditions, the proposed architecture can used as a feasible and reliable infrastructure network for telemedicine

    Fair and efficient scheduling for telemedicine traffic transmission over wireless cellular networks

    No full text
    Telemedicine traffic transmission over wireless cellular networks has gained in importance during the last few years. Due to the fact that this type of traffic carries critical information regarding the patients' condition, it is vitally important that multimedia telemedicine traffic has highest transmission priority in comparison to all other types of traffic in the cellular network. However, the need for expedited and correct transmission of telemedicine traffic calls for a guaranteed bandwidth to telemedicine users. This creates a tradeoff between the satisfaction of the very strict quality of service requirements of telemedicine traffic and the loss of the guaranteed bandwidth in the numerous cases when it is left unused, due to the infrequent nature of telemedicine traffic. In this paper, we propose a fair scheduling mechanism for telemedicine traffic transmission over wireless cellular networks. The mechanism achieves high channel bandwidth utilization while offering full priority to telemedicine traffic

    Fair and efficient scheduling for telemedicine traffic transmission over wireless cellular networks

    No full text
    Summarization: Telemedicine traffic transmission over wireless cellular networks has gained in importance during the last few years. Due to the fact that this type of traffic carries critical information regarding the patients' condition, it is vitally important that multimedia telemedicine traffic has highest transmission priority in comparison to all other types of traffic in the cellular network. However, the need for expedited and correct transmission of telemedicine traffic calls for a guaranteed bandwidth to telemedicine users. This creates a tradeoff between the satisfaction of the very strict quality of service requirements of telemedicine traffic and the loss of the guaranteed bandwidth in the numerous cases when it is left unused, due to the infrequent nature of telemedicine traffic. In this paper, we propose a fair scheduling mechanism for telemedicine traffic transmission over wireless cellular networks. The mechanism achieves high channel bandwidth utilization while offering full priority to telemedicine traffic.Παρουσιάστηκε στο: Proc. of the 69th IEEE Vehicular Technology Conferenc
    corecore