

Edinburgh Research Explorer

Multipebble Simulations for Alternating Automata - (Extended
Abstract)

Citation for published version:
Clemente, L & Mayr, R 2010, 'Multipebble Simulations for Alternating Automata - (Extended Abstract)'. in P
Gastin & F Laroussinie (eds), CONCUR 2010 - CONCURRENCY THEORY. Springer-Verlag GmbH,
BERLIN, pp. 297-312, 21st Conference on Concurrency Theory, Paris, 31-3 September.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
CONCUR 2010 - CONCURRENCY THEORY

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28967212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/multipebble-simulations-for-alternating-automata--extended-abstract(5ee8ff3e-9a57-4498-92e6-60059ddacd96).html

Multipebble Simulations for Alternating Automata
(Extended Abstract)

Lorenzo Clemente and Richard Mayr

LFCS. School of Informatics. University of Edinburgh. UK

Abstract. We study generalized simulation relations for alternatingBüchi au-
tomata (ABA), as well as alternating finite automata. Havingmultiple pebbles
allows the Duplicator to “hedge her bets” and delay decisions in the simulation
game, thus yielding a coarser simulation relation. We define(k1, k2)-simulations,
with k1/k2 pebbles on the left/right, respectively. This generalizesprevious work
on ordinary simulation (i.e.,(1, 1)-simulation) for nondeterministic Büchi au-
tomata (NBA) in [3] and ABA in [4], and(1, k)-simulation for NBA in [2].
We consider direct, delayed and fair simulations. In each case, the(k1, k2)-
simulations induce a complete lattice of simulations where(1, 1)- and (n, n)-
simulations are the bottom and top element (if the automatonhasn states), re-
spectively, and the order is strict. For any fixedk1, k2, the (k1, k2)-simulation
implies (ω-)language inclusion and can be computed in polynomial time. Further-
more, quotienting an ABA w.r.t.(1, n)-delayed simulation preserves its language.
Finally, multipebble simulations yield new insights into the Miyano-Hayashi con-
struction [10] on ABA.

1 Introduction

We consider simulation relations on (alternating) finite- and infinite word automata:
nondeterministic finite automata (NFA), alternating finiteautomata (AFA), nondeter-
ministic Büchi automata (NBA) and alternating Büchi automata (ABA). Simulation pre-
order is a notion of semantic comparison of two states, called left state and right state,
in automata, where the larger right state can match all movesof the smaller left one in a
stepwise way. Simulation preorder implies language inclusion on NFA/AFA/NBA/ABA
[3, 4], but not vice-versa. While checking language inclusion is PSPACE-complete for
all these classes of automata [7, 11], the simulation relation can be computed in poly-
nomial time [3, 4].

Checking simulation preorder between two states can be presented as a game with
two players, Spoiler and Duplicator, where Spoiler tries toprove that the simulation re-
lation does not hold while Duplicator has the opposite objective. In every round of the
simulation game, Spoiler chooses a transition from the current left state and Duplicator
must choose a transition from the current right state which has the same action label.
Duplicator wins iff the game respects the accepting states in the automata, and different
requirements for this yield finer or coarser simulation relations. In direct simulation,
whenever the left state is accepting, the right state must beaccepting. Indelayed simu-
lation, whenever the left state is accepting, the right state must be eventually accepting.
In fair simulation, if the left state is accepting infinitely often, then the right state must
be accepting infinitely often. For finite-word automata, only direct simulation is mean-
ingful, but for Büchi automata delayed and fair simulationyield coarser relations; see
[3] for an overview.

These notions have been extended in two directions. Etessami [2] defined a hierar-
chy of (1, k) multipebble simulations on NBA. Intuitively, thek pebbles on the right
side allow Duplicator to “hedge her bets” and thus to delay making decisions. This extra
power of Duplicator increases with largerk and yields coarser simulation relations.

A different extension by Wilke and Fritz [4] considered simulations on ABA. In
an ABA, a state is either existential or universal. The idea is that Spoiler moves from
existential left states and universal right states, and dually for Duplicator.

Our contribution. We consider(k1, k2)-simulations on ABA, i.e., with multiple peb-
bles on both sides:k1 on the left andk2 on the right. Intuitively, Duplicator controls
pebbles on universal states on the left and existential states on the right (and dually for
Spoiler). This generalizes all previous results: the(1, k)-simulations on NBA of [2] and
the(1, 1)-simulations on ABA of [4].

For each acceptance condition (direct, delayed, fair) thisyields a lattice-structured
hierarchy of(k1, k2)-simulations, where(1, 1)- and(n, n)-simulations are the bottom
and top element if the automaton hasn states. Furthermore, the order is strict, i.e.,
more pebbles make the simulation relation strictly coarserin general. For each fixed
k1, k2 ≥ 0, (k1, k2)-simulations are computable in polynomial time and they imply
language inclusion (over finite or infinite words, dependingon the type of simulation).

Quotienting AFA w.r.t.(k1, k2)-simulation preserves their language. We also pro-
vide a corresponding result for ABA by showing that quotienting ABA w.r.t. (1, n)-
delayed simulation preserves theω-language. This is a non-trivial result, since a naı̈ve
generalization of the definition of semielective-quotients [4] does not work. We provide
the correct notion of semielective-quotients for(1, n)-simulations on ABA, and show
its correctness. Moreover, unlike for NBA [2], quotientingABA w.r.t. (1, k) delayed
simulation for1 < k < n doesnotpreserve their language in general.

Finally, multipebble simulations have close connections to various determinization-
like constructions like the subset construction for NFA/AFA and the Miyano-Hayashi
construction [10] on ABA. In particular, multipebble simulations yield new insights into
the Miyano-Hayashi construction and an alternative correctness proof showing an even
stronger property.

2 Preliminaries and Basic Definitions

Automata.An alternating Büchi automaton (ABA)Q is a tuple(Q, Σ, qI , ∆, E, U, F),
whereQ is a finite set of states,Σ is a finite alphabet,qI is the initial state,{E, U} is
a partition ofQ into existentialanduniversalstates,∆ ⊆ Q × Σ × Q is the transition
relation andF ⊆ Q is the set of accepting states. We say that a stateq is accepting if
q ∈ F . We usen to denote the cardinality ofQ. A nondeterministic Büchi automaton
(NBA) is an ABA with U = ∅, i.e., where all choices are existential. We say thatQ is
completeiff ∀(q, a) ∈ Q × Σ. ∃(q, a, q′) ∈ ∆.

An ABA Q recognizes a language of infinite wordsLω(Q). The acceptance con-
dition is best described in a game-theoretic way [5]. Given an input wordw ∈ Σω,
the acceptance gameGω(Q, w) is played by two players, Pathfinder and Automa-
ton. Existential states are controlled by Automaton, whilePathfinder controls universal
states. Automaton wins the gameGω(Q, w) iff she has a winning strategy s.t., for any

2

Pathfinder counter-strategy, the resulting computation visits some accepting state inF
infinitely often. The languageLω(Q) recognized byQ is defined as the set of words
w ∈ Σω s.t. Automaton winsGω(Q, w). See [4] for a formal definition.

If we view an ABA Q as an acceptor offinite words, then we obtain an alternat-
ing finite automaton (AFA). Forw = w0 . . . wm ∈ Σ∗, the finite acceptance game
Gfin(Q, w) is defined as above forGω(Q, w), except that the game stops when the last
symbolwm of w has been read, and Automaton wins if the last state is inF . Lfin(Q) is
defined in the obvious way. An alternating transition system(ATS)Q is an AFA where
all states are accepting, andTr(Q) := Lfin(Q) is its trace language. When we just say
“automaton”, it can be an ABA, AFA or ATS, depending on the context.

If Q is a set, with2Q we denote the set of subsets ofQ, and, for anyk ∈ N, with
2Q,k we denote the subset of2Q consisting of elements of cardinality at mostk. When
drawing pictures, we represent existential states byq and universal states byq .

Multipebble simulations.We define multipebble simulations in a game-theoretic way.
The game is played by two players, Spoiler and Duplicator, who play in rounds. The
objective of Duplicator is to show that simulation holds, while Spoiler has the comple-
mentary objective. We use the metaphor of pebbles for describing the game: We call
a pebble existential if it is on an existential state, and universal otherwise;Left if it is
on the l.h.s. of the simulation relation, andRightotherwise. Intuitively, Spoiler controls
existentialLeftpebbles and universalRightpebbles, while Duplicator controls universal
Left pebbles and existentialRightpebbles. The presence of>1 pebbles in each side is
due to the further ability of Duplicator to split pebbles to several successors. Moreover,
Duplicator always has the possibility of “taking pebbles away”. Since not all available
pebbles have to be on the automaton,k + 1 pebbles are at least as good ask.

Formally, letQ be an alternating automaton,q0 ∈ 2Q,k1 a k1-set ands0 ∈ 2Q,k2 a
k2-set. We define the basic(k1, k2)-simulation gameG(k1,k2)

(q0, s0) as follows. Let

Γ Sp andΓDup be a set of actions (or transitions) for the two players (to bespecified
below). In the initial configuration〈q0, s0〉, Left pebbles are onq0 andRightpebbles
on s0. If the current configuration at roundi is 〈qi, si〉, then the next configuration
〈qi+1, si+1〉 is determined as follows:

– Spoiler chooses a transition(qi, si, ai,q
′, s′) ∈ Γ Sp.

– Duplicator chooses a transition(qi, si, ai,q
′, s′,qi+1, si+1) ∈ ΓDup.

We now define the two transition relations. LetqE := q∩E be the set of existential
states inq, and defineqU , sE, sU similarly. LetP1 := 2Q,k1 × 2Q,k2 andP0 := Σ ×
2Q,k1 × 2Q,k2 . Γ Sp ⊆ P1 × P0 models Spoiler’s moves:(q, s, a,q′, s′) ∈ Γ Sp iff
Spoiler choosesa as the next input symbol, and

– q′ is obtained fromqE by choosing a successor foreach pebblein qE . Formally,
q′ = { select(∆(q, a)) | q ∈ qE }, whereselect(r) chooses an element inr.

– Similarly, s′ is obtained fromsU by choosing a successor for each pebble insU .

Duplicator’s moves are of the form(q, s, a,q′, s′,q′′, s′′) ∈ ΓDup ⊆ P1 × P0 × P1:

– q′′ is a non-emptyk1-subset ofq′ ∪ ∆(qU , a), and
– s′′ is a non-emptyk2-subset ofs′ ∪ ∆(sE , a).

3

Notice that Duplicator is always allowed to “take pebbles away”, and to “hedge her
bets” by splitting pebbles into different successors. We say that a pebble on stateq is
stuckif q has noa-successor (wherea is clear from the context).

We now formally define strategies. A strategy for Spoiler is afunctionδ : P ∗
1 P1 7→

P0 compatible withΓ Sp, i.e., for any(π · 〈q, s〉) ∈ P ∗
1 P1, δ(π · 〈q, s〉) = (a,q′, s′)

implies (q, s, a,q′, s′) ∈ Γ Sp. Similarly, a strategy for Duplicator is a functionσ :
P ∗

1 P1 7→ (P0 7→ P1) compatible withΓDup, i.e., for anyπ ∈ P ∗
1 P1 and(a,q′, s′) ∈

P0, σ(π)(a,q′, s′) = 〈q′′, s′′〉 implies (q, s, a,q′, s′,q′′, s′′) ∈ ΓDup. A play π =
〈q0, s0〉〈q1, s1〉 · · · ∈ P ∗

1 ∪ Pω
1 is a finite or infinite sequence of configurations inP1.

For a wordw = a0a1 · · · ∈ Σ∗ ∪ Σω s.t. |w| = |π| − 1 (with |π| = ω = ω − 1
if π ∈ Σω), we say that a playπ is σ-conform tow iff, for any i < |π|, there exists
some(qi, si, ai,q

′
i, s

′
i) ∈ Γ Sp s.t. σ(〈q0, s0〉 . . . 〈qi, si〉)(ai,q

′
i, s

′
i) = 〈qi+1, si+1〉.

Intuitively, σ-conform plays are those plays which originate when Duplicator’s strategy
is fixed toσ; δ-conform plays, forδ a Spoiler’s strategy, are defined similarly. Below,
both strategies are fixed, and the resulting, unique play is conform to both.

The game can halt prematurely, for pebbles may get stuck. In this case, the win-
ning condition is as follows: If there exists aLeft pebble which cannot be moved, then
Duplicator wins. Dually, if noRightpebble can be moved, then Spoiler wins.

Remark 1.Our winning condition differs from the one in [4] when pebbles get stuck.
There, the losing player is always the one who got stuck. If welet Duplicator win
when Spoiler is stuck on a universalRightpebble, we would obtain a simulation which
does not implylanguage containment. (Notice that “simulation implies containment”
is proved in [4] under the assumption that pebbles do not get stuck.) Furthermore, the
condition in [4] is unnecessarily strong when Duplicator isstuck on a universalLeft
pebble, where letting Spoiler win is too conservative. Our definition generalizes the
correct winning condition to multiple pebbles, for which weprove “simulation implies
containment” without further assumptions.

In all other cases, we have that allLeft pebbles can be moved and at least oneRight
pebble can be moved, and the two players build an infinite sequence of configurations
π = 〈q0, s0〉〈q1, s1〉 · · · ∈ Pω

1 . The winning condition is defined in terms of a predicate
C(π) onπ. Different choices ofC(π) lead to different notions of simulation.

1. Ordinary (k1, k2)-simulation. The acceptance condition is ignored, and Duplicator
wins as long as the game doesn’t halt:C(π) :⇐⇒ true.

2. Existential direct(k1, k2)-simulation. Duplicator wins if, whenevereveryq ∈ qi is
accepting, thensomes ∈ si is accepting:

C(π) :⇐⇒ (∀i. qi ⊆ F =⇒ si ∩ F 6= ∅) .

3. Universal direct(k1, k2)-simulation. Duplicator wins if, wheneversomeq ∈ qi is
accepting, theneverys ∈ si is accepting:

C(π) :⇐⇒ (∀i. qi ∩ F 6= ∅ =⇒ si ⊆ F) .

As we will see, ordinary simulation is used for ATSs, while existential and universal
direct simulation are used for automata over finite and infinite words, respectively.

4

The winning condition for delayed and fair simulation requires some technical
preparation, which consists in the notion of being existentially/universally good since
some previous round. Given the current roundm, we say that a stateq ∈ qm has
seena stateq̂ since some previous roundi ≤ m, written has seeni

m(q, q̂), iff either
1) q = q̂, or i < m and there existsq′ ∈ qm−1 s.t. 2.1)q ∈ ∆(q′, am−1), and 2.2)
has seeni

m−1(q
′, q̂). Dually, we writecant avoidi

m(q, q̂) iff either 1) q = q̂, or i < m

and, for allq′ ∈ qm−1, q ∈ ∆(q′, am−1) impliescant avoidi
m−1(q

′, q̂). We overload
the notation on the set of accepting states, and we writehas seeni

m(q, F) to mean that
q has seen somêq ∈ F ; and similarly forcant avoidi

m(q, F). Finally, we say thatsj

is existentially good since roundi ≤ j, written good∃(sj, i), if at roundj every state
in sj has seen an accepting state since roundi, andj is the least round for which this
holds [2]. Similarly, we say thatqj is universally good since roundi ≤ j, written
good∀(sj , i), if at roundj every state inqj cannot avoid an accepting state since round
i, andj is the least round for which this holds. Formally,

good∃(sj , i) ⇐⇒ (∀s ∈ sj. has seeni
j(s, F)) ∧

∀j′. (∀s′ ∈ sj′ . has seeni
j′(s

′, F)) =⇒ j′ ≥ j

good∀(sj , i) ⇐⇒ (∀s ∈ sj. cant avoidi
j(s, F)) ∧

∀j′. (∀s′ ∈ sj′ . cant avoidi
j′(s

′, F)) =⇒ j′ ≥ j

We writegood∃(sj), omitting the second argument, when we just say thatsj is good
sincesomeprevious round. For a pathπ = s0s1 . . . , we writegood∃(π,∞), with the
second argument instantiated toi = ∞, to mean thatgood∃(sj) holds for infinitely
manyj’s; and similarly forgood∀(sj) andgood∀(π,∞).

We are now ready to define delayed and fair simulations.

4. Delayed(k1, k2)-simulation. Duplicator wins if, wheneverqi is universally good,
then there existsj ≥ i s.t.sj is existentially good since roundi:

C(π) :⇐⇒ ∀i. good∀(qi) =⇒ ∃j ≥ i. good∃(sj , i) .

5. Fair (k1, k2)-simulation. Duplicator wins if, whenever there are infinitely many
i’s s.t. qi is universally good, then, for any suchi, there existsj ≥ i s.t. sj is
existentially good since roundi:

C(π) :⇐⇒ good∀(π0,∞) =⇒ (∀i. good∀(qi) =⇒ ∃j ≥ i. good∃(sj , i)) ,

whereπ0 = q0q1 . . . is the projection ofπ onto its first component.

We will denote the previous acceptance conditions withx ∈ {o, ∃di, ∀di, de, f}, and
the corresponding game is denoted asGx

(k1,k2)
(q0, s0).

Remark 2.Notice that the condition for fair simulation is equivalentto the follow-
ing simpler one: Ifqi is universally good since some previous round infinitely often,
thensi is existentially good since some previous round infinitely often: C′(π) : ⇐⇒
good∀(π0,∞) =⇒ good∃(π1,∞), whereπ1 = s0s1 . . . is the projection ofπ onto
its second component.

5

We are now ready to define the simulation relation⊑x
(k1,k2)

, with x as above. We say
that ak2-sets x-simulates ak1-setq, writtenq ⊑x

(k1,k2) s, if Duplicator has a winning
strategy inGx

(k1,k2)(q, s). We overload the simulation relation⊑x
(k1,k2)

on singletons:
q ⊑x

(k1,k2)
s ⇐⇒ {q} ⊑x

(k1,k2)
{s}. For two automataA andB, we writeA ⊑x

(k1,k2)

B for qAI ⊑x
(k1,k2)

qBI , where the simulation is actually computed on the disjoint union
of A andB. If ⊑x

(k1,k2) is a simulation, then its transitive closure is defined as�x
(k1,k2)

.
Note that, in general,⊑x

(k1,k2)
is not itself a transitive relation.

Multipebble simulations hierarchy.In general, having more pebbles (possibly) gives
more power to the Duplicator. This is similar to the(1, k)-simulations for NBA studied
in [2], but in our context there are two independent directions of “growing power”.

Theorem 1. Letx ∈ {o, ∃di, ∀di, de, f} andk′
1 ≥ k1, k′

2 ≥ k2.

1. Inclusion:⊑x
(k1,k2)

⊆ ⊑x
(k′

1
,k′

2
). (In particular,�x

(k1,k2)⊆�x
(k′

1
,k′

2
).)

2. Strictness: Ifk′
1 > k1 or k′

2 > k2, there exists an automatonQ′ s.t.⊑x
(k1,k2) 6=⊑x

(k′

1
,k′

2
).

Proof (Sketch).Point 1) follows directly from the definitions, since Duplicator can al-
ways take pebbles away. Point 2) is illustrated in Figure 1, which holds for any kind of
simulationx ∈ {o, ∃di, ∀di, de, f}. ⊓⊔

q

q1 q2

q3

s

s1 s2 s3

s4

a a

Σ \ {b1} Σ \ {b2}

Σ

a a a

c1
c2 c3

Σ

⊑x
(2,3)

Fig. 1. Example in whichq ⊑x
(2,3) s, but q 6⊑x

(k1,k2) s for anyk1 ≤ 2, k2 ≤ 3, with k1 < 2
or k2 < 3. The alphabet isΣ′ = {a} ∪ Σ, with Σ = {b1, b2, c1, c2, c3}. Note that both
automata recognize the same language, both over finite and infinite words:Lfin(q) = Lfin(s) =
a(c1 + c2 + c3)Σ

∗ andLω(q) = Lω(s) = a(c1 + c2 + c3)Σ
ω.

Theorem 2. For anyk1, k2 ∈ N>0 and any automatonQ,

1. ⊑∃di
(k1,k2)⊆⊑o

(k1,k2)
2. ⊑∀di

(k1,k2)
⊆⊑de

(k1,k2)⊆⊑f
(k1,k2)

⊆⊑o
(k1,k2)

.

Moreover, for each containment, there existsQ s.t. the containment is strict.

Proof. The containments follow directly from the definitions. For the strictness, con-
sider again the example in Figure 1, with the modifications below. If no state on the
right is accepting, then no simulation holds except ordinary simulation. Ifq is accept-
ing, then universal direct simulation does not hold, but delayed simulation does. Finally,
if the only accepting state isq, then delayed simulation does not hold, but fair simula-
tion does. Is is easy to generalize this example for anyk1, k2 ∈ N>0. ⊓⊔

6

3 Finite words

Lemma 1. For any automatonQ with n states and statesq, s ∈ Q:

1. q ⊑∃di
(k1,k2) s impliesLfin(q) ⊆ Lfin(s), for anyk1, k2 ∈ N>0.

2. q ⊑o
(k1,k2) s impliesTr(q) ⊆ Tr(s), for anyk1, k2 ∈ N>0.

3. Lfin(q) ⊆ Lfin(s) impliesq ⊑∃di
(n,n) s, provided thatQ is complete.

4. Tr(q) ⊆ Tr(s) impliesq ⊑o
(n,n) s, provided thatQ is complete.

In particular, the last two points above show that existential-direct (resp., ordinary)
simulation “reaches” language inclusion (resp., trace inclusion) at(n, n).

Subset constructions.The subset construction is a well-known procedure for deter-
minizing NFAs [7]. It is not difficult to generalize it overalternatingautomata, where
it can be used for eliminating existential states, i.e., to perform thede-existentialization
of the automaton. The idea is the same as in the subset construction, except that, when
consideringa-successors of a macrostate (for a symbola ∈ Σ), existential and uni-
versal states are treated differently. For existential states, we apply the same procedure
as in the classic subset construction, by taking always alla-successors. For universal
states, eacha-successor induces a different transition in the subset automaton. This
ensures that macrostates can be interpreted purely disjunctively, and the language of a
macrostate equals the union over the language of the states belonging to it. Accordingly,
a macrostate is accepting if it containssomestate which is accepting.

The previous construction can be dualized for de-universalizing finite automata. For
an AFA Q, let S∃(Q) andS∀(Q) be its de-existentialization and de-universalization,
respectively. (See Definitions 1 and 2 in Appendix B.1.)

The following lemma formalizes the intuition that multipebble simulations for AFA
in fact correspond to(1, 1)-simulations over the appropriate subset-constructions.

Lemma 2. Let Q1,Q2 be two AFAs over the same alphabetΣ, with |Q1| = n1 and
|Q2| = n2. Then, for anyk1 ≤ n1 andk2 ≤ n2,

Q1 ⊑∃di
(k1,n2)

Q2 ⇐⇒ Q1 ⊑∃di
(k1,1) S

∃(Q2) (1)

Q1 ⊑∃di
(n1,k2)

Q2 ⇐⇒ S∀(Q1) ⊑
∃di
(1,k2)

Q2 (2)

Q1 ⊑∃di
(n1,n2)

Q2 ⇐⇒ S∀(Q1) ⊑
∃di
(1,1) S

∃(Q2) . (3)

4 Infinite words

Multipebble existential-direct simulation is not suitable for being used forω-automata,
since it does not even implyω-language inclusion.

Theorem 3. For anyk1, k2 ∈ N>0, not both equal to1, there exist an automatonQ
and statesq, s ∈ Q s.t.q ⊑∃di

(k1,k2)
s holds, butLω(q) 6⊆ Lω(s).

7

q s

a a a

b c
b c

⊑∃di
(1,2)

(a) An example in whichq ⊑∃di
(1,2) s

holds, butLω(q) 6⊆ Lω(s).

q0

q1

s0

s1 s2

a

b

b

a

a b

a b

6⊑f
(n,n)

(b) An example in whichLω(q0) ⊆
Lω(s0) holds, butq0 6⊑f

(n,n) s0.

Fig. 2. Two examples.

Proof. Consider the example in Figure 2(a). Clearly,q ⊑∃di
(1,2) s holds, since Duplicator

can split pebbles on the successors ofs, and one such pebble is accepting, as required
by existential-direct simulation. ButLω(q) 6⊆ Lω(s): In fact,(ab)ω ∈ Lω(q) = (a(b +
c))ω , but(ab)ω 6∈ Lω(s) = ((ab)∗ac)ω. ⊓⊔

This motivates the definition ofuniversal-direct simulation, whichdoes implyω-
language inclusion, like the coarser delayed and fair simulations.

Theorem 4. For x∈{∀di, de, f}, automatonQ, k1, k2 ∈ N>0 and statesq, s ∈ Q,

q ⊑x
(k1,k2) s implies Lω(q) ⊆ Lω(s) .

Unlike in the finite word case,ω-language inclusion is not “reached” by the simu-
lations{∀di, de, f}. See Figure 2(b) and Appendix C.

Theorem 5. For anyx ∈ {∀di, de, f}, there exist an automatonQ and statesq0, s0 ∈
Q s.t.Lω(q0) ⊆ Lω(s0), butq0 6⊑x

(n,n) s0.

The Miyano-Hayashi constructionThe Miyano-Hayashi (MH) construction [10] is a
subset-like construction for ABAs which removes universalnon-determinism, i.e., it
performs thede-universalizationof ω-automata. The idea is similar to the analogous
construction over finite words, with extra bookkeeping needed for recording visits to
accepting states, which may occur not simultaneously for different runs. A set of obli-
gations is maintained, encoding the requirement that, independently of how universal
non-determinism is resolved, an accepting state has to be eventually reached. There
is a tight relationship between these obligations and fair multipebble simulation. For
an ABA Q, let Qnd be the de-universalized automaton obtained by applying theMH-
construction. (See also Definition 3 in Appendix C.1.)

The following lemma says that the MH-construction producesan automaton which
is (n, 1)-fair-simulation equivalent to the original one, and this result is “tight” in the
sense that it does not hold for either direct, or delayed simulation.

Lemma 3. For any ABAQ, let Qnd be the NBA obtained according to the Miyano-
Hayashi de-universalization procedure applied toQ. Then,

a) Q ⊑x
(n,1) Qnd, for x ∈ {f, ∀di}, and a’)∃ automatonQ1 s.t.Q1 6⊑de

(n,1) Q
1
nd,

b) Qnd ⊑f
(1,1) Q, and b’)∃ automatonQ2 s.t.Q2

nd 6⊑
x
(1,1) Q

2, for x ∈ {de, ∀di}.

8

q0

q11 q12

a a

q21

a

q22

a

q31
a

a

q32
a

a

s0

s1

a

s2

a

s3
a

a

q0

q11 q12

a a

q21

a

q22

a

q′31
a

a

q32
a

a

Q1 6⊑de
(n,1) Qnd 6⊑

{∀di,de}

(1,1) Q2

Fig. 3. An example showing automataQ1 andQ2 s.t.Q1 6⊑de
(n,1) Qnd (n = 2 suffices), and

Qnd 6⊑
x
(1,1) Q

2 for x ∈ {∀di, de}. The only difference betweenQ1 andQ2 is the stateq31 being
accepting in the former andq′31 being non-accepting in the latter. Notice thatQ1

nd = Q2
nd = Qnd.

The states inQnd are: s0 = ({q0}, {q0}), s1 = ({q11, q12}, {q12}), s2 = ({q21, q22}, ∅),
s3 = ({q31, q32}, {q32}).

Since fair simulation implies language inclusion,Q andQnd have the same lan-
guage. This constitutes an alternative proof of correctness for the MH-construction.

The MH-construction “preserves” fair simulation in the following sense.

Lemma 4. LetQ,S be two ABAs. Then,Q ⊑f
(n,1) S ⇐⇒ Qnd ⊑f

(1,1) Snd.

Remark 3.A weaker version of the “only if” direction of Lemma 4 above, namely
Q ⊑f

(1,1) S =⇒ Qnd ⊑f
(1,1) Snd (notice the(1, 1) in the premise), had already appeared

in [4]. The same statement for both direct and delayed simulation is false, unlike as
incorrectly claimed in [4]. In fact, it can be shown (with an example similar to Figure 3)
that there exist automataQ andS s.t. Q ⊑x

(1,1) S, but Qnd 6⊑x
(1,1) Snd, with x ∈

{di, de}. Finally, the “if” direction of Lemma 4 can only be established in the context
of multiple pebbles, and it is new.

Transitivity. While most(k1, k2)-simulations are not transitive, some limit cases are.
By defining a notion of join for(1, n)- and (n, 1)-strategies (see Appendix C.2), we
establish that(1, n) and(n, 1) simulations are transitive.

Theorem 6. LetQ be an ABA withn states, and letx ∈ {∀di, de, f}. Then,⊑x
(1,n) and

⊑x
(n,1) are transitive.

Remark 4 (Difficulties for(n, n) transitivity.).We did consider transitivity for(n, n)-
simulations on ABA, but found two major issues there. The first issue concerns directly
the definition of the join of two(n, n)-strategies, and this holds for anyx ∈ {∀di, de, f}:
The so-called “puppeteering technique”, currently used for defining the join for(1, n)-
and(n, 1)-strategies, requires to maintain several games, and to pipe the output from
one game to the input of one or more other games. This creates anotion of dependency

9

between different games. For(1, n) and(n, 1), there are no cyclic dependencies, and we
were able to define the joint strategy. However, for(n, n)-simulations, there are cyclic
dependencies, and it is not clear how the joint strategy should be defined.

The second issue arises from the fact that we further requirethat the join of two
winning strategies is itself a winning strategy. Therefore, the joint strategy needs to
carry an invariant which implies thex-winning condition, forx ∈ {∀di, de, f}. While
such an invariant forx = ∀di is straightforward, it is not clear what the correct invariant
should be for either delayed or fair simulation.

5 Quotienting

In the following we discuss how multipebble simulation preorders can be used for state-
space reduction of alternating automata, i.e., we discuss under which notions of quotient
the quotient automaton recognizes the same language as the original one.

Let Q = (Q, Σ, qI , ∆, E, U, F) be an alternating automaton, over finite or infinite
words. Let� be any binary relation onQ, and let≈ be the induced equivalence, defined
as≈=�∗ ∩(�∗)−1. [·] : Q 7→ [Q] is the function that maps each elementq ∈ Q to the
equivalence class[q] ∈ [Q] it belongs to, i.e.,[q] := {q′ | q ≈ q′}. We overload[P] on
setsP ⊆ Q by taking the set of equivalence classes.

In all the notions of quotients that will be defined, only the transition relation varies.
Thus, we gather the common part under a quotient skeleton. Wedefine thequotient
skeletonQ≈ = ([Q], Σ, [qI], ∆≈, E′, U ′, F ′) as follows:E′ := [E], U ′ := [Q] \ E′ =
{ [q] | [q] ⊆ U } andF ′ = [F]. We leave∆≈ unspecified at this time, as it will have
different concrete instantiations later. Notice that mixed classes, i.e., classes containing
both existential and universal states, are declared existential.

The following definitions are borrowed from [4]. We say thatq′ ∈ ∆(q, a) is ak-
x-minimala-successor ofq iff there there is no strictly⊑x

(1,k)-smallera-successor ofq,
i.e., for anyq′′ ∈ ∆(q, a), q′′ ⊑x

(1,k) q′ impliesq′ ⊑x
(1,k) q′′. Similarly, q′ ∈ ∆(q, a) is

ak-x-maximala-successor ofq iff for any q′′ ∈ ∆(q, a), q′ ⊑x
(1,k) q′′ impliesq′′ ⊑x

(1,k)

q′. Let mink ,x
a (q)/maxk ,x

a (q) be the set of minimal/maximal successors.

5.1 Finite words

Let � be any preorder which implies language inclusion over finite words, i.e., q �
s =⇒ Lfin(q) ⊆ Lfin(s). In particular, one can take�= (⊑∃di

(k1,k2)
)∗, or even� equal

to language inclusion itself. As before, let≈ be the equivalence induced by�. It is
well known that automata over finite words can be quotiented w.r.t. any preorder which
implies language equivalence. Here, we show that not all transitions are needed, and that
is is sufficient to consider�-maximal successors of existential states and�-minimal
successors of universal states. We define theminimax[4] quotient automatonQm

≈ by
instantiating the quotient skeleton (see Section 5) with transition relation∆≈ := ∆m

≈,
where([q], a, [q′]) ∈ ∆m

≈ iff either

– [q] ∈ E′ and∃ q̂ ∈ [q] ∩ E, q̂′ ∈ [q′] s.t.(q̂, a, q̂′) ∈ ∆ ∧ q̂′ ∈ max�
a (q̂), or

– [q] ∈ U ′ and∃ q̂ ∈ [q], q̂′ ∈ [q′] s.t.(q̂, a, q̂′) ∈ ∆ andq̂′ ∈ min�
a (q̂).

10

Notice that transitions from universal states in mixed classes are ignored altogether.

Lemma 5. LetQ be any alternating finite automaton, and let� be any preorder which
implies finite-language inclusion. Then, for anyq ∈ Q, Lfin(q) = Lfin([q]m).

5.2 Infinite words

Unlike for finite words, it is well known that quotientingω-automata w.r.t.ω-language-
equivalence does not preserve theω-language. It has even been shown that quotienting
w.r.t.(1, 1)-fair (bi)simulation does not preserve theω-language either [6, 3]. Therefore,
one has to look for finer simulations, like delayed or direct simulation. Notice that
multipebbleexistential-direct simulation cannot be used for quotienting, since itdoes
not even implyω-language inclusion—see Theorem 3.

Theorem 7. For any k1, k2 ∈ N>0 and x ∈ {∃di, f} there exists an ABAQ s.t.
Lω(Q) 6= Lω(Q≈), with≈:=≈x

(k1,k2)
. For x = ∃di, k1 andk2 must not be both equal

to 1. (Note that≈∃di
(1,1)-quotientingdoes preservetheω-language.)

Thus, in the following we concentrate onuniversal-direct and delayed simulation.

Minimax quotients for universal-direct simulation.In [4] it has been shown that mini-
max quotients preserve theω-language (for direct simulation), and that one can consider
just maximal/minimal successors of existential/universal states, respectively. Here, we
improve this notion, by showing that, when considering multiple-pebbles, it is not
needed to considereverymaximal successor of existential states, but it is safe to dis-
card those maximal successors which are(1, k)-simulated by ak-setof other maximal
successors. This suggests the following definition: Forq̂ ∈ E, a ∈ Σ andk > 0, we
say that̂q′ is a set ofk-maximal representatives fora-successors of̂q iff

q̂′ ⊆ maxk ,∀di
a (q̂) ∧

(
∀q′′ ∈

(
maxk ,∀di

a (q̂) \ q̂′
)
. ∃q̂′′ ∈ 2bq

′,k. q′′ ⊑∀di
(1,k) q̂′′

)
(4)

Notice that the above definition is non-deterministic, in the sense that there might be
different sets of maximal representatives: In this case, one can just take any⊆-minimal
set satisfying Equation 4. In the following, we assume that aset of maximal represen-
tativesq̂′ has been selected for anyq̂ ∈ E anda ∈ Σ.

We define theminimax+ quotient automatonQm+
≈ by instantiating the quotient

skeleton (see Section 5) with transition relation∆≈ := ∆m+
≈ , which differs from∆m

≈

just for existential and mixed classes:([q], a, [q′]) ∈ ∆m+
≈ with [q] ∈ E′ iff

– there exist̂q ∈ [q] ∩ E andq̂′ ∈ [q′] s.t. (q̂, a, q̂′) ∈ ∆ andq̂′ ∈ q̂′, whereq̂′ is a
fixed set ofk-maximal representatives fora-successors of̂q, as defined above.

Our definition of minimax+ quotient differs from the one in [4] also w.r.t. the treat-
ment of mixed classes, as discussed in the following remarks.

Remark 5.While in [4] universal states in mixed classes do induce transitions (to min-
imal elements), in our definition we ignore these transitions altogether. In the setting of
(1, 1)-simulations these two definitions coincide, as they are shown in [4] to yield ex-
actly the same transitions, but this needs not be the case in our setting: In the context of

11

multiple-pebbles, one minimal transition from a universalstateqU might be subsumed
by no single transition from some existential stateqE in the same class, but it is always
the case thatqE has a set of transitions whichtogethersubsume the one fromqU (cf.
Lemma 15 in Appendix D.3). In this case, we show that one can infact always discard
the transitions fromqU . Thus, in the context of multiple-pebbles, minimax+ quotients
result in less transitions than just minimax quotients from[4].

Remark 6.While minimax mixed classes are deterministic when considering (1, 1)-
simulations [4], this is not necessarily true when multiplepebbles are used.

Theorem 8. q ≈∀di
(1,n) [q]m+, where the quotient is taken w.r.t. the transitive closure of

⊑∀di
(1,k), for anyk such that1 ≤ k ≤ n. In particular,Lω(q) = Lω([q]m+).

Semielective quotients for delayed simulation.It has been shown in [4] that minimax
quotients w.r.t(1, 1)-delayed simulation on ABA do not preserve theω-language. The
reason is that taking just maximal successors of existential states is incorrect for delayed
simulation, since a visit to an accepting state might only occur by performing a non-
maximal transition. (This is not the case with direct simulation, where if a simulation-
smaller state is accepting, then every bigger state is accepting too.) This motivates the
definition ofsemielective quotients[4], which are like minimax quotients, with the only
difference thateverytransition induced by existential states is considered, not just maxi-
mal ones. Except for that, all previous remarks still apply.In particular, in mixed classes
in semielective quotients it is necessary to ignore non-minimal transitions from univer-
sal states—the quotient automaton would recognize a biggerlanguage otherwise.

While for the(1, 1)-simulations on ABA in [4] it is actually possible to ignore tran-
sitions from universal states in mixed classes altogether (see Remark 5), in the context
of multiple-pebbles this is actually incorrect, as shown inFigure 5, Appendix D.3. The
reason is similar as why non-maximal transitions from existential states cannot be dis-
carded: This might prevent accepting states from being visited. We define thesemiel-
elective+quotient automatonQse+

≈ by instantiating the quotient skeleton (see Section 5)
with ∆≈ := ∆se+

≈ , where

([q], a, [q′])∈∆se+
≈ ⇐⇒ (q, a, q′)∈∆ and eitherq∈E, or q∈U andq′∈minn,de

a (q)

Theorem 9. q ≈de
(1,n) [q]se+, where the quotient is taken w.r.t.⊑de

(1,n). In particular,
Lω(q) = Lω([q]se+).

Remark 7.It is surprising that, unlike for NBA [2], quotienting ABA w.r.t. (1, k)-de
simulations, for1 < k < n, does not preserve the language of the automaton in general.
The problem is again in the mixed classes, where minimal transitions from universal
states can be selected only by looking at the full(1, n)-simulation. See the counterex-
ample in Figure 4, where the dashed transition is present in the(1, k)-quotient, despite
being non-(1, n)-minimal.

Remark 8.Semielective multipebble quotients can achieve arbitrarily high compres-
sion ratios relative to semielective 1-pebble quotients, (multipebble-)direct minimax
quotients and mediated preorder quotients [1] (see Figure 6in Appendix D.3).

12

qI

qu qe

q0 q1 q2 q3

a a

a a a a

a a a a
e

a a

b, c, d

b c d b, c
c, d

a

qu ≈de
(1,2) qe

q0 ⊑de
(1,3) q1

q0 6⊑de
(1,2) q1

q1 6⊑de
(1,3) q0

Fig. 4. (1, k)-semielective+ quotients on ABA do not preserve theω-language for1 < k < n in
general. Letk = 2. The only two(1, k)/(1, n)-equivalent states arequ andqe, and in the quotient
they form a mixed class.q1 is not a (1, n)-minimal a-successor ofqu, but it is a(1, k)-minimal
successor fork = 2. Thus, the only difference between the(1, n)- and (1, k)-semielective+
quotients is that the dashed transition is (correctly) not included in the former, but (incorrectly)
included in the latter. Thus the(1, k)-semielective+ quotient automaton would incorrectly accept
the wordw = aaeaω 6∈ Lω(qI) = aaa{b + c + d}aω.

6 Solving Multipebble Simulation Games

In this section we show how to solve the multipebble simulation games previously de-
fined. We encode each simulation game into a 2-player game-graph with anω-regular
winning condition. In the game-graph, Eve will take the rôle of Duplicator, and Adam
the one of Spoiler. A game-graph is a tupleG = 〈VE, VA ,→〉, where nodes inVE be-
long to Eve (mimicking Duplicator), and nodes inVA belong to Adam (mimicking
Spoiler). Transitions are represented by elements in→⊆ (VE × VA ∪ VA × VE), where
we write p → q for (p, q) ∈→. Notice that the two players strictly alternate while
playing, i.e., the game graph isbipartite. We writeV for VE ∪ VA . We introduce the
following monotone operator on2VA : For anyx ⊆ VA , cpre(x) := {v0 ∈ VA | ∀v1 ∈
VE. (v0 → v1 =⇒ ∃v2 ∈ x. v1 → v2)}, i.e., cpre(x) is the set of nodes where Eve
can force the game intox.

We define various game-graphs for solving simulations. We express the winning
region of Eve as aµ-calculus fixpoint expression overVA [8], which can then be evalu-
ated using standard fixpoint algorithms. We derive the desired complexity upper bounds
using the following fact:

Lemma 6. Let e be a fixpoint expression over a graphV , with |V | ∈ nO(k). Then, for
any fixedk ∈ N, evaluatinge can be done in time polynomial inn.

For solving direct and fair simulation, we refer the reader to Appendix E. Here, we
consider just delayed simulation, which is the most difficult (and interesting).

The natural starting point for definingGde is the definition in [2] of the game-graph
for computing(1, k)-simulations for NBAs. Unfortunately, the game-graph in [2] is
actually incorrect: According to the definition of delayed simulation (cf. Section 2),
every new obligation encountered when the left side is accepting at some round should
beindependentlysatisfied by the right side, which has to be good sincethat round. Now,
the algorithm in [2] just tries to satisfy the most recent obligation, which overrides
all the previous ones. This is an issue: If the left side is continuously accepting, for
example, then the right side might simply have not enough time to satisfy any obligation
at all. Therefore, [2] actually computes anunder-approximationto delayed simulation.

13

We overcome this difficulty by explictly bookkeeping all pending constraints. This
leads to the following definitions. The game-graph for delayed simulation isGde =
〈V de

E , V de
A ,→de〉, where nodes inV de

A are of the formv(q,Bad,s,Good), and nodes inV de
E

of the formv(q,Bad,s,Good,a,q′,s′), with q,q′, s, s′ ⊆ Q. Bad = 〈b1 ⊃ · · · ⊃ bm1
〉 and

Good = 〈g1 ⊂ · · · ⊂ gm2
〉 are twosequencesof sets of states fromQ, strictly ordered

by set-inclusion, which are used to keep track of multiple obligations.
Intuitively, Bad is used to detect when new constraints should be created, i.e., to

detect when everyLeft pebble is universally good since some previous round. At each
round, a new set of bad pebblesb = q \ F is added toBad. When accepting states
are visited byLeft pebbles, they are discarded from every setb ∈ Bad. When some
b becomes eventually empty, this means that, at the current round, allLeft pebbles are
universally good since some previous round: At this point,b is removed fromBad, and
we say thatthe red light flashes.

The sequenceGood represents a set of constraints to be eventually satisfied. Each
g ∈ Good is a set of good pebbles, which we require to “grow” until it becomes equal to
s. WhenGood = ∅, there is no pending constraint. Constraints are added toGood when
the red light flashes (see above): In this case, we updateGood by adding the new empty
constraintg = ∅. When accepting states are visited byRightpebbles, we upgrade every
constraintg ∈ Good by adding accepting states. Completed constraintsg = s are then
removed fromGood, and we say thatthe green light flashes.

Lemma 7.
∣∣V de

∣∣ ≤ 2·(n+1)2(k1+k2) ·
(
1 + (k1 + 1)k1+1

)
·
(
1 + 2(k2 + 1)k2+1

)
·|Σ|.

Transitions inGde are defined as follows. For any(q, s, a,q′′, s′′) ∈ Γ Sp, we have
v(q,Bad,s,Good) →de v(q,Bad,s,Good,a,q′′,s′′), and for(q, s, a,q′′, s′′,q′, s′) ∈ ΓDup, we
havev(q,Bad,s,Good,a,q′′,s′′) →de v(q′,Bad′,s′,Good′), whereBad′, Good′ are computed
according to Algorithm 1 in Appendix E.3.

We have that Eve wins iff every red flash is matched by at least one green flash,
and different red flashes are matched by different green ones. This can be checked by
verifying that infinitely often eitherGood = ∅ or s ∈ Good, i.e., it is not the case
thatGood contains a constraint that it is not eventually “completed”and discarded. Let
T = {v(q,Bad,s,Good) | Good = ∅ ∨ s ∈ Good}, and define the initial configuration as

vI =

{
v(q,{q\F},s,∅) if q \ F 6= ∅
v(q,∅,s,{s∩F}) otherwise

q ⊑de
k1,k2

s iff T is visited infinitely often iffvI ∈W de = νxµy (cpre(y) ∪ T ∩ cpre(x)).

Theorem 10. For any fixedk1, k2 ∈ N, x ∈ {∀di, ∃di, de, f} and setsq, s ⊆ Q,
deciding whetherq ⊑x

(k1,k2)
s can be done in polynomial time.

7 Conclusions and Future Work

Transitivity for (n, n)-simulations. As discussed at the end of Section 4, composing
(n, n) (winning) strategies is apparently much more difficult thanin the (1, n) and
(n, 1) case. We conjecture that all types of(n, n)-simulations discussed in this paper
are transitive, and showing this would conceivably solve the join problem as well.

14

Quotienting with(n, 1)- and (n, n)-simulations. While we have dealt with(1, n)-
quotients, we have not considered(n, 1)- or (n, n)-quotients. For the latter, one should
first solve the associated transitivity problem, and, for both, an appropriate notion of
semielective-quotient has to be provided. We have shown that this is already a non-
trivial task for(1, n)-simulations on ABA.

Future directions. Our work on delayed simulation has shown that several general-
izations are possible. In particular, two issues need to be addressed. The first is the
complexity of the structure of the game-graph needed for computing delayed simula-
tion. A possible generalization of delayed simulation involving looser “synchronization
requirements” between obligations and their satisfactionmight result in simpler game-
graphs. The second issue concerns Lemmas 3 and 4: We would like to find a weaker
delayed-like simulation for which the counterexample shown there does not hold. This
would give a better understanding of the MH-construction.

As in [3], it is still open to find a hierarchy of(k1, k2)-multipebble simulations
converging toω-language inclusion whenk1 = k2 = n.

Acknowledgment.We thank K. Etessami and C. Fritz for helpful discussions, and an
anonymous referee for suggesting the comparison to mediated preorder [1].

References

1. P. A. Abdulla, Y.-F. Chen, L. Holik, and T. Vojnar. Mediating for reduction (on minimizing
alternating Büchi automata). InFSTTCS 2009, volume 4 ofLIPIcs, pages 1–12, Dagstuhl,
Germany.

2. K. Etessami. A hierarchy of polynomial-time computable simulations for automata. In
CONCUR ’02: Proceedings of the 13th International Conference on Concurrency Theory,
pages 131–144, London, UK, 2002. Springer-Verlag.

3. K. Etessami, T. Wilke, and R. A. Schuller. Fair simulationrelations, parity games, and state
space reduction for Büchi automata.SIAM J. Comput., 34(5):1159–1175, 2005.

4. C. Fritz and T. Wilke. Simulation relations for alternating Büchi automata.Theor. Comput.
Sci., 338(1-3):275–314, 2005.

5. Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC ’82: Proceedings of
the fourteenth annual ACM symposium on Theory of computing, pages 60–65, New York,
NY, USA, 1982. ACM.

6. T. A. Henzinger and S. Rajamani. Fair bisimulation. InTACAS ’00: Proceedings of the 6th
International Conference on Tools and Algorithms for Construction and Analysis of Systems,
pages 299–314. Springer-Verlag, 2000.

7. J. Hopcroft and J. Ullman.Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

8. D. Kozen. Results on the propositional mu-calculus.Theor. Comput. Sci., 27:333–354, 1983.
9. Z. Manna and A. Pnueli. A hierarchy of temporal properties. Technical Report STAN-CD-

87-1186, Dept. of Computer Sciences, Stanford University,Oct. 1987.
10. S. Miyano and T. Hayashi. Alternating finite automata onω-words. Theoretical Computer

Science, 32:321–330, 1984.
11. M. Y. Vardi. Alternating automata and program verification. In Computer Science Today,

volume 1000 ofLNCS, pages 471–485. Springer-Verlag, 1995.

15

A Preliminaries (Section 2)

Theorem 1. Letx ∈ {o, ∃di, ∀di, de, f} andk′
1 ≥ k1, k′

2 ≥ k2.

1. Inclusion:⊑x
(k1,k2)

⊆ ⊑x
(k′

1
,k′

2
). (In particular,�x

(k1,k2)⊆�x
(k′

1
,k′

2
).)

2. Strictness: Ifk′
1 > k1 or k′

2 > k2, there exists an automatonQ′ s.t.⊑x
(k1,k2) 6=⊑x

(k′

1
,k′

2
).

Proof. 1. This follows directly from the definitions, since having more pebbles can
only help Duplicator, who is always allowed to take pebbles away.

2. For showing the strictness of the inclusion, consider theexample in Figure 1, for
any kind of simulationx ∈ {o, ∃di, ∀di, de, f}. This example shows that Duplicator
wins by “hedging her bets” on both sides, using 2 pebbles on the left and 3 pebbles
on the right. Hence,q ⊑x

(2,3) s holds.
To see that the 2Leftpebbles are necessary, it sufficies to note that if there wereonly
oneLeft pebble, then Spoiler could choose eitherb1 or b2, and everyRightpebble
would get stuck. But with twoLeft pebbles, Spoiler can no longer play eitherb1 or
b2, since oneLeft pebble would get stuck, which would be winning for Duplicator.
A similar reasoning for the symbols{c1, c2, c3} shows that 3Right pebbles are
neccessary and sufficient for Duplicator to win the game.
It is easy to generalize Figure 1 to more pebbles(k1, k2). Moreover, a similar ex-
ample can be crafted without using the stuckness condition,but using only the
acceptance condition.

⊓⊔

Twe following two observations will be useful in later proofs: When pebbles are
good infinitely often, then it is the case that they are alwaysgood, as stated below.

Lemma 8. Letπ = q0q1 . . . be any sequence ofk-sets. Then,
(
good∃(π,∞) =⇒ ∀i ≥ 0. good∃(qi)

)
∧
(
good∀(π,∞) =⇒ ∀i ≥ 0. good∀(qi)

)
.

The following is a consequence of König’s Lemma:

Lemma 9. Let π = s0s1 . . . be an infinite sequence ofk-sets. Ifgood∃(π,∞), then
there exists an infinite pathπacc = p0p1 . . . s.t. 1) for anyi, pi ∈ si, and 2) for infinitely
manyi’s, pi ∈ F .

Proof. We make use of König’s Lemma: We build an infinite tree which is finitely
branching, hence by König’s Lemma there exists an infinite pathπacc starting from the
root, and we show that this path contains infinitely many accepting states. First, we
extract a subsequence{s′j}j≥0 from {si}i≥0, as follows:s′j := sij

, wherei0 = 0 and,

inductively,ij is the least indexi > ij−1 s.t.good∃(si, ij−1). It follows that, for any
j > 0, good∃(s′j , ij−1). For any stater ∈ s′j there is a nodev(r, j) at levelj ≥ 0
in the tree. (For example, the root of the tree isv(s, 0), wheres is the only state in
s′0 = s0 = {s}.) The parenthood relation between nodes is defined as follows: We have
that, for anyr ∈ s′j+1, there existsr′ ∈ s′j s.t. there exists a path fromr′ to r which
visits at least one accepting state. In this case,v(r, j + 1) is a children ofv(r′, j). This
tree is infinite and finitely branching. Moreover, the infinite pathπacc, whose existence
is guaranteed by König’s Lemma, visits accepting states infinitely often. ⊓⊔

16

B Section 3

Lemma 1. For any automatonQ with n states, and statesq, s ∈ Q:

1. q ⊑∃di
(k1,k2) s impliesLfin(q) ⊆ Lfin(s), for anyk1, k2 ∈ N>0.

2. q ⊑o
(k1,k2) s impliesTr(q) ⊆ Tr(s), for anyk1, k2 ∈ N>0.

3. Lfin(q) ⊆ Lfin(s) impliesq ⊑∃di
(n,n) s, provided thatQ is complete.

4. Tr(q) ⊆ Tr(s) impliesq ⊑o
(n,n) s, provided thatQ is complete.

In particular, the last two points above show that existential-direct (resp., ordinary)
simulation “reaches” language inclusion (resp., trace inclusion) at(n, n).

Proof. Point 2) follows from Point 1), and Point 4) follows from Point 3), since when
the set of accepting state is the full set of states, i.e.,F = Q, ordinary and direct
simulation coincide, and the trace language equals the finite language in this case.

For Points 1) and 3), we defer their proof at the end of the nextsection. ⊓⊔

B.1 Subset constructions

Below, we give a formal definition for the de-existentialization and de-universalization
procedures for AFAs.

Definition 1. Given an AFAQ = (Q, Σ, qI , ∆, F, E, U) with |Q| = n, the existential
n-subset construction yields a purely universal finite automata

S∃(Q) := (Q′, Σ, {qI}, ∆
′, F ′, E′, U ′) ,

whereQ′ := 2Q, F ′ := {P ∈ Q′ | P ∩ F 6= ∅}, E′ := ∅, U ′ := Q′, and the transition
relation∆′ ⊆ 2Q × Σ × 2Q satisfies:(P, a, R) ∈ ∆′ iff there exists a choice function
select : P ∩ U × Σ 7→ Q which fixes an element in∆(p, a) for any universal state
p ∈ P ∩ U , andR =

⋃
p∈P∩E ∆(p, a) ∪ {select(p, a) | p ∈ P ∩ U}.

Intuitively, the choice functionselect resolves the universal choice, and then we take
the union over all possible resolutions of the existential choice.

Definition 2. Given an AFAQ = (Q, Σ, qI , ∆, F, E, U) with |Q| = n, the universal
n-subset construction yields a purely existential finite automata

S∀(Q) := (Q′, Σ, {qI}, ∆
′, F ′, E′, U ′) ,

whereQ′ := 2Q, F ′ := {P ∈ Q′ | P ⊆ F}, E′ := Q′, U ′ := ∅, and(P, a, R) ∈ ∆′ iff
there exists a choice functionselect : P ∩E×Σ 7→ Q which fixes an element in∆(p, a)
for any existential statep ∈ P ∩ E, andR =

⋃
p∈P∩U ∆(p, a) ∪ {select(p, a) | p ∈

P ∩ E}.

Lemma 2. Let Q1,Q2 be two AFAs over the same alphabetΣ, with |Q1| = n1 and
|Q2| = n2. Then, for anyk1 ≤ n1 andk2 ≤ n2,

Q1 ⊑∃di
(k1,n2)

Q2 ⇐⇒ Q1 ⊑∃di
(k1,1) S

∃(Q2) (S1)

Q1 ⊑∃di
(n1,k2)

Q2 ⇐⇒ S∀(Q1) ⊑
∃di
(1,k2)

Q2 (S2)

Q1 ⊑∃di
(n1,n2)

Q2 ⇐⇒ S∀(Q1) ⊑
∃di
(1,1) S

∃(Q2) . (S3)

17

Proof. First notice that Equation (S3) follows by subsequent application of (S1) and
(S2). For Equation (S1), the idea is that maximally splitting pebbles on existential states
in Q2 is exactly the same as moving the only pebble inS∃(Q2). More formally, one can
show how to mantain the following invariant:〈q1,q2〉 is the current configuration in the
(k1, n2)-game on the left iff〈q1, {q2}〉 is the current configuration in the(k1, 1)-game
on the right. From the invariant, the winning condition is easily verified: If q1 ⊆ F ,
thenq2 ∩F 6= ∅, which is the same as sayingq2 ∈ F ′, whereF ′ is the set of accepting
states inS∃(Q2). Equation (S2) is proved similarly. ⊓⊔

Proof (of Lemma 1).We first prove Point 1), i.e.,q ⊑∃di
(k1,k2) s implies Lfin(q) ⊆

Lfin(s). LetQ1 andQ2 be two disjoint copies ofQ, where the initial states are, respec-
tively, q ands. By definition,q ⊑∃di

(k1,k2) s iff Q1 ⊑∃di
(k1,k2)

Q2. SinceQ1 ⊑∃di
(k1,k2)

Q2

impliesQ1 ⊑∃di
(n1,n2)

Q2, then by Equation (S3), one hasS∀(Q1) ⊑∃di
(1,1) S

∃(Q2). But

⊑∃di
(1,1) is known to imply language inclusion [4], henceLfin(S∀(Q1)) ⊆ Lfin(S∃(Q2)).

Finally, since the subset constructions are language-preserving (this follows from their
correctness),Lfin(Q1) ⊆ Lfin(Q2), implyingLfin(q) ⊆ Lfin(s).

For Point 3), the crucial observation is thatS∀(Q1) ⊑∃di
(1,1) S∃(Q2) is equivalent

to language inclusion, sinceS∀(Q1) is a purely existential automaton andS∃(Q2) is a
purely universal automaton, hence only Spoiler plays. Thus, Lfin(q) ⊆ Lfin(s) implies
S∀(Q1) ⊑∃di

(1,1) S
∃(Q2), and, by Equation (S3),Q1 ⊑∃di

(n,n) Q2, i.e.,q ⊑∃di
(n,n) s. ⊓⊔

C Section 4

Theorem 4. For x∈{∀di, de, f}, automatonQ, k1, k2 ∈ N>0 and statesq, s ∈ Q,

q ⊑x
(k1,k2) s implies Lω(q) ⊆ Lω(s) .

Proof. It suffices to prove the claim fork1 = k2 = n = |Q|, since, by Theorem 1,
(n, n)-simulation contains(k1, k2)-simulation. Similarly, by the containment between
universal-direct, delayed and fair simulation established in Theorem 2, it is sufficient
to consider just fair simulation, which is the coarsest. Letw = a0a1 · · · ∈ Lω(q) be a
word inLω(q). We have to showw ∈ Lω(s). LetGsim = G(n,n)(q, s) be the simulation
game betweenq ands, let Gacc

0 = Gω(q, w) be the acceptance game forw from state
q, and letGacc

1 = G
ω(s, w) be the acceptance game forw from states.

In order to showw ∈ Lω(s), we use the winning strategy of Duplicator inGsim and
the information inGacc

0 to witness the existence of a winning strategy for Automatonin
Gacc

1 . We use the so-called “puppeteering technique” to coordinate the various games.
There are two “real players”, the Automaton (A1) and Pathfinder (P1) players inGacc

1 ,
and four “puppet players”, which are controlled byA1:

– The Duplicator (D) and Spoiler (S) puppets in the simulation gameGsim.
– The Automaton (A0) and Pathfinder (P0) puppets in the acceptance gameGacc

0 .

The orchestration job ofA1 is complicated by the fact that in the simulation game
Gsim multiple Left andRight pebbles may be present in any given round. Henceforth,
A1 mantains a family of acceptance games, depending on the current configuration of

18

the simulation game. The flow of information between the various acceptance games
and the simulation game is shown below.

G
acc
0,E

A0

SLeft

G
acc
0,U

Gsim

DLeft

P0

DRight

A1
Gacc

1,U P1

SRight
Gacc

1,E

The meaning of the picture is the following. Recall that inG
sim, Duplicator is allowed to

“hedge her bets”, i.e., to split pebbles, on universalLeft states and on existentialRight
states. Every timeD splits Left universal pebbles, a new acceptance game inGacc

0 is
spawned, andD’s choices inGsim are mimicked byP0 in Gacc

0 . Similarly, whenD splits
Rightexistential pebbles, a new acceptance game inGacc

1 is spawned, andD’s choice
in Gsim is mimicked byA1 in Gacc

1 . This is represented by the r.h.s. of the figure above.
Symmetrically, the other side representsS’s behaviour, which movesLeft existential
pebbles copyingA0, andRightuniversal pebbles copyingP1.

The correctness is guaranteed by the fact that, sinceA0 is playing a winning strategy
in everyGacc

0 game, then regardless of universal choices inGacc
0 , the resulting run will

visit accepting states infinitely often. Thus, by construction, Left pebbles inGsim are
universally good infinitely often, and, sinceD is playing a winning strategy for fair
simulation,Right pebbles are existentially good infinitely often. We won’t explicitly
defineA1’s winning strategy for acceptingw in Gacc

1 , but, using Lemma 9 (which relies
on König’s Lemma) we will show that one such strategy does exist: Indeed, sinceRight
pebbles are existentially good infinitely often, by Lemma 9,there exists an accepting
run forw in G

acc
1 , which witnesses the existence of a winning strategy forA1.

For bookkeeping the state of the various simulation games, we use alogbook. As-
sume that, at roundi, the current partial play inGsim is

πi = 〈q0, s0〉 . . . 〈qi, si〉 ,

with q0 = {q} ands0 = {s}, and that the remaining input word to be read iswi =
aiai+1 Then, a logbookLi = (L0

i , L
1
i) for roundi is a pair of finite sets of partial

plays fromG
acc
0 andG

acc
1 , respectively, where

∣∣L0
i

∣∣ = j0
i ,
∣∣L1

i

∣∣ = j1
i and

L0
i = {π0

i,j := 〈q0,j , w0〉 . . . 〈qi,j , wi〉 | 1 ≤ j ≤ j0
i }, and

L1
i = {π1

i,j := 〈s0,j , w0〉 . . . 〈si,j , wi〉 | 1 ≤ j ≤ j1
i }

(with 〈r, wi〉 we mean that in the language acceptance game the current state isr and the
remaining input word iswi). We say thatLi is valid if it further satisfies the following
logbook properties:

qi = {qi,1, . . . , qi,j0
i
} (LP0)

si = {si,1, . . . , si,j1
i
} (LP1)

∀π0
i,j ∈ L0

i . π0
i,j is aA0-conform partial play, (LP2)

19

i.e., (LP0) and (LP1) say that the logbook is correctly “synchronized” with the simula-
tion game, and (LP2) says that everyπ0

i,j is built applyingA0’s winning strategy.
Inductively,A1 ensures that a valid logbook at roundi is updated into a valid log-

book in the next roundi + 1. In the first roundi = 0, the initialGsim-configuration is
〈q0, s0〉 = 〈{q}, {s}〉, and the two acceptance gamesGacc

0 andGacc
1 are in〈q, w〉 and

〈s, w〉, respectively. Clearly,L0 = (L0
0, L

1
0) with L0

0 = {〈q, w〉} andL1
0 = {〈s, w〉} is

a valid logbook.
Assume thatLi is a valid logbook for roundi, that the current configuration of the

simlulation game is〈qi, si〉, and that these two sets are partitioned into existential and
universal states, in the following way:

qi = {qE
i,1, . . . , q

E
i,j0

E
} ∪ {qU

i,1, . . . , q
U
i,j0

U
} andsi = {sE

i,1, . . . , s
E
1,j1

E
} ∪ {sU

i,1, . . . , s
U
1,j1

U
}

(Notice thatj0
E + j0

U = j0
i and j1

E + j1
U = j1

i .) The next input symbol inGsim is
determined by the remaining input wordwi = aiai+1 . . . , and it is equal toai. I.e.,A1

makes theS puppet chooseai as the next input symbol in the simulation gameG
sim,

and the remaining input for the next round iswi+1 = ai+1ai+2 For determining
the nextGsim-configuration〈qi+1, si+1〉, as well as updating the logbook toLi+1 =
(L0

i+1, L
1
i+1), A1 orchestrates the various puppets according to the following steps.

1. TheA0 puppet moves from existentialGacc
0 -configurations〈qE

i,1, w
i〉 . . .〈qE

i,j0
E

, wi〉

according to her winning strategy inGacc
0 . Notice thatall such pebbles inqE

i can
be moved to someai-successor, since 1)w ∈ Lω(q), and 2) differentLeft states are
the result of different past choices at universalLeftstates, hence all statesqE

i,j ∈ qE
i

acceptwi (in fact, all states inqi). In this way, anai-successorq(E)
i+1,j is built for ev-

ery qE
i,j ∈ qE

i . Let q(E)
i+1 = {q

(E)
i+1,j | 1 ≤ j ≤ j0

E} be the set of suchai-successors.

For anyqE
i,j ∈ qE

i+1 andq
(E)
i+1,j ∈ q

(E)
i+1 s.t.q(E)

i+1,j ∈ ∆(qE
i,j , ai), let π0

i,j be the par-
tial play in L0

i ending in〈qE
i,j , wi〉 (which, by the induction hypothesis, exists by

(LP0)). Then, we addπ0
i+1,j = π0

i,j · 〈q
(E)
i+1,j , wi+1〉 to L0

i+1. This establishes (LP0)

and (LP2) at roundi+1 for existential states inqi. (Notice that states inq(E)
i+1 need

not be existential, we use the superscript(E) just to record that prececessors were
existential.)

2. Similarly, theP1 puppet chooses a successor for every universalGacc
1 -configurations

〈sU
i,1, w

i〉 . . .〈sU
i,j1

U

, wi〉. Let q(U)
i+1 = {s

(U)
i+1,j | 1 ≤ j ≤ j1

U} be the set of suchai-
successors, if any. Notice that, at this point, one or even all such configurations may
get stuck, i.e., with noai-successor, and, consequently,q

(U)
i+1 might be empty. We

need not worry about this now.
3. Then, theS puppet in the simulation gameGsim copies theA0’s andP1’s moves

above, moving fromqE
i to q

(E)
i+1 and fromsU

i to s
(U)
i+1.

4. Now, theD puppet moves according to her winning strategy: Pebbles inqU
i are

moved toq(U)
i+1 (possibly being split forD may hedge her bets), and pebbles insE

i

are moved tos(E)
i+1 (possibly being split or thrown away), and the simulation game

goes into state(qi+1, si+1), whereqi+1 = q
(E)
i+1 ∪ q

(U)
i+1, andsi+1 ⊆ s

(E)
i+1 ∪ s

(U)
i+1.

20

SinceD’s strategy is winning, at least oneRight pebble can be moved to some
successor. Thus,si+1 6= ∅. D’s move above is copied by the puppteP0 and the
playerA1, as specified below.

5. TheP0 puppet copies theD puppet’s move fromqU
i toq

(U)
i+1: For anyqU

i,j ∈ qU
i and

q
(U)
i+1,j ∈ q

(U)
i+1 ∩ ∆(qU

i,j , ai), we addπ0
i+1,j = π0

i,j · 〈q
(U)
i+1,j , wi+1〉 to L0

i+1, where
π0

i,j is the partial play ending in〈qU
i,j , wi〉, which exists by (LP0). This establishes

(LP0) and (LP2) for universal states inqi.
6. Finaly, theA1 player in the family of acceptance gamesGacc

1 copies theD puppet’s

move fromsE
i to s

(E)
i+1: For anysE

i,j ∈ sE
i s.t. s

(E)
i+1,j ∈ s

(E)
i+1 ∩ ∆(sE

i,j , ai), we

addπ1
i+1,j = π1

i,j · 〈s
(E)
i+1,j , wi+1〉 to L1

i+1, whereπ1
i,j is the partial play ending in

〈sE
i,j , wi〉, which exists by (LP1). We also update the logbook for universal states in

si which were not discarded in the previous step 2.: For anysU
i,j ∈ sU

i s.t.s(U)
i+1,j ∈

s
(U)
i+1 ∩ ∆(sU

i,j , ai), we addπ1
i+1,j = π1

i,j · 〈s
(U)
i+1,j , wi+1〉 to L1

i+1, whereπ1
i,j is the

partial play ending in〈sU
i,j , wi〉, which exists by (LP1). This establishes (LP1) for

the next roundi + 1. (Notice that, sincesi+1 6= ∅, thenL1
i+1 contains at least one

partial play.)

Below we argue about the correctness of this construction. Letπ = 〈q0, s0〉〈q1, s1〉 . . .

be the resulting infinite play, and letπ0 = q0q1 . . . andπ1 = s0s1 . . . be its projec-
tions. Since every partial play inL0

i is A0-conform (by (LP2)), and theA0 puppet is
playing according to a winning strategy (which exists, sincew ∈ Lω(q)), it follows that,
for everyn ≥ 0, there existsi ≥ 0 s.t. everyπ0

i,j ∈ L0
i has visited at leastn accepting

states. By (LP0) and since noLeft pebble is thrown away, we have thatgood∀(π0,∞).
SinceD’s strategy is winning, by the winning condition of fair simulation, we have
good∃(π1,∞). By Lemma 9, there exists an infinite accepting pathπacc. Thus,A1 has
a strategy s.t., for anyP1’s strategy, there exists a accepting pathπacc which is conform
to both strategies. Thus,w ∈ Lω(s). ⊓⊔

Theorem 5. For anyx ∈ {∀di, de, f}, there exist an automatonQ and statesq0, s0 ∈ Q
s.t.Lω(q0) ⊆ Lω(s0), butq0 6⊑x

(n,n) s0.

Proof. By the inclusion between simulations (see Theorem 2), it is enough to consider
fair simulation. Take the example in Figure 2(b). We have that Lω(q0) = Lω(s0) =
aω + a∗bω, hence language inclusion holds betweenq0 ands0, but, as we shall see, no
Duplicator strategy is winning in the(n, n)-simulation gameGf

(n,n)(q0, s0).
This can be seen as follows. Spoiler chooses thea action and we can assume that

Duplicator “hedges her bets” by going ins′ = {s0, s1}. Now, Spoiler keeps looping
on q0 by choosing thea action for an arbitrarily high number of moves. Duplicator can
only reply by staying in a subset ofs′. Notice that Duplicator has to eventually take the
pebble ons0 away: Indeed, Spoiler’s pebble inq0 is accepting infinitely often, hence
Duplicator would lose if the pebble ons0 6∈ F is not taken away. When Duplicator takes
the pebble ons0 away, Spoiler plays theb action and Duplicator loses, his remaining
pebble ons1 being stuck. Similar examples may be conceived in which the acceptance
condition, instead of the stuckness condition, is used to show that Duplicator loses.⊓⊔

21

C.1 Infinite words: ABAs and the Miyano-Hayashi construction

Definition 3. Given an ABAQ = (Q, Σ, qI , ∆, F, E, U), the Miyano-Hayashi con-
struction [10] yields a de-universalized NBA

Qnd := (Q′, Σ, ({qI}, {qI} \ F), ∆′, F ′, E′, U ′) ,

where the new set of statesQ′ ⊆ 2Q × 2Q (called macrostates) consists of pairs of
subsets ofQ, the set of accepting macrostatesF ′ satisfies

(P, O) ∈ F ′ ⇐⇒ O = ∅,

i.e., a macrostate is accepting if no obligation is pending,E′ = Q′ and U ′ = ∅,
i.e.,Qnd is a purely non-deterministic automaton, and the the transition relation∆′ ⊆
(2Q×2Q)×Σ×(2Q×2Q) satisfies:((P, O), a, (P ′, O′)) ∈ ∆′ iff there exists a choice
functionselect : P ∩ E × Σ 7→ Q s.t.∀p ∈ P ∩ E, a ∈ Σ : (p, a, select(p, a)) ∈ ∆

(i.e.,select(p, a) fixes an element in∆(p, a)) such that

P ′ =
⋃

p∈P∩U

∆(p, a) ∪ {select(p, a) | p ∈ P ∩ E} ,

and ifO = ∅, thenO′ = P ′ \ F , otherwise,

O′ =

(
⋃

o∈O∩U

∆(o, a) ∪ {select(o, a) | p ∈ O ∩ E}

)
\ F .

Lemma 3. For any ABAQ, let Qnd be the NBA obtained according to the Miyano-
Hayashi de-universalization procedure applied toQ. Then,

a) Q ⊑x
(n,1) Qnd, for x ∈ {f, ∀di}, and

b) Qnd ⊑f
(1,1) Q.

Moreover, there exist automataQ1 andQ2 s.t.

a’) Q1 6⊑de
(n,1) Q

1
nd, and

b’) Q2
nd 6⊑

x
(1,1) Q

2, for x ∈ {de, ∀di}.

Proof. We first prove Point a), i.e.,Q ⊑f
(n,1) Qnd. Intuitively, the strategy of Dupli-

cator is to maximally hedge her bets onQ (i.e., Left universal pebbles), and to select
successors inQnd (which is a purely existential automaton) by copying Spoiler’s moves
from Left existential pebbles inQ. More formally, there exists a strategy for Duplica-
tor which mantains the following invariant: If at roundk the current configuration is
〈qk, (q′

k,ok)〉, thenqk = q′
k, i.e., Duplicator has a strategy that mimicks exactly the

MH-construction.
We now argue that this strategy is winning for Duplicator. IfsomeLeft pebble gets

stuck, then Duplicator wins. Otherwise, by the properties of the MH-construction, it is
the case that theRightpebble can always be moved; in this case, we argue as follows.
Let π = 〈q0, (q0,o0)〉〈q1, (q1,o1)〉 . . . be the resulting sequence of configurations.

22

For x = ∀di, assume thatqk ⊆ F . By the definition of the MH-constructionok ⊆
qk ∩ F , henceok = ∅, i.e.,(qk, ∅) ∈ F ′. For x = f , assume that there are infinitely
many i’s s.t. qi is universally good since some previous roundji. Now consider the
sequence of indices{ki}i≥0 defined as follows:k0 = 0, and, inductively,ki+1 is s.t.
qki+1

is good since roundki. (Notice that this sequence is well-defined and infinite:
Since there are infinitely manyi’s s.t.qi is universally good since some previous round
ji, by Lemma 8, this implies that for anyi, there existsji ≥ i s.t. qji

is universally
good since roundi.) We have that, by the definition of the MH-construction,oki

= ∅
for anyi > 0. Hence,(qki

, ∅) ∈ F ′ for infinitely manyki’s.
We now prove Point b), i.e.,Qnd ⊑f

(1,1) Q. We can assume that theLeft peb-
ble never gets stuck, otherwise Duplicator wins trivially.Here, the strategy for Du-
plicator is to maintain the following invariant: If at roundk the current configura-
tion is 〈(qk,ok), qk〉, thenqk ∈ qk, i.e., Duplicator can force theRight pebble to be
somewhere inqk. Clearly, the invariant holds for the initial configuration: For i = 0,
(q0,o0) = ({qI}, {qI}\F) andq0 = qI . Inductively, assume that the invariantqk ∈ qk

holds fork ≥ 0. We show how Dupicator can ensure it in the next roundk +1. Assume
that Spoiler moves theLeft pebble to(qk+1,ok+1) and that the next input symbol is
ak. We have two cases to consider:

– If qk ∈ E, then, by the MH-construction, there existsq′ ∈ qk+1 s.t.q′ ∈ ∆(qk, ak).
In this case, Duplicator moves theRightpebble fromqk to qk+1 := q′.

– If qk ∈ U , then, by the MH-construction, it is the case that∆(qk, ak) ⊆ qk+1.
Hence, Spoiler moves theRight universal pebbleqk to any successorqk+1 ∈
∆(qk, ak). For every Spoiler’s move,qk+1 ∈ qk+1.

We now argue that this invariant-preserving strategy is winning for Duplicator. As-
sume that, for infinitely manyi’s, (qi,oi) is accepting, i.e.,oi = ∅. Hence, we can build
an infinite sequence{ij}j≥0 of indices s.t.oij

= ∅ for anyj > 0. From the structure
of the MH-construction, it follows that for anyj > 0, there existsk s.t.ij−1 < k ≤ ij
andqk ∈ F . Hence,qk is accepting for infinitely many indicesk’s.

Points a’) and b’) are actually shown in Figure 3, where we give two automataQ1

andQ2 which results in the same de-universalized automaton, i.e., Q1
nd = Q2

nd =: Qnd.
For Point a’), the simulation gameGde

(n,1)(Q
1,Q1

nd) results in the (unique) sequence of
configurations

π =〈{q0}, ({q0}, {q0})〉〈{q11, q12}, ({q11, q12}, {q12})〉

〈{q21, q22}, ({q21, q22}, ∅)〉〈{q31, q32}, ({q31, q32}, {q32})〉
ω ,

but at roundk = 3, theLeft pebbles on{q31, q32} are universally good since round 2
(sinceq22 andq31 are inF), but theRight pebble is never accepting fork ≥ 3. For
Point b’), the reasoning is similar, but nowq′31 6∈ F . We have that Spoiler can force the
gameGx

(1,1)(Q
2
nd,Q

2) in the following sequence of configurations:

π = 〈s0, q0〉〈s1, q11〉〈s2, q21〉〈s3, q
′
31〉

ω ,

s.t., at roundk = 2, s2 ∈ F ′, but 1)q21 6∈ F (hence,Q2
nd 6⊑x

(1,1) Q2 for x = ∀di),
and 2) for no later roundk′ ≥ 2, theRightpebble is accepting (in fact, it is trapped in
q′31 6∈ F), henceQ2

nd 6⊑
x
(1,1) Q

2 for x = de. ⊓⊔

23

Lemma 4. LetQ,S be two alternating B̈uchi automata. Then,

Q ⊑f
(n,1) S ⇐⇒ Qnd ⊑

f
(1,1) Snd .

Proof. We make use of transitivity, which will established later.
“Only if”. AssumeQ ⊑f

(n,1) S. Then, by a double application of Lemma 3,

Qnd ⊑
f
(1,1) Q ⊑f

(n,1) S ⊑f
(n,1) Snd ,

and, since(1, 1)-simulation is contained in(n, 1)-simulation (see Theorem 1), by tran-
sitivity, we obtainQnd ⊑f

(n,1) Snd. But Qnd is a purely existential automaton, hence

(n, 1)-simulation reduces to(1, 1)-simulation in this case. Thus,Qnd ⊑f
(1,1) Snd.

“If”. AssumeQnd ⊑f
(1,1) Snd. By Lemma 3,

Q ⊑f
(n,1) Qnd ⊑

f
(1,1) Snd ⊑

f
(1,1) S ,

thus, by “upgrading”(1, 1)-simulation to(n, 1), and by transitivity,Q ⊑f
(n,1) S. ⊓⊔

C.2 Transitivity

Theorem 6. Letx ∈ {∀di, de, f}. Then,

q ⊑x
(1,n) r ∧ r ⊑x

(1,n) s =⇒ q ⊑x
(1,n) s

q ⊑x
(n,1) r ∧ r ⊑x

(n,1) s =⇒ q ⊑x
(n,1) s .

Proof. Directly from Lemma 10 and Lemma 11 below. ⊓⊔

Definition of the join of two strategies for(1, n) simulations.LetG0 = G(1,n)(q, r) and
G1 = G(1,n)(r, s) be the basic simulation games betweenq andr, and betweenr and
s, respectively. Letσ0 andσ1 be two Duplicator’s strategies inG0 andG1, respectively.
We construct ajoint strategyσ0 ⊲⊳ σ1 for Duplicator in the basic simulation gameG =
G(1,n)(q, s). In the definition of the join, we assume that the automaton iscomplete,
hence it is always possible to select successors and the simulation game never halts.

G
〈U, 〉
1
1DU,L

0SU,R

1DE,R

DE,R

G

SU,R

1SU,R

SE,L 0SE,L

SU,R

1SU,R

G0

0DU,L

DU,L
0DE,R

1SE,L

G

G
〈E, 〉
1

1DE,R

DE,R

We keep track of the current state of theG0 game and at mostn games inG1. In the pic-
ture above,G0 is shown in the center, where games inG1 are shown at the top/bottom
of the picture, where, forX ∈ {E, U}, with G

〈X, 〉
1 we mean those games inG1 where

the (only)Left pebble is existential/universal. An arrow of the form·
PX,Y

P ′

X,Y ′

· ,

24

means thatX-pebbles on sideY moved by playerP in the source game induce a move
by playerP ′ in the destination game on sideY ′, whereP, P ′ ∈ {S, D, 0S, 0D, 1S, 1D},
X ∈ {E, U} andY, Y ′ ∈ {L(eft), R(ight)}. (Notice that the kind of pebblesX does
not change across an arrow.)

The necessary bookkeeping is done by using alogbook. At roundk ≥ 0, the cur-
rent logbook is a tripleLk = (L0

k, L1
k, wk), wherewk = a0a1 . . . ak−1 is the in-

put word constructed so far (and we letw0 = ε if k = 0), L0
k = π0

k, with π0
k =

〈q0
0 , r0

0〉〈q
0
1 , r0

1〉 . . . 〈q0
k, r0

k〉, is a partial play inG0 of lengthk+1, which isσ0-conform
to wk, andL1

k = {π1
k,0, π

1
k,1, . . . , π

1
k,l(k)} is a set of partial plays inG1, which are

σ1-conform towk, of lengthk + 1, and of the form

π1
k,i = 〈r1

0,i, s
1
0,i〉〈r

1
1,i, s

1
1,i〉 · · · 〈r

1
k,i, s

1
k,i〉, for i ∈ 0, . . . , l(k) .

Assume that at roundk ≥ 0 the current partial play inG is πk, where

πk = 〈q0, s0〉〈q1, s1〉 . . . 〈qk, sk〉 . (*)

We say that a logbookLk is valid if it satisfies thelogbook propertiesbelow.

q0
k = qk (P0)

r0
k =

l(k)⋃

i=0

{r1
k,i} (P1)

sk =

l(k)⋃

i=0

s1
k,i (P2)

Notice that (P1) entails the following property: (P1’) For everyr ∈ r0
k, there existsi s.t.

π1
k,i = 〈r1

0,i, s
1
0,i〉 · · · 〈r

1
k,i, s

1
k,i〉 with r = r1

k,i, i.e.,r is the r.h.s. of the last configuration
of some partial play inL1

k.
We inductively show how to build a valid logbook and we define the joint strategy

σ0 ⊲⊳ σ1. The initial configuration inG0 is 〈q, r〉, the one inG1 is 〈r, s〉, and the one
in G is 〈q, s〉. Hence, the initial logbookL0 := (L0

0, L
1
0), with L0

0 = 〈q0
0 , r

0
0〉 and

L1
0 = {〈r1

0 , s
1
0〉}, is clearly valid, whereq0

0 = q, r0
0 = r1

0 = r ands1
0 = s.

Inductively assume that, at roundk, Lk is a valid logbook, and that the current
(partial) play inG is πk, with πk = 〈q0, s0〉〈q1, s1〉 · · · 〈qk, sk〉 (as in (*)). We show
how to build a new logbookLk+1 = (L0

k+1, L
1
k+1, wk+1) for the next round, and we

prove it valid. Assume that Spoiler moves as follows:

({qk}, sk, ak, (qk)′, (sk)′) ∈ Γ
Sp
G

, (S)

i.e., the next input symbol isak and Spoiler moves universal-r.h.s. pebbles fromsk to
(sk)′. Notice that, ifqk is existential, then Spoiler moves the only l.h.s. pebble from
qk := {qk} to (qk)′ := {(qk)′}, otherwise(qk)′ := ∅. Notice that we can already
update the next input word towk+1 := wk · ak, which defines the third component of
the next logbook.

25

For any universal staterU
k,i ∈ r0

k ∩ U , let π1
k,i be the path inL1

k s.t. π1
k,i =

〈r1
0,i, s

1
0,i〉 · · · 〈r

1
k,i, s

1
k,i〉 with r1

k,i = rU
k,i, which is guaranteed to exist by property

(P1’). Spoiler’s move (S) above induces theG1-Spoiler’s move from〈rU
k,i, s

1
k,i〉 below:

({rU
k,i}, s

1
k,i, ak, {}, (s1

k,i)
′) ∈ Γ

Sp
G1

, (1-Si)

i.e.,ak is fixed by move (S) above, and(s1
k,i)

′ is the subset of(sk)′ obtained by restrict-
ing Spoiler’s move (S) tos1

k,i ⊆ sk, the containment following by property (P2). We
now applyG1-Duplicator’s strategyσ1, obtaining

σ1(〈r
1
0,i, s

1
0,i〉 · · · 〈r

U
k,i, s

1
k,i〉)(ak, rU

k,i, (s
1
k,i)

′) = 〈(rU
k,i)

′, (s1
k,i)

′′〉 . (1-Di)

By the completeness condition, it is always possible to select some successor(rU
k,i)

′

and(s1
k,i)

′′ 6= ∅.
The move (1-Di) above fixes a successor(rU

k,i)
′ for each universal staterU

k,i in r0
k.

We now consider these moves as adversarial inG0, i.e., they induce aG0-Spoiler’s
move

({q0
k}, r

0
k, ak, (q0

k)′, (r0
k)′) ∈ Γ

Sp
G0

, (0-S)

where(r0
k)′ is the set of elements(rU

k,i)
′ above. We then applyG0-Duplicator’s strategy

σ0, obtaining

σ0(〈q
0
0 , r0

0〉 · · · 〈q
0
k, r0

k〉)(ak, (q0
k)′, (r0

k)′) = 〈q0
k+1, r

0
k+1〉 . (0-D)

Notice that, if q0
k is existential, then{q0

k+1} = (q0
k)′ as determined in (S), other-

wise q0
k+1 is determined by (0-D) above. The new configuration of the game G0 is

〈q0
k+1, r

0
k+1〉, and, accordingly, the first componentL0

k+1 of the new logbook is defined
asL0

k+1 := π0
k · 〈q0

k+1, r
0
k+1〉. By the completeness condition, it is always possible to

select some successorq0
k+1 andr0

k+1 6= ∅.
TheG0-Duplicator’s move (0-D) above fixes a successor(rE

k,i)
′ for any existential

rE
k,i ∈ r0

k ∩ E By the logbook property (P1’), for any suchrE
k,i, there exists a pathπ1

k,i

in L1
k s.t. π1

k,i = 〈r1
0,i, s

1
0,i〉 · · · 〈r

E
k,i, s

1
k,i〉. TheG0-Duplicator’s move (0-D) above is

interpreted adversarially inG1:

({rE
k,i}, s

1
k,i, ak, (rE

k,i)
′, (s1

k,i)
′) ∈ Γ

Sp
G1

. (1-S′i)

We then applyG1-Duplicator’s winning strategyσ1:

σ1(〈r
1
0,i, s

1
0,i〉 · · · 〈r

E
k,i, s

1
k,i〉)(ak, (rE

k,i)
′, (s1

k,i)
′) = 〈(rE

k,i)
′, (s1

k,i)
′′〉 . (1-D′

i)

Once again, the completeness condition entails that it is always possible to select some
successor(rE

k,i)
′ and(s1

k,i)
′′ 6= ∅.

We are now ready to defineL1
k+1. Let (r1

k,i)
′ be any state(rU

k,i)
′ defined in (1-Di), or

any state(rE
k,i)

′ defined in (1-D′i), which is not discarded in(0-D), i.e.,(r1
k,i)

′ ∈ r0
k+1.

(Notice thatr0
k+1 6= ∅ by the completeness property, as already noticed above. Hence,

there exists at least one such(r1
k,i)

′.) We then addπ1
k,i · 〈(r

1
k,i)

′, (s1
k,i)

′′〉 to the second

26

componentL1
k+1 of the new logbook. It is easy to check that, by construction,property

(P1) holds at roundk + 1.
Finally, wedefineDuplicator’s move inG as

({qk}, sk, ak, (qk)′, (sk)′, {qk+1}, sk+1) ∈ Γ
Dup
G

, (D)

whereqk+1 := q0
k+1 is fixed by move (0-D) ifqk = q0

k is existential, and it is fixed
by (S) if it is universal. (Notice that this establishes property (P0).) Moreover,sk+1 is
taken to be the union of all sets(s1

k,i)
′′ constructed in (1-Di) and (1-D′i) above, i.e.,

sk+1 :=
⋃

i(s
1
k,i)

′′, which, in turn, establishes property (P2). Hence,

(σ0 ⊲⊳ σ1) (〈q0, s0〉 · · · 〈qk, sk〉) (ak, (qk)′, (sk)′) := 〈qk+1, sk+1〉 .

The following theorem shows that⊑(1,n) is transitive, i.e., it shows that whenσ0

andσ1 are both winning, thenσ0 ⊲⊳ σ1 is winning as well.

Lemma 10. Letx ∈ {∀di, de, f}. Then,

q ⊑x
(1,n) r ∧ r ⊑x

(1,n) s =⇒ q ⊑x
(1,n) s .

Proof. We refer to the logbookLk at roundk as defined above. We first deal with the
case in which the gameG never ends prematurely.

For x = ∀di, we have to show that, wheneverqk is accepting, so is every pebble
in sk. Assumeqk ∈ F . Sinceσ0 is a winning strategy, thenr0

k ⊆ F . By the logbook
property (P1’), the current configuration of every game inG1 is of the form〈r, s〉, for
somer ∈ F ands ⊆ Q. But σ1 is winning, hence every suchs is contained inF . By
(P2),sk ⊆ F .

For x = de, assume thatqk is accepting. Sinceσ0 is winning, there existsj ≥ k

s.t. good∃(r0
j , k). Thus, for anyr1

j,i ∈ r0
j , there existsj(i) s.t. r1

j(i),i ∈ F . By (P1),

let 〈r1
j(i),i, sj(i),i〉 be the configuration at roundj(i) of someG1-game. Sinceσ1 is

winning, there existsj(i)′ ≥ j(i) s.t.good∃(sj(i)′,i, j(i)). Letj∗ = maxi(j(i)
′): Then,

for all i, every state insj∗,i has seen an accepting state since roundk. By (P2),sj∗ =⋃
i s

1
j∗,i. Thus, every state insj∗ has seen an accepting state since roundk. Therefore,

there exists a minimalk∗ s.t.k ≤ k∗ ≤ j∗ andgood∃(sk∗ , k).
Forx = f, the reasoning is entirely similar to the previous paragraph.
We now deal with the case in which the gameG ends prematurely. If theLeftpebble

on qk is stuck, then Duplicator wins, and we are done. Otherwise, assume that theLeft
pebble is never stuck. We show that, in this case, the game actually never stops. In
fact, sinceσ0 is a winning strategy inG0, then there always exists someRightpebble
rk,i ∈ rk which can proceed. By (P1)’, there exists some configuration〈rk,i, sk,i〉 in
G1 which can go on, and, beingσ1 winning in such a game, then some pebble insk,i

can be moved, and, therefore, some pebble insk can be moved as well (by (P2)). Thus,
G never stops. ⊓⊔

27

Definition of the join of two strategies for(n, 1) simulations.The definitions for(n, 1)
simulations are dual to the(1, n) case in the previous section. LetG0 = G(n,1)(q, r)
andG1 = G

(n,1)(r, s) be two basic simulation games. Letσ0 andσ1 be two Duplica-
tor’s strategies inG0 andG1, respectively. We construct ajoint strategyσ0 ⊲⊳ σ1 for
Duplicator in the basic simulation gameG = G(n,1)(q, s).

G
〈 ,E〉
0
0DE,R

1SE,L

0DU,L

DU,L

G

SE,L

0SE,L

SU,R 1SU,R

SE,L

0SE,L

G1

1DE,R

DE,R
1DU,L

0SU,R

G

G
〈 ,U〉
0

0DU,L

DU,L

We keep track of the current state of theG1 game and (at most)n games inG0 us-
ing the logbook technique. At roundk ≥ 0, the current logbook is a tripleLk =
(L0

k, L1
k, wk), wherewk = a0a1 . . . ak−1 is the input word constructed so far,L1

k =
π1

k = 〈r0, s
1
0〉〈r1, s

1
1〉 . . . 〈rk, s1

k〉 is a partialσ1-conform towk play of lengthk + 1
in G1, andL0

k = {π0
k,0, π

0
k,1, . . . , π

0
k,l(0)} is a set of partialσ0-conform (w.r.t.wk)

plays of lengthk + 1 in G0, with π0
k,i = 〈q0

0,i, r
0
0,i〉〈q

0
1,i, r

0
1,i〉 · · · 〈q

0
k,i, r

0
k,i〉, for

i ∈ {0, . . . , l(k)}. Every logbookLk will satisfy an invariant, which consists of the
logbook properties(P0)–(P2) specified below. Assume that at roundk ≥ 0 the current
play in G is πk, whereπk = 〈q0, s0〉〈q1, s1〉 . . . 〈qk, sk〉. Then,Lk is a valid logbook
if

qk =

l(k)⋃

i=0

q0
k,i (P0)

rk =

l(k)⋃

i=0

{r0
k,i} (P1)

sk = s1
k (P2)

We inductively show how to build a valid logbook and how to define the joint strat-
egyσ0 ⊲⊳ σ1. The initial configuration inG0 is 〈{q}, {r}〉 (there is only one such game
initially), the one inG1 is 〈{r}, {s}〉, and the one inG is 〈{q}, {s}〉. Let q0 = {q},
r0 = r, r0 = {r}, ands0 = s. Hence, the initial logbookL0 := (L0

0, L
1
0, w0), with

L0
0 = {〈{q0}, {r0}〉}, L1

0 = 〈{r0}, {s0}〉, andw0 = ε, is clearly valid.
Inductively assume that, at roundk, the current partial play inG is πk, and that

Lk = (L0
k, L1

k, wk) is a valid logbook, whereL0
k, L1

k andwk are defined as above. By
(P2),

πk = 〈q0, s0〉〈q1, s1〉 . . . 〈qk, sk〉

π0
k,i = 〈q0

k,0, r
0
0,i〉〈q

0
k,1, r

0
1,i〉 · · · 〈q

0
k,i, r

0
k,i〉, for i ∈ {0, . . . , l(k)}

π1
k = 〈r0, s0〉〈r1, s1〉 . . . 〈rk, sk〉

28

We show how to build a new, valid logbookLk+1 = (L0
k+1, L

1
k+1, wk+1) for the next

round. Assume thatG-Spoiler moves as follows:

(qk, {sk}, ak, (qk)′, (sk)′) ∈ Γ
Sp
G

, (S)

i.e., the next input symbol isak and Spoiler moves existential-Left pebbles fromqk to
(qk)′. We takewk+1 = wk · ak. Notice that, ifsk is existential, then Spoiler moves the
only Rightpebble fromsk := {sk} to (sk)′ := {(sk)′}, otherwise(sk)′ := ∅.

For any existential staterE ∈ rE
k , let π0

k,i be the path inL0
k ending in〈q0

k,i, r
E〉

(i.e., r0
k,i = rE), which is guaranteed to exist by property (P1). Spoiler’s move (S)

above induces theG0-Spoiler’s move below

(q0
k,i, {r

E}, ak, (q0
k,i)

′, {}) ∈ Γ
Sp
G0

, (0-Si)

which is obtained by restricting toq0
k,i ⊆ qk the transiton fromqk to (qk)′, the inclu-

sion following from (P0). We applyG0-Duplicator’s strategyσ0, obtaining

σ0(〈q
0
0,i, r

0
0,i〉a0 · · ·ak−1〈q

0
k,i, r

E〉)(ak, (q0
k,i)

′, {}) = (q0
k+1,i, r

0
k+1,i) . (0-Di)

The move (0-Di) above fixes a successorr0
k+1,i for each existential staterE in rE

k

(in G0). We now consider these moves as adversarial inG1, i.e., they induce aG1-
Spoiler’s move

(rk, {sk}, ak, (rk)′, (sk)′) ∈ Γ
Sp
G1

, (1-S)

where(rk)′ is the set of elementsr0
k+1,i defined above. We then applyG1-Duplicator’s

strategyσ1, obtaining

σ1(〈r0, s0〉a0 · · ·ak−1〈rk, sk〉)(ak, (rk)′, (sk)′) = (rk+1, {s
1
k+1}) . (1-D)

Notice that, ifsk is universal, thens1
k+1 = (sk)′, as determined in (S), otherwises1

k+1

is determined by (1-D) above. The second componentL1
k+1 of the new logbook is

L1
k+1 = π1

k · 〈rk+1, s
1
k+1〉.

Call a stater ∈ rk usefuliff it has not been discarded by move (1-D), i.e., iff it
has some successor inrk+1. By the logbook property (P1), for each useful universal
staterU ∈ rU

k , there exists a playπ0
k,i ∈ L0

k s.t.π0
k,i = 〈q0

0,i, r
0
0,i〉 · · · 〈q

0
k,i, r

U 〉 with
r0
k,i = rU . TheG1-Duplicator’s move (1-D) is then interpreted adversarially in G0:

(q0
k,i, {r

U}, ak, (q0
k,i)

′, {r0
k+1,i}) ∈ Γ

Sp
G0

, (0-S′i)

and we applyG0-Duplicator’s winning strategyσ0, yielding

σ0(〈q
0
0,i, r

0
0,i〉a0 · · ·ak−1〈q

0
k,i, r

U 〉)(ak, (q0
k,i)

′, r0
k+1,i) = (q0

k+1,i, r
0
k+1,i) . (0-D′

i)

We now update the first componentL0
k of the logbook. For any useful existential or

universal stater0
k,i ∈ rk with corresponding playπ0

k,i ∈ L0
k (as above), letr0

k+1,i be
as determined in (0-Di) or (0-S′i), respectively. Then, we addπ0

k,i · 〈q
0
k+1,i, r

0
k+1,i〉 to

L0
k+1. Since every element inrk+1 arises as a successor of someusefulelement inrk,

we have that (P1) holds at roundk + 1.

29

Finally, wedefineDuplicator’s move inG as

(σ0 ⊲⊳ σ1) (〈q0, s0〉a0 · · · ak−1〈qk, sk〉) (ak, (qk)′, (sk)′) := (qk+1, sk+1) . (D)

whereqk+1 is as union over all setsq0
k+1,i defined by equations (0-Di) and (0-D′i),

andsk+1 := s1
k+1 is defined according to (S) or (1-D), depending on whethersk was

universal or existential, respectively. Notice that, by definition of qk+1 andsk+1, prop-
erties (P0) and (P2) hold for the new logbook. This completesthe description of the
joint strategyσ0 ⊲⊳ σ1.

The following theorem shows that⊑x
(n,1) is transitive, i.e., it shows that whenσ0

andσ1 are both winning, thenσ0 ⊲⊳ σ1 is winning as well.

Lemma 11. Letx ∈ {∀di, de, f}. Then,

q ⊑x
(n,1) r ∧ r ⊑x

(n,1) s =⇒ q ⊑x
(n,1) s .

Proof. We refer to the logbookLk at roundk as defined above. Forx = ∀di, we have
to show that, whenever some pebble inqk is accepting, so issk. Assumeqk ∩ F 6= ∅.
Then, there existsqF ∈ qk ∩ F and, by (P0), there existsq0

k,i ⊆ qk s.t. qF ∈ q0
k,i

and 〈q0
k,i, r

0
k,i〉 is the current configuration in someG0 game. Sinceq0

k,i ∩ F 6= ∅

andσ0 is a winning strategy, thenr0
k,i ∈ F . Hence, by the logbook property (P1),

rk =
⋃

i{r
0
k,i} ∩ F 6= ∅, where〈rk, sk〉 is the current configuration inG1. Since

rk ∩ F 6= ∅ andσ1 is winning, we havesk ∈ F .
For x = de, assume that at roundk every pebble inqk is universally good since

some previous round, i.e.,good∀(qk) holds. Let〈q0
k,i, r

0
k,i〉 be any configuration in

G0. By (P0),q0
k,i ⊆ qk, thusgood∀(q0

k,i). Sinceσ0 is winning, then, for everyi, there

existsk(i) s.t.good∃({r0
k(i),i}, k), i.e.,k(i) is the least indexk′ s.t. r0

k′,i ∈ F . Let i∗

be the index for whichr0
k(i∗),i∗ ∈ F is the last pebble being accepting for the first time

since roundk, i.e., i∗ = argmax
i

(k(i)). Hence, at roundk(i∗) ≥ k, every pebble in

rk(i∗) has been universally good since roundk. Sinceσ1 is winning, then there exists
k′ ≥ k(i∗) ≥ k s.t.sk′ ∈ F . Let k∗ ≤ k′ be the minimalk′′ ∈ [k, . . . , k′] s.t.sk′′ ∈ F .
Therefore,good∃({sk∗}, k), i.e.,{sk∗} is existentially good since roundk.

For x = f, assume thatqk is universally good since some previous round for in-
finitely manyk’s. By reasoning as above for delayed simulation, sinceσ0 is winning,
thenrk is universally good since some previous round for infinitelymanyk’s. Finally,
beingσ1 winning, we conclude thatsk ∈ F for infinitely manyk’s. ⊓⊔

D Section 5

D.1 Finite words

Lemma 5. LetQ be any alternating finite automaton, and let� be any preorder which
implies finite-language inclusion. Then,Lfin(q) = Lfin([q]).

Proof. We proceed by induction on the length ofw ∈ Σ∗. Let q any state inQ, and let
[q] be its equivalence class. Notice that,Lfin(q) = Lfin(q′) for anyq′ ∈ [q].

30

Assumew = ε. If w ∈ Lfin(q) thenq ∈ F , hence[q] ∈ F ′ andw ∈ Lfin([q]) as
well. Conversely, ifw ∈ Lfin([q]) then[q] ∈ F ′, hence there existsqF ∈ [q] ∩ F . But
Lfin(qF) = Lfin(q), hencew ∈ Lfin(q).

Assumew = a0 . . . ak−1 is a word of lengthk, and letw′ = a1 . . . ak−1. We
proceed by case analysis on the type of[q].

– Case 1:[q] ∈ E′. We proveLfin(q) ⊆ Lfin([q]), distinguishing two subcases.
Subcase 1.1:q ∈ E. Assumew ∈ Lfin(q). Then, there exists(q, a0, q

′) ∈ ∆ s.t.
w′ ∈ Lfin(q′), and, w.l.o.g., we may assume thatq′ is ana0-maximal successor
of q. (If not, then there exists a stateq′′ � q′ which actually is ana0-maximal
successor ofq, thusw′ ∈ Lfin(q′′) and then one can proceed fromq′′.) By induc-
tion hypothesis,w′ ∈ Lfin([q′]). Hence, by the definition of quotient, there exists
([q], a0, [q

′]) ∈ ∆m
≈, thusw ∈ Lfin([q]).

Subcase 1.2:q ∈ U . Let qE ∈ [q] ∩ E and, by definition of quotient,Lfin(q) =
Lfin(qE), and then one can proceed as above fromqE . Thus,Lfin(q) ⊆ Lfin([q]).
We now proveLfin([q]) ⊆ Lfin(q). If w ∈ Lfin([q]), then([q], a0, [q

′]) ∈ ∆m
≈ s.t.

w′ ∈ Lfin([q′]). By the definition of quotient, there exist̂qE ∈ [q] and q̂′ ∈ [q′]
s.t. (q̂E , a0, q̂

′) ∈ ∆. By induction hypothesis,w′ ∈ Lfin(q̂′) (we do not use the
maximality of q̂′ here), hencew ∈ Lfin(q̂E) = Lfin(q).

– Case 2:[q] ∈ U ′. We proveLfin(q) ⊆ Lfin([q]). Assumew ∈ Lfin(q). Let [q′] be
anyelement in[Q] s.t.([q], a0, [q

′]) ∈ ∆m
≈. We have to show thatw′ ∈ Lfin([q′]).

By the definition of quotient, there exist̂q ∈ [q] and q̂′ ∈ [q′] (we do not use the
minimality of q̂′ here) s.t.(q̂, a0, q̂

′) ∈ ∆. We have thatLfin(q) = Lfin(q̂), hence
w ∈ Lfin(q̂). Sinceq̂ ∈ U , then everya0-successor of̂q acceptsw′. In particular,
w′ ∈ Lfin(q̂′), and, by induction hypothesis,w′ ∈ Lfin([q′]), But [q′] was arbitrary,
thusw ∈ Lfin([q]).
We proveLfin([q]) ⊆ Lfin(q). Assumew ∈ Lfin([q]). Let q′ beanyelement inQ
s.t. (q, a0, q

′) ∈ ∆, and we have to showw′ ∈ Lfin(q′) for any suchq′. In partic-
ular, it is sufficient to showw′ ∈ Lfin(q′) for anya0-minimal q′, sinceLfin(q′) ⊆
Lfin(q′′) for anyq′′ � q′. Hence, we assume thatq′ is ana0-minimal successor of
q. Being[q] ∈ U ′, we have thatw′ ∈ Lfin([q′]) for anya0-successor[q′] of [q]. As
(q, a0, q

′) ∈ ∆ and by the definition of quotient, there exists([q], a0, [q
′]) ∈ ∆m

≈.
Thus,w′ ∈ Lfin([q′]), and, by induction hypothesis,w′ ∈ Lfin(q′). But q′ was ar-
bitrary, thusw ∈ Lfin(q). ⊓⊔

D.2 Infinite words: Direct simulation

The two directions in Theorem 8 are proved, resp., by Lemma 12and Lemma 13 below.

Lemma 12. If q ⊑∀di
(1,n) s, then[q]m+ ⊑∀di

(1,n) s, where the quotient is taken w.r.t.⊑∀di
(1,k).

Proof. Let G = G
∀di
(1,n)([q], s) and, at roundi, if the current configuration ofG is

〈[qi], si〉, let Gi = G∀di
(1,n)(qi, si). We maintain the following invariant: At roundi,

qi ⊑∀di
(1,n) si. Notice that the invariant implies the lemma: The crucial observation is

that [qi] ∈ F ′ implies [qi] ⊆ F , i.e., if one state in the quotient is acceping, then, by
the definition of direct simulation, all states in the quotient are accepting as well, and,

31

in particular,qi ∈ F . By the invariant and by the definition of∀di-simulation,qi ∈ F

impliessi ⊆ F .
Assume the current configuration inG is 〈[qi], si〉, andqi ⊑∀di

(1,n) si. Let Spoiler
choose the next input symbolai. We consider two cases, depending on whether[qi] is
existential or universal.

First case:[qi] ∈ E′. Let Spoiler choose anai-successor[qi+1] of [qi], i.e., Spoiler
chooses transition

({[qi]}, si, ai, {[qi+1]}, s
′) ∈ Γ

Sp
G

.

By the definition of minimax quotient, there exist̂q ∈ [qi] ∩ E and q′ ∈ [qi+1]
s.t. q′ ∈ ∆(q̂, a). (Note that we do not use the maximality ofq′ in this proof.) We
have q̂ ⊑∀di

(1,k) qi ⊑∀di
(1,n) si. But (1, k)-simulation implies(1, n)-simulation (The-

orem 1), thereforêq ⊑∀di
(1,n) qi, and, by transitivity,q̂ ⊑∀di

(1,n) si. We let G(q̂, si)-

Spoiler choose transition({q̂}, si, ai, {q′}, s′) ∈ Γ
Sp
G(bq,si)

, and then we applyG(q̂, si)-

Duplicator’s winning strategy, obtaining transition({q̂}, si, ai, {q′}, s′, {q′}, si+1) ∈

Γ
Dup
G(bq,si)

. Clearly,q′ ∈ [qi+1], q′ ⊑∀di
(1,n) si+1, and the invariant is preserved.

We defineG-Duplicator’s response as

({[qi]}, si, ai, {[qi+1]}, s
′, {[qi+1]}, si+1) ∈ Γ

Dup
G

.

Second case:[qi] ∈ U ′. By the definition of quotient,qi ∈ U . Let Spoiler choose
transition

({[qi]}, si, ai, {}, s
′) ∈ Γ

Sp
G

.

We let Gi-Spoiler choose transition({qi}, si, ai, {}, s′) ∈ Γ
Sp
Gi

, and then we apply

Gi-Duplicator’s winning strategy, obtaining({qi}, si, ai, {}, s′, {qi+1}, si+1) ∈ Γ
Dup
Gi

.
The crucial point is that we can assume w.l.o.g. thatqi+1 is an-∀di-minimalai-successor
of qi. In particular, it is alsok-∀di-minimal. This implies that there exists aai-transition
in the quotient automaton from[qi] to [qi+1]. Thus,G-Duplicator’s response is defined
as

({[qi]}, si, ai, {}, s
′, {[qi+1]}, si+1) ∈ Γ

Dup
G

.

Clearly,qi+1 ⊑∀di
(1,n) si+1, and the invariant is preserved also in this case. ⊓⊔

Lemma 13. If q ⊑∀di
(1,n) s, thenq ⊑∀di

(1,n) [s]m+, where the quotient is taken w.r.t.⊑∀di
(1,k).

Proof. Let G = G(q, [s]) and, at roundi, if the current configuration ofG is 〈qi, [si]〉,
let Gi = G(qi, si). We maintain the following invariant:qi ⊑∀di

(1,n) si. The invariant
implies the lemma: ifqi ∈ F , then, by the definition of∀di-simulation,si ⊆ F , thence,
by the definition of quotient,[si] ⊆ F ′.

Assume the current configuration inG is 〈qi, [si]〉, andqi ⊑∀di
(1,n) si. Let Spoiler

choose the next input symbolai and a transition

({qi}, [si], ai,q
′, [s′]) ∈ Γ

Sp
G

,

where[s′] is obtained by fixing a successor[s′] for any[sU] ∈ [si]∩U ′. (Notice that, if
qi ∈ E, thenq′ = {qi+1} is just a singleton, for someqi+1 ∈ ∆(qi, a), otherwise, when

32

qi ∈ U , we have thatq′ = {} asLeft universal pebbles are under Duplicator’s control.)
By the definition of minimax quotient,([sU], ai, [s

′]) ∈ ∆m+ implies that there exist
ŝU ∈ [sU] andŝ′ ∈ [s′] s.t. ŝ′ ∈ ∆(ŝU , ai). (*) Let s′ be the set of stateŝs′ obtained
above. (We do not use the minimality ofŝ′ in this proof.) For any mixed class[sU

mix] ∈
[si], for which its representativesU

mix ∈ si is universal, letsE
mix ∈ [sU

mix]∩E be a(1, k)-
∀di-equivalent existential representative, for which, in particular,sU

mix ⊑∀di
(1,k) sE

mix. Let

pi be equal tosi, but where eachsU
mix is replaced bysE

mix. By the invariant,qi ⊑
∀di
(1,n) si

and, by the definition ofpi and by transitivity,qi ⊑∀di
(1,n) pi. The game then proceeds

by usingpi in place ofsi. Notice that universal states inpi are exactly those universal
states insi which belong to a purely universal quotient. We letG(qi,pi)-Spoiler choose
transition({qi},pi, ai,q

′, s′) ∈ Γ
Sp
G(qi,pi)

, wheres′ is obtained frompi ∩ U ⊆ si ∩ U

by fixing successors as prescribed in (*) above. We then applyG(qi,pi)-Duplicator’s
winning strategy, yielding transition({qi},pi, ai,q

′, s′, {qi+1},pi+1) ∈ Γ
Dup
G(qi,pi)

. It

might be the case that some transition(pE , ai, p
′) ∈ ∆ induced above, forpE ∈ pi ∩E

andp′ ∈ pi+1, (if any) does not induce a transition in the quotient, i.e.,there exists
no corresponding transition([pE], ai, [p

′]) ∈ ∆m+. This happens when, in definition of
minimax+ quotient,p′ is not selected as ak-maximal representative forai-successors
of pE . If this is the case, then, by the definition of minimax+ quotient, there exists some
k-maximalai-successors′′ ⊆ maxk ,∀di

ai
(pE) s.t. p′ ⊑∀di

(1,k) s′′ and, for alls′′ ∈ s′′,

([pE], ai, [s
′′]) ∈ ∆m+. We definesi+1 aspi+1, where elementsp′ are replaced bys′′,

as specified above. Then,G-Duplicator’s response is defined as

({qi}, [si], ai,q
′, [s′], {qi+1}, [si+1]) ∈ Γ

Dup
G

.

Sinceqi+1 ⊑∀di
(1,n) pi+1, and, by the definition ofsi+1 and transitivity,qi+1 ⊑∀di

(1,n) si+1,
the invariant is preserved. ⊓⊔

Theorem 8. q ≈∀di
(1,n) [q]m+, where the quotient is taken w.r.t.⊑∀di

(1,k). In particular,
Lω(q) = Lω([q]m+).

Proof. Sinceq ⊑∀di
(1,n) {q} trivially holds, the theorem follows from previous Lemma 12

and 13. ⊓⊔

D.3 Infinite words: Delayed simulation

Lemma 14. Let q, s ∈ U . If q ≈x
(1,n) s, then, for anyq′ ∈ minn,x

a (q), there exists
s′ ∈ minn,x

a (s) s.t.q′ ≈x
(1,n) s′.

Proof. We actually prove the following richer statement.

Claim. Let q, s ∈ U s.t. q ≈x
(1,n) s. Then, for anyq′ ∈ minn,x

a (q), 1) there exists
s′ ∈ ∆(s, a) s.t.s′ ⊑x

(1,n) q′, and, for anys′′ ∈ ∆(s, a), s′′ ⊑x
(1,n) q′ implies both 2.1)

s′′ ∈ minn,x
a (s), and 2.2)q′ ≈x

(1,n) s′′.

Let q ≈x
(1,n) s, and letq′ ∈ minn,x

a (q). Point 1) follows from the definition of simula-
tion, i.e., there existss′ ∈ ∆(s, a) s.t.s′ ⊑x

(1,n) q′.

33

We now show Points 2.1) and 2.2), i.e., we show that any suchs′ is in fact anx-
minimala-successor ofs. Let s′′ ∈ ∆(s, a) be any othera-successor ofs s.t.s′′ ⊑x

(1,n)

s′. We have to shows′ ⊑x
(1,n) s′′ as well. Sinceq ⊑x

(1,n) s, from the definition of
simulation, there existsq′′ ∈ ∆(q, a) s.t.q′′ ⊑x

(1,n) s′′. Hence, we have the following
chain of inclusions:q′′ ⊑x

(1,n) s′′ ⊑x
(1,n) s′ ⊑x

(1,n) q′. By the transitivity of⊑x
(1,n)

established in Theorem 6, we haveq′′ ⊑x
(1,n) q′, and, by the minimality ofq′, q′ ⊑x

(1,n)

q′′. By transitivity, all states in{q′′, s′′, s′, q′} arex-simulation equivalent. In particular,
s′ ⊑x

(1,n) s′′, which establishes Point 2.1), andq′ ⊑x
(1,n) s′, which establishes Point

2.2). ⊓⊔

Lemma 15. Lets ∈ U andq ∈ E. If q ≈x
(1,n) s, then there existsq′ ⊆ ∆(q, a) s.t., for

anys′ ∈ minn,x
a (s), s′ ⊑x

(1,n) q′.

Proof. Let s ∈ U , q ∈ E, andq ≈x
(1,n) s. Froms ⊑x

(1,n) q and by the definition of
simulation, there existsq′ ⊆ ∆(q, a) ands′′ ∈ ∆(s, a) s.t.s′′ ⊑x

(1,n) q′.
Let s′ be any element inminn,x

a (s). Fromq ⊑x
(1,n) s and by the definition of simu-

lation, it follows that, for anyq′ ∈ q′, we haveq′ ⊑x
(1,n) s′. Sinces′′ ⊑x

(1,n) q′, and any
element inq′ is simulated bys′, we obtain, by transitivity (Theorem 6),s′′ ⊑x

(1,n) s′,
and, by the minimality ofs′, s′ ⊑x

(1,n) s′′ ⊑x
(1,n) q′. By transitivity,s′ ⊑x

(1,n) q′. ⊓⊔

Lemma 16. If q⊑de
(1,n)s, then[q]se+⊑de

(1,n)s, where the quotient is taken w.r.t.⊑de
(1,n).

Proof. In the following, we simply write⊑ instead of⊑de
(1,n). Then, when we write

q ⊑σ s, we mean thatσ is Duplicator’s winning strategy inG(q, s), i.e., the one wit-
nessingq ⊑ s. In the proof, we need the following definitions: For any Duplicator’s
strategyσ : PP1 7→ (P0 7→ P1) and for anyπ ∈ P , we define a new Duplicator’s
strategyσπ in the following way: For anyπ′ ∈ PP1, σπ(π′) := σ(π · π′). Given any
Duplicator’s strategyσ, we say that a sequenceπ1 = sksk+1 . . . is σ-right-conform
starting at pk iff there exist sequencesπ0 = pkpk+1 . . . and w = akak+1 . . . s.t.
π = 〈pk, sk〉〈pk+1, sk+1〉 . . . is σ-conform w.r.t.w. We will use the following fact:

Claim. Assumeπ1 = sksk+1 . . . is σ-right-conform starting atpk. If pk ∈ F andσ is
a winning strategy, then there existsi ≥ k s.t.good∃(si, k).

We are now ready for proving the lemma. LetG = G([q], s) and, at roundk, if
the current configuration ofG is 〈[qk], sk〉, let Gk = G(qk, sk). We build a sequence
of winning strategiesσ0, σ1, . . . , s.t., at roundk, σk is a winning strategy inGk, i.e.,
qk ⊑σk

sk. Then, we define a strategyσ for Duplicator inG, which, at roundk, is
defined in terms ofσk. Finally, we prove thatσ is winning.

Assume the current configuration inG is 〈[qk], sk〉, and thatσk is a winning strategy
in Gk s.t. qk ⊑σk

sk. Let Spoiler choose the next input symbolak. We consider two
cases, depending on whether[qk] is existential or universal.

First case:[qk] ∈ E′. Let Spoiler choose anak-successor[qk+1] of [qk], i.e., Spoiler
chooses transition

({[qk]}, sk, ak, {[qk+1]}, s
′) ∈ Γ

Sp
G

.

34

By the definition of semielective quotient, there existq̂ ∈ [qk] and q′ ∈ [qk+1] s.t.
q′ ∈ ∆(q̂, a). If [qk] ∩ F 6= ∅, then letqF be any accepting state in[qk], otherwise let
qF be justq̂. We distinguish two subcases, depending on whetherq̂ is in E or in U .

– First subcase:̂q ∈ E. We have that

q̂ ⊑bσ qF ⊑σF qk ⊑σk
sk .

We let G(q̂, sk)-Spoiler choose transition({q̂}, sk, ak, {q′}, s′) ∈ Γ
Sp
G(bq,sk). Let

σ̄ = σ̂ ⊲⊳ σF ⊲⊳ σk, and letsk+1 be the result ofG(q̂, sk)-Duplicator playing
according tōσ, i.e.,σ̄({q̂}, sk)(ak, {q′}, s′) = ({q′}, sk+1). Clearly,q′ ⊑σ̄π sk+1,
with π = 〈q̂, sk〉. But q′ ∈ [qk+1], thusqk+1 ⊑σ′ q′ ⊑σ̄π sk+1 for someσ′. By
transitivity,qk+1 ⊑σ′⊲⊳σ̄π sk+1. We letσk+1 := σ′ ⊲⊳ σ̄π.

– Second subcase:q̂ ∈ U . By the definition of semielective quotient,q′ ∈ minn,de
a (q̂).

(Notice that, althougĥq is a universal state in this case, it is still Spoiler who has to
choose a successorq′ of q̂, since[qk] is an existential state in the quotient automa-
ton). Since[qk] is a mixed class, there existsqE ∈ [qi] ∩ E s.t.

q̂ ⊑bσ qE ⊑σE qF ⊑σF qk ⊑σk
sk .

Sinceq̂ ⊑ qE , by the minimality ofq′ and Point 2) of Lemma 15, there existsq′ ⊆
∆(qE , a) s.t.q′ ⊑ q′. Hence, w.l.o.g.̂σ can be taken s.t.̂σ({q̂}, {qE})(ak, {}, {}) =
({q′},q′), whereq′ is fixed by G([q], s)-Spoiler, and not under the control of
G(q̂, qE)-Duplicator.
Let σ̄ := σ̂ ⊲⊳ σE ⊲⊳ σF ⊲⊳ σk. Similarly to the previous point,G(q̂, sk)-Spoiler
chooses a transition({q̂}, sk, ak, {}, s′) ∈ Γ Sp. We letG(q̂, sk)-Duplicator answer
with σ̄({q̂}, sk)(ak, {}, s′) = ({q′}, sk+1), whereq′ is the aak-successor fixed by
G([q], s)-Spoiler above. As before,qk+1 ⊑σ′ q′ ⊑σ̄π sk+1, whereπ = 〈q̂, sk〉.
Hence, by transitivity,qk+1 ⊑σ′⊲⊳σ̄ sk+1. We letσk+1 := σ′ ⊲⊳ σ̄π.

In both cases,qk+1 ⊑σk+1
sk+1. We defineG-Duplicator’s winning strategyσ as

σ(πk〈{[qk]}, sk〉)(ak, {[qk+1]}, s
′) = ({[qk+1]}, sk+1) .

Second case:[qk] ∈ U ′. By the definition of quotient,qk ∈ U . Let Spoiler choose
transition

({[qk]}, sk, ak, {}, s′) ∈ Γ
Sp
G

.

If [qk] ∩ F 6= ∅, let qF ∈ U be any accepting state in[qk], otherwise letqF be justqk.
Then, we have

qF ⊑σF qk ⊑σk
sk .

Let σ̄ = σF ⊲⊳ σk. Let G(qF , sk)-Spoiler choose transition({qF }, sk, ak, {}, s′) ∈

Γ
Sp
G(qF ,sk), and letG(qF , sk)-Duplicator choose transition({qF }, sk, ak, {}, s′, {qk+1}, sk+1) ∈

Γ
Dup
G(qF ,sk)

according tōσ. We letσk+1 := σ̄π, with π = 〈{qF }, sk〉. The crucial point is

that we can assume w.l.o.g. thatqk+1 is a de-minimalak-successor ofqF . This implies

35

that there exists aak-transition in the quotient automaton from[qk] to [qk+1]. Thus,
G-Duplicator’s response is defined as

σ(πk〈{[qk]}, sk〉)(ak, {}, s′) = ({[qk+1]}, sk+1) .

This concludes the description of the second case.
We now argue about the correctness of the construction above, showing that Du-

plicator’s strategy is winning inG. If the Left pebble inG gets stuck, then Duplicator
wins, and we are done. Otherwise, assume theLeftpebble never gets stuck. By construc-
tion, since we are taking joins of winning strategies, it follows that someRightpebble
can always be moved, and the game does not halt prematurely. Thus, an infinite path
π = 〈[q0], s0〉〈[q1], s1〉 . . . results, whereq0 = q ands0 = s. Assume[qk] ∈ F ′, for
somek. There existsqF ∈ [qk] s.t.qF ∈ F and, in any of the cases above, there exists
a winning strategyσF s.t.qF ⊑σF qk ⊑σk

sk. Let σ̃ := σF ⊲⊳ σk be a winning strat-
egy inG(qF , sk). By construction, the sequenceπ1 = sksk+1 . . . is σ̃-right-conform
starting atqF . By the above claim, there existsi ≥ k s.t.good∃(si, k). ⊓⊔

Corollary 1. [q]se+⊑de
(1,n)q.

The lemma below impliesq ⊑de
(1,1) [q]se+. Notice that we actually prove the much

stronger claim that[q]se+ di-simulatesq.

Lemma 17. For anyq ∈ Q, q ⊑di
(1,1) [q]se+.

Proof. We maintain the following invariant: If(sk, [qk]) is the current configuration in
G

di
(1,1)(q, [q]), thensk ∈ [qk]. Clearly, the invariant implies that the winning condition

for direct simulation is satisfied: Ifsk ∈ F , then[qk] ∈ F ′.
The initial configuration is(s0, [q0]) with s0 = q, and[q0] = [q], and the invariant

clearly holds sinces0 ∈ [q0].
Inductively, assume the current configuration is(sk, [qk]) and the invariantsk ∈ [qk]

holds. We distinguish three different cases.

– Case 1:sk ∈ E. Then[qk] ∈ E′. Assume Spoiler chooses transition

({sk}, {[qk]}, ak, {sk+1}, {}) ∈ Γ Sp .

From(sk, ak, sk+1) ∈ ∆, the invariantsk ∈ [qk] and by the definition of semielec-
tive quotient, there exists a transition([qk], ak, [sk+1]) ∈ ∆se+

≈ . Thus, Duplicator
can select transition

({sk}, {[qk]}, ak, {sk+1}, {}, {sk+1}, {[sk+1]}) ∈ ΓDup .

Clearlysk+1 ∈ [sk+1], and the invariant is preserved.
– Case 2:sk ∈ U and[qk] ∈ E′. In this case, Spoiler only choosesak:

({sk}, {[qk]}, ak, {}, {}) ∈ Γ Sp .

36

If sk has noak-successor, then Duplicator wins. Otherwise, letsk+1 ∈ minn,de
ak

(sk)
be a de-minimalak-successor ofsk. By the definition of semielective quotient and
by the minimality ofsk+1, there exists a transition([qk], ak, [sk+1]) ∈ ∆se+

≈ , thus

({sk}, {[qk]}, ak, {}, {}, {sk+1}, {[sk+1]}) ∈ ΓDup .

Clearlysk+1 ∈ [sk+1], and the invariant is preserved.
– Case 3:sk ∈ U and[qk] ∈ U ′. In this case, we use the minimality of successors of

universal states in universal classes. Assume Spoiler chooses transition

({sk}, {[qk]}, ak, {}, {[qk+1]}) ∈ Γ Sp .

From the definition of quotient, there exists a transition(qk, ak, qk+1) ∈ ∆ s.t.
qk+1 ∈ minn,de

ak
(qk). From the invariantsk ∈ [qk], we havesk ≈de

(1,n) qk. By

Lemma 14, there existssk+1 ∈ minn,de
ak

(sk) s.t. sk+1 ≈de
(1,n) qk+1. Therefore,

Duplicator can select transition

({sk}, {[qk]}, ak, {}, {[qk+1]}, {sk+1}, {[qk+1]}) ∈ ΓDup

s.t.sk+1 ∈ [qk+1], thus preserving the invariant. ⊓⊔

Remark 9.Lemma 17 above is even true when quotienting w.r.t. fair simulation, or even
ordinary simulation. Notice that requiring minimal transitions from universal states in
mixed semielective-classes not only is required for correctness (see Section 5.2), but it
also makes the proof much easier.

Theorem 9. q ≈de
(1,n) [q]se+, where the quotient is taken w.r.t.⊑de

(1,n). In particular,
Lω(q) = Lω([q]se+).

Proof. Directly from Corollary 1 and Lemma 17, and from the fact thatsimulation
implies language inclusion (Theorem 4). ⊓⊔

37

q1

qU

qI

q2

q3

qE

ab, c

a

a

b

c

a a

qI

[]

q2

q3

q1

a

b, c

a

a
b

c

a

Q Q≈

Fig. 5. An example showing that (minimal) transitions from universal states in mixed classes are
needed in semielective quotients. The only two(1, n)-simulation equivalent states inQ areqU

andqE . (In fact,n = 2 suffices.) The resulting mixed class inQ≈ is [] = {qU , qE}. The dashed
a-transition on the right (due toqU) is needed and cannot be discarded: Indeed,Lω(Q) 6= ∅,
while removing the dashed transition fromQ≈ would makeLω(Q≈) = ∅.

p0 p1 p2 p3 · · · pk
a a a a a

a
a0

a1 a2 a3 ak

A

A
A A

A
A

A
A

A
Ab

c

b, c

a

A = {a0, a1, . . . , ak}, Σ = A ∪ {a, b, c}

Fig. 6. An example showing that multipebble-semielective quotients can achieve arbitrarily high
compression ratios. The NBA above hask + 4 states, and thepi’s are (1, 1)-delayed simula-
tion incomparable: Thus, the(1, 1)-semielective quotient hask + 4 states. However, thepi’s are
all (1, n)-delayed simulation equivalent (andn = 2 suffices), therefore the(1, n)-semielective
quotient has only4 states. Moreover, thepi’s are incomparable also w.r.t.(1, n)-universal direct
simulation, which shows that semielective quotients can achieve arbitrarily high compression ra-
tios relative to minimax quotients. Finally, notice that direct backward simulation does not help
either: In fact, any twopi, pj , with i 6= j, are backward-simulation incomparable, as there is
just one way of backward reaching the unique initial statep0. (Remember that backward simula-
tions should be compatible with the initial states, at least.) Therefore, quotienting methods which
employ backward simulations, likemediated preorder[1], do not result in a smaller automaton.

38

E Section 6

We give upper-bounds on the size of game-graphs necessary for computing multipebble
simulations. When considering the size of the those game-graphs, we will make use of
the following counting function:

subn(k) =

k∑

i=0

(
n

i

)
,

which counts the number of subsets of size≤ k of a given set of sizen, and we will
approximate its value from above by using the following rough upper bound

subn(k) ≤ (n + 1)k .

Intuitively, the bound above may be seen as follows: Insteadof counting sets of size
≤ k, one countsorderedsets; each ordered set can be represented as ak-string over
an alphabet of sizen + 1, where we use an extra end-of-string symbol. We also give a
formal calculation.

k∑

i=0

(
n

i

)
=

k∑

i=0

(n

i

)(n − 1

i − 1

)
. . .

(
n − i + 1

1

)

≤
k∑

i=0

(n

i

)(n

i − 1

)
. . .
(n

1

)

≤
k∑

i=0

ni ·

(
k

i

)(
k − 1

i − 1

)
. . .

(
k − i + 1

1

)

=

k∑

i=0

(
k

i

)
· ni = (n + 1)k .

E.1 Solving existential and universal direct simulation

For computing the winner for direct simulation, we construct a 2-player gameGdi =
〈V di

E , V di
A ,→di〉, where Eve has a safety objective. The game-graph is the samefor

both existential and universal direct simulation, but the safety objective is different.
Nodes inV di

A take the formv(q,s), while nodes inV di
E take the formv(q,s,a,q′,s′), with

q,q′ ∈ 2Q,k1 ands, s′ ∈ 2Q,k2 , anda ∈ Σ.

Lemma 18.
∣∣V di

∣∣ ≤ 2 · (n + 1)2(k1+k2) · |Σ|.

Proof.
∣∣V di

A

∣∣ = subn(k1) · subn(k2), and
∣∣V di

E

∣∣ ≤ [subn(k1)]
2 · [subn(k2)]

2 · |Σ|.
Hence,

∣∣V di
A ∪ V di

E

∣∣ ≤ 2 · [subn(k1)]
2 · [subn(k2)]

2 · |Σ| ≤ 2 · (n+1)2(k1+k2) · |Σ|. ⊓⊔

Transitions inV di
A × V di

E model choices of Spoiler: For any(q, s, a,q′, s′) ∈ Γ Sp,
there is a transition for Adamv(q,s) → v(q,s,a,q′,s′). Similarly, for any Duplicator’s

39

move(q, s, a,q′, s′,q′′, s′′) ∈ ΓDup, there exists a transition for Evev(q,s,a,q′,s′) →

v(q′′,s′′) in V di
E × V di

A .
The winning criterion for existential direct simulation induces a setT ∃ of safe ver-

ticesT ∃ = {v(q,s) ∈ V di
A | q ⊆ F implies s ∩ F 6= ∅}. Similarly, the safe set for

universal direct simulation isT ∀ = {v(q,s) ∈ V di
A | q ∩ F 6= ∅ impliess ⊆ F}. For

x ∈ {∃, ∀}, we have thatq ⊑xdi
(k1,k2)

s iff Eve can ensure never leavingT x when starting

from v(q,s). This can be verified by checking whetherv(q,s) ∈ W xdi, where

W xdi = νy. T x ∩ cpre(y) .

E.2 Solving fair simulation

The game-graph for fair simulation is similiar to the previous one for direct simula-
tion, but with the difference that we need extra bookkeepingfor recording whether
each pebble has visited an accepting state or not. We letGf = 〈V f

E , V f
A ,→f〉, where

Adam’s nodes inV f
A are of the formv(q,bad,s,good) and Eve’s nodes inV f

E are of the form
v(q,bad,s,good,a,q′,s′), whereq,q′, s, s′ ⊆ Q. The setsbad ⊆ q andgood ⊆ s record the
current “badness/goodness” of states inq ands, respectively, and they are used to detect
events like “being good since some previous round”: Specifically, the eventbad= ∅ is
used to detect whengood∀(q), and similarly forgood=s andgood∃(s).

Lemma 19.
∣∣V f
∣∣ ≤ 2 · (n + 1)2(k1+k2) · 2k1+k2 · |Σ|.

Proof.
∣∣V f

A

∣∣ = subn(k1) · subn(k2) · 2k1+k2 , and
∣∣V f

E

∣∣ ≤ [subn(k1) · subn(k2)]
2 ·

2k1+k2 · |Σ|. Hence,
∣∣V f

A ∪ V f
E

∣∣ ≤ 2 · [subn(k1) · subn(k2)]
2 · 2k1+k2 · |Σ| ≤ 2 · (n +

1)2(k1+k2) · 2k1+k2 · |Σ|. ⊓⊔

For any(q, s, a,q′′, s′′) ∈ Γ Sp, v(q,bad,s,good) → v(q,bad,s,good,a,q′′,s′′), and, for
any(q, s, a,q′′, s′′,q′, s′) ∈ ΓDup, v(q,bad,s,good,a,q′′,s′′) → v(q′,bad′,s′,good′), where

good′ =

{
s′ ∩ F if good = s

{s ∈ s′ | s ∈ F ∨ s ∈ ∆(good, a)} otherwise

bad′ =

{
q′ \ F if bad = ∅
{q ∈ q′ | q 6∈ F ∧ q ∈ ∆(bad, a)} otherwise

We notice the striking similarity of the update rule forbad pebbles and the updating
rule for the second component in the MH-construction (Section 4). Intuitively, states
in bad′ are those states inq′ which are not accepting and with some bad predecessor.
Similarly, states ingood′ are those states ins′ which are either accepting, or with some
good predecessor. The correctness follows from the following simple fact:

Claim. Letπ = v0v1 . . . be an infinite sequence of vertices, withvi = v(qi,badi,si,goodi)

and s.t.vi → vi+1. Let π1 = q0q1 . . . andπ3 = s0s1 . . . be the projections ofπ to the
first and third component, respectively. Then,good∀(π1,∞) iff badi = ∅ for infinitely
manyi’s, andgood∃(π3,∞) iff goodi = si for infinitely manyi’s.

40

Let T1 be the set of states of the formv(q,bad,s,good) with bad = ∅, and letT2 be
the set of states of the formv(q,bad,s,good) with good = s. The winning criterion for
fair simulation is translated in the following 1-pair Street condition (also known as a
reactivity condition[9]): If T1 is visited infinitely often, thenT2 is visited infinitely
often. Therefore, winning nodes for Eve are those in

W f = νx . µy . νz .
(
T2 ∩ cpre(x) ∪ T1 ∩ cpre(y) ∪ T 1 ∩ cpre(z)

)
.

E.3 Solving delayed simulation

We recall the definition of the game-graph for computing delayed simuation:Gde =
〈V de

E , V de
A ,→de〉, where

V de
A = {v(q,Bad,s,Good) | q, s ⊆ Q}

V de
E = {v(q,Bad,s,Good,a,q′,s′) | q,q′, s, s′ ⊆ Q}

and Bad, Good are two sequences of sets of states fromQ, strictly ordered by set-
inclusion. More precisely,Bad = 〈b1, . . . ,bm1

〉 with 0 ≤ m1 ≤ k1, satisfies, for any
i ∈ {1, . . . , m1},

bi ⊆ q (B1)

bi+1 ⊂ bi, wheni < m1 (B2)

bm1
6= ∅ , (B3)

andGood = 〈g1, . . . ,gm2
〉 with 0 ≤ m2 ≤ k2, satisfies, for anyi ∈ {1, . . . , m2},

gi ⊆ s (G1)

gi ⊂ gi+1, wheni < m2 (G2)

We also denote withBad the set{b1, . . . ,bm1
}, and similarly forGood.

The following lemma states that Algorithm 1 preserves the definition of Bad, Good:

Lemma 20. If Bad andGood satisfy properties (B1)-(B3) and (G1)-(G2), resp., then
the same holds for the setsBad′ andGood′ as computed by Algorithm 1.

Proof. Properties (B1) and (G1) are preserved by howb′ andg′ are constructed, on
lines 4 and 15, respectively. Similarly, the strictess of the order, i.e., (B2) and (G2),
is preserved by removing duplicate elements (lines 6 and 17). Finally, property (B3)
follows by the check at line 8, which enforces that empty elements are removed from
Bad′, if any (line 9). ⊓⊔

Lemma 7.
∣∣V de

∣∣ ≤ 2·(n+1)2(k1+k2) ·
(
1 + (k1 + 1)k1+1

)
·
(
1 + 2(k2 + 1)k2+1

)
·|Σ|.

Proof. We first count the number of pairs(s, Good). Assume|gm2
| = h ≤ k2 (notice

thatm2 ≤ h). We consider two cases, depending on whetherg1 6= ∅ or not. First case:
g1 6= ∅. Then, we can represent the strictly increasing sequenceg1 ⊂ g2 ⊂ · · · ⊂
gm2

by the sequence{di}1≤i≤m2
of non-emptydifferences, defined asd1 = g1 and

41

Algorithm 1 : Updating the sequencesGood andBad

Input : The sequencesGood = 〈g1 ⊂ · · · ⊂ gm2
〉 andBad = 〈b1 ⊃ · · · ⊃ bm1

〉 to be
updated, the current input symbola ∈ Σ and the next configuration〈q′, s′〉.

Output : The updated sequencesGood
′ andBad

′

Add q to Bad, i.e.,1

Bad = 〈q ⊇ b1 ⊃ · · · ⊃ bm1
〉

Bad
′ = 〈〉;2

foreach (b ∈ Bad) do3

4

b
′ = { s ∈ q

′ | s 6∈ F ∧ s ∈ ∆(b, a) }

Add b′ to Bad
′;5

Remove duplicate elements fromBad
′;6

AssumeBad
′ = 〈b′

1 ⊃ · · · ⊃ b′
m′

1
〉;7

if (b′
m′

1
= ∅) then8

Removeb′
m′

1
from Bad

′;9

Add ∅ to the front ofGood, i.e.,10

Good = 〈∅ ⊆ g1 ⊂ · · · ⊂ gm2
〉

if (gm2
= s) then11

Removegm2
from Good;12

Good
′ = 〈〉;13

foreach (g ∈ Good) do14

15

g
′ = { s ∈ s

′ | s ∈ F ∨ s ∈ ∆(g, a) }

Add g′ to Good
′;16

Remove duplicate elements fromGood
′;17

return Good
′ andBad

′;18

di+1 = gi+1 \ gi for i > 1. (We have thatgi =
⋃i

j=1 di, so no information is lost.)
Notice that, by definition,D = {d1, . . . ,dm2

} is a partition ofgm2
= {g1, . . . , gh},

henceD may be represented by asurjective functionf from gm2
to D s.t.f(gi) = dj

iff gi ∈ dj . Let
{

h
m2

}
be the Stirling number of the second kind. Then, the number of

sequences∅ 6= g1 ⊂ g1 ⊂ · · · ⊂ gm2
is

seqh(m2) :=

{
h

m2

}
· m2! .

Second case:g1 = ∅. Thusg2 6= ∅, hence the number of sequences∅ = g1 ⊂ g2 ⊂
· · · ⊂ gm2

is just as before, but with one less element in the sequence, i.e.,seqh(m2 −
1). Hence, the number of pairs(s, Good) is

f2(n, k2) =

k2∑

i=1

(
n

i

)(
1 +

i∑

h=1

(
i

h

) h∑

m2=1

(seqh(m2) + seqh(m2 − 1))

)
.

42

I.e., we sum over all sizesi for setss, and eitherGood is empty, orGood is non-
empty. In this second case, we sum over all possibilities forthe sizeh ∈ {1, . . . , i}
of the largestgm2

(by (G1), everyg ∈ Good is ⊆ s), and over all possibilities for
the number of elementsm2 in Good: For each such combination of indices, we have
seqh(m2)+seqh(m2−1) sequences. We now proceed to derive a bound onf2(n, k2).
As seqh(m2) represents the number of surjective functions from a set of sizeh to a set
of sizem2, clearlyseqh(m2) ≤ mh

2 , just considering all such functions. Then,

f2(n, k2) ≤
k2∑

i=1

(
n

i

)(
1 +

i∑

h=1

(
i

h

) h∑

m2=1

2 · mh
2

)

≤
k2∑

i=1

(
n

i

)(
1 +

i∑

h=1

(
i

h

) h∑

m2=1

2 · hh

)

≤
k2∑

i=1

(
n

i

)(
1 + 2 ·

i∑

h=1

(
i

h

)
hh+1

)

≤
k2∑

i=1

(
n

i

)(
1 + 2 · i ·

i∑

h=1

(
i

h

)
ih

)

≤
k2∑

i=1

(
n

i

)(
1 + 2 · i · (i + 1)i

)

≤
k2∑

i=1

(
n

i

)(
1 + 2 · (i + 1)i+1

)

≤
k2∑

i=1

(
n

i

)(
1 + 2 · (k2 + 1)k2+1

)

≤ (n + 1)k2 ·
(
1 + 2 · (k2 + 1)k2+1

)
.

We now count the number of pairs(q, Bad). Assume|b1| = h ≤ k1 (notice that
m1 ≤ h). By an argument similar to the one in the previous paragraph, we have that the
number of non-empty sequencesb1 ⊃ b2 ⊃ · · · ⊃ bm1

6= ∅ is seqh(m1). Hence, the
number of pairs(q, Bad) is

f1(n, k1) =

k1∑

i=1

(
n

i

)(
1 +

i∑

h=1

(
i

h

) h∑

m1=1

seqh(m1)

)
,

which, with a similar calculation to the above, can be shown to be bounded by

f1(n, k1) ≤ (n + 1)k1 ·
(
1 + (k1 + 1)k1+1

)
.

Finally,
∣∣V de

A

∣∣ ≤ f1(n, k1) · f2(n, k2), and
∣∣V de

E

∣∣ ≤ f1(n, k1) · f2(n, k2) · (n +

1)k1+k2 · |Σ|, thus
∣∣V de

A ∪ V de
E

∣∣ ≤ 2 · f1(n, k1) · f2(n, k2) · (n + 1)k1+k2 · |Σ| ≤

2 · (n + 1)2(k1+k2) ·
(
1 + (k1 + 1)k1+1

)
·
(
1 + 2 · (k2 + 1)k2+1

)
· |Σ|. ⊓⊔

43

