17 research outputs found

    Bisimulation maps in presheaf categories

    Get PDF
    The category of presheaves on a (small) category is a suitable semantic universe to study behaviour of various dynamical systems. In particular, presheaves can be used to record the executions of a system and their morphisms correspond to simulation maps for various kinds of state-based systems. In this paper, we introduce a notion of bisimulation maps between presheaves (or executions) to capture well known behavioural equivalences in an abstract way. We demonstrate the versatility of this framework by working out the characterisations for standard bisimulation, ∀-fair bisimulation, and branching bisimulation

    Minimizing GFG Transition-Based Automata

    Get PDF

    Minimization and Canonization of GFG Transition-Based Automata

    Get PDF
    While many applications of automata in formal methods can use nondeterministic automata, some applications, most notably synthesis, need deterministic or good-for-games(GFG) automata. The latter are nondeterministic automata that can resolve their nondeterministic choices in a way that only depends on the past. The minimization problem for deterministic B\"uchi and co-B\"uchi word automata is NP-complete. In particular, no canonical minimal deterministic automaton exists, and a language may have different minimal deterministic automata. We describe a polynomial minimization algorithm for GFG co-B\"uchi word automata with transition-based acceptance. Thus, a run is accepting if it traverses a set α\alpha of designated transitions only finitely often. Our algorithm is based on a sequence of transformations we apply to the automaton, on top of which a minimal quotient automaton is defined. We use our minimization algorithm to show canonicity for transition-based GFG co-B\"uchi word automata: all minimal automata have isomorphic safe components (namely components obtained by restricting the transitions to these not in α\alpha) and once we saturate the automata with α\alpha-transitions, we get full isomorphism.Comment: 28 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:2009.1088

    Multipebble Simulations for Alternating Automata - (Extended Abstract)

    Get PDF
    Abstract. We study generalized simulation relations for alternating Büchi automata (ABA), as well as alternating finite automata. Having multiple pebbles allows the Duplicator to “hedge her bets ” and delay decisions in the simulation game, thus yielding a coarser simulation relation. We define (k1, k2)-simulations, with k1/k2 pebbles on the left/right, respectively. This generalizes previous work on ordinary simulation (i.e., (1, 1)-simulation) for nondeterministic Büchi automata (NBA) in [3] and ABA in [4], and (1, k)-simulation for NBA in [2]. We consider direct, delayed and fair simulations. In each case, the (k1, k2)simulations induce a complete lattice of simulations where (1,1)- and (n, n)simulations are the bottom and top element (if the automaton has n states), respectively, and the order is strict. For any fixed k1, k2, the (k1, k2)-simulation implies (ω-)language inclusion and can be computed in polynomial time. Furthermore, quotienting an ABA w.r.t. (1, n)-delayed simulation preserves its language. Finally, multipebble simulations yield new insights into the Miyano-Hayashi construction [10] on ABA.

    Minimization and Canonization of GFG Transition-Based Automata

    Get PDF
    While many applications of automata in formal methods can use nondeterministic automata, some applications, most notably synthesis, need deterministic or good-for-games (GFG) automata. The latter are nondeterministic automata that can resolve their nondeterministic choices in a way that only depends on the past. The minimization problem for deterministic B\"uchi and co-B\"uchi word automata is NP-complete. In particular, no canonical minimal deterministic automaton exists, and a language may have different minimal deterministic automata. We describe a polynomial minimization algorithm for GFG co-B\"uchi word automata with transition-based acceptance. Thus, a run is accepting if it traverses a set α\alpha of designated transitions only finitely often. Our algorithm is based on a sequence of transformations we apply to the automaton, on top of which a minimal quotient automaton is defined. We use our minimization algorithm to show canonicity for transition-based GFG co-B\"uchi word automata: all minimal automata have isomorphic safe components (namely components obtained by restricting the transitions to these not in α\alpha) and once we saturate the automata with α\alpha-transitions, we get full isomorphism

    Efficient reduction of nondeterministic automata with application to language inclusion testing

    Get PDF
    We present efficient algorithms to reduce the size of nondeterministic B\"uchi word automata (NBA) and nondeterministic finite word automata (NFA), while retaining their languages. Additionally, we describe methods to solve PSPACE-complete automata problems like language universality, equivalence, and inclusion for much larger instances than was previously possible (1000\ge 1000 states instead of 10-100). This can be used to scale up applications of automata in formal verification tools and decision procedures for logical theories. The algorithms are based on new techniques for removing transitions (pruning) and adding transitions (saturation), as well as extensions of classic quotienting of the state space. These techniques use criteria based on combinations of backward and forward trace inclusions and simulation relations. Since trace inclusion relations are themselves PSPACE-complete, we introduce lookahead simulations as good polynomial time computable approximations thereof. Extensive experiments show that the average-case time complexity of our algorithms scales slightly above quadratically. (The space complexity is worst-case quadratic.) The size reduction of the automata depends very much on the class of instances, but our algorithm consistently reduces the size far more than all previous techniques. We tested our algorithms on NBA derived from LTL-formulae, NBA derived from mutual exclusion protocols and many classes of random NBA and NFA, and compared their performance to the well-known automata tool GOAL.Comment: 69 pages. arXiv admin note: text overlap with arXiv:1210.662

    Generalized simulation relations with applications in automata theory

    Get PDF
    Finite-state automata are a central computational model in computer science, with numerous and diverse applications. In one such application, viz. model-checking, automata over infinite words play a central rˆole. In this thesis, we concentrate on B¨uchi automata (BA), which are arguably the simplest finite-state model recognizing languages of infinite words. Two algorithmic problems are paramount in the theory of automata: language inclusion and automata minimization. They are both PSPACE-complete, thus under standard complexity-theoretic assumptions no deterministic algorithm with worst case polynomial time can be expected. In this thesis, we develop techniques to tackle these problems. In automata minimization, one seeks the smallest automaton recognizing a given language (“small” means with few states). Despite PSPACE-hardness of minimization, the size of an automaton can often be reduced substantially by means of quotienting. In quotienting, states deemed equivalent according to a given equivalence are merged together; if this merging operation preserves the language, then the equivalence is said to be Good for Quotienting (GFQ). In general, quotienting cannot achieve exact minimization, but, in practice, it can still offer a very good reduction in size. The central topic of this thesis is the design of GFQ equivalences for B¨uchi automata. A particularly successful approach to the design of GFQ equivalences is based on simulation relations. Simulation relations are a powerful tool to compare the local behavior of automata. The main contribution of this thesis is to generalize simulations, by relaxing locality in three perpendicular ways: by fixing the input word in advance (fixed-word simulations, Ch. 3), by allowing jumps (jumping simulations, Ch. 4), and by using multiple pebbles (multipebble simulations for alternating BA, Ch. 5). In each case, we show that our generalized simulations induce GFQ equivalences. For fixed-word simulation, we argue that it is the coarsest GFQ simulation implying language inclusion, by showing that it subsumes a natural hierarchy of GFQ multipebble simulations. From a theoretical perspective, our study significantly extends the theory of simulations for BA; relaxing locality is a general principle, and it may find useful applications outside automata theory. From a practical perspective, we obtain GFQ equivalences coarser than previously possible. This yields smaller quotient automata, which is beneficial in applications. Finally, we show how simulation relations have recently been applied to significantly optimize exact (exponential) language inclusion algorithms (Ch. 6), thus extending their practical applicability

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers
    corecore