

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429723921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Generalized Simulation Relations with

Applications in Automata Theory

Lorenzo Clemente
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2011

Abstract
Finite-state automata are a central computational model in computer science, with

numerous and diverse applications. In one such application, viz. model-checking, au-

tomata over infinite words play a central rôle. In this thesis, we concentrate on Büchi au-

tomata (BA), which are arguably the simplest finite-state model recognizing languages

of infinite words. Two algorithmic problems are paramount in the theory of automata:

language inclusion and automata minimization. They are both PSPACE-complete, thus

under standard complexity-theoretic assumptions no deterministic algorithm with worst

case polynomial time can be expected. In this thesis, we develop techniques to tackle

these problems.

In automata minimization, one seeks the smallest automaton recognizing a given

language (“small” means with few states). Despite PSPACE-hardness of minimization,

the size of an automaton can often be reduced substantially by means of quotienting.

In quotienting, states deemed equivalent according to a given equivalence are merged

together; if this merging operation preserves the language, then the equivalence is

said to be Good for Quotienting (GFQ). In general, quotienting cannot achieve exact

minimization, but, in practice, it can still offer a very good reduction in size. The central

topic of this thesis is the design of GFQ equivalences for Büchi automata.

A particularly successful approach to the design of GFQ equivalences is based on

simulation relations. Simulation relations are a powerful tool to compare the local

behavior of automata. The main contribution of this thesis is to generalize simulations,

by relaxing locality in three perpendicular ways: by fixing the input word in advance

(fixed-word simulations, Ch. 3), by allowing jumps (jumping simulations, Ch. 4), and by

using multiple pebbles (multipebble simulations for alternating BA, Ch. 5). In each case,

we show that our generalized simulations induce GFQ equivalences. For fixed-word

simulation, we argue that it is the coarsest GFQ simulation implying language inclusion,

by showing that it subsumes a natural hierarchy of GFQ multipebble simulations.

From a theoretical perspective, our study significantly extends the theory of simula-

tions for BA; relaxing locality is a general principle, and it may find useful applications

outside automata theory. From a practical perspective, we obtain GFQ equivalences

coarser than previously possible. This yields smaller quotient automata, which is ben-

eficial in applications. Finally, we show how simulation relations have recently been

applied to significantly optimize exact (exponential) language inclusion algorithms

(Ch. 6), thus extending their practical applicability.

iii

Acknowledgements

Writing a thesis is a complex endeavor, and it is but the last one in the long journey

of Ph.D. studies. In these few lines, I take occasion for thanking those people which

made this voyage worthwhile and rewarding.

First and foremost, I thank my supervisor Richard Mayr. If in these three years I

have achieved anything at all, then I cannot even imagine how this could have been

possible without his guidance and acumen. His expertise allowed me to discover many

beautiful topics, which would otherwise had remained buried under an overwhelming

literature. I’m indebted to him for being coauthor of part of the work presented here,

and mentor for the rest of it.

I would also like to thank Alex Simpson and my second supervisor Kousha Etessami

for kindly agreeing to become members of my progress panels.

I am honored to have Leonid Libkin and Thomas Wilke as my examiners. Thank you

for agreeing to embark upon reading this thesis, and for providing valuable feedback.

I thank Anca Muscholl and Igor Walukiewicz for hosting my stay in Bordeaux after

I left Edinburgh, when the last part of this thesis has been written.

I especially thank my former advisor Prof. Alberto Pettorossi for introducing me to

Theoretical Computer Science. From Alberto, I learned that “L’essentiel est invisible

pour les yeux”; more practically, his valuable map of the Athens of the North prevented

me from getting lost in Edinburgh. Thanks also to Prof. Alberto Pettorossi and Prof.

Anton Wakolbinger who, by writing two very convincing recommendation letters, made

my Ph.D. application successful.

Working with other people has been great, and made me feel part of a larger project.

For this, I thank my co-authors Parosh A. Abdulla, Yu-Fang Chen, Lukáš Holı́k, Chih-

Duo Hong, and Tomáš Vojnar. I especially thank Parosh for hosting me in Uppsala

twice, which, amongst other things, allowed me to experience some real winter.

My stay in Scotland has been turned into a much more pleasing experience thanks

to many colleagues and friends: Julian&Teresa, who fully embody the South American

warmth; Willem&Saskia, who have never met a game they didn’t like; Ezra, with whom

I had many funny and interesting conversations; Patrick, who patiently agreed listening

to my research in many occasions; Wenyuan Yu and Xin Wang, who taught me, perhaps

unwittingly, a lot about Chinese culture; Ben, who is small; Matteo, who is Italian,

and, still, can eat Scottish pizza every day; Gavin, who used the same plastic bag for

as long as I can remember; Grant, whose name always grants puns galore; Claire,

iv

whose irresistibly convincing glance persuaded me to organize the Friday CakeTM for a

couple of months (I hope the tradition will be kept in good shape in Patrick’s hands!);

Anthony W. Lin, who knows how to play some serious table tennis, and who knows how

to change his surname (for the benefit of acknowledgement writers); Václav Brožek,

who knows how to have some serious fun during school and conference trips (we

had much!), and who does not know how to change his surname (for the benefit of

acknowledgement writers); Lucy, who can cycle really fast; my flatmate Adriana, who

has a delightful habit of not-so-quiet singing—especially at night; Adam, who can

prepare an amazing, almost lyrical hot chocolate; Magdalena, who has a full-fledged

bakery at home, Tomasz, who has the most compelling humor I ever came across, and

Helena, who already knows how to win an eBay auction.

Special thanks go to Beatrice and Erik for always listening to my jokes in the hope

that they would eventually improve; or perhaps definitively stop, basically. I also thank

Beatrice and Elena for once hosting me, while continually believing that I was leaving

on the following day.

In Bordeaux I have found new friends who enlightened the final phase of my Ph.D.:

Sri, who has never seen a sentence which was precise enough, never never never; Petru,

who has never produced such a sentence, but it’s OK; Anna, who makes beautiful

handwritten postcards; Dominik, who is funny, and, you know, fun is fun; and Sagnik

W. Catan, who has invited me to what will be an awesome Indian wedding!

Many people sustained me during my period abroad. I regard myself lucky to be the

recipient of the longstanding friendship of Alessandro Checco, Francesca Piacentini,

and Francesco Marino. Every time I leave, our bond grows stronger.

I profoundly thank my family and my lovely sister Martina for always offering me

untiring and indefatigable support. It is their unconditional love that allowed me to

become who I am.

Last, and foremost, I thank Giulia. She deserves the greatest thank of all for her

unfaltering love, unswerving commitment to a common project, and, more worldly, for

the most awesome strawberry cake one can think of! Giulia, this thesis is especially

dedicated to you.

v

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Lorenzo Clemente)

vi

Table of Contents

Page

Abstract iii

Declaration vi

List of Figures ix

List of Tables x

List of Examples xi

1 Introduction 1

1.1 Overview . 1

1.2 Formal methods . 2

1.3 Model-checking . 3

1.4 Automata theory . 4

1.5 Simulation preorders . 8

1.6 Contributions and thesis structure . 11

2 Background 15

2.1 Overview . 16

2.2 Basic notation . 16

2.3 Games . 18

2.4 Automata . 20

2.5 Simulation preorders . 25

2.6 Simulation-based automata simplification 30

3 Fixed-word simulations 35

3.1 Overview . 35

3.2 Multipebble simulations . 37

vii

3.3 Containment preorders . 42

3.4 Fixed-word simulations . 45

3.5 Fixed-word multipebble delayed simulation 56

3.6 Fixed-words and ranks . 57

4 Jumping simulations 71
4.1 Overview . 72

4.2 Preliminaries . 74

4.3 Jumping simulation transformers . 76

4.4 Language containment and inclusion 84

4.5 Reflexivity and jumping-safety . 91

4.6 Proxy simulation hierarchies . 98

4.7 Proxy simulations vs Mediated preorder 109

4.8 Computing jumping simulations . 116

5 Multipebble simulations for ABAs 119
5.1 Applications of alternating automata 124

5.2 Simulations for alternating Büchi automata 127

5.3 Multipebble simulations for alternating Büchi automata 130

5.4 Basic properties of multipebble simulations 135

5.5 Uniform simulation games . 145

5.6 Transitivity . 158

5.7 Multipebble simulations and subset-like constructions 177

5.8 Quotienting . 193

5.9 Computing multipebble simulations 219

5.10 Complexity of multipebble simulations 225

6 Conclusions 245
6.1 Overview . 245

6.2 Applications . 246

6.3 Recapitulation and further work . 247

6.4 Advanced language inclusion checking 250

6.5 Conclusions . 264

Bibliography 265

Index 278

viii

List of Figures

3.1 More pebbles help Duplicator . 38

3.2 Simulation, pebbles, and containment 46

3.3 Pebbles, fixed-words, and containment 54

3.4 A running example . 61

3.5 Ranks of the running example . 63

4.1 Composing games . 83

4.2 Coherent paths . 90

4.3 Proxy simulations hierarchies . 102

5.1 Multipebble simulation hierarchy . 138

5.2 Translation to uniform automata and games 151

6.1 Example automaton B and matrices 257

6.2 Example multiplication of matrices 260

ix

List of Tables

1.1 Basic simulation preorders . 10

1.2 Generalized simulations . 11

1.3 Contributions . 12

3.1 Main contributions (gray area; X= GFQ, ×= not GFQ) 37

5.1 Multipebble simulations summary 122

5.2 Quotienting summary (X= GFQ, ×= not GFQ) 196

5.3 Complexity summary . 225

x

List of Examples

1.4.1 Quotienting under-approximates minimization 7

2.5.1 The inclusion between direct, delayed and fair simulation is strict . . 27

2.6.1 Fair (bi)simulation is not GFQ . 30

2.6.2 Little-brothers are necessary for delayed simulation 32

3.3.1 Multipebble simulations “do not reach” containment 44

3.3.2 Delayed containment is not GFQ 45

3.4.1 Fixed-word quotients can achieve arbitrary compression ratios 49

3.4.2 Fixed-word simulations are strictly included in containment (I) . . . 51

3.4.3 Fixed-word simulations are strictly included in containment (II) . . . 52

3.4.4 Multipebble simulation is strictly included in fixed-word simulation . 53

4.1.1 Simultaneous forward/backward simulation quotienting is incorrect . 73

4.4.1 Visiting arbitrarily many accepting states is not sufficient 89

4.5.1 The transformer τ f(�f ,v) is not reflexive 92

4.5.2 The fair transformer does not preserve jumping-safe preorders 94

4.6.1 The fair transformer τ f is not idempotent 100

4.6.2 Simultaneous quotienting w.r.t. τdi+bw(Id) and τde+bw(Id) is incorrect 103

4.6.3 Proxy simulation quotients achieve arbitrarily high compression ratios 104

4.6.4 Proxy quotients can outperform iterated quotienting 107

4.7.1 Backward proxy simulation quotients can outperform mediated quotients111

4.7.2 Forward proxy simulation quotients can outperform mediated quotients 112

4.7.3 Mediated quotients can outperform proxy simulation quotients 113

5.3.1 Multipebble existential-direct simulation does not imply ω-inclusion 134

5.4.1 The multipebble hierarchy is strict 137

5.4.2 Multipebble simulation is not necessary for language inclusion . . . 144

5.6.1 (1, k)-simulation with 1 < k < n is not transitive 158

5.6.2 (n, 1) and (n, n)-delayed simulation from [29] are not transitive . . . 175

xi

5.7.1 Lemma 5.7.6 is tight . 180

5.7.2 Lemma 5.7.7 is tight . 182

5.7.3 The MH-construction preserves neither direct, nor delayed simulation 183

5.7.4 n pebbles are needed in Lemma 5.7.14 187

5.7.5 Fair simulation is needed in Lemma 5.7.14 188

5.8.1 Multipebble quotients can achieve arbitrary compression ratios . . . 194

5.8.2 No fixed representatives for existential states 205

5.8.3 Mixed classes need to be declared existential 206

5.8.4 Transitions from universal states in mixed classes are needed 207

5.8.5 (1, k)-delayed simulation is not GFQ for 1 < k < n 210

5.8.6 (k, 1)-delayed simulation is not GFQ for k > 1 212

xii

Chapter 1

Introduction

Contents
1.1 Overview . 1

1.2 Formal methods . 2

1.3 Model-checking . 3

1.4 Automata theory . 4

1.4.1 Language universality and inclusion 5

1.4.2 Automata minimization 5

1.4.3 Quotienting . 6

1.5 Simulation preorders . 8

1.5.1 Intuition . 8

1.5.2 Simulation preorders for Büchi automata 9

1.5.3 Generalizations . 10

1.6 Contributions and thesis structure 11

1.1 Overview

We can synthetically summarize the topic of this thesis as

quotienting automata w.r.t. generalized simulation equivalences.

In the rest of this chapter, we informally explain the meaning of the sentence above.

1

2 Chapter 1. Introduction

• In Section 1.2 and Section 1.3 we give motivations for the study of the theory of

finite automata. We present the general area of formal methods, and the specific

approach of model-checking.

• In Section 1.4 we introduce finite-state automata, and we define the problem of

reducing their size.

• In Section 1.4.3 we explain quotienting, which is one specific method of reducing

the size of automata.

• In Section 1.5 we introduce simulation equivalences, which provide a structured

approach for quotienting automata.

• Finally, in Section 1.6 we present our contributions, i.e., generalized simulation

equivalences for quotienting automata.

The presentation in this chapter is informal; formal definitions are deferred to Chapter 2

for background material, and to the main Chapters 3-5 for our novel contributions.

1.2 Formal methods

Computing systems are quickly becoming pervasive, ubiquitous and invisible (cf. every-

ware [60]), and their growth in complexity daunts our capacity of properly understanding

their intricate behavior. The lack of a firm and rigorous mathematical foundation for

software engineering results in the truly ubiquitous, “everyware” presence of bugs; in

turn, this prevents the area from becoming a mature engineering discipline.

While in most applications it is possible to cope with system malfunctions (for

example, by resetting the device), in critical systems errors are unacceptable, as they

may result in tremendous financial losses, or, worst of all, human-life loss. We just

mention a few notable examples of failure due to our lack of understanding of systems’

behavior.

• The Therac 25 radiotherapy machine [84]. The Therac 25 was a machine for

radiation therapy. In the period 1985-87, it is deemed responsible to six accidents

(three of them fatal) due to a software failure resulting in wrong radiation dose.

• The London ambulance service [48]. In 1992, London adopted a computerized

system to control the dispatching of ambulances. Overwhelmed with too many

1.3. Model-checking 3

real-time requests, the system inundated the human operators with exception

messages, which prevented the dispatching of important information to the am-

bulances, until it finally crashed within one week since installation. As many as

twenty deaths have been ascribed to the system’s malfunctions.

• The Intel Pentium FDIV bug [64, 25, 121, 93, 30, 38]. The Intel P5 Pentium

microprocessor contained a bug in his Floating Point Unit (FPU). The new

and faster floating-point division algorithm required a look-up table to compute

intermediate results, but some entries in this table were incorrect. Eventually,

Intel had to replace all buggy chips, which resulted in an estimated loss of $500

millions. Intel later turned some of the faulty chips into key rings [94].

• The Ariane 5 rocket [57]. The Ariane 5 Flight 501 was launched on 4th June

1996, but a malfunction in the control software triggered self-destruction only 37

seconds after launch. The bug was caused by integer conversion overflow in a

procedure that was not even needed after launch. This resulted in the loss of 10

years of work and $7 billions.

Therefore, we need to improve our understanding of critical systems in order to build

them correctly. The wide discipline of formal methods provides an answer by giving a

mathematical foundation to system construction.

1.3 Model-checking

In the formal approach to system construction, mathematically based languages, models

and tools are used to specify, represent and verify such systems. First, one first develops

a model of the system, which is a abstraction of its behavior with a precise, mathematical

semantics. Second, one produces a formal specification, which is an assertion in a

logical language (usually, in temporal logic [96]). Finally, one checks whether the model

satisfies the specification. This can be done in several ways: Two notable approaches

are theorem-proving and model-checking.

• In interactive theorem-proving (cf. [65]), both the model and the property are

expressed as formulas in a deductive system consisting of axioms and infer-

ence rules. The user is assisted in finding a proof that the model satisfies the

specification.

4 Chapter 1. Introduction

• In model-checking [26, 97], the model is specified as a state machine and the

property as a logical formula. The state space of the model is explored to show

conformance to the property. The method is fully automated, complete, and, when

the property fails, it can generate informative counter-examples, explaining which

behavior of the system violates the property.

Model-checking and theorem-proving have been successfully applied in many real-

life applications, which include, but are not limited to [27]: avionics, large database

systems, household electronic devices, electronic processors, medical devices, nuclear

plants, security systems, telephone switching systems, transportation systems, hardware

communication and coherence protocols, and anti-earthquake buildings. In this thesis,

we develop methods that find their application in model-checking.

1.4 Automata theory

There are several approaches to model-checking. In the automata-theoretic approach

[114], both the system and the specification are compiled into finite-state automata,

and the model-checking problem is reduced to a language-inclusion problem between

automata: The system is correct w.r.t. the specification iff every behavior of the system

is allowed by the specification, that is, if the language of the system is included in that

of the specification, and the former is a purely automata-theoretic problem. While finite-

state automata [98, 16] are ordinarily considered as descriptors of finite objects1, the

kind of automata in use within formal methods recognize infinite objects. The adoption

of automata on infinite objects stems from the need of modelling systems which have

an on-going interaction with the environment, and which are not supposed to stop;

therefore, their behavior is infinite. These are collectively called reactive systems [6];

examples include operating systems, communicating protocols and embedded systems.

Moreover, the behavior of a reactive system can be modelled either as an infinite word

or as an infinite tree, depending on whether we want to study its future time evolution

as linear or branching, respectively (cf. [116]).

Here, we opt for the linear-time view. There are several finite-state models for

language of infinite words. We concentrate on Büchi automata, which accept an infinite

word if there exists a corresponding computation visiting a designated set of accepting

states infinitely often. Historically, such automata had been introduced by R. Büchi in

1In [98], they are called automata over finite tapes, in analogy to Turing machines.

1.4. Automata theory 5

1962 (hence the name) as a tool to prove decidability of monadic second-order logic

(MSO); his fundamental result states that languages recognized by Büchi’s automata are

(effectively) closed under complementation. Other models for infinite words include

Muller automata, Rabin automata, Street automata, and parity automata (cf. [58]).

As already mentioned, Büchi automata are used for modelling both the system and

the specification. If the specification is given as a formula in a logical language, then

this formula needs to be “compiled” into a Büchi automaton before proceeding. For

specifications in MSO, Büchi’s proof entails that these can be translated into automata

of non-elementary size (since each complementation step produces an exponentially

larger automaton), and this blow-up cannot be avoided in general. For specifications in

other temporal logics, the translation can be performed at a cheaper price; for example,

for LTL, a single exponential blow-up suffices [118].

In this thesis, we concentrate on two important problems in the theory of Büchi

automata: language inclusion and automata minimization.

1.4.1 Language universality and inclusion

The language inclusion problem asks whether the language of an automaton is included

in the language of another automaton, and language universality problem is the subprob-

lem of inclusion where the first automaton accepts every infinite word (see Section 2.4.3

for a formal definition). As we have seen, the model-checking problem can be reduced

to a language inclusion problem between the system and the specification [114]. Also

language universality has applications in formal verification; for example, it is used

in sanity checking of temporal properties [103], where one wants to ensure that the

specification automaton does not trivially accept every word (due to a design error).

From a computational complexity perspective, both universality and inclusion check-

ing are PSPACE-complete problems [111], which means that no efficient algorithms

are known, and it is unlikely that provably efficient algorithms will be developed in the

future. Despite theoretical intractability, there has recently been a rekindled interest

into finding algorithms which can solve problems of practical relevance [35, 51] (see

also [122, 13, 36, 37, 5]).

1.4.2 Automata minimization

Another cornerstone automata-theoretic problem is minimization of automata. Its

precise formulation depends on a notion of size of an automaton; one way of measuring

6 Chapter 1. Introduction

it is in terms of number of states. Smaller automata are easier to represent, manipulate

and reason about.2 Automata minimization asks to find an automaton with least number

of states recognizing a given language. Minimal automata need not be unique in

general. Like for inclusion checking, it is a computationally hard question: Minimality

checking is already PSPACE-complete for finite-word automata [71] (while it is in

polynomial time for deterministic automata [69]), and even approximating the minimal

automaton retains the same high complexity [59]. While theoretical characterizations

of minimal nondeterministic automata are known [74, 21, 9], algorithms working in

cases of practical relevance are still missing.

For automata over infinite words, minimization is PSPACE-complete for nonde-

terministic Büchi automata. Recently, it has been shown to be NP-complete for de-

terministic Büchi automata [107]. (The complexity reduces to polynomial time for

deterministic weak Büchi automata [85].) Despite these discouraging lower bounds,

concrete algorithms have been proposed, both for deterministic [39] and nondeterminis-

tic Büchi automata [40]. However, exact minimization remains unfeasible for automata

with more than a handful of states, and we need to content ourselves with approximate

techniques. One such technique is called quotienting, which we introduce next.

1.4.3 Quotienting

In this thesis, we study a particular approach to state-space reduction for Büchi automata,

called quotienting. In quotienting, certain states of the automaton are identified and

collapsed together, thus resulting in a reduction in size. Collapsible states are defined

according to a suitable equivalence relation, which is designed to ensure that the

quotienting operation is sound (i.e., language-preserving). If quotienting w.r.t. an

equivalence preserves the language of the automaton, then we say that the equivalence

is Good for Quotienting (GFQ).

In general, quotienting provides only an under-approximation to minimization,

since the minimal automaton might require some intricate re-wiring of transitions not

attainable by just merging states. This is shown in the example below.

2We shall note here that this point has been disputed in [108], where it is observed that smaller
automata are not necessarily better in certain applications. Nonetheless, understanding automata mini-
mization is still an important theoretical problem.

1.4. Automata theory 7

Example 1.4.1 - Quotienting under-approximates minimization

q0

q1 q2

q3 q4

a, b

a b

b a

a, b a, b

≈

r0

r1 r2

r3

a, b

a b

b a

a, b
s0

s1 s2

a b

a b

b a

a)
The original

automaton Q
b)

The quotient

automatonR
c)

The minimal

automaton S

Consider the nondeterministic Büchi automaton Q above, over the alphabet Σ = {a, b}.
It has 5 states, and it recognizes the language L consisting of those infinite words

where both letters a and b appear infinitely often. States q3 and q4 are equivalent and

can be merged without changing the recognized language. Thus, Q is not quotient-

minimal. By merging q3 and q4 into r3, we obtain the 4-states quotient automaton

R, which recognizes L as well. InR, no two states can be merged without changing

the language. Therefore, R is quotient-minimal. However, the 3-states automaton S
also recognizes L, but it has fewer states than R. Therefore, R is not minimal, and

quotienting under-approximates minimization.3

In spite of the fact that quotienting cannot attain exact minimization, we remark

that optimal quotienting is PSPACE-complete, too. That is, it is PSPACE-complete to

check whether there exists two mergeable states; a GFQ equivalence s.t. no coarser

GFQ equivalence exists; intuitively, this holds since checking mergeability is essentially

the same as an equivalence check (i.e., double inclusion), which is PSPACE-complete.

However, to render quotienting practically feasible, one usually designs easy-to-compute

equivalences which are guaranteed to be GFQ by construction, thus avoiding the

expensive equivalence check. Thus, the quotienting problem is reduced to finding and

computing suitable equivalence relations for automata. The most successful attempt in

this direction is represented by equivalences derived from simulation preorders.

3Incidentally, S is minimal, since L cannot be recognized with less than 3 states.

8 Chapter 1. Introduction

1.5 Simulation preorders

Simulation preorder is a means for comparing the behavior of programs. While the

informal intuition of step-wise “mimicry” has its origins in the early days of computer

science, its formal definition in the context of programs came with [91], where an

algorithm (or an approximation thereof) is actually defined to be the set of simulation-

equivalent programs realizing it.

1.5.1 Intuition

The notion of simulation between programsA and B is best explained as a pebble game,

where pebbles are put on states of the program. There are two players, called Spoiler

and Duplicator4, where the former controls a pebble in A and the latter a pebble in

B. The objective of Duplicator is to show that B simulates A, while Spoiler has the

opposite goal. They play in turns: At the beginning of each turn, Spoiler moves her

pebble along a transition in A. Then, Duplicator replies by moving her pebble along

a corresponding transition in B. If Duplicator’s pebble gets stuck since no matching

transition is available, then she loses and the game ends; otherwise, the game goes on

forever and Duplicator wins. Then, B simulates A if, and only if, Duplicator always

wins the simulation game. (In game-theoretic terms, this means that Duplicator has a

strategy that is winning against every Spoiler’s counter-strategy.)

Simulation desiderata for automata

The original notion of simulation is suitable to compare programs which either execute

some visible action, or halt. In the context of automata, simulations need to additionally

deal with acceptance conditions (and initial states). That is, in an automaton certain

states are accepting, and simulations need to respect accepting states, in some sense.

Simulations are expected to satisfy the following desiderata (see, e.g., [43]):

(Da) Sufficient for language inclusion: Simulation should imply language inclusion.

(Db) Good for Quotienting (GFQ): Quotienting w.r.t. simulation equivalence should

preserve the language of the automaton.

(Dc) Efficiently computable: Simulation should be computable in deterministic poly-

nomial time.
4These names come from Ehrenfeucht-Fraı̈ssé games; [45] attributes the current terminology to [72].

1.5. Simulation preorders 9

(Dd) Transitive: Simulation should be transitive.

The transitivity requirement is not usually stated explicitly in the literature, since most

simulation relations are transitive, and easily established so. However, neither of these

two facts hold for certain simulations studied in this thesis (especially for multipebble

simulations, see below), so we list transitivity as an additional desideratum.

Perhaps surprisingly, (Da) is not needed in all applications, e.g., for quotienting

(Db). As an example, consider backward simulation, which is a GFQ preorder which

do not imply language inclusion. Other examples are studied in this thesis.

1.5.2 Simulation preorders for Büchi automata

In the context of Büchi automata, direct simulation [34] has been the first attempt of

an acceptance-sensitive notion of simulation. (They call it BSR-aa, for “accepting-

accepting Büchi simulation relation”.) The name indicates that it preserves accepting

states step-wise: Whenever Spoiler’s pebble is accepting (i.e., it is on an accepting

state), Duplicator’s pebble has to be accepting too. Direct simulation is a sound and

efficient under-approximation of language inclusion [34]; moreover, it is also GFQ [10].

(Both properties also hold w.r.t. finite-word automata.)

In the context of Büchi automata, the exact time an accepting state is visited is not

important, and direct simulation can be relaxed. Therefore, there have been several

attempts at defining more liberal notions of refinement for comparing systems with

acceptance constraints. This strand of research successfully identified the notion of

fair simulation [66], where Duplicator has to match accepting states only in the limit,

and not step-wise like in direct simulation: I.e., Duplicator is required to visit infinitely

many accepting states only if Spoiler does so. Thus, fair simulation is coarser than

direct simulation. Moreover, it still implies language inclusion between Büchi automata.

Thus, it is natural to ask whether fair simulation is GFQ. This turns out to be false

[67, 43] (cf. also Example 2.6.1).

Motivated by the quotienting problem, [43, 44] introduced delayed simulation as an

intermediate notion between direct and fair simulation. Delayed simulation arises as

a relaxation of direct simulation, where Duplicator can allow a finite delay to visit an

accepting state after Spoiler has done so. Unlike fair simulation, delayed simulation is

GFQ [43] (cf. also [20]).

Still motivated by state-space reduction, another variant of simulation that has

been considered is backward simulation [99]. Backward simulation is similar to direct

10 Chapter 1. Introduction

Simulation
Language

inclusion
GFQ

Efficiently

computable
Transitive

(Da) (Db) (Dc) (Dd)

Direct simulation X X X X

Delayed simulation X X X X

Fair simulation X × X X

Backward simulation × X X X

Table 1.1: Basic simulation preorders

simulation, except that pebbles are moved backwards, i.e., towards predecessors instead

of successor states. Backward simulation is interesting since, while it does not imply

language inclusion, it is GFQ [110] (where it is called “reverse simulation”). Moreover,

backward simulation is in general incomparable with direct, delayed, or fair simulation

The properties of the various simulations are summarized in Table 1.1.

1.5.3 Generalizations

Simulation preorders can be generalized in at least two perpendicular directions.

• More general models of automata: The ordinary notion of simulation can be

extended to more general models of automata, like automata over trees, alternating

automata, pushdown automata, etc.

• Coarser simulation-like notions: More general notions of simulation can be

defined. This is usually obtained by modifying the rules of the simulation game;

since one is usually interested in obtaining coarser notions, Duplicator is given

“more power” in some form.

In this thesis, we consider generalizations of both kinds. In the literature, simulation

for alternating Büchi automata (ABAs) [55], for generalized Büchi automata [73],

and for Büchi tree automata [12] are instances of the first kind, while the multipebble

simulations for nondeterministic Bchi automata (NBAs) of [42] is of the second kind.

Simulations for ABAs and multipebble simulations play an important rôle in this thesis.

1.5.3.1 Simulations for alternating Büchi automata

Simulation preorders can be studied for more general models. One such model is

obtained by considering alternation [22]. Simulations for alternating Büchi automata

1.6. Contributions and thesis structure 11

Simulation
Language

inclusion
GFQ

Efficiently

computable
Transitive

(Da) (Db) (Dc) (Dd)

Multipebble for NBAs X X∗ ×∗∗ ×∗∗∗

Simulations for ABAs X X∗ X X

∗ except for the fair variant
∗∗ except for fixed number of pebbles
∗∗∗ except for certain limit cases (1 pebble or high number of pebbles)

Table 1.2: Generalized simulations

(ABAs) have been studied in the fundamental work [55], where they show that simu-

lations satisfying the four desiderata can be defined for alternating models; the most

challenging point is to design suitable notions of quotient for alternating models.

1.5.3.2 Multipebble simulations

Another direction is to define more general simulation relations. Multipebble simula-

tions have been introduced in the context of nondeterministic Büchi automata (NBAs) in

[42], with the aim of obtaining coarser relations, at the expense of higher computational

cost. The ordinary simulation game is generalized by allowing Duplicator, and only

Duplicator, to use several pebbles. Duplicator can “hedge her bets” by splitting her

pebbles to several successors during the game, in order to delay committing to particular

decisions. Multipebble simulations can be defined in the direct, delayed and fair variant,

in the spirit of [43]. They can be used for under-approximating language inclusion, and,

for fixed number of pebbles, they are computable in polynomial time. Moreover, the

direct and delayed variant can be used for quotienting automata (GFQ) [42]. In certain

limit cases, they are also transitive.

Table 1.2 summarizes the properties of generalized simulations.

1.6 Contributions and thesis structure

In this thesis, we generalize the theory of simulation relations along several directions.

These generalizations are motivated by tackling quotienting and language universal-

ity/inclusion problems.

In Chapter 2, we introduce notation and formal definitions for many notions used

12 Chapter 1. Introduction

Simulation Ch.
Language

inclusion
GFQ

Efficiently

computable
Transitive

(Da) (Db) (Dc) (Dd)

Fixed-word for NBAs 3 X X∗ × X

Jumping for NBAs 4 × X∗ X X

Multipebble for ABAs 5 X X∗ ×∗∗ ×∗∗∗

∗ except for the fair variant
∗∗ except for fixed number of pebbles
∗∗∗ except for certain limit cases (1 pebble or high number of pebbles)

Table 1.3: Contributions

throughout the thesis, like automata, games and simulation preorders. Then, three main

chapters follow, constituting the three main contributions of this thesis (cf. Table 1.3).

1. In Chapter 3, we introduce fixed-word simulations for NBAs, which generalize

ordinary simulation. In fixed-word simulations we give more power to Duplicator

by requiring Spoiler to declare the input word in advance; once the input is de-

clared, both players have to play according to the prescribed symbols. Fixed-word

simulations satisfy desiderata (Da), (Db) and (Dd), but they are not efficiently

computable (PSPACE-complete) (Dc).

We also consider a further generalization of fixed-word simulation, by giving

Duplicator multiple pebbles. The main technical result of the chapter is The-

orem 3.4.3, which states that multiple pebbles do not increase the power of

Duplicator for fixed-word delayed simulation. In particular, this implies that

fixed-word simulation subsumes multipebble simulation. The result is obtained

via a non-trivial ranking construction.

2. In Chapter 4, we introduce jumping simulations for NBAs, which generalize

simulations by allowing both players to “jump” during the game. Jumps are

controlled by a binary relation given as input to the construction. Thus, jumping

simulations act as a relation transformer. In the main result of the chapter we

prove that jumping simulation transformers map GFQ preorders to GFQ pre-

orders (cf. Theorems 4.5.3 and 4.5.4). Jumping and fixed-word simulations are

incomparable.

3. In Chapter 5, we define multipebble simulations for ABAs, thus generalizing

1.6. Contributions and thesis structure 13

both [42] and [55]. We establish that multipebble simulations do generalize from

NBAs to ABAs in a satisfactory way, preserving all the expected properties.

In particular, direct and delayed multipebble simulations are GFQ even over

ABAs; this requires a further tuning of the quotients defined in [55].

Finally, in Chapter 6, we draw some conclusions and we illustrate possible directions

for further research. Moreover, we put simulation preorders in perspective, by presenting

connections with exact (exponential) algorithms for Büchi automata universality and

language-inclusion testing; in particular, we mention how simulation preorders have

recently found applications in such optimized algorithms [2, 3].

Chapter 2

Background

Contents
2.1 Overview . 16

2.2 Basic notation . 16

2.3 Games . 18

2.4 Automata . 20

2.4.1 Nondeterministic Büchi automata 20

2.4.2 Alternating Büchi automata 21

2.4.3 Language inclusion and containment 22

2.4.4 Quotienting . 23

2.5 Simulation preorders . 25

2.5.1 Forward simulations . 25

2.5.2 Backward simulation . 28

2.5.3 Complexity of simulations 30

2.6 Simulation-based automata simplification 30

2.6.1 Quotienting . 30

2.6.2 Transition simplification 31

2.6.3 Max quotients . 33

15

16 Chapter 2. Background

2.1 Overview

In this chapter, we introduce notation and formal definitions for standard notions used

throughout the thesis. In Section 2.2 we fix general notation, in Section 2.3 we introduce

games, and in Section 2.4 we define nondeterministic and alternating Büchi automata,

along with the language inclusion and quotienting problem. In Section 2.5, we present

classical results on simulation preorders for Büchi automata. Finally, in Section 2.6 we

present simulation-based techniques for quotienting and transition-simplification.

2.2 Basic notation

Let ω be the least infinite ordinal.

Iverson brackets [78] If E is a boolean condition, then [E] is 0 if E is false and 1

otherwise.

Unordered cartesian product Fix a set X , and let X = {X0, X1, . . . } ⊆ 2X be

a collection of subsets of X . The unordered product
⊗
X is defined as follows:

⊗
X = {{x0, x1, . . . } | x0 ∈ X0, x1 ∈ X1, . . .}

That is, any Y ∈
⊗
X is obtained by fixing an element xi ∈ Xi from each set Xi. If

any Xi is empty, then
⊗
X = ∅.

We now give an alternative formulation. A choice function for X is any function

f : X 7→ X s.t., given any set Xi ∈ X , f selects a representative element f(Xi) ∈ Xi.

If X ′ ⊆ X is a sub-collection of X and f is a choice function for X , then the restriction

of f to X ′, written f ↓X ′ , is just f restricted to X ′.
There clearly is a bijection between elements in

⊗
X and choice functions. In

particular, any choice function f on X determines a set Yf , which is the unique Yf ∈⊗
X s.t. Yf = {f(Xi) | Xi ∈ X}. We extend the restriction operation to sets: Given

an element Yf ∈
⊗
X and a sub-collection X ′ ⊆ X , the restriction of Yf to X ′, written

Yf ↓X ′ , is defined as Yf ↓X ′= Yf ′ ∈
⊗
X ′, where f ′ = f ↓X ′ is the restriction of f to

X ′. In other words,

Yf ↓X ′= {f(Xi) | Xi ∈ X ′}

2.2. Basic notation 17

Binary relations Fix sets A, B and C. A binary relation is a subset R ⊆ A × B.

The transpose of R (or the reverse), denoted R−1 ⊆ B × A, is the binary relation

R−1 = {(x, y) | (y, x) ∈ R}. For two binary relations R0 ⊆ A×B and R1 ⊆ B × C,

their composition, denoted R0 ◦R1, is defined as

R0 ◦R1 = {(x, z) | ∃y ∈ B · (x, y) ∈ R0, (y, z) ∈ R1}

The identity on A, denoted IdA ⊆ A×A, is the binary relation idA = {(x, x) | x ∈
A}. Consider a binary relation R ⊆ A× A on A. R is reflexive iff idA ⊆ R, transitive

iff R ◦R ⊆ R, and symmetric iff R = R−1.

The transitive and reflexive closure of R, denoted R∗, is the smallest transitive and

reflexive relation containing R. In other words, R∗ =
⋃
n≥0R

n, where R0 = IdA and

Rn+1 = Rn ◦R. The equivalence induced by R, denoted ≈R, is the largest equivalence

contained in R∗, i.e., ≈R= R∗ ∩ (R∗)−1.

Subsets of bounded cardinality For a set Q, let |Q| be its cardinality. For a

finite set Q and an integer k ≥ 0, let 2Q,k be the set of subsets of Q of cardinality at

most k, i.e.

2Q,k = {Q′ ⊆ Q | |Q′| ≤ k}

For Q′ ∈ 2Q,k, we say that Q′ is a k-subset of Q.

Finite and infinite sequences Fix a finite alphabet Σ. A finite sequence (or word)

over Σ is a function from a (possibly empty) finite prefix of ω to Σ, while an infinite

sequence (or word) is a function from ω to Σ. Let Σ∗ and Σω be the set of finite

and infinite sequences, respectively. It is customary to denote sequences by listing its

elements, e.g., π = p0p1 · · · pk−1 ∈ Σ∗ and π′ = p0p1 · · · ∈ Σω. For a finite sequence

π = p0p1 · · · pk−1, let |π| = k be its length, and let last(π) = ek−1 be its last element.

If π is infinite, then |π| = ω, and last(π) is undefined.

For two finite sequences π0 = p0p1 · · · ph−1 an π1 = q0q1 · · · qk−1, let their con-

catenation be the sequence π0 · π1 = p0p1 · · · ph−1q0q1 · · · qk−1; a similar definition

holds when π1 is of length ω. We often denote concatenation just by juxtaposition π0π1.

Given two sequences of equal length π0 = p0p1 · · · pk−1 and π1 = q0q1 · · · qk−1, let

π0 × π1 = 〈p0, q0〉〈p1, q1〉 · · · 〈ph−1, qk−1〉 be the sequence of the corresponding pairs;

a similar definition can be given when both sequences are infinite.

18 Chapter 2. Background

2.3 Games

A game is a tuple G = (P, P0, P1, pI ,Γ,Γ0,Γ1,W), where P is the set of positions,

partitioned into disjoint sets P0 and P1, pI ∈ P0 is the initial position, Γ = Γ0 ∪ Γ1 is

the set of moves, where Γ0 ⊆ P0 × P1 and Γ1 ⊆ P1 × P0 are the set of moves of Player

0 and Player 1, respectively, and W ⊆ P ω
0 is the winning condition. A dead end is a

position p ∈ Pi, for i ∈ {0, 1}, s.t. there is no p′ ∈ P1−i with (p, p′) ∈ Γi.

A path is a finite or infinite sequence of positions π = p0p1 · · · ∈ (P0 ∪ P1)∗ ∪
(P0 ∪ P1)ω, and it is a valid path iff it starts at p0 = pI , and, for all i s.t. 2i+ 1 < |π|,
(p2i, p2i+1) ∈ Γ0 and, if 2i + 2 < |π|, then (p2i+1, p2i+2) ∈ Γ1. Thus, a valid path is

a sequence of alternating positions between the two players which is conform to the

players’ moves.

Partial plays and plays are finite and infinite valid paths, respectively. We assume

that there are no dead ends in the game, therefore a partial play can be always extended

to a longer one. A play is winning for Player 1 iff p0p2p4 · · · ∈ W ; otherwise, is it

winning for Player 0.

Strategies A strategy for Player 0 is a partial function σ0 : (P0P1)∗P0 ⇀ P1 s.t.,

for any partial play π ∈ (P0P1)∗P0 ending in P0, if σ0 is defined on π and σ(π) = p,

then πp is again a partial play. A play or partial play π = p0p1 · · · is σ0-conform iff, for

every i s.t. 2i+ 1 < |π|, p2i+1 = σ0(p0p1 · · · p2i). Similarly, a strategy for Player 1 is a

partial function σ1 : (P0P1)+ ⇀ P0 s.t., for any partial play π ∈ (P0P1)+ ending in P1,

if σ1 is defined on π and σ1(π) = p, then πp is again a partial play. A play or partial play

π = p0p1 · · · is σ1-conform iff, for every i s.t. 2i+ 2 < |π|, p2i+2 = σ1(p0p1 · · · p2i+1).

While we do not require strategies to be total functions, we do require that strategies are

defined on all conform partial plays.

A strategy σi is a winning strategy for Player i, for i = 0, 1, iff all σi-conform plays

are winning for Player i. We say that Player i wins the game G if she has a winning

strategy.

Determinacy A class of games is determined if, for every game in the class, at least

one player has a winning strategy. A class of games is zero-sum if, for every game in the

class, at most one player has a winning strategy. Games as defined here are zero-sum

by definition. Moreover, for the very wide class of games where the winning set W is a

Borel set (as it is in our case), a very general result ensures that they are determined

2.3. Games 19

[88]. Since we only consider Borel winning objectives, all games presented in this

thesis admit exactly one winner.

Reduced strategies Notice that, since the winning condition refers only to the

projection of a play π onto its even positions, we can assume that strategies in fact

do not depend on past odd positions (except for the current one). That is, if π =

p0p1p2p3p4 · · · p2k−1p2k and π′ = p0p
′
1p2p

′
3p4 · · · p′2k−1p2k are two plays differing only

on odd positions, then σ0(π) = σ0(π′) and σ1(π · p2k+1) = σ1(π′ · p2k+1) for any

p2k+1. This induces a natural projection operation on plays, that maps π = p0p1p2 · · ·
down to p0p2p4 · · · . We call sequences of the latter form reduced plays. In practice,

we will be mostly concerned with reduced plays, which are easier to manipulate.

To do so, we define reduced strategies acting on reduced plays: A reduced strategy

for Player 0 is a function σ′0 : P+
0 ⇀ P1, and a reduced strategy for Player 1 is a

function σ′1 : P+
0 P1 ⇀ P0. A full strategy can be easily recovered from a reduced

one, by letting σ0(p0p1 · · · p2k) = σ′0(p0p2 · · · p2k) and σ1(p0p1 · · · p2k−1p2kp2k+1) =

σ′1(p0p2 · · · p2k−2p2kp2k+1). The notions of being conform and winning are easily lifted

to reduced strategies. In the rest of this work, we just say strategy instead of reduced

strategy.

For a set of positions R ⊆ P0 and a strategy σ, we say that σ is R-respecting (or,

R-preserving) if, for any σ-conform (partial) play π = p0p2p4 · · · , we have p2i ∈ R for

any i < |π|.

Finite-memory and memoryless strategies Sometimes we are interested in

Player 1’s strategies of a special form. Intuitively, a strategy has finite memory iff

determining the next move requires only a finite amount of information about the partial

play so far.

Definition 2.3.1. A strategy σ1 : (P0P1)+ ⇀ P0 for Player 1 has finite memory iff

there exists a finite pointed set (M,m), with m ∈M , and two functions

next : P0 × P1 ×M ⇀ P0, and

up : P0 × P1 ×M ⇀M

s.t., for any partial play π = p0p1 · · · p2ip2i+1 ∈ (P0P1)+ in the domain of σ1, σ1(π) =

next(p2i, p2i+1,mi), where the sequence of memory statesm0,m1, . . . ,mi is inductively

defined as follows: m0 = m, and, for k ≥ 0, mk+1 = up(p2k, p2k+1,mk). Sometimes

we identify finite memory strategies and representation in terms of next, up.

20 Chapter 2. Background

σ1 is memoryless if M is just a singleton; in this case we can discard the memory

M , and we identify a memoryless strategy with the partial function σ1 : P0×P1 ⇀ P0.

2.4 Automata

In this section we define nondeterministic Bchi automata, and we introduce the language

inclusion and quotienting problem. We also define alternating Büchi automata, but their

study is deferred to Chapter 5.

2.4.1 Nondeterministic Büchi automata

A nondeterministic Büchi automaton (NBA) is a tupleQ = (Q,Σ, I,∆, F), where Q is

a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial states, F ⊆ Q is the

set of accepting states and ∆ ⊆ Q×Σ×Q is the transition relation. We also write both

q
a−→ q′ and q′ a←− q instead of (q, a, q′) ∈ ∆, and q −→ q′ when ∃a ∈ Σ · q a−→ q′.

For a set of states q′ ⊆ Q, let Pre(q′) = {q | q −→ q′}. We say that Q is complete

iff, for any state q ∈ Q and input symbol a ∈ Σ, there exists a successor q′ ∈ Q s.t.

q
a−→ q′, and that Q is deterministic iff q′ is unique (when it exists). We say that a state

q is accepting if q ∈ F ; let [q ∈ F] = 1 if q is accepting, and 0 otherwise.

For a finite or infinite sequence of states ρ = q0q1 · · · and an index i ≤ |ρ|, let

#F (ρ, i) be the number of accepting states occurring in ρ up to (and including) the

(i − 1)-th element. Formally, #F (ρ, i) =
∑

0≤k<i[qk ∈ F], with #F (ρ, 0) = 0. Let

#F (ρ) = #F (ρ, |ρ|); if ρ is infinite, then #F (ρ) = ω iff ρ contains infinitely many

accepting states.

Fix a finite word w = a0a1 · · · an−1 ∈ Σ∗. A path π over w is a sequence of

transitions q0
a0−→ q1

a1−→ · · · an−1−→ qn of length n. When such a path exists, we

also write q0
w−→ qn, and if a path exists passing through an accepting state qj ∈ F ,

0 ≤ j ≤ n, then we write q0
w−→F qn.

Paths over infinite words are defined similarly. π is initial if it starts in an initial

state q0 ∈ I and it is fair if #F (π) = ω (which implies that the path is infinite). For a

state q ∈ Q, its language L(q) is the set of infinite words admitting a fair path from q:

L(q) = {w ∈ Σω | there exists a fair path π over w from q} ,

and the language of an automaton Q is the set of words admitting an initial and fair

path, i.e., L(Q) =
⋃
qI∈I L(qI).

2.4. Automata 21

Multipaths When dealing with multipebble simulations, we manipulate the follow-

ing generalization of transitions and paths.

Fix an automaton Q = (Q,Σ, I,∆, F). For two sets of states q,q′ ⊆ Q and an

input symbol a ∈ Σ, let q
a

=⇒ q′ iff every state in q′ is an a-successor of some state

in q. Formally1, q
a

=⇒ q′ holds iff ∀q′ ∈ q′ · ∃q ∈ q · q a−→ q′. We call q
a

=⇒ q′ a

multi-transition; we are interested in sequences of multi-transitions.

Definition 2.4.1 (Multipath). A multipath is a finite or infinite sequence π = s0
a0=⇒

s1
a1=⇒ · · · , where, for all i < |π|, ai ∈ Σ, si 6= ∅, and si ⊆ Q.

Multipaths consisting solely of singletons are just ordinary paths.

Definition 2.4.2 (Submultipath). For two multipaths π = s0
a0=⇒ s1

a1=⇒ · · · and

π′ = s′0
a0=⇒ s′1

a1=⇒ · · · over the same finite or infinite word w = a0a1 · · · (thence, of

the same length), π′ is a submultipath of π, written π′ ⊆ π, iff, for any i < |π|, s′i ⊆ si.

For an ordinary path π′ = s0
a0−→ s1

a1−→ · · · and a multipath π as above, let

π′ ∈ π iff, for any i < |π′|, s′i ∈ si.

The following is an immediate property of submultipaths.

Lemma 2.4.3. If π = s0
a0=⇒ s1

a1=⇒ · · · ak−1
=⇒ sk is a multipath, then, for any nonempty

s′k ⊆ sk, there exists a submultipath π′ ⊆ π ending in s′k:

π′ = s′0
a0=⇒ s′1

a1=⇒ · · · ak−1
=⇒ s′k

2.4.2 Alternating Büchi automata

An alternating Büchi automaton (ABA) Q is a tuple (Q,Σ, qI ,∆, E, U, F), where Q is

a finite set of states, Σ is a finite alphabet, qI is the initial state, {E,U} is a partition

of Q into existential and universal states, ∆ ⊆ Q × Σ × Q is the transition relation

and F ⊆ Q is the set of accepting states. Like for NBAs, we assume that the transition

relation is complete.

An ABA Q recognizes a language of infinite words L(Q) ⊆ Σω. The acceptance

condition is best described in a game-theoretic way [61]. Given an input word w =

a0a1 · · · ∈ Σω, the acceptance game Gω(Q, w) is played by two players, Pathfinder and

Automaton, where Pathfinder plays as Player 0 and Automaton as Player 1. Positions

of the game are of the form 〈q, k〉 ∈ P = Peven ∪ Podd, for a state q ∈ Q and an integer

1This kind of backward-compatible transition had already appeared in [86].

22 Chapter 2. Background

k ≥ 0, where Pathfinder owns configurations in Peven with k even, and Automaton

owns configurations in Podd with k odd. Intuitively, existential states are controlled by

Automaton, while Pathfinder controls universal states; when a player plays on a state

she owns but she does not control, nothing happens. Formally, the initial configuration

is 〈qI , 0〉, and, if the current configuration is 〈q, h〉, then the next configuration is

determined as follows, depending on whether h is even or odd:2

• h = 2k even:

– If q ∈ E, then nothing happens and the next configuration is just 〈q, 2k + 1〉.

– If q ∈ U , then Pathfinder selects a successor q′ ∈ ∆(q, ak), and the next

configuration is 〈q′, 2k + 1〉.

• h = 2k + 1 odd:

– If q ∈ E, then Automaton selects a successor q′ ∈ ∆(q, ak), and the next

configuration is 〈q′, 2k + 2〉.

– If q ∈ U , then nothing happens and the next configuration is just 〈q, 2k + 2〉.

A play of the game is an infinite sequence of configurations 〈q0, 0〉〈q1, 1〉 · · · (with

q0 = qI), and Automaton wins this play iff qi ∈ F for infinitely many i’s. Thus,

the winning set W = (P ∗(F × ω))ω is Borel; consequently, the acceptance game is

determined [88]. The language recognized by Q is

L(Q) = {w ∈ Σω | Automaton wins Gω(Q, w)}

Nondeterministic Büchi automata are just ABAs with no universal states, i.e., with

U = ∅ (all choices are existential, i.e., of Automaton); dually, a universal Büchi

automaton (UBA) is an ABA with E = ∅, where all choices are universal, i.e., of

Pathfinder. When drawing pictures, we represent existential states with circles q

and universal states with squares q .

2.4.3 Language inclusion and containment

For two automata A and B, nondeterministic or alternating, the language inclusion

problem asks whether L(A) ⊆ L(B), which we abbreviate as A ⊆ B. The language
2The need of introducing even and odd positions comes from the fact that our games are strictly

alternating, while in an ABA not necessarily existential and universal states alternate along a path. On
the other side, strictly alternating games are more natural when defining simulation games.

2.4. Automata 23

universality problem is the subproblem where L(A) = Σω. Both language inclusion

and universality of Büchi automata are PSPACE-complete problems (see, e.g., [80]),

like in the finite-word case.

We also consider the language inclusion problem between states, which we call the

containment problem. For two states q0 and s0, q0 is contained in s0, written q0 ⊆ s0,

iff L(q0) ⊆ L(s0). Clearly, inclusion and containment are inter-reducible in PTIME;

consequently, also containment is PSPACE-complete.

Game-theoretic interpretation We give an alternative presentation of language

containment, in the special case of nondeterministic automata. This is useful when

contrasting it with simulation preorders (introduced in Section 2.5).

Language containment/inclusion can be seen as a game between two players, called

Spoiler and Duplicator, where the latter wants to prove q0 ⊆ s0, and the former wants

to disprove it. The game is played in only one round:

• Spoiler chooses a word w = a0a1 · · · ∈ Σω and a w-path

π0 = q0
a0−→ q1

a1−→ · · ·

• Duplicator replies by choosing a w-path

π1 = s0
a0−→ s1

a1−→ · · ·

Duplicator wins this play of the game iff the following condition holds:

If π0 is fair, then π1 is fair.

Clearly, Duplicator has a winning strategy in the containment game iff q0 ⊆ s0.

2.4.4 Quotienting

In this section, we introduce the quotienting problem for nondeterministic Büchi au-

tomata. Quotienting for alternating automata is more complex; cf. Section 5.8.

Let Q = (Q,Σ, I,∆, F) be an NBA, and let ≈ be an equivalence relation on Q.

Let the function [·]≈ : Q 7→ 2Q map each element q ∈ Q to the equivalence class

[q]≈ ⊆ Q q belongs to; that is, [q]≈ := {q̂ ∈ Q | q ≈ q̂}. We overload [P]≈ on sets

P ⊆ Q by taking the set of equivalence classes: [P]≈ = {[q]≈ ∈ 2Q | q ∈ P}. When

the equivalence relation is clear from the context, we omit it and we just write [q], [P].

The naı̈ve quotient Q≈ of Q w.r.t. ≈ is the automaton Q≈ = (Q≈,Σ, I≈,∆≈, F≈)

over the same alphabet Σ, where

24 Chapter 2. Background

• Q≈ = [Q]≈: States are equivalence classes of states from Q.

• I≈ = [I]≈: Initial states are those classes containing some initial state.

• F≈ = [F]≈: Final states are those classes containing some final state.

• Transitions are as follows: For states q, q′ ∈ Q and input symbol a ∈ Σ,

([q], a, [q′]) ∈ ∆≈ iff (q, a, q′) ∈ ∆

This is called a naı̈ve quotient since initial states, final states and transitions are induced

representative-wise. In particular, each member of an equivalence class potentially

contributes to the transition relation.

Remark 2.4.4. In [19], naı̈ve quotients are called existential quotients, in contrast

with universal quotients, where transitions are induced only if every member in an

equivalence class contributes to it: I.e., in an universal quotient transitions are induced

as follows:

([q], a, [q′]) ∈ ∆≈ iff ∀(q̂ ∈ [q]) · ∃(q̂′ ∈ [q′]) · (q̂, a, q̂′) ∈ ∆

Clearly, universal quotients have at most as many transitions as existential quotients

(and possibly less), and thus they are preferable. We compare them in more detail in

Section 2.6.2, where we show that, in the context of simulation-based quotienting, by

deleting certain transitions in Q, existential and universal quotients actually coincide

(see Remark 2.6.12).

Remark 2.4.5. Notice that the quotient of a deterministic automaton is also a determin-

istic automaton. Indeed, if two deterministic states are simulation equivalent, then, for

every a, also their a-successors are simulation equivalent.

When quotienting, we are interested in equivalences preserving the language of the

automaton. They are called Good for Quotienting equivalences; the design of Good for

Quotienting equivalences is the central topic of this thesis.

Definition 2.4.6 (Good for Quotienting equivalences). We say that ≈ is good for

quotienting (GFQ) if quotienting Q w.r.t. ≈ preserves the language:

≈ is GFQ iff L(Q) = L(Q≈)

Sometimes we extend the notion of quotienting and being GFQ to arbitrary binary

relations R ⊆ Q×Q, by applying it to the induced equivalence ≈R = R∗ ∩ (R∗)−1.

The following is an immediate property of naı̈ve quotients for nondeterministic

models. It says that coarser relations give rise to quotients recognizing larger languages.

2.5. Simulation preorders 25

Lemma 2.4.7. For two equivalences ≈0 and ≈1 on Q, if ≈0⊆≈1, then L(Q≈0) ⊆
L(Q≈1). In particular, by letting ≈0 be the identity, L(Q) ⊆ L(Q≈1).

Intuitively, this holds since a path in Q≈0 immediately induces a corresponding path in

Q≈1 , and initial/accepting states are preserved. Thus, quotienting w.r.t. finer relations

(partially quotienting), preserves correctness.

Corollary 2.4.8. Let ≈0 and ≈1 be two equivalences, with ≈1 coarser than ≈0. If ≈1

is GFQ, then ≈0 is GFQ.

Lemma 2.4.7 and Corollary 2.4.8 fail for alternating models, as we remark in Section 5.8.

2.5 Simulation preorders

In this section, we present classic results on simulation preorders for nondeterministic

Büchi automata. Analogous results for alternating automata are presented in Section 5.2.

2.5.1 Forward simulations

In automata theory, nondeterministic machines are usually compared with respect to the

language they describe, e.g., language inclusion/containment. In simulation, instead, the

internal behavior of automata is exposed, and the sequence of transitions an automaton

performs for accepting a word becomes relevant. Thus, simulation preorders can be

seen as a refinement of containment which take into account the implementation details

of the automaton, therefore allowing us to compare automata at a finer granularity.

Like language inclusion, also simulation can be described game-theoretically, with

the difference that the players do not build infinite paths in only one round, but they

interleave their moves as to build them in an incremental fashion.

Fix a nondeterministic automaton Q and two distinguished states q0 and s0 therein.

In the simulation game between q0 and s0, Duplicator and Spoiler play in rounds, where,

at each round, the two players extend by one more transition a finite path from the

respective starting state. Formally, Spoiler’s set of positions is PSp := Q × Q, and

Duplicator’s set of positions is PDup := Q × Q × Σ × Q. The interaction of the two

players is best described with the metaphor of pebbles. There are two pebbles, one

controlled by Spoiler and one controlled by Duplicator. In the initial configuration

〈q0, s0〉, Spoiler’s pebble is on q0, and Duplicator’s one is on s0. At any round of the

game, if Spoiler’s pebble is on qi and Duplicator’s one is on si, then

26 Chapter 2. Background

• Spoiler chooses an input symbol ai ∈ Σ, and she moves her pebble from qi to an

ai-successor qi+1, thus selecting a transition

qi
ai−→ qi+1

This determines a move in the game 〈(qi, si), (qi, si, ai, qi+1)〉 ∈ ΓSp .

• Duplicator replies by moving her pebble from si to some ai-successor si+1, thus

selecting a transition

si
ai−→ si+1

This determines a move in the game 〈(qi, si, ai, qi+1), (qi+1, si+1)〉 ∈ ΓDup.

Remark 2.5.1. Technically, we are describing an autosimulation game, since states

q0 and s0 belong to the same automaton. Simulations between different automata A
and B can be described as autosimulations in the disjoint union. Therefore, we do not

distinguish between simulations within an automaton or between automata.

Remark 2.5.2 (Bisimulation equivalence). The related notion of bisimulation equiva-

lence is obtained from the game above by allowing Spoiler to choose, at each round,

whether to play a transition on the left or on the right. Bisimulation equivalence is finer

than simulation equivalence (and, therefore, simulation preorder), thus it induces larger

quotient automata. We do not consider bisimulation equivalences in this thesis.

If at any round Duplicator cannot reply to Spoiler’s move, then she loses. Otherwise,

the two players can keep playing for ω rounds (until “doomsday”, to paraphrase [17]),

at the end of which two infinite paths π0 = q0
a0−→ q1

a1−→ · · · and π1 = s0
a0−→

s1
a1−→ · · · are built, as in language containment. Let π = π0 × π1 be the resulting

play of the game. Then, the winner depends on the specific kind of simulation we are

considering. In the literature, the notions of direct, delayed and fair simulation have

been considered. For x ∈ {di, de, f}, let W x be the corresponding winning set, which

is defined as follows.

1. Direct simulation [34]: This is the counterpart to containment over finite words.

Duplicator has to visit accepting states at the same time when Spoiler does so:

π ∈ W di ⇐⇒ ∀i · (qi ∈ F =⇒ si ∈ F)

2. Fair simulation [66]: This is the counterpart to language containment over infinite

words. Duplicator has to match accepting states only in the limit:

π ∈ W f ⇐⇒ (π0 fair =⇒ π1 fair)

2.5. Simulation preorders 27

3. Delayed simulation [43]: This winning condition is intermediate between direct

and fair simulation. Duplicator has to visit accepting states with at most a finite

delay since Spoiler has done so:

π ∈ W de ⇐⇒ ∀i · (qi ∈ F =⇒ ∃j ≥ i · sj ∈ F)

If Duplicator has a winning strategy in the x-simulation game, then we say that q0

x-simulates s0, written q0 vx s0.

Remark 2.5.3. If the automaton is deterministic, then fair simulation and language

containment coincide, since the choice of the input word uniquely determines a path.

It follows immediately from the definition that direct, delayed and fair simulation

are naturally ordered by inclusion.

Lemma 2.5.4. For any NBA Q and x ∈ {di, de, f}, let vx be x-simulation. Then,

vdi ⊆ vde ⊆ vf

The inclusions are strict by the following example.

Example 2.5.1 - The inclusion between direct, delayed and fair

simulation is strict

q0

q1

q2

a

a

a

r0

r1

r2

a

a

a

s0

s1

s2

a

a

a

vde vf

We clearly have

q0 vde r0 vf s0

28 Chapter 2. Background

Indeed, r0 delayed-simulates q0 since Duplicator is accepting on r1, and s0 trivially

fair-simulates r0 since Spoiler cannot build a fair path from r0. However,

q0 6vdi r0 6vde s0

Current configuration

〈qi, si〉
Next configuration

〈qi+1, si+1〉

Spoiler chooses qi
ai−→ qi+1

Duplicator replies with si
ai−→ si+1

Winning condition

x = di : ∀(i ≥ 0) · qi ∈ F =⇒ si ∈ F

x = de : ∀(i ≥ 0) · qi ∈ F =⇒ ∃(j ≥ i) · sj ∈ F

x = f : π0 fair =⇒ π1 fair

Simulation game for vx, with x ∈ {di, de, f}

2.5.2 Backward simulation

Another notion of simulation has been considered in the literature, namely, backward

simulation, which is just a simulation for the reverse automaton (where all transitions are

reversed). The definition is as in forward simulations, except that Spoiler and Duplicator

select “backward transitions”: From configuration 〈qi, si〉, Spoiler plays some transition

qi
ai←− qi+1, and Duplicator replies with some other transition si

ai←− si+1, and the

game goes to configuration 〈qi+1, si+1〉. The winning condition is as follows:

4. Backward simulation [99, 110]: Like in direct simulation, Duplicator has to match

final states immediately; additionally, the same is required for initial states:

π ∈ W bw ⇐⇒ ∀i · (qi ∈ F =⇒ si ∈ F) ∧ (qi ∈ I =⇒ si ∈ I)

2.5. Simulation preorders 29

Let vbw be the induced backward simulation relation.

Current configuration

〈qi, si〉
Next configuration

〈qi+1, si+1〉

Spoiler chooses qi
ai←− qi+1

Duplicator replies with si
ai←− si+1

Winning condition

1) ∀(i ≥ 0) · qi ∈ F =⇒ si ∈ F
2) ∀(i ≥ 0) · qi ∈ I =⇒ si ∈ I

Simulation game for vbw

Simulation desiderata

It is a classic result that forward simulations satisfy desiderata (Da), (Dc), and (Dd).

Backward simulation fails (Da), since its backward nature is incompatible with language

containment between states; nonetheless, backward simulation can be used in a more

sophisticated test for language inclusion between automata (instead of single states; cf.

Chapter 4). Quotienting (Db) is dealt with in the next section.

Theorem 2.5.5 (Simulation desiderata [34, 66, 43, 110]). For any NBA Q and for

x ∈ {di, de, f, bw},

• vx, x 6= bw, implies language inclusion (Da).

• vx can be computed in deterministic polynomial time (Dc).

• vx is transitive (Dd).

Proofs of these facts are given in Chapter 4, in the more general context of jumping

simulations.

30 Chapter 2. Background

2.5.3 Complexity of simulations

In the thesis we analyze the complexity of generalized simulations, and we give upper

and lower bounds for computing them. When we speak about the complexity of a

simulation R, we take the view of R as a mere set of pairs, and the associated decision

problem is just membership in R. (Of course, computing a simulation relation R and

checking membership in R are PTIME inter-reducible problems.)

2.6 Simulation-based automata simplification

2.6.1 Quotienting

We have already mentioned in the Section 1.5.2 that fair simulation is not GFQ. This

is shown in the example below. (Incidentally, since the automaton in the example is

deterministic, this also shows that fair bisimulation is not GFQ [67].)

Example 2.6.1 - Fair (bi)simulation is not GFQ

q s

b
a

a

b

a, b

a) The original automaton Q b) The quotient automaton Q≈

Consider the deterministic automaton Q on the left above. States q and s both

recognize the language L(q) = L(s) = (Σ∗a)ω consisting of words with infinitely

many a’s. Since the automaton is deterministic, simulation and containment coincide,

thus q and s are fair simulation equivalent. However, identifying together q and s is

incorrect as the resulting automaton Q≈ on the right above would recognize Σω.

Remark 2.6.1. Although fair simulation quotienting is not guaranteed to preserve the

language of the automaton, it has been shown that fair simulation can be nonetheless

used in a non-trivial state-space reduction algorithm [62]. We do not explore this

possibility further in this thesis.

However, the finer direct and delayed simulation are GFQ, as well as (the incompa-

rable) backward simulation.

2.6. Simulation-based automata simplification 31

Theorem 2.6.2 (cf. [10, 43, 110]). For x ∈ {di, de, bw}, x-simulation equivalence is

GFQ (Db).

In fact, simulation-based quotienting has the stronger property that the quotient

automaton not only has the same language as the original automaton, but it is even

simulation-equivalent to it [19, 110, 55].

Lemma 2.6.3. For x ∈ {di, de, bw} and a state q in Q with quotient class [q] in Q≈x ,

q ≈x [q]

Consequently, simulation preorder on Q completely characterizes simulation pre-

order on the quotient automaton Q≈. In particular, it is not necessary to recompute

simulation preorder on Q≈. Moreover, simulation preorder on Q≈ is actually a partial

order, i.e., it is antisymmetric.

Lemma 2.6.4. For x ∈ {di, de, bw} and for two states q and s in Q, with quotient

classes [q] and [s] in Q≈, respectively,

q vx s iff [q] vx [s]

Consequently, vx is a partial order on Q≈, i.e.,

[q] vx [s] and [s] vx [q] implies [q] = [s]

Proof. Immediate since q ≈x [q] and s ≈x [s] by Lemma 2.6.3 (and transitivity).

2.6.2 Transition simplification

Sometimes it is possible to simplify the transition structure of the automaton if a

simulation is given. The idea is that not every successor of a state is necessary, and it

suffices to keep only certain successors. Fix an automaton Q, together with a preorder

�⊆ Q×Q. We introduce the notion of maximal successor.

Definition 2.6.5 (Maximal successors). For a symbol a ∈ Σ and states q and q′, q′ is

a �-maximal a-successor of q iff q a−→ q′ and, for any other q′′ ∈ Q s.t. q a−→ q′′, if

q′ � q′′, then q′′ � q′. Let max�a (q) be the set of �-maximal a-successors of q.

In other words, maximal a-successors are those a-successors with no strictly �-

larger a-successor. Depending on �, the language of Q does not change if we prune

away transitions to non-maximal successors. Formally, we let Q� be any automaton

32 Chapter 2. Background

which is the same as Q, except that q a−→ q′ is in Q� only if q′ ∈ max�a (q). (Q� is

not uniquely determined since there might be several maximal successors; correctness

holds for all such Q�’s.) This operation is sound for direct simulation.

Lemma 2.6.6. For �=vdi, L(Q) = L(Q�).

Remark 2.6.7. Non-maximal successors are called little-brothers in [19]. Sometimes

we follow this terminology, and we say that, if transitions to non-maximal successors

are removed, then there are no little-brothers.

Remark 2.6.8. It is possible to define also the set of maximal predecessors, and eliminate

all non-maximal ones. This can be used with backward simulation. We do not investigate

this possibility further.

For delayed simulation, the lemma above fails, and we need all transitions, even

those to little-brothers. This is shown in the next example.

Example 2.6.2 - Little-brothers are necessary for delayed

simulation

q s

a, b

a

a

Ade

Consider the automaton above, where s vde q 6vde s. Therefore s 6∈ maxv
de

a (q), but

removing the transition q a−→ s would make the language empty.

The following simple but important lemma is useful for future developments. It

states that simulation preorder can be preserved along transitions, and that simulation

equivalence can be preserved along maximal transitions (cf. Corollary 3 of [55]; for a

generalization to alternating automata, see also Lemma 5.8.5).

Lemma 2.6.9. For an NBA Q and x ∈ {di, de, f}, let v be x-simulation (with induced

equivalence ≈), and let q and s be two states in Q. Then,

1. If q v s and q a−→ q′, then there exists s a−→ s′ s.t. q′ v s′.

2. If q ≈ s and q a−→ q′ ∈ maxva (q), then there exists s a−→ s′ ∈ maxva (s) s.t.

q′ ≈ s′.

2.6. Simulation-based automata simplification 33

Proof. Point 1. holds immediately from the definition of simulation, and Point 2.

follows from maximality. For completeness, we prove the latter. Assume q ≈ s and let

q
a−→ q′ ∈ maxva (q). Since q v s, by Point 1. there exists s a−→ s′ s.t. q′ v s′; w.l.o.g.,

s′ can be taken in maxva (s). Since s v q, by Point 1. there exists q a−→ q′′ s.t. s′ v q′′.

By transitivity, q′ v q′′, and, by maximality of q′, q′′ v q′. Therefore, by transitivity,

s′ v q′, hence q′ ≈ s′.

While we do not study simulation-based simplification of transitions in this thesis

per se, maximal successors play a rôle in the following notion of max quotients (which

generalizes to minimax quotients [55] for alternating models—see Section 5.8).

2.6.3 Max quotients

In max quotients we refine the transition structure of naı̈ve quotients, in order to consider,

in the quotient automaton, only those transitions induced by maximal successors in

the original automaton. Formally, given an NBA Q = (Q,Σ, I,∆, F) with a preorder

�⊆ Q × Q and induced equivalence ≈, the �-max quotient of Q is the automaton

Qm
� = ([Q],Σ, [I],∆m

�, [F]) which is the same as the naı̈ve quotient, except for the

modified transition relation ∆m
≈, which is defined as follows:

([q], a, [q′]) ∈ ∆m
� iff ∃(q̂ ∈ [q], q̂′ ∈ [q′]) · (q̂, a, q̂′) ∈ ∆ ∧ q̂′ ∈ max�a (q̂)

That is, a transition in Q induces a transition in Qm
� only if it is maximal (in Q). The

connection between max quotients and transition simplification is the following.

Lemma 2.6.10. For an automatonQ, letv be x-simulation preorder and≈ the induced

equivalence, for x ∈ {di, de}. Consider the following three constructions:

a) Build the v-max quotient Qm
v.

b) Remove all v-little-brothers in Q to obtain an automaton R := Qv, and then

build the naı̈ve quotient w.r.t. ≈ R≈.

c) Build the naı̈ve quotient S = Q≈, and then remove all little-brothers in Q≈ to

obtain the automaton Sv.

Then, the constructions above are equivalent, i.e., Qm
v = R≈ = Sv.

Proof. Point a) and b) are equivalent since a transition is in the max quotient iff it is

induced by a non-little-brother transition in Q. To see that a) and c) are equivalent too,

34 Chapter 2. Background

it suffices to show that max quotients don’t have little-brothers (since only the transition

structure is different between naı̈ve and max quotients).

Indeed, we show that a little-brother in the quotient can only arise from a little-

brother in the original automaton. Therefore, no little-brother is possible in max

quotients (by definition). To this end, let [q]
a−→ [q′0] and [q]

a−→ [q′1] be two transitions

with [q′0] @ [q′1] (i.e., [q′0] is a little-brother in the quotient), and let q̂0 ∈ [q] and

q̂′0 ∈ [q′0] be any two states s.t. q̂0
a−→ q̂′0. We show that q̂′0 is a little brother in

Q, i.e., q̂′0 6∈ maxva (q̂0). Since [q]
a−→ [q′1], by definition there exist q̂1 ∈ [q] and

q̂′1 ∈ [q′1] s.t. q̂1
a−→ q̂′1. Since q̂0 ≈ q̂1, by the definition of simulation, there exists

q̂0
a−→ q̂′′0 s.t. q̂′1 v q̂′′0 . Since [q′0] @ [q′1] and q′0 ≈ q̂′0 and q′1 ≈ q̂′1, clearly [q̂′0] @ [q̂′1];

by Lemma 2.6.4, q̂′0 v q̂′1. But q̂′0 and q̂′1 are in different equivalence classes (hence

inequivalent), therefore q̂′0 @ q̂′1. From q̂′1 v q̂′′0 , by transitivity, q̂′0 @ q̂′′0 . Therefore

q̂′0 6∈ maxva (q̂0).

Since pruning little-brothers is sound w.r.t. direct simulation, direct simulation is

GFQ w.r.t. max quotients; this fails for delayed simulation (cf. Example 2.6.2).

Corollary 2.6.11. For a NBAQ, letvdi be direct simulation onQ. Then, L(Q) = Qm
vdi .

Remark 2.6.12 (Existential vs. universal vs. max quotients). If a transition q a−→ q′

does not induce a transition in the universal quotient (cf. Remark 2.4.4), by definition

there exists q̂ s.t. q ≈ q̂ and, for no q̂′ with q′ ≈ q̂′, q̂ a−→ q̂′. By Lemma 2.6.9, q′ is a

little-brother. Therefore, universal quotients prune only those transitions induced by

little-brothers. But not all of them, like max quotients do (by Lemma 2.6.10). Consider

Example 2.6.2, where the universal quotienting leaves the automaton unchanged, while

the max quotient prunes away transition q a−→ s. (This holds w.r.t. delayed simulation;

by making q accepting instead of s, the same holds also w.r.t. direct simulation.) Thus,

with respect to the transition relation, we have the following inclusions (which are strict

in general):

max quotients ⊆ universal quotients ⊆ existential quotients.

Chapter 3

Fixed-word simulations

Contents
3.1 Overview . 35

3.2 Multipebble simulations . 37

3.3 Containment preorders . 42

3.4 Fixed-word simulations . 45

3.4.1 Intuition . 46

3.4.2 Definition and basic properties 47

3.4.3 Pebbles vs. fixed-words vs. containment 50

3.4.4 Complexity . 53

3.5 Fixed-word multipebble delayed simulation 56

3.6 Fixed-words and ranks . 57

3.6.1 Overview . 58

3.6.2 Preliminaries . 58

3.6.3 The ranking construction 59

3.6.4 Important properties of ranks < ω2 64

3.6.5 The two directions of Theorem 3.5.1 66

3.1 Overview

We study novel simulation-like preorders for quotienting nondeterministic Büchi au-

tomata. Our main contribution is the introduction of fixed-word delayed simulation,

35

36 Chapter 3. Fixed-word simulations

which is a novel simulation-like preorder included in containment. Our main result is

that fixed-word delayed simulation can be used to quotient NBA (i.e., it is GFQ), and

that it is coarser than previously studied GFQ preorders. In particular, we prove that it

is coarser than multipebble simulations [42]. Therefore, quotienting w.r.t. fixed-word

simulation equivalence results in automata that are smaller than previously possible. In

turn, having smaller automata makes existing model-checking algorithms manipulating

these automata faster.

The material presented in this chapter is an extension of material that has been

published in [28]. The main technical results are:

• Theorem 3.4.2: Fixed-word delayed simulation is GFQ.

• Theorem 3.4.5: Computing fixed-word delayed simulation is PSPACE-complete.

• Theorem 3.5.1: Fixed-word delayed simulation cannot be further enlarged by

generalizing it to multiple pebbles. This result is technically challenging and it

relies on a ranking argument over ordinals. As a consequence, fixed-word delayed

simulation is coarser than ordinary multipebble simulation.

The development of this chapter is as follows. In Section 2.5 we have presented

several GFQ simulation preorders. An immediate question is whether there are other

natural GFQ preorders coarser than simulation. A classic idea is to generalize simulation

to multipebble simulation [42], by giving to Duplicator the ability of using several

pebbles during the simulation game. We describe multipebble simulations in Section 3.2,

where we recall that in the direct and delayed variant they are GFQ.

Another feature of multipebble simulations is that they are included in containment.

In Section 3.3 we introduce direct, delayed, fair and backward containment, and we

notice that multipebble simulation is included in the respective containment. In the

delayed case, the inclusion is strict, and we consider whether delayed containment is a

GFQ preorder.

This turns out to be false: We give a counterexample showing that delayed con-

tainment is not GFQ. Thus, in Section 3.4 we turn our attention to finer preorders: We

introduce fixed-word simulations, which naturally fall between simulation and con-

tainment. We show that fixed-word delayed simulation is a GFQ preorder, and that

computing fixed-word simulations is in general a PSPACE-complete problem. The

complexity and GFQ results of this chapter are summarized in the gray area of Table 3.1.

In Section 3.5 we consider even coarser preorders. We generalize fixed-word

simulation by allowing Duplicator to use multiple pebbles (in the style of [42]), and

3.2. Multipebble simulations 37

Type 1-pebble Multipebble Fixed-word Containment

Direct X X X X

Delayed X X X ×
Fair × × × ×

Complexity PTIME

between PSPACE

and EXPTIME

(cf. Sec. 5.10)

PSPACE-c.

(cf. Sec. 3.4.4)

PSPACE-c.

[111]

Table 3.1: Main contributions (gray area; X= GFQ, ×= not GFQ)

we prove that fixed-word multipebble delayed simulation coincides with ordinary (i.e.,

1-pebble) fixed-word delayed simulation. The proof of this fact is non-trivial and relies

on a ranking argument over ordinals; we present the proof in great detail in Section 3.6,

which concludes the chapter.

3.2 Multipebble simulations

Multipebble simulations are best defined in a game-theoretic way. The game is played

by two players, Spoiler and Duplicator. The game starts with two pebbles placed on two

states of the automaton, say on q0 and s0. Assume Spoiler controls the pebble on q0 and

Duplicator the one on s0. The objective of Duplicator is to show that s0 can simulate q0,

while Spoiler has the complementary objective.

The k-pebble simulation game proceeds in rounds, Spoiler starting first and Du-

plicator following. Suppose that, in the current round, Spoiler’s pebble is on state q

and that Duplicator’s pebbles are on states in s, with 1 ≤ |s| ≤ k. Spoiler selects

an input symbol a ∈ Σ and moves her pebble from q to an a-successor q′. Then, it

is Duplicator’s turn to reply. In ordinary simulation, Duplicator has only one pebble,

which is moved to some a-successor. In multipebble simulation, Duplicator controls

several pebbles. Each pebble can be moved to some a-successor, or it can be even “split”

to several a-successors. Moreover, Duplicator always has the possibility of “reclaiming”

extra pebbles when they are needed elsewhere, with the proviso that at least one pebble

38 Chapter 3. Fixed-word simulations

q

q′

s

s′0 s′1

a

b, c

a a

b c

Figure 3.1: More pebbles help Duplicator

remains on the automaton. Thus, Duplicator replies to Spoiler by moving pebbles from

states in s to states in s′, s.t. any pebble in s′ is an a-successor of some pebble in s

(written s
a

=⇒ s′), and there are at most k pebbles in s′.

In a k-simulation game, Duplicator can put up to k pebbles on the automaton. Since

not all of them have to be used, k+1 pebbles are always at least as good as k. Moreover,

since putting more than one pebble on the same state is not meaningful, more than n

pebbles are actually superfluous, where n is the number of states of the automaton.

Having multiple pebbles allows Duplicator to delay committing to any particular

choice. Consider Figure 3.1. It is a classic example: q clearly simulates s, but s does

not ordinarily (i.e., with k = 1) simulate q. Indeed, Spoiler can choose input symbol a

and move her pebble from q to q′. Then, Duplicator has to face a choice of whether to

move her pebble from s to either s′0 or to s′1: In any case, Spoiler can play input symbol

c or b, respectively, and Duplicator cannot reply. However, if Duplicator can control up

to k = 2 pebbles, then she splits pebbles to both successors s′ = {s′0, s′1}. From this

configuration, if Spoiler plays symbol b, then Duplicator reclaims the pebble on s′1 and

responds from s′0, and vice versa if Spoiler plays symbol c. Thus, Duplicator does not

resolve the nondeterminism immediately, but she procrastinates it to the next round:

This allows her to “buy time”, waiting for Spoiler to reveal her intents. We proceed to

give a formal presentation of multipebble simulations.

Forward multipebble simulations We summarize results from [42]. Let Q be a

NBA. We define the basic k-simulation game as follows. Spoiler’s set of positions is

PSp := Q× 2Q,k, and Duplicator’s set of positions is PDup := Q× 2Q,k × Σ×Q. The

initial configuration 〈q0, s0〉. If the current configuration in round i is 〈qi, si〉, then the

next configuration 〈qi+1, si+1〉 is determined as follows:

• First, Spoiler chooses an input symbol ai and a transition qi
ai−→ qi+1.

3.2. Multipebble simulations 39

• Then, Duplicator chooses a matching multipebble transition si
ai=⇒ si+1 s.t.

|si+1| ≤ k.

The game can halt prematurely, for pebbles may get stuck. In this case, the winning

condition is as follows: If the left pebble cannot be moved, then Duplicator wins.

Otherwise, if no right pebble can be moved, then Spoiler wins.

In all other cases, the game goes on forever. Let π = 〈q0, s0〉〈q1, s1〉 · · · ∈ P ω
Sp be

the resulting play, and let π0 = q0
a0−→ q1

a1−→ · · · be the infinite path built by Spoiler,

and π1 = s0
a0=⇒ s1

a1=⇒ · · · the infinite multipath built by Duplicator.

The winning condition for delayed and fair simulation requires some technical

preparation (cf. [42]). Fix an infinite multipath π1 = s0
a0=⇒ s1

a1=⇒ · · · . Given a

source state s ∈ si, a destination state s′ ∈ sk, and an intermediate state ŝ ∈ sj , with

i ≤ j ≤ k, we write s −→∗ŝ s′ iff there exists a path π ∈ π1 from s to s′ passing through

ŝ, i.e., π = s
ai−→ · · · ŝ · · · ak−1−→ s′. For readability, we do not note the dependency on

π1. The notation for intermediate states is overloaded over the set of accepting states:

We write s −→∗F s′ to mean s −→∗ŝ s′ for some ŝ ∈ F . Finally, we write si =⇒∗F sk iff,

for any s′ ∈ sk, there exists s ∈ si s.t. s −→∗F s′. In the last case, we also say that si is

good at round k. Notice that the universal quantification is on destination states, which

adds a sort of backward flavor to multipebble simulation [86]. For a multipath π1, we

say that it is fair iff si is good at some later round for infinitely many i’s (thus “fair” is

overloaded on multipaths).

Classically, the following winning conditions W x ⊆ P ω
Sp have been considered [42],

corresponding to different notions of simulation.

1. Direct k-simulation. Duplicator wins if, whenever qi is accepting, then every

pebble s ∈ si is accepting:

π ∈ W di ⇐⇒ (∀i · qi ∈ F =⇒ si ⊆ F)

2. Delayed k-simulation. Duplicator wins if, whenever qi is accepting, then there

exists j ≥ i s.t. si is good at round j:

π ∈ W de ⇐⇒ (∀i · qi ∈ F =⇒ ∃(j ≥ i) · si =⇒∗F sj)

3. Fair k-simulation. Duplicator wins if, whenever π0 is fair, then π1 is fair.

π ∈ W f ⇐⇒ (π0 fair =⇒ π1 fair)

40 Chapter 3. Fixed-word simulations

We summarize these winning condition below.

Current configuration

〈qi, si〉
Next configuration

〈qi+1, si+1〉

Spoiler chooses qi
ai−→ qi+1

Duplicator replies with si
ai=⇒ si+1, where |si+1| ≤ k

Winning condition

x = di : ∀(i ≥ 0) · qi ∈ F =⇒ si ⊆ F

x = de : ∀(i ≥ 0) · qi ∈ F =⇒ ∃(j ≥ i) · si =⇒∗F sj

x = f : π0 fair =⇒ π1 fair

Simulation game for vk-x, with x ∈ {di, de, f}

Backward multipebble simulation We extend the multipebble approach to back-

ward simulation in a natural way (which has not been considered in [42]). The in-

teraction between players is analogous to the forward case, except that now transi-

tions are taken backward. For two sets of pebbles s and s′, we write s
a⇐= s′ iff

∀s′ ∈ s′ · ∃s ∈ s · s a←− s′. (a⇐= is different from (
a

=⇒)−1.)

4. Backward k-simulation. Duplicator wins if both the conditions below are satisfied:

• Whenever qi is accepting, then every pebble s ∈ si is accepting, and

• Whenever qi is initial, then some pebble s ∈ si is initial. I.e.,

π ∈ W bw ⇐⇒ ∀i (qi ∈ F =⇒ si ⊆ F) ∧ (qi ∈ I =⇒ si ∩ I 6= ∅)

3.2. Multipebble simulations 41

Current configuration

〈qi, si〉
Next configuration

〈qi+1, si+1〉

Spoiler chooses qi
ai←− qi+1

Duplicator replies with si
ai⇐= si+1, where |si+1| ≤ k

Winning condition

1) ∀(i ≥ 0) · qi ∈ F =⇒ si ⊆ F , and

2) ∀(i ≥ 0) · qi ∈ I =⇒ si ∩ I 6= ∅

Simulation game for vk-bw

We denote the previous acceptance conditions with x ∈ {di, de, f, bw}. We are

now ready to define the simulation relation vk-x. We say that a k-set s x-simulates a

state q, written q vk-x s, iff Duplicator has a winning strategy in the corresponding

k, x-simulation game starting from configuration 〈q, s〉. We overload the simulation

relation on singletons, and we write q vk-x s iff q vk-x {s}. Note that, in general, vk-x

is not a transitive relation. However, for sufficiently large n, vn-x is transitive (since

Duplicator never runs out of pebbles when composing simulation games); when we

speak of multipebble simulation, we mean such a maximal transitive relation.

Having more pebbles gives more power to Duplicator. For any x ∈ {di, de, f, bw},
we obtain the following hierarchy:

v1-x ⊆ v2-x ⊆ v3-x ⊆ · · ·

Moreover, for any fixed k > 0, vk-x is computable in polynomial time (Dc) and it

implies containment (Da) (shown in the next section). Most importantly, it is GFQ (Db).

Theorem 3.2.1. For any k > 0 and x ∈ {di, de, bw}, k-pebble x-simulation is GFQ.

For forward simulations, these properties have been established in [42]; we observe them

also in the backward case. That work also gives algorithms for computing multipebble

42 Chapter 3. Fixed-word simulations

simulations; we treat these in Section 5.9 in the more general context of alternating

automata.

3.3 Containment preorders

Multipebble x-simulation naturally relates to a corresponding notion of x-containment.

We define x-containments, and show that multipebble x-simulation under-approximates

x-containment. We also establish which containment is GFQ.

A containment preorder is obtained as a modification of the usual step-wise inter-

action between players: In the containment game between q and s there are only two

rounds. Spoiler moves first and selects both an infinite word w = a0a1 · · · and an infi-

nite path π0 = q
a0−→ q1

a1−→ · · · over w. Then, Duplicator replies with a corresponding

infinite path π1 = s
a0−→ s1

a1−→ · · · over w. The winning condition depends on the

kind x of containment, and it is exactly the same as in simulation; the only difference is

about how π0 and π1 are built. If Duplicator wins the x-containment game between q

and s, then we write q ⊆x s. The rules for forward containments are summarized below.

Clearly, ⊆di is included in ⊆de, and the latter is included in ⊆f .

Spoiler chooses π0 = q0
a0−→ q1

a1−→ · · ·

Duplicator replies with π1 = s0
a0−→ s1

a1−→ · · ·

Winning condition

x = di : ∀(i ≥ 0) · qi ∈ F =⇒ si ∈ F

x = de : ∀(i ≥ 0) · qi ∈ F =⇒ ∃(j ≥ i) · sj ∈ F

x = f : π0 fair =⇒ π1 fair

Simulation game for ⊆x, with x ∈ {di, de, f}

Backward containment is slightly different, since it needs to be about finite paths,

which, of course, go backwards.

3.3. Containment preorders 43

Spoiler chooses π0 = q0
a0←− q1

a1←− · · · an−1←− qn

Duplicator replies with π1 = s0
a0←− s1

a1←− · · · an−1←− sn

Winning condition

1) ∀(i ≥ 0) · qi ∈ F =⇒ si ∈ F
2) qn ∈ I =⇒ sn ∈ I

Simulation game for ⊆bw

Remark 3.3.1. In the definition of backward containment, we could have required

the following weaker winning condition for Duplicator: If Spoiler produces a path

s.t. qn ∈ I , then Duplicator has to produce a path s.t. sn ∈ I , and final states have

to be matched as in condition 1). In general, the latter definition would produce a

coarser preorder: In fact, in the case qn 6∈ I Duplicator does not have any obligation,

whereas in the current notion she always has to match final states as in condition 1).

However, if we assume that every state is reachable from some initial state, then the

two notions coincide, since Spoiler can always extend any path to an initial one. The

current definition matches multipebble backward simulation.

While language inclusion is a property of two automata, containment is a property

of two states. In the fair case, the two are tightly related. Fix an automaton Q. On

the one hand, for two states q and s, q ⊆f s iff L(Qq) ⊆ L(Qs), where Qq and Qs
are two automata equal to Q, except that the initial state has been changed to q and s,

respectively. On the other hand, for two different automata Q and S , L(Q) ⊆ L(S) if,

for any initial q state in Q, there exists an initial state s in S s.t. q ⊆f s. (Notice that the

latter condition is only sufficient for language inclusion, and not necessary in general.)

The reason why we have introduced containment preorders is that multipebble

simulations under-approximate them. This might hint at why multipebble simulations

are GFQ, and possibly suggest coarser GFQ preorders.

Lemma 3.3.2. For k > 0 and x ∈ {di, de, f, bw}, k-pebble x-simulation implies

x-containment. I.e., for any NBA Q and states q and s therein, if q vk-x s, then q ⊆x s.

44 Chapter 3. Fixed-word simulations

One might wonder whether multipebble x-simulation “reaches” the corresponding

x-containment in the limit. Since for any given automaton, vn-x=v(n+1)-x where n is

the size of the automaton (as number of states), we actually ask whether such a maximal

simulation vn-x equals ⊆x. This holds only for “finitary” winning conditions.

Lemma 3.3.3. Fix an automaton Q with n states. For x ∈ {di, bw}, x-containment

equals n-pebble x-simulation.

We give a counterexample showing that the lemma above fails for both delayed and

fair containment.

Example 3.3.1 - Multipebble simulations “do not reach”

containment

q0

q1

s0

s1 s2

a

b

b

a

a b

a b

We have q0 ⊆x s0 for both x ∈ {de, f}. Since the automaton on the left is

deterministic, the input word uniquely determines a path through it. There are two cases

to consider: If Spoiler plays w = aω, then Duplicator plays transition s0
a−→ s1 and

then stays in s1 forever. If Spoiler plays w = a∗bω, then Duplicator stays in s0 until the

first b, at which time she takes transition s0
b−→ s2 and then she remains in s2 forever.

In both cases, Duplicator wins by constructing a fair path.

However, q0 6vk-x s0 for any k > 0 and both x ∈ {de, f}. To see this, suppose

Spoiler plays letter a for a very high number of rounds. What Duplicator can do is to

split pebbles at s0, by taking the sequence of transitions

π = {s0}
a

=⇒ {s0, s1}
a

=⇒ {s0, s1}
a

=⇒ · · ·

Since the automaton on the left is everywhere accepting, Spoiler will always build a

fair path. The issue for Duplicator is that s0 is not accepting and it has no accepting

3.4. Fixed-word simulations 45

predecessor in the multipath π as above. Therefore, in order to build a fair multi-

path, Duplicator is eventually forced to drop the pebble on s0, and to take transition

{s0, s1}
a

=⇒ {s1}. At this point, Spoiler plays b and wins, since Duplicator gets stuck.

One might wonder which containment is GFQ. Certainly, fair containment is not

GFQ, since it is coarser than fair simulation which is not GFQ. On the other hand,

direct and backward containment are GFQ, since they coincide with the corresponding

maximal multipebble simulations, which are GFQ (cf. Theorem 3.2.1).

Theorem 3.3.4. For x ∈ {di, bw}, x-containment is GFQ.

For delayed containment, the situation is different, since multipebble simulation

(which is GFQ) does not reach delayed containment (as we have seen above). The gap

turns out to be substantial, since delayed containment is not GFQ.

Example 3.3.2 - Delayed containment is not GFQ

p0 p1 p2 p3
a

a

a a

a

q p2 p3

a

a a

a

a) The original automaton Q b) The quotient automaton Q≈

Consider automaton Q above. We have that p0 is delayed containment equivalent to p1.

Notice thatQ does not accept aω. However, the quotient automatonQ≈ above, obtained

by identifying p0 and p1, does accept aω.

The relationship between simulations, multipebble simulations and containment is

shown in Figure 3.2. An arrow indicates inclusion, which is always strict except when

marked with “=”. The red area denotes non-GFQ preorders; in particular, ⊆de is too

coarse for quotienting. In the next section, we look at a finer GFQ preorder.

3.4 Fixed-word simulations

In the previous section we have seen that delayed containment is not GFQ. A natural

question is whether there are other GFQ preorders intermediate between simulation

and containment. We answer this question positively: We introduce fixed-word delayed

simulation, which is a natural GFQ generalization of delayed simulation. While the

46 Chapter 3. Fixed-word simulations

direct

simulation

direct

multipebble

direct

containment

delayed

simulation

delayed

multipebble

delayed

containment

fair

simulation

fair

multipebble

fair

containment

=

GFQ

not GFQ

Figure 3.2: Simulation, pebbles, and containment

main results are about the delayed case, for completeness we also treat fixed-word

direct, fair and backward simulations.

Outline In Section 3.4.1 we introduce fixed-word simulations informally. Formal

definitions are given in Section 3.4.2. The exact relationship between multipebble

simulations, fixed-word simulations, and containment is examined in Section 3.4.3.

In particular, we show that fixed-word delayed simulation is coarser than multipebble

delayed simulation (cf. Theorem 3.4.3). This is a non-trivial fact, and it is proved sepa-

rately in Section 3.5. Finally, in Section 3.4.4 we establish that computing fixed-word

simulations is PSPACE-complete, via mutual reductions to the universality problem for

alternating automata.

3.4.1 Intuition

We have already seen that Spoiler and Duplicator can build infinite paths using different

interaction modes. In the previous sections we have considered simulation interaction,

multipebble interaction, and containment interaction. The conceptually simplest one is

containment interaction, where the game is played in just two rounds: Spoiler chooses

a path π0 over a certain word, and Duplicator replies by choosing a path π1 over the

same word. The winner depends on the winning condition, which is a predicate on

the two paths π0 and π1. On the other hand, in simulation interaction the two players

build π0 and π1 incrementally, with Spoiler starting first. After ω turns, π0 and π1 are

finally constructed, and the winner depends again on a predicate on π0 and π1. Finally,

3.4. Fixed-word simulations 47

multipebble simulations generalize the usual simulation game, and allow Duplicator to

build a multipath instead of a path.

Fixed-word simulations are a mixture of simulation and containment. Like in

simulation, transitions are chosen in an interleaving manner. But, unlike simulation,

the input word w = a0a1 · · · is chosen beforehand by Spoiler: w is fixed during the

rest of the game. This latter feature makes fixed-word simulation akin to containment,

since Spoiler reveals an unbounded amount of information in only one move. We show

that, even by revealing this unbounded amount of information, Spoiler does not get “too

weak”, in the sense that the resulting preorder is still GFQ.

3.4.2 Definition and basic properties

We first discuss forward fixed-word simulations. Let x ∈ {di, de, f}. Spoiler starts

off the game by declaring an infinite input word w = a0a1 · · · ∈ Σω. Then, the game

proceeds in rounds like in simulation, except that now, at round i, the next input symbol

ai is fixed. In the w-simulation game Gx
w(q, s) (which is parameterized by w), the

set of positions of Spoiler is P0 = Q × Q × ω, the set of positions of Duplicator is

P1 = Q × Q × Q × ω and 〈q, s, 0〉 is the initial position. If the current position is

〈qi, si, i〉, then then next one 〈qi+1, si+1, i+ 1〉 is determined as follows:

• Spoiler selects a transition qi
ai−→ qi+1.

• Duplicator selects a transition si
ai−→ si+1.

In both cases, ai is no longer under the control of Spoiler at this point, since it is fixed

in advance and has to match the corresponding symbol in w. The winning conditions

are the usual one as in direct, delayed and fair simulation.

For the backward case x = bw, Spoiler declares a finite word w = a0a1 · · · an−1 ∈
Σ∗. The w-simulation game lasts n rounds, during which transitions are taken backward.

48 Chapter 3. Fixed-word simulations

Current configuration

〈qi, si, i〉
Next configuration

〈qi+1, si+1, i+ 1〉

Spoiler chooses qi
ai−→ qi+1

Duplicator replies with si
ai−→ si+1

Winning condition

x = di : ∀(i ≥ 0) · qi ∈ F =⇒ si ∈ F

x = de : ∀(i ≥ 0) · qi ∈ F =⇒ ∃(j ≥ i) · sj ∈ F

x = f : π fair =⇒ π′ fair

w-simulation game for vxw, with x ∈ {di, de, f}

Current configuration

〈qi, si, i〉
Next configuration

〈qi+1, si+1, i+ 1〉

Spoiler chooses qi
ai←− qi+1

Duplicator replies with si
ai←− si+1

Winning condition

1) ∀(i ≥ 0) · qi ∈ F =⇒ si ∈ F
2) ∀(i ≥ 0) · qi ∈ I =⇒ si ∈ I

w-simulation game for vbw
w

3.4. Fixed-word simulations 49

If Duplicator wins the (w, x)-game starting from position 〈q, s, 0〉, then we write

q vxw s. If q vxw s holds for every w, then s fixed-word simulates q, written as q vxfx s.
Clearly, fixed-word simulation is a preorder between simulation and containment.

Lemma 3.4.1. For any x ∈ {di, de, f, bw} and states q and s,

q vx s implies q vxfx s implies q ⊆x s

Moreover, since direct and backward containment are GFQ, fixed-word direct

and backward simulations are GFQ as well. More importantly, fixed-word delayed

simulation is GFQ. This follows directly from the very same proof that ordinary delayed

simulation is GFQ [43], which we do not replicate here; it relies on the observation that

the input word is always fixed in advance when reasoning about paths in the quotient

automaton.

Theorem 3.4.2. Fixed-word delayed simulation is a GFQ preorder.1

Fixed-word delayed simulation quotients can be more succinct than (multipebble)

delayed simulation quotients by an arbitrarily large factor, as shown in the next example.

Example 3.4.1 - Fixed-word delayed simulation quotients can

achieve arbitrary large compression ratios

s

q0

q1

q2

q3

· · ·

qk

a

a

b

a

a

b

a

ab

a

a

b

a

b

a b

a

q s

a, b

a

a

a) Family of automata Qk b) The quotients Qk/≈de
fx

1It even holds that wde
fx (the transpose of vde

fx) is jumping-safe, in the terminology of Chapter 4.

50 Chapter 3. Fixed-word simulations

Consider the family of automata Qk above, over the alphabet Σ = {a, b}. Each Qk has

k+2 states. Any state qi in the ring is universal (and so it isQk): Indeed, each qi accepts

either aω via state s, or it reads the prefix a∗b until the first b, and the rest of the word is

accepted from the next state qi+1 mod k+1. If there are only finitely many b’s, then s is

eventually reached. Otherwise, q0 is visited infinitely often. In both cases, an accepting

run is produced. Therefore, qi is universal. Except for the fact that s is simulated by

every state, no two different states qi, qj are vde-comparable: For example, Spoiler

wins from configuration 〈q0, q1〉 by playing b and going to 〈q1, q2〉, and then playing

a∗ until at some point, in order to be accepting, Duplicator has to move her pebble

from q2 to s. From configuration 〈q1, s〉, Spoiler plays b and wins. Notice that multiple

pebbles don’t help Duplicator because q2 is not accepting, and when Spoiler plays a∗

any non-accepting pebble would have to be eventually dropped. Also, no two different

states are in backward simulation, since each state has a word w to backward-reach

the initial state q0 s.t. no other state can backward-reach q0 via the same word w: For

example, the word for s is just a, and that for qj is bj .

However, all states except s are fixed-word delayed simulation equivalent:

s vde
fx q0 ≈de

fx q1 ≈de
fx · · · ≈de

fx qk

Indeed, when the input word w is known in advance, Duplicator can directly build

from the states in the ring an accepting run over w, thus winning the game. Therefore,

we obtain the 2-states quotient automaton Qk/≈de
fx on the right above. Thus, the

compression ratio achieved by fixed-word delayed simulation can be arbitrarily large.

The relationships between multipebble and fixed-word simulations and containments

are non-trivial. We explore them in the next section.

3.4.3 Pebbles vs. fixed-words vs. containment

The direct and backward case Since multipebble direct and backward simulation

coincide with the respective containments (cf. Lemma 3.3.3), it trivially follows that

fixed-word direct and backward simulations are included in the respective multipebble

simulations. I.e., for k > 0, x ∈ {di, bw}, and states q and s,

q vxfx s implies q vk-x s iff q ⊆x s

The next example shows that the containment is strict.

3.4. Fixed-word simulations 51

Example 3.4.2 - Fixed-word direct and backward simulations are

strictly included in containment

q0

q1

q2 q3

q4 q5

a

a a

a a

a a

a

s0

s1 s2

s3 s4

s5 s6

a a

a a

a a

a a

a

The reason is simple. It relies on the fact that, even if Spoiler declares the input

word in advance, the exact time she is accepting is not known beforehand by Duplicator.

Consider the two automata above. Since they are unary, Spoiler can only choose

the unique infinite word w = aω. Direct containment holds between q0 and s0. Indeed,

there are only two distinct infinite paths from q0 over aω: The first π0 = q0q1q2q4 · · · is

accepting in q2 at round 2, and the second π1 = q0q1q3q5 · · · is accepting in q5 at round

3. Clearly, each πi’s can be matched by Duplicator to a path from s0 with identical

properties.

However, q0 6vdi
fx s0. Indeed, Spoiler takes transition q0

a−→ q1, and Duplicator has

to face a choice. Suppose she takes the left transition s0
a−→ s1. From configuration

〈q1, s1〉, Spoiler takes the right transitions q1
a−→ q3

a−→ q5. On the other hand,

Duplicator is forced to take transitions s1
a−→ s3

a−→ s5. Configuration 〈q5, s5〉 is

winning for Spoiler, since q5 is accepting and s5 is not. An analogous reasoning applies

if Duplicator took the right transition s0
a−→ s2.

A similar argument holds for backward containment and fixed-word simulation.

The fair case For fixed-word fair simulation, the situation is symmetric, since fixed-

word fair simulation coincides with fair containment: Indeed, once Spoiler reveals the

52 Chapter 3. Fixed-word simulations

input word w, both players can proceed in playing the game independently, trying to

build a fair path over w, if any. Duplicator wins when either Spoiler is not able to

build such a fair path, or when she is herself able to build a fair path. This is exactly

what happens in fair containment. Consequently, multipebble fair simulation is strictly

contained in fixed-word simulation. I.e., for k > 0 and states q and s,

q vk-f s implies q vf
fx s iff q ⊆f s

The delayed case The most interesting case is the delayed one, where multipebble

simulation, fixed-word simulation and containment are all distinct preorders. Like in

the direct and backward cases and unlike in the fair case, fixed-word delayed simulation

is strictly included in the corresponding containment.

Example 3.4.3 - Fixed-word delayed simulation is strictly included

in delayed containment

The obvious reason is that, in the delayed case, fixed-word simulation is GFQ, while

containment is not. We also give a concrete example, in order to shed some light

on why Duplicator gains more power in containment than in fixed-word simulation.

Consider again automaton Q from Example 3.3.2. We have that p1 delayed contains

p0, i.e., p0 ⊆de p1. However, p0 6vde
fx p1: To see this, notice that, since the automaton is

unary, revealing the unique input word aω does not help Duplicator. Indeed, starting

from configuration 〈p0, p1, 0〉, even when Duplicator knows the input word in advance,

she still does not know exactly at which time Spoiler will be accepting. And this is

crucial: Spoiler, which is initially accepting, takes transition p0
a−→ p1 and remains

in p1 indefinitely. Spoiler can postpone the next time she can be accepting in p2 by

an unbounded amount of time. Now, Duplicator, which has a pending obligation to

satisfy, has to eventually leave state p1 and take transition p1
a−→ p2. Thus, at some

round k > 0, the game is in configuration 〈p1, p2, k〉, from which Spoiler clearly wins

by taking transition p1
p−→2, being accepting once more and preventing Duplicator

from visiting an accepting state anymore in the future. Thus, p0 6vde
fx p1. The reason

why p0 ⊆de p1 holds, however, is that Spoiler has to reveal in advance at which time k

she will go to p2 (k = ω if she stays in p1 for ever). Once k is known, Duplicator reacts

by staying the first k steps in p1, and only then she goes to p2 (if k = ω, then Duplicator

can go to p2 immediately).

3.4. Fixed-word simulations 53

On the other hand, like in the fair case and unlike in the direct and backward cases,

multipebble simulation is included in fixed-word delayed simulation.

Theorem 3.4.3. Multipebble delayed simulation is included in fixed-word delayed

simulation. I.e., for k > 0 and states q and s,

q vk-de s implies q vde
fx s implies q ⊆de s

This is a nontrivial result; its proof is postponed until Section 3.5, where we discuss

fixed-word multipebble delayed simulation. As a consequence, the multipebble delayed

simulation hierarchy of [42] (cf. Section 3.2) is entirely contained in fixed-word delayed

simulation:

v1-de ⊆ v2-de ⊆ v3-de ⊆ · · · ⊆ vde
fx

By the next example, the inclusion is strict.

Example 3.4.4 - Multipebble delayed simulation is strictly included

in fixed-word delayed simulation

We have shown in Example 3.3.1 that q0 6vk-de s0 for any k > 0, although q0 ⊆de s0.

In fact, since the automaton on the left is deterministic, even if Spoiler reveals just the

input word, this in fact uncovers the unique induced path as well. Therefore, q0 vde
fx s0.

The “big picture” about the relationship between ordinary simulation, multipebble

simulation, fixed-word simulation and containment is shown in Figure 3.3. All inclu-

sions follow immediately from the definitions, except for the inclusion of multipebble

delayed simulation in fixed-word delayed simulation, which is marked by “!” (cf.

Theorem 3.4.3). All containments are strict, unless otherwise noted by “=”.

Remark 3.4.4. As another consequence of the inclusions above, notice that direct

containment is included in fixed-word delayed simulation. We find this interesting,

since their definitions are incomparable: while in direct containment Duplicator is

stronger than in delayed fixed-word simulation w.r.t. path quantification, it is the other

way around w.r.t. the winning condition.

3.4.4 Complexity

We examine the computational complexity of computing fixed-word simulation. Let q

and s be two states in a given NBA Q. We reduce the problem of checking q vxfx s to

54 Chapter 3. Fixed-word simulations

GFQ

not GFQ

simulation

multipebble

fixedword

containment

simulation

multipebble

fixedword

containment

simulation

multipebble

fixedword

containment

direct

delayed

fair

=

!

=

Figure 3.3: Pebbles, fixed-words, and containment

the universality problem of a certain alternating automaton A, obtained as a suitable

product automaton from Q. The idea is to design A in order to accept exactly those

words w s.t. q vxw s (except for a minor modification). Then, by the definition of vxfx, it

suffices to check whether A is universal—i.e., L(A) = Σω (or L(A) = Σ∗ in the case

of fixed-word backward simulation).

Since the universality problem for the models we consider is computable in PSPACE,

it follows that fixed-word simulations are in PSPACE as well. Moreover, very simple re-

ductions from well-known (and very similar) PSPACE-hard problems can be established

for the converse direction, giving the following result.

Theorem 3.4.5. Checking Fixed-word simulations is PSPACE-complete.

We study the complexity of multipebble simulations in Section 5.10 (in the more

general context of alternating automata).

The details of the product automaton Axq,s depend on x. Generally, Axq,s is designed

such that

L(Axq,s) = {a0Σa1Σa2 · · · | w = a0a1a2 · · · and q vxw s} (3.1)

The presence of the extra padding symbols in Σ at the odd positions is due to the kind

of alternating automata that we use. (It is possible to use alternating automata with

3.4. Fixed-word simulations 55

a more compact transition relation in the style of [115], which would eliminate those

padding symbols. We choose a different alternation model in coherence with the second

part of this thesis.)

Remark 3.4.6 (Ultimately periodic counterexamples). As a by-product of the charac-

terization of Equation (3.1), the set of words w s.t. q vxw s holds is a regular language.

Since regular languages are closed under complement, also the set of words w s.t.

q 6vxw s is regular. This means that, if there exists a word w s.t. Spoiler wins the

w-simulation game, then there exists an ultimately periodic word w′ = uvω with the

same property.

Below, we instantiate the construction for the different x ∈ {di, de, f, bw}.

Fixed-word fair simulation Af
q,s is an alternating parity automaton. Universal

states in Axq,s are of the form 〈p, r〉, while existential states are of the form 〈p, r, a, p′〉.
The initial state is 〈q, s〉, and transitions are as follows: 〈p, r〉 a−→ 〈p, r, a, p′〉 iff

p
a−→ p′, and 〈p, r, a, p′〉 Σ−→ 〈p′, r′〉 iff r a−→ r′. The acceptance condition is a three

color min-parity condition: 〈p, r〉 has color 0 if r ∈ F , and has color 1 if p ∈ F and

r 6∈ F ; every other state has color 2.

The lower bound is trivial: As we have seen, fixed-word fair simulation coincides

with fair containment, which is already known to be PSPACE-hard [80]. The upper

bound above gives an alternative proof of membership in PSPACE for fair containment.

Fixed-word direct and backward simulations For x ∈ {di, bw}, the automa-

ton Axq,s is an alternating safety automaton. States are the same as in the fair case,

including the initial state. The acceptance condition requires that only safe states are

visited.

For the direct case, Adi
q,s is an automaton over infinite words. Transitions are as in

the fair case. State 〈p, r〉 is not safe if p ∈ F and r 6∈ F ; every other state is safe.

For the backward case, Abw
q,s is an automaton over finite words. Transitions are now

taken backwards: For example, 〈p, r〉 a−→ 〈p, r, a, p′〉 iff p a←− p′. State 〈p, r〉 is not

safe if p ∈ F and r 6∈ F , or p ∈ I and r 6∈ I; every other state is safe.

For the lower bound, notice that we could also make unsafe states unreachable, by

removing all incoming transitions, and maintain that accepting runs are exactly the

infinite ones. In this case, we are interested in the trace language of Axq,s, which can

be obtained by making every state accepting. It is well known that trace universality is

PSPACE-hard.

56 Chapter 3. Fixed-word simulations

Fixed-word delayed simulation The idea is to add an obligation bit recording

whether Duplicator has any pending constraint to visit an accepting state [43]. Initially

the bit is 0, and it is set to 1 whenever Spoiler is accepting; a reset to 0 can occur

afterwards, if and when Duplicator visits an accepting state.

Ade
q,s is an alternating Büchi automaton. Universal states are of the form 〈p, r, b〉,

and existential states are of the form 〈p, r, b, a, p′〉, where b ∈ {0, 1} is the obligation bit.

The initial state is 〈q, s, 0〉, and transitions are as follows: 〈p, r, b〉 a−→ 〈p, r, b, a, p′〉 iff

p
a−→ p′, and 〈p, r, b, a, p′〉 Σ−→ 〈p′, r′, b′〉 iff r a−→ r′ and b′ is 0 if r ∈ F , is 1 if p ∈ F

and r 6∈ F , and is b otherwise. Accepting states are those of the form 〈p, r, 0〉, where

no obligation is pending.

For the lower bound, notice that an automaton Q is universal iff U vde
fx Q, where U

is the trivial, universal one-state automaton with an accepting Σ-loop. Since universality

is PSPACE-hard already for NBAs [80], the same complexity applies to vde
fx .

3.5 Fixed-word multipebble delayed simulation

With Theorem 3.4.2 we have established that fixed-word delayed simulation is GFQ.

An immediate question is whether we can find other natural GFQ preorders between

fixed-word delayed simulation and containment. A natural idea is to add a multipeb-

ble facility on top of fixed-word simulation: In fixed-word multipebble simulation

Duplicator has multiple pebbles and knows the input word in advance. We show

that, perhaps surprisingly, fixed-word multipebble delayed simulation is contained in

ordinary (i.e., 1-pebble) fixed-word delayed simulation (cf. Theorem 3.5.1). Since

fixed-word multipebble simulation is, by definition, coarser than both multipebble and

fixed-word simulations, this also proves Theorem 3.4.3 from Section 3.4—i.e, it shows

that multipebble delayed simulation is included in fixed-word delayed simulation.

We now formally define fixed-word multipebble delayed simulation. Let k > 0

and w = a0a1 · · · ∈ Σω. In the k-multipebble delayed w-simulation game Gk-de
w (q, s)

the set of positions of Spoiler is Q × 2Q × ω, the set of positions of Duplicator is

Q × 2Q × Q × ω, the initial position is 〈q, {s}, 0〉, and transitions are as follows:

(〈q, s, i〉, 〈q, s, q′, i〉) ∈ Γ0 iff q ai−→ q′, and (〈q, s, q′, i〉, 〈q′, s′, i+ 1〉) ∈ Γ1 iff s
ai=⇒ s′

and |s′| ≤ k. Given an infinite play π = 〈q0, s0, 0〉〈q1, s1, 1〉 · · · , Duplicator is winning

iff, whenever qi ∈ F , there exists j ≥ i s.t. si =⇒∗F sj . We write q vk-de
w s iff

Duplicator wins Gk-de
w (q, s), and we write q vk-de

fx s iff ∀w ∈ Σω · q vk-de
w s.

Clearly, pebble simulations induce a non-decreasing hierarchy: v1-de
fx ⊆v2-de

fx ⊆ · · · .

3.6. Fixed-words and ranks 57

We establish that the hierarchy actually collapses to the first level, which is just vde
fx .

Theorem 3.5.1. For k > 0, k-pebble fixed-word delayed simulation equals 1-pebble

fixed-word delayed simulation.

This result is non-trivial. The delayed winning condition requires reasoning not

only about the possibility to visit accepting states in the future, but also about exactly

when such a visit occurs. The proof uses a natural ranking argument inspired by [81],

with the notable difference that our ranks are ordinals (≤ ω2), instead of just natural

numbers. We need ordinals to represent how long a player can delay visiting accepting

states, and how this events nest with each other.

Pebbles, lookahead, and containment We give a brief interpretation of The-

orem 3.5.1 in terms of degree of lookahead. We say that Duplicator has lookahead

l ∈ ω ∪ {ω} iff during the simulation game she has the ability of waiting up to l

steps of Spoiler before making a move. Higher lookahead clearly gives more power to

Duplicator.

Lookahead is related to multiple pebbles in a simple way. When Duplicator uses

multiple pebbles, she can “hedge her bets” by moving pebbles to several successors.

This allows Duplicator to delay committing to any particular choice by arbitrarily many

steps: Multiple pebbles subsume any finite lookahead l. By Theorem 3.5.1, pebbles are

redundant in fixed-word delayed simulation. This means that, once Duplicator knows

the input word in advance, there is no difference between knowing only the next step by

Spoiler, or the next l steps for any finite l > 1. Therefore, the finite lookahead hierarchy

collapses to the l = 1 level at the GFQ preorder vde
fx .

However, in the case of infinite l = ω lookahead, Duplicator can wait until Spoiler

has completed her infinite path. In this case, we recover delayed containment ⊆de,

which is not GFQ by Example 3.3.2. Thus,

vde
fx is the coarsest GFQ relation included in ⊆de w.r.t. to the degree of lookahead.

The rest of the chapter is devoted to the proof of Theorem 3.5.1.

3.6 Fixed-words and ranks

In this section we prove Theorem 3.5.1 from Section 3.5.

58 Chapter 3. Fixed-word simulations

3.6.1 Overview

Fix an infinite word w = a0a1 · · · ∈ Σω. We associate to any state q an ordinal number

rank(q) (depending on w), which, in some sense, measures the “power” of a player in

a delayed w-simulation game starting from q. Then we show that, if Duplicator has a

better rank than Spoiler’s, then she wins the 1-pebble game:

Lemma 3.6.1. Let w ∈ Σω. If rank(q) ≤ rank(s), then q vde
w s.

Therefore, ranks are sufficient witnesses for showing that Duplicator is winning.

Ranks are also necessary, in a rather strong sense: We show that, if Duplicator wins the

w-simulation game, even using k > 1 pebbles, then she has a better rank:

Lemma 3.6.2. Let w ∈ Σω and k > 0. If q vk-de
w s, then rank(q) ≤ rank(s).

By combining these two results, we are able to show that Duplicator does not need

more than one pebble.

Proof of Theorem 3.5.1. By the previous two lemmas, we get

q vde
fx s =⇒ q vk-de

fx s =⇒ ∀w ∈ Σω · rank(q) ≤ rank(s) =⇒ q vde
fx s ,

where the first implication holds since fixed-word simulation (which, by definition, is

the same as 1-pebble fixed-word simulation), obviously implies k-pebble fixed-word

simulation.

3.6.2 Preliminaries

Ordinals Let ω be the least infinite ordinal, and let ω1 be the set of all countable

ordinals. We denote arbitrary ordinals by α or β, and limit ordinals by λ or µ. We

consider 0 not as a limit ordinal.

We define a predecessor and a floor operation on ordinals. For an ordinal α, its

predecessor α− 1 is either α itself if α is a limit ordinal, or β if α = β + 1 for some β;

its floor

bαc := sup
limit ordinal λ:

λ<α

λ

is the largest limit ordinal strictly smaller than α if it exists, and zero otherwise. Notice

that, for 0 < α < ωω, bαc < α.

3.6. Fixed-words and ranks 59

Trees Let [n] = {0, 1, . . . , n − 1}. A tree domain is a non-empty, prefix-closed

subset V of [n]∗. With <prf we denote the prefix order on words; if u <prf u
′, then u′ is

called a descendant of u, and u is an ancestor of u′. In particular, if u′ = uc for some

c ∈ ω, then u′ is a child of u. A (labelled) L-tree is a pair (V, t), where V is a tree

domain and t : V 7→ L is a mapping which assigns a label from L to any node in t.

3.6.3 The ranking construction

We now show how to assign ranks to states. The following presentation follows [81].

Let Q = (Q,Σ, I,∆, F) be an automaton, and let n be the cardinality of Q. Given an

infinite word w = a0a1 · · · ∈ Σω, we associate to any state p ∈ Q a tree domain Twp
and a Q-tree (Twp , t

w
p), the unravelling of Q from p while reading w, by applying the

following two rules:

• ε ∈ Twp and twp (ε) = p.

• If u has length i, u ∈ Twp , twp (u) = q and ∆(q, ai) = {q′0, q′1, . . . , q′k−1}, then, for

any j s.t. 0 ≤ j < k, uj ∈ Twp and twp (uj) = q′j .

It is easy to see that if two nodes at the same level have the same label, then they

generate isomorphic subtrees. Therefore, we can “compress” (Twp , t
w
p) into an infinite

DAG Gw
p = (V,E), where V ⊆ Q× ω is such that 〈q, l〉 ∈ V iff there exists a node in

(Twp , t
w
p) at level l with label q, and (〈q, l〉, 〈q′, l + 1〉) ∈ E iff there exist two nodes u

and u′, labelled with q and q′, respectively, s.t. u′ is a child of u in (Twp , t
w
p). We say

that a vertex 〈q, l〉 is accepting iff q ∈ F .

For any sub-DAG G ⊆ Gw
p , we say that a vertex 〈q, l〉 is a dead end in G iff it

has no successor in G, and we say that it is inert in G iff no accepting vertex can be

reached from 〈q, l〉 in G. In particular, an inert vertex is not accepting. For example, if

the automaton is complete, then Gw
p has no dead end, and, if w accepted from p, then

there exists an infinite branch with no inert vertex in it. The girth of G at level l is the

maximal number of vertices of the form 〈q, l〉 in G, and the width of G is the maximal

girth over infinitely many levels.

60 Chapter 3. Fixed-word simulations

We build a non-increasing transfinite sequence of DAGs {Gα | α < ω1} as follows:

G0 = Gw
p

Gα+1 = Gα \ {〈q, l〉 | 〈q, l〉 is a dead end in Gα}

Gλ = Hλ \ {〈q, l〉 | 〈q, l〉 is inert in Hλ}

where, for any ordinal β > 0, Hβ =
⋂
α<β

Gα

For example, Hω is obtained from G0 by removing all possible dead ends. In general,

Hλ does not have any dead end, and Gλ is obtained from the latter by removing inert

vertices therein. This operation possibly introduces new dead ends, and the whole

construction is iterated over higher ordinals. Notice that, for any ordinal α, Hα+1 = Gα.

We get an chain of smaller and smaller DAGs:

α ≤ β implies Gα ⊇ Gβ

Running example

Consider the automaton Q in Figure 3.4(a). (It is the same automaton Q as in Exam-

ple 3.3.2.) Let w = aω be the unique input word, and consider the run tree from state

p0. The resulting DAG G0 is shown in Figure 3.4(b). Accepting vertices are underlined.

Since G0 has no dead ends, G0 = G1 = G2 = · · · = Hω.

From level three on, vertices labelled with p3 have no accepting descendant, and

are thus inert. By removing those, we get the DAG Gω in Figure 3.4(c). This pruning

operation introduces dead ends in Gω, which are removed in Gω+1. Since the latter

does not have dead ends, we get

Gω ⊃ Gω+1 = Gω+2 = · · · = Hω·2

The limit DAG Hω·2 is shown in Figure 3.4(d).

Finally, all vertices in Hω·2 are inert, except the root. Therefore, only the root

survives in Gω·2; see Figure 3.4(e). Finally, even this last vertex gets removed next,

ending the hierarchy:

Gω·2 ⊃ Gω·2+1 = Gω·2+2 = · · · = Hω·3 = ∅

3.6. Fixed-words and ranks 61

p0 p1 p2 p3
a

a

a a

a

(a) Automaton Q (from Example 3.3.2)

〈p0, 0〉

〈p1, 1〉

〈p1, 2〉 〈p2, 2〉

〈p1, 3〉 〈p2, 3〉 〈p3, 3〉

〈p1, 4〉 〈p2, 4〉 〈p3, 4〉

〈p1, 5〉 〈p2, 5〉 〈p3, 5〉

...
...

...

inert

(b) The DAG G0

〈p0, 0〉

〈p1, 1〉

〈p1, 2〉 〈p2, 2〉

〈p1, 3〉 〈p2, 3〉

〈p1, 4〉 〈p2, 4〉

〈p1, 5〉 〈p2, 5〉

...
dead

ends

(c) The DAG Gω

〈p0, 0〉

〈p1, 1〉

〈p1, 2〉

〈p1, 3〉

〈p1, 4〉

〈p1, 5〉

...

inert

(d) Hω·2

〈p0, 0〉

dead

end

(e) Gω·2

Figure 3.4: A running example

62 Chapter 3. Fixed-word simulations

We argue that the chain eventually stabilizes, and the rank of a vertex is defined to

be the stabilization level. For a limit ordinal λ, when going from Hλ to Gλ there are

two possible cases:

a) No vertex in Hλ is inert and Gλ = Hλ. (Hλ might even be empty in this case.)

b) Some vertex in Hλ is inert and Gλ ⊃ Hλ.

In the first case, the chain stabilizes at ordinal λ. In the second case, one can show that,

by König’s Lemma, an infinite path is removed from the graph. (This path can start at

an arbitrarily deep level down the tree.) Intuitively, one reasons as follows: Let 〈q, l〉
be an inert vertex in Hλ (which exists by assumption), and recall that Hλ has no dead

end by construction. Therefore, 〈q, l〉 has at least one successor 〈q′, l + 1〉. The latter is

inert by definition, and the procedure can be iterated in order to build longer and longer

paths of inert vertices. The limit of these paths is an infinite path of inert vertices rooted

at 〈q, l〉, all of which are removed in Gλ.

Therefore, in the second case, the width of Gλ is strictly less than the width of Hλ.

As a consequence, since the width of G0 is bounded by n (and thus by ω), the hierarchy

stabilizes at most at ordinal ω2:

G0 ⊃ G1 ⊃ · · · ⊃ Hω ⊃ Gω ⊃ Gω+1 ⊃ · · · ⊃ Hω2 = Gω2 = Gω2+1 = · · ·

Thus, each vertex not in Hω2 is either a dead end in Gα = Hα+1 or inert in Hλ. In the

former case 〈q, l〉 is in Hα+1 \Gα+1, whereas in the latter case 〈q, l〉 is in Hλ \Gλ: In

both cases, there exists a unique ordinal α < ω2 s.t. 〈q, l〉 is in Hα \ Gα, and vertex

〈q, l〉 receives2 rank α.Otherwise, if a vertex is in Hω2 , then it will never be removed

from the chain. In this latter case, we assign rank ω2:

rank(q, l) :=

{
the unique α s.t. 〈q, l〉 ∈ Hα \Gα if 〈q, l〉 6∈ Hω2

ω2 if 〈q, l〉 ∈ Hω2

When 〈q, l〉 has rank α, we also write 〈q, l〉 : α.

Running example

Vertices of level l ≥ 3 of the form 〈p3, l〉 are in Hω \Gω, therefore they get rank ω, since

2Alternatively, one could define α to be the maximal ordinal in Hα.

3.6. Fixed-words and ranks 63

〈p0, 0〉 : ω · 2 + 1

〈p1, 1〉 : ω · 2

〈p1, 2〉 : ω · 2 〈p2, 2〉 : ω + 1

〈p1, 3〉 : ω · 2 〈p2, 3〉 : ω + 1 〈p3, 3〉 : ω

〈p1, 4〉 : ω · 2 〈p2, 4〉 : ω + 1 〈p3, 4〉 : ω

〈p1, 5〉 : ω · 2 〈p2, 2〉 : ω + 1 〈p3, 5〉 : ω

...
...

...

Figure 3.5: Ranks of the running example

this is the largest ordinal α s.t. 〈p3, l〉 ∈ Hα. Vertices of level l ≥ 2 of the form 〈p2, l〉
are in Gω \ Gω+1, that is, in Hω+1 \ Gω+1, therefore they get rank ω + 1. Similarly,

vertices of level l ≥ 1 of the form 〈p1, l〉 are in Hω·2 \Gω·2 and thus they get rank ω · 2.

Finally, the root vertex 〈p0, 0〉 is in Gω·2 \Gω·2+1 and consequently gets rank ω · 2 + 1.

The ranks of all vertices in Gw
p0

are shown in Figure 3.5.

Vertices of rank ω2 are not dead ends, and they can always reach an accepting vertex

of the same rank ω2. Therefore, vertices of rank ω2 are on fair paths in Gw
p .

Lemma 3.6.3. A vertex 〈q, l〉 has rank ω2 iff there exists a fair path from 〈q, l〉 in Gw
p .

Remark 3.6.4. In the construction of [81], all dead ends and all vertices that can only

reach dead ends are removed in just one step, and these vertices are collectively called

endangered. Here, we need to remove endangered vertices from the bottom-up. This is

necessary since the rank needs to take into account the maximal number of steps that a

player can perform before visiting an accepting state. Hλ is obtained by removing all

endangered vertices, while in [81] this information is not needed and is abstracted away.

64 Chapter 3. Fixed-word simulations

3.6.4 Important properties of ranks < ω2

In this section we state and prove several properties of ranks, that will be used later in

the proofs of Lemmas 3.6.1 and 3.6.2. All the properties in this section are stated under

the global assumption that no vertex gets rank ω2. In this case, we recall that the rank

of a vertex 〈q, l〉 is the unique α s.t. 〈q, l〉 ∈ Hα \Gα. (The case where vertices have

rank ω2 is simple, and it is treated separately in the two main Lemmas 3.6.1 and 3.6.2.)

The following lemma relates accepting vertices and successor ranks.

Lemma 3.6.5. If a vertex 〈q, l〉 is accepting, then it has successor ordinal rank α+ 1.

Furthermore, if it has rank λ+ 1, for λ a limit ordinal, then it is accepting.

Proof. If 〈q, l〉 is accepting, then it is never inert. Consequently, if 〈q, l〉 ∈ Hλ, then

〈q, l〉 ∈ Gλ. The only possibility left is that 〈q, l〉 is a dead end in Gα, for some α:

〈q, l〉 ∈ Hα+1 \Gα+1 (since Hα+1 = Gα) and rank(q, l) = α + 1.

For the second part, assume 〈q, l〉 : λ+1, i.e., 〈q, l〉 ∈ Gλ\Gλ+1 (sinceHλ+1 = Gλ).

〈q, l〉 is a dead end in Gλ. Since Gλ ⊆ Hλ, 〈q, l〉 is in Hλ as well. But Hλ has no

dead ends by construction, therefore 〈q, l〉 has at least one successor 〈q′, l + 1〉 in Hλ.

Consider any such successor 〈q′, l + 1〉. Since 〈q, l〉 is a dead end in Gλ, 〈q′, l + 1〉
is not in Gλ. That is, 〈q′, l + 1〉 ∈ Hλ \ Gλ. By definition, 〈q′, l + 1〉 is inert in Hλ.

Therefore, 〈q, l〉 has only inert successors in Hλ.

By contradiction, assume that 〈q, l〉 is not accepting. Since it has only inert succes-

sors inHλ, it is itself inert inHλ, contradicting 〈q, l〉 ∈ Gλ. Thus, 〈q, l〉 is accepting.

We say that a vertex 〈q′, l + 1〉 is a maximal successor of 〈q, l〉 if its rank is max-

imal amongst all successors of 〈q, l〉. The following lemma states that ranks are

non-increasing along paths, and that intermediate ranks cannot be skipped on every

successor.

Lemma 3.6.6. Let vertex 〈q, l〉 have rank α. Then,

a) Every successor 〈q′, l + 1〉 has rank at most α− 1.

b) There exists a maximal successor attaining rank α− 1.

As a direct consequence,

c) Every node 〈q′, l′〉 reachable from 〈q, l〉 has a smaller rank α′ ≤ α.

Proof. We split the proof into two cases, depending on whether α is a successor or limit

ordinal.

3.6. Fixed-words and ranks 65

• First case: Let α be a successor ordinal β + 1. Consequently, α− 1 = β. Then,

〈q, l〉 ∈ Gβ \ Gβ+1. 〈q, l〉 is a dead end in Gβ and no successor 〈q′, l + 1〉 is in

Gβ . Thus, any successor 〈q′, l + 1〉 has rank ≤ β. This shows Point a). For Point

b), we show that at least one successor has rank exactly equal to β. Let β∗ ≤ β be

the maximum rank amongst 〈q, l〉’s successors. (It exists since there are finitely

many successors.) We show β∗ = β. By maximality, no successor 〈q′, l + 1〉 is

in Gβ∗ . Since Gβ ⊆ Gβ∗ , 〈q, l〉 is a dead end in Gβ∗ . Thus, 〈q, l〉 ∈ Gβ∗ \Gβ∗+1,

and 〈q, l〉 : β∗ + 1. By assumption, 〈q, l〉 : β + 1 Therefore, β∗ = β.

• Second case: Let α be a limit ordinal λ. Consequently, α− 1 = λ. 〈q, l〉 is inert

in Hλ. Let 〈q′, l + 1〉 be any successor of 〈q, l〉 (in Gw
p). If 〈q′, l + 1〉 is not in Hλ,

then, since Gλ ⊆ Hλ, 〈q′, l + 1〉 is not in Gλ either. Thus, 〈q′, l + 1〉 :≤ λ in this

case. Otherwise, let 〈q′, l + 1〉 be in Hλ. Since 〈q, l〉 is inert in Hλ, 〈q′, l + 1〉
is inert in Hλ. Therefore, 〈q′, l + 1〉 : λ. This proves Point a). For Point b), a

successor of rank λ always exists, since, by construction, Hλ does not contain

dead ends.

A sequence 〈q0, l〉〈q1, l + 1〉 · · · 〈qh, l + h〉 is a maximal path if, for any 0 ≤ k < h,

〈qk+1, l + k + 1〉 is a maximal successor of 〈qk, l + k〉.

Lemma 3.6.7. If a vertex 〈q0, l〉 has a successor ordinal rank α + 1, then there ex-

ists a maximal path 〈q0, l〉〈q1, l + 1〉 · · · 〈qh, l + h〉 ending in 〈qh, l + h〉 : λ + 1 with

bα + 1c ≤ λ.

Proof. We proceed by ordinal induction. If α is a limit ordinal λ or zero, the claim

holds immediately: Take h = 0; clearly, λ = bλ+ 1c.
Otherwise, let α be a successor ordinal β + 1. 〈q0, l〉 has rank α+ 1 = (β + 1) + 1.

By Lemma 3.6.6(b), 〈q0, l〉 has a maximal successor 〈q1, l + 1〉 : β + 1 = α. By

induction hypothesis, there exists a maximal path 〈q1, l + 1〉 · · · 〈qh, l + h〉 with h > 0,

ending in 〈qh, l + h〉 : λ + 1 with bβ + 1c ≤ λ. But b(β + 1) + 1c = bβ + 1c, since

{ limit ordinal λ | λ < (β + 1) + 1} = { limit ordinal λ | λ < β + 1}. Therefore,

bα + 1c = b(β + 1) + 1c = bβ + 1c ≤ λ.

The following lemma says that vertices with a limit rank have some descendant (not

necessarily a direct successor) of strictly smaller rank.

Lemma 3.6.8. If a vertex 〈q0, l〉 has a limit ordinal rank λ s.t. ω < λ < ω2, then

there exists a (non-maximal) path 〈q0, l〉〈q1, l + 1〉 · · · 〈qh, l + h〉 with h > 0 ending in

〈qh, l + h〉 : α + 1 with bλc ≤ α.

66 Chapter 3. Fixed-word simulations

Proof. Let 〈q0, l〉 : λ with ω < λ < ω2. By contradiction, assume 〈q0, l〉 has no

descendant 〈q′, l′〉 : α + 1 with bλc ≤ α. Then, all descendants 〈q′, l′〉 : α + 1 have

α < bλc. Since bλc is a limit ordinal by definition, α + 1 < bλc. By definition, 〈q0, l〉
is inert in Hλ. Since bλc ≤ λ by definition of the floor operation, Hλ ⊆ Hbλc. (Hbλc is

defined since λ > ω by assumption, thus, bλc ≥ ω.) Therefore, 〈q0, l〉 is in Hbλc. We

show that 〈q0, l〉 is inert in Hbλc as well. To this end, we show that any vertex reachable

from 〈q0, l〉 in Hbλc is non-accepting. Let 〈q′, l′〉 be a descendant of 〈q0, l〉 in Hbλc. If

〈q′, l′〉 were accepting, then, by Lemma 3.6.5, it would have successor ordinal rank

α + 1. By assumption, α + 1 < bλc, thus 〈q′, l′〉 is not in Hbλc.

Therefore, 〈q0, l〉 is inert in Hbλc. But this is a contradiction, since 〈q0, l〉 would get

rank bλc < λ.

3.6.5 The two directions of Theorem 3.5.1

The first direction is easier. It says that if Duplicator has a better rank than Spoiler, then

Duplicator wins the w-simulation game with just one pebble. Thus, ranks are sufficient

for simulation.

Lemma 3.6.1. Let w ∈ Σω. If rank(q0, 0) ≤ rank(s0, 0), then q0 vde
w s0.

Proof. Assume rankq0(q0, 0) ≤ ranks0(s0, 0). We show that Duplicator has a winning

strategy in Gde
w (q0, s0). For any round i, let 〈qi, si〉 be the current configuration of the

simulation game (we omit the third component for simplicity), and let the rank of Spoiler

and Duplicator at round i be rankq0(qi, i) and ranks0(si, i), respectively. If Duplicator’s

rank is ω2, then she will just play a fair path, which exists by Lemma 3.6.3. Otherwise,

both ranks are < ω2, and we proceed by applying the properties from Section 3.6.4.

Intuitively, Duplicator wins by ensuring both a safety and a liveness condition. The

safety condition requires Duplicator to always preserve the ordering between ranks: For

any round i,

rankq0(qi, i) ≤ ranks0(si, i)

When this happens, we say that Duplicator plays safely. Duplicator can alway play

safely by selecting maximal successors; in this case, we say that Duplicator plays

maximally. Sometimes, Duplicator has to play safely, by sub-maximally: The liveness

condition forces Duplicator to eventually visit an accepting state whenever Spoiler does

so, and this might require to take a sub-maximal successor.

3.6. Fixed-words and ranks 67

Duplicator plays in three modes: start-up mode, normal mode and obligation mode.

In start-up and normal mode Duplicator plays maximally, while in obligation mode

Duplicator needs to satisfy the liveness condition, while still playing safely. Start-up

mode happens only at the beginning, to prepare for normal mode. Normal and obligation

mode alternate during the game, as new obligations are raised by Spoiler and met by

Duplicator.

In start-up mode, Duplicator plays maximally until she has a limit ordinal. Then the

game goes to normal mode. There is no pending obligation at the beginning of normal

mode, since at the end of startup-mode Duplicator has rank λ+ 1, and, by Lemma 3.6.5,

she is accepting.

In normal mode, Duplicator is guaranteed to always have a limit ordinal rank, which

is preserved by playing maximally. The game stays in normal mode as long as Spoiler

is not accepting. Whenever qi ∈ F at round i, the game switches to obligation mode.

At the beginning of obligation mode, Duplicator always has a limit ordinal rank

λ. Since qi ∈ F , by Lemma 3.6.5, Spoiler’s rank at the beginning of obligation

mode is a successor ordinal α + 1 < λ. W.l.o.g. we assume that Spoiler plays

maximally during obligation mode. By Lemma 3.6.7, there exists a maximal path

〈qi, i〉〈qi+1, i+ 1〉 · · · 〈qj, j〉 s.t. Spoiler’s rank at round j ≥ i is λ′ + 1. A further maxi-

mal move by Spoiler extends the previous path to 〈qj+1, j + 1〉. By Lemma 3.6.6(b),

Spoiler’s rank at round j + 1 is now λ′, and, by Lemma 3.6.6(c), λ′ ≤ α+ 1. From now

on, we assume w.l.o.g. that Spoiler plays maximally as to preserve rank λ′. We show

that Duplicator can match the pending obligation while still playing safely.

By induction from Lemma 3.6.6(b), Duplicator can play a maximal path

〈si, i〉〈si+1, i+ 1〉 · · · 〈sj+1, j + 1〉

s.t. Duplicator’s rank at round j + 1 is still λ. But λ′ ≤ α + 1 < λ, thus λ′ < λ.

Consequently, λ′ ≤ bλc by the definition of floor operation. So, let 〈qj+1, sj+1〉 be the

configuration at round j + 1. By Lemma 3.6.8, Duplicator can play a path

〈sj+1, j + 1〉〈sj+2, j + 2〉 · · · 〈sk, k〉

with k > j + 1 and s.t. Duplicator’s rank at round k is α′ + 1 with bλc ≤ α′. Since

λ′ ≤ bλc, we have λ′ ≤ α′. By Lemma 3.6.7, Duplicator can extend the previous path

with a maximal path

〈sk, k〉〈sk+1, k + 1〉 · · · 〈sh, h〉

68 Chapter 3. Fixed-word simulations

s.t. Duplicator’s rank at round h > k is λ′′ + 1 with bα′ + 1c ≤ λ′′. By Lemma 3.6.5,

sh ∈ F , thus Duplicator has satisfied the pending obligation. In the next round h+ 1,

the game switches back to normal mode. By Lemma 3.6.6(b), Duplicator’s rank is

the limit ordinal λ′′, thus satisfying the precondition of normal mode. Notice that

λ′ ≤ α′ < α′ + 1 implies λ′ ≤ bα + 1c. Therefore, λ′ ≤ λ′′ and the safety condition is

satisfied.

The second direction is more interesting. Its contrapositive says that if Spoiler has a

better rank than Duplicator, then Duplicator loses the w-simulation game, even if she

uses multiple pebbles. Thus, ranks are necessary for simulation.

The following lemma, and its proof, conclude the chapter.

Lemma 3.6.2. Let w ∈ Σω and k > 0. If q0 vk-de
w s0, then rank(q0, 0) ≤ rank(s0, 0)

Proof. We prove the contrapositive. Assume rankq0(q0, 0) 6≤ ranks0(s0, 0). Since

ordinals are linearly ordered, this means rankq0(q0, 0) > ranks0(s0, 0). We have to show

q0 6vk-de
w s0, for arbitrary k > 0. Take n to be the size of the automaton. We actually

prove that Duplicator does not win even with n pebbles, i.e., q0 6vn-de
w s0.

For any round i, let 〈qi, si〉 be the current configuration of the simulation game

Gn-de
w (q0, s0). (For simplicity, we omit the third component.) si identifies a subset of

vertices at level i in Gw
s0

: si ⊆ {s | 〈s, i〉 ∈ Gw
s0
}. We extend the notion of rank from

vertices to sets of vertices, by taking the maximal rank amongst all members: That is,

the rank of Duplicator at round i is sups∈si ranks0(s, i). As before, Spoiler’s rank is just

rankq0(qi, i).

If Spoiler has rank ω2, then she will just play a fair path, which exists by Lem. 3.6.3.

Duplicator loses, since she has rank < ω2 by assumption, and, by Lemma 3.6.3, there

exists no fair path in this case. Otherwise, assume Spoiler’s rank is < ω2, and we

proceed by applying the properties from Section 3.6.4.

We assume that, at round 0, every pebble has limit rank. If not, Spoiler can enforce

such a situation by waiting a suitable number of rounds. (I.e., by playing maximally

according to Lemma 3.6.6(b).) So, let Spoiler have limit rank λ, and let Duplicator

have limit rank µ, with λ > µ. Thus, bλc ≥ µ. We assume that Duplicator always

plays maximally, unless she is forced to act differently. By Lemma 3.6.8, Spoiler can

play a path 〈q0, 0〉〈q1, 1〉 · · · 〈qi, i〉 with i > 0, s.t. her rank at round i is α + 1 and

α ≥ bλc. Since bλc ≥ µ, we have α ≥ µ. By Lemma 3.6.7, Spoiler can extend the

previous path with a maximal path 〈qi, i〉〈qi+1, i+ 1〉 · · · 〈qj, j〉 with j > i, s.t. her rank

3.6. Fixed-words and ranks 69

at round j is λ′ + 1 and λ′ ≥ bα + 1c. By Lemma 3.6.5, qj ∈ F . From α+ 1 > α ≥ µ

we have bα + 1c ≥ µ. By λ′ ≥ bα + 1c, we have λ′ ≥ µ. By performing a further

maximal step, Spoiler reaches state 〈qj+1, j + 1〉 with rank λ′. From now on, Spoiler

plays maximally.

Since Duplicator was supposed to play maximally, in the meantime she replied to

Spoiler with a sequence 〈s0, 0〉〈s1, 1〉 · · · 〈sj+1, j + 1〉 maintaining rank µ. Now, let

〈qj+1, sj+1〉 be the current configuration, and remember that Duplicator has a pending

obligation to satisfy. That is, Duplicator has to ensure that at some future round all

pebbles are good since round j + 1. Let k > j + 1 be such a round, at which point

Duplicator is in position 〈sk, k〉 and sj+1 =⇒∗F sk. Every state in sk has seen an

accepting state since round j + 1. By Lemma 3.6.5, accepting states receive successor

ranks α + 1. Since ranks are non-increasing along paths in Gw
s0

(by Lemma 3.6.6(c)),

at each visit of a final state, α + 1 < µ. Therefore, all states in sk have rank < µ. In

particular, Duplicator’s rank at round k is < µ. Since Duplicator has now satisfied the

pending obligation, she will again play maximally, from round k on. By Lemma 3.6.6,

all pebbles eventually stabilize to a limit rank. Since there are only finitely many

pebbles, this stabilization happens in a finite number of rounds. At some round h ≥ k,

Duplicator’s rank is µ′ < µ. Let sh be the position of Duplicator’s pebbles at round h.

Meanwhile, Spoiler replied with a maximal path 〈qj+1, j + 1〉 · · · 〈qh, h〉, preserving

rank λ′ ≥ µ > µ′ until round h. Therefore, λ′ > µ′, and the situation at round h is

the same as at round 0, with the crucial difference that Duplicator’s rank at round h is

strictly smaller than it was at round 0, µ′ < µ.

Since ordinals are well-founded, Spoiler can iterate the whole procedure and after a

finitely many repetitions Duplicator hits the trap rank ω, from which no more accepting

states can be visited. At that point, Spoiler would have a limit rank λ′′ > ω, so she will

just force one more obligation, which would remain unmet. Thus, Spoiler wins.

Chapter 4

Jumping simulations

Contents
4.1 Overview . 72

4.2 Preliminaries . 74

4.2.1 Jumping containments 75

4.2.2 Jumping-safe preorders 76

4.3 Jumping simulation transformers 76

4.3.1 Definitions . 77

4.3.2 Basic properties . 80

4.3.3 Composing strategies and transitivity 82

4.4 Language containment and inclusion 84

4.4.1 Jumping simulation implies jumping containment 85

4.4.2 Jumping containment implies jumping inclusion 86

4.4.3 Deciding ordinary language inclusion 87

4.4.4 Coherent sequences of jumping paths 88

4.5 Reflexivity and jumping-safety . 91

4.5.1 Reflexivity . 92

4.5.2 Preserving jumping-safe preorders 93

4.5.3 Proof of reflexivity . 94

4.6 Proxy simulation hierarchies . 98

4.6.1 Idempotence . 99

4.6.2 Proxy simulations . 100

71

72 Chapter 4. Jumping simulations

4.6.3 Iterated quotienting . 106

4.7 Proxy simulations vs Mediated preorder 109

4.7.1 Mediated preorder . 109

4.7.2 Comparison . 110

4.7.3 Mediated preorder as a jumping simulation game 115

4.8 Computing jumping simulations 116

4.8.1 Jumping predecessor operators 116

4.8.2 Direct and backward simulations 117

4.8.3 Fair simulation . 118

4.8.4 Delayed simulation . 118

4.1 Overview

In this chapter, we study simulation-like preorders for quotienting NBA coarser than

ordinary simulation. The main difference with the previous chapter is that here we

concentrate on preorders which are efficiently computable. Indeed, a major drawback

for practical applications of fixed-word simulations from Chapter 3 is that they are

expensive to compute (i.e., PSPACE-complete). In this chapter, we define jumping

simulations, which are computable in PTIME. Under certain assumptions, we show that

jumping simulations can be used for quotienting NBA (i.e., they are GFQ). While in

general jumping simulations are incomparable w.r.t. fixed-word simulations, they are

still coarser than ordinary simulation. Therefore, quotienting w.r.t. jumping simulations

yields automata that are smaller than what was previously possible w.r.t. practical

(i.e., PTIME) methods. Being able to obtain smaller automata is beneficial in any

application involving automata, since smaller automata are more efficiently manipulated

and analyzed, e.g., in model-checking (cf. Chapter 1). Another prominent application

of simulations is as an efficient test for language inclusion between automata, and we

show that jumping simulations can be used also in this context. Therefore, the theory

of jumping simulations offers a comprehensive generalization of ordinary simulation,

and, at the same time, it retains the same good properties w.r.t. quotienting, language

inclusion checking, and complexity.

We aim at defining simulation-like preorders coarser than either forward or backward

simulation. We begin by noticing that preorders coarser than both forward and backward

4.1. Overview 73

simulation are in general not GFQ.

Example 4.1.1 - Simultaneous quotienting w.r.t. both forward and

backward simulations is incorrect

q0

q1 q2 q3

q4

a
a

b

a b
b

a

≈bw ≈di

States q1 and q2 are backward simulation equivalent, while q2 and q3 are direct

simulation equivalent:

q1 ≈bw q2 ≈di q3

If we simultaneously “glue together” q1, q2 and q3—i.e., by quotienting w.r.t. the

transitive closure of ≈bw ∪≈di—, then we would also identify q1 and q3, which are

otherwise unrelated. This results in a quotient automaton incorrectly accepting the

extraneous word baω, originally not in the language of the automaton.

Therefore, we restrict our attention to preorders coarser than either forward or backward

simulation, but not coarser than both.

We introduce jumping simulations, which generalize ordinary simulation by al-

lowing players to “jump” to other states before taking a transition. Jumps are taken

w.r.t. a given input preorder v. Consequently, jumping simulations act as transformers,

mapping preorders v to a corresponding v-jumping simulation preorder. We study

the properties of jumping simulations transformers, and, in particular, we investigate

under which conditions jumping simulations map GFQ preorders to GFQ preorders.

The material presented in this chapter is a significant extension and improvement of

material that has been published in [28].

The chapter is structured as follows. In Section 4.2, we fix notation. In Section 4.3,

jumping simulations are introduced and their basic properties are investigated. In

analogy to ordinary simulations, we define direct, delayed, fair, and backward jump-

74 Chapter 4. Jumping simulations

ing simulation. We establish their transitivity (as relations) and non-decreasingness

(as transformers). Subsequently, in Section 4.4, we explain the relationship between

jumping simulations and various forms of containment. Moreover, we show that jump-

ing simulation can be used as an efficient under-approximation to language inclusion

between automata (and this approximation is provably better than ordinary simulation).

In Section 4.5, we present the main result of the chapter, which can be approximately

stated as follows: Jumping simulations map GFQ preorders to coarser GFQ preorders;

see Theorems 4.5.3 and 4.5.4. This allows us to nest transformers in order to produce

hierarchies of coarser and coarser GFQ preorders. In Section 4.6 we explore this

possibility, and we consider proxy simulation hierarchies, which are obtained by iterated

application of forward and backward transformers, starting from the identity relation

(which is trivially GFQ).

In Section 4.7, we compare jumping simulations with mediated preorder. Mediated

preorder is a related GFQ relation that has been studied in the literature [4], and we

show that it is in general incomparable w.r.t. jumping simulations.

Finally, in Section 4.8, we give an algorithm for computing jumping simulations; it

arises as a classical fixpoint characterization of the winning regions in the corresponding

simulation game. As a consequence, jumping simulation are computable in PTIME.

4.2 Preliminaries

We adopt the following convention: States that “can do more” simulation-wise are

always written as the larger ones w.r.t. the preorder; i.e., in both p � q and q � p, q

simulates p. If � is a preorder, then we write � for its transpose.

Definition 4.2.1 (Jumping transitions). For a preorder v, we write

• p vF q iff p v q and, moreover, there exists r ∈ F s.t. p v r v q;

• q v I iff there exists q̂ ∈ I s.t. q v q̂;

• qv a−→q′ iff there exists q̂ s.t. q v q̂
a−→ q′;

• qv a−→F q
′ iff there exists q̂ s.t. q vF q̂ a−→ q′.

Similar definitions hold for v a←− and v a←−F .

4.2. Preliminaries 75

4.2.1 Jumping containments

Let v be a preorder, and fix an infinite word w = a0a1 · · · ∈ Σω. A v-jumping w-path

is an infinite sequence of the form

π = q0v
a0−→q1v

a1−→q2v
a2−→· · ·

We say that π starts at q0. π is initial if q0 ∈ I , and is fair if qiv
ai−→F qi+1 for infinitely

many i’s. Finite v-jumping paths over finite words w are defined similarly. If w has

length n, then π ends at qn.

Definition 4.2.2 (Jumping language). The v-language Lv(q) of a state q is the set of

ω-words which induce fair v-jumping paths from q:

w = a0a1 · · · ∈ Lv(q) ⇐⇒ ∃ fair v-jumping w-path π starting at q

As usual, for a set of states P ⊆ Q, let Lv(P) =
⋃
q∈P Lv(q), and, for an automaton

Q, let Lv(Q) = Lv(I), where I is the set of initial states of Q.

Jumping forward containment is the jumping analogue of fair containment from Sec-

tion 3.3. For simplicity, we do not consider other forward containments in this chapter.

Definition 4.2.3 (Jumping forward containment). For two preorders v0 and v1, and

states q and s, we say that q is (v0,v1)-contained in s, written q ⊆fw(v0,v1) s, iff the

v0-language of q is contained in the v1-language of s:

q ⊆fw(v0,v1) s iff Lv0(q) ⊆ Lv1(s)

Jumping backward containment is the jumping analogue of backward containment

from Section 3.3. Intuitively, two states q and s are in jumping backward containment

⊆bw(v0,v1) iff initial v0-jumping paths ending in q are matched by corresponding

initial v1-paths ending in s, and, if the first path takes an accepting transition, then so

does the second.

Definition 4.2.4 (Jumping backward containment). For two states q and s, let q ⊆bw

(v0,v1) s iff, for any initial w0-jumping path q0 w0 q̂0
a0−→ · · · an−1−→ qn w0 q̂n ending

at q̂n = q, there exists an initial w1-jumping path s0 w1 ŝ0
a0−→ · · · an−1−→ sn w1 ŝn

ending at ŝn = s s.t., for any 0 ≤ i < n,

qi wF0 q̂i implies si wF1 ŝi

76 Chapter 4. Jumping simulations

4.2.2 Jumping-safe preorders

Jumping-safe preorders are central in this chapter. Intuitively, a preorder is jumping-safe

if fair jumping paths do not introduce new words into the language of the automaton.

Definition 4.2.5 (Jumping-safe preorder). For an automatonQ, a preorder v⊆ Q×Q
is jumping-safe (w.r.t. Q) iff

Lv(Q) = L(Q)

Therefore, if a preorder is jumping-safe, then fair and initial jumping paths can

always be replaced by fair and initial non-jumping paths.

Remark 4.2.6. Jumping-safe preorders and GFQ equivalences are strongly related. If a

preorder is jumping-safe, then the induced equivalence is GFQ, and, vice versa, if an

equivalence is GFQ, then it is also jumping-safe.

In the next section we introduce several PTIME preorder transformers. The main

result of this chapter says that those transformers map jumping-safe preorders into

jumping-safe preorders. (cf. Theorems 4.5.3 and 4.5.4).

4.3 Jumping simulation transformers

In this section we introduce several simulation transformers τ , which map a given

preorder v into a new preorder τ(v). The transformer τ is defined game-theoretically

via a variant of the usual simulation game.

Fix a preorder v. We introduce a novel class of simulation games where both

Spoiler and Duplicator can jump during the game. The new position a player can

jump to depends on the preorder v: If a player’s pebble is on q, then the pebble can

instantaneously jump to any state q̂ s.t. q v q̂. We call state q̂ a proxy, which acts as a

dynamic mediator for taking jumping transitions. From the proxy, the pebble can then

take an ordinary a-transition to some state q′. Overall, we have a jumping transition

q v q̂
a−→ q′, which we usually abbreviate as qv a−→q′ by keeping the proxy implicit.

The winning condition depends on the specific transformer that we consider. We

study four transformers τx, for x ∈ {di, de, f, bw}, in analogy with direct, delayed, fair

and backward simulation.

Intuitively, the acceptance condition is shifted from states to transitions. A pebble is

no longer statically accepting in a given position, but can instead dynamically take an

4.3. Jumping simulation transformers 77

accepting v-transition. A v-transition is accepting if the pebble can “transit through”

an accepting state before reaching the proxy. We write an accepting a-transition from q

to q′ as qv a−→F q
′: Expanding the definition, this means that there exist states qF ∈ F

and q̂ s.t. q v qF v q̂
a−→ q′.

In the general definition, we allow Spoiler and Duplicator to jump w.r.t. distinct

preorders. For obtaining transitivity, we then restrict ourselves to the case where they

jump w.r.t. the same preorder (cf. Section 4.3.3).

4.3.1 Definitions

Fix two preorders v0 and v1, controlling the jumping capability of Spoiler and Dupli-

cator, respectively. Formally, the configurations of the basic (v0,v1)-simulation game

between state q and state s, Gq,s(v0,v1), are the same as in ordinary simulation. That

is, they are pairs of states 〈qi, si〉. The difference lies in the fact that more transitions

are available in the (v0,v1)-game than in the ordinary game. We first discuss forward

transformers.

Forward transformers Let x ∈ {di, de, f}. Initially, the game is in configuration

〈q0, s0〉. Subsequently, if in round i the current configuration is 〈qi, si〉, then the

configuration for the next round i+ 1 is determined as follows:

• First, Spoiler chooses an input symbol ai and a v0-jumping transition

qiv0
ai−→qi+1

• Then, Duplicator replies with a matching v1-jumping transition

siv1
ai−→si+1

The next configuration is 〈qi+1, si+1〉. If in any round a player cannot move because no

transition is available, then she loses. Otherwise, the game goes on “for ever” (for ω

rounds), and the two player jointly build two infinite jumping paths,

π0 = q0v0
a0−→q1v0

a1−→· · · and π1 = s0v1
a0−→s1v1

a1−→· · ·

The winner is established by a predicate on π0 and π1, which depends on the kind x of

simulation we are considering. Intuitively, Duplicator has to match accepting transitions

in the same way accepting states are matched in the corresponding ordinary game. This

translates to the the following acceptance conditions:

78 Chapter 4. Jumping simulations

1. Direct (@0,v1)-simulation, x = di. Duplicator wins if, whenever Spoiler takes

an accepting v0-transition, then she takes an accepting v1-transition:

∀(i ≥ 0) · qiv0
ai−→F qi+1 =⇒ siv1

ai−→F si+1

2. Delayed (@0,v1)-simulation, x = de. Duplicator wins if, whenever Spoiler takes

an accepting v0-transition in round i, then she takes an accepting v1-transition

in some later round j ≥ i:

∀(i ≥ 0) · qiv0
ai−→F qi+1 =⇒ ∃(j ≥ i) · sjv1

aj−→F sj+1

3. Fair (@0,v1)-simulation, x = f. Duplicator wins if, whenever Spoiler takes

infinitely many accepting v0-transitions, then she takes infinitely many accepting

v1-transitions:

π fair =⇒ π′ fair

The rules for forward jumping simulations are summarized below.

Current configuration

〈qi, si〉
Next configuration

〈qi+1, si+1〉

Spoiler chooses qiv0
ai−→qi+1

Duplicator replies with siv1
ai−→si+1

Winning condition

x = di : ∀(i ≥ 0) · qiv0
ai−→F qi+1 =⇒ siv1

ai−→F si+1

x = de : ∀(i ≥ 0) · qiv0
ai−→F qi+1 =⇒ ∃(j ≥ i) · sjv1

aj−→F sj+1

x = f : π fair =⇒ π′ fair

Simulation game for τx(v0,v1), with x ∈ {di, de, f}

4.3. Jumping simulation transformers 79

Backward transformer For x = bw the rules of the game are very similar, except

for the fact that transitions are taken backwards. Suppose in round i the current

configuration is 〈qi, si〉. The next configuration 〈qi+1, si+1〉 is determined as follows:

• First, Spoiler chooses an input symbol ai and a backward v0-jumping transition

qiv0
ai←−qi+1

• Then, Duplicator replies with a matching backward v1-jumping transition

siv1
ai←−si+1

If in any round a player cannot move because no transition is available, then she loses.

Otherwise, the game never stops and the players produce two infinite jumping backward

paths:

π0 = q0v0
a0←−q1v0

a1←−· · · and π1 = s0v1
a0←−s1v1

a1←−· · ·

The winning condition in this case is as follows.

4. Backward (v0,v1)-simulation, x = bw. Duplicator wins if the two conditions

below are satisfied, the first regarding accepting transitions and the second initial

states.

a) Whenever Spoiler takes an accepting backward v0-transition, Duplicator

takes an accepting backward v1-transition (in the same round):

∀(i ≥ 0) · qiv0
ai←−F qi+1 =⇒ siv1

ai←−F si+1

b) Initial states are treated differently, since they do not need to be part of

transitions: Whenever Spoiler could possibly v0-jump to an initial state,

Duplicator can v1-jump to an initial state:

∀(i ≥ 0) · qi v0 I =⇒ si v1 I

The rules for backward jumping simulation are summarized below.

80 Chapter 4. Jumping simulations

Current configuration

〈qi, si〉
Next configuration

〈qi+1, si+1〉

Spoiler chooses qiv0
ai←−qi+1

Duplicator replies with siv1
ai←−si+1

Winning condition

1) ∀(i ≥ 0) · qiv0
ai←−F qi+1 =⇒ siv1

ai←−F si+1

2) ∀(i ≥ 0) · qi v0 I =⇒ si v1 I

Simulation game for τbw(v0,v1)

As usual, q τx(v0,v1) s holds iff Duplicator wins the jumping x-simulation game

Gx
q,s(v0,v1). Moreover, when Spoiler and Duplicator have the same jumping capabili-

ties w.r.t. a given preorder v, we simply write τx(v) instead of τx(v,v); this is very

important, since in this case we show that τx(v) is also a preorder (cf. Corollary 4.3.7

in Section 4.3.3).

4.3.2 Basic properties

We investigate some basic properties of τx, which are immediate consequences of

jumping games.

Ordinary simulation When no jumps are allowed, we clearly recover ordinary

simulation: That is, for x ∈ {di, de, f}, we have τx(Id) =vx.

Inclusions Forward simulations for x ∈ {di, de, f} are linearly ordered by inclu-

sion, direct simulation being the finest and fair simulation the coarsest. This follows

immediately from the fact that “easier” winning conditions favor Duplicator.

4.3. Jumping simulation transformers 81

Lemma 4.3.1. Direct, delayed, and fair jumping simulations are ordered by inclusion.

That is, for x ∈ {di, de, f} and preorders v0,v1, let �x= τx(v0,v1). Then,

�di ⊆ �de ⊆ �f

Monotonicity and non-decreasingness When we give more jumping power

to Duplicator, τx clearly grows. Symmetrically, when Spoiler can perform “longer”

jumps, τx shrinks. Therefore, the two-arguments transformer τx(·, ·) is antitone in

the first argument and isotone in the second argument. This means that, for preorders

v0,v1,v′0,v′1,

v0 ⊆ v′0 and v1 ⊆ v′1 implies τx(v′1,v0) ⊆ τx(v1,v′0)

In particular, when we only allow Duplicator to jump, we get a reflexive relation

(not necessarily transitive) coarser than ordinary simulation.

Lemma 4.3.2. Jumping simulation is coarser than simulation when only Duplicator is

allowed to jump. Formally, for x ∈ {di, de, f, bw}, letvx=τx(Id) be the corresponding

ordinary simulation preorder. Then, for any preorder v and states q and s,

q vx s implies q τx(Id,v) s

Otherwise, when we give the same jumping power to both players at the same time,

the resulting one-argument transformer τx(·) is no longer monotone. The lack of such

a basic property might seem unfortunate. However, we can prove that τx(·) enjoys

another related useful property, that of being non-decreasing (up to transposition). That

is, τx(v) is at least as coarse as the transpose of v.

Lemma 4.3.3 (Non-decreasingness). Let v be a preorder. Then, (the transpose of)

v-jumping simulation is coarser than v. Formally, for x ∈ {di, de, f, bw} and states q

and s,

q v s implies s τx(v) q

Proof. Let �= τx(v) and assume q v s. Intuitively, the statement holds since, if

Spoiler can jump to any proxyv-larger than s, then, by transitivity ofv, also Duplicator

can jump from q to the same proxy.

For x ∈ {di, de, f}, let’s Spoiler select transition s v ŝ
a−→ s′, as required by the

definition of �. By transitivity, q v ŝ. Thus, Duplicator replies with q v ŝ
a−→ s′.

82 Chapter 4. Jumping simulations

The winning condition is immediately satisfied since s vF ŝ implies q vF ŝ. From

configuration 〈s′, s′〉, Duplicator obviously wins.

The proof for x = bw is analogous. Let’s Spoiler select transition s v ŝ
a←− s′. By

transitivity, q v ŝ. Thus, Duplicator replies with q v ŝ
a←− s′. The winning condition

is satisfied since 1) s vF ŝ implies q vF ŝ, and 2) s v I implies q v I . From 〈s′, s′〉,
Duplicator then obviously wins.

Preservation When Duplicator plays according to a winning strategy, the relation

τx(v0,v1) is preserved during the simulation game: That is, if in any round the

current configuration is 〈q, s〉 and q τx(v0,v1) s, then she can ensure that, if the next

configuration is 〈q′, s′〉, then q′ τx(v0,v1) s′. This follows immediately from the

definition of winning strategy.

Lemma 4.3.4. Let q τx(v0,v1) s.

a) Let x ∈ {di, de, f}. For every v0-jumping forward transition qv0
a−→q′, there

exists a v1-jumping forward transition sv1
a−→s′ s.t. q′ τx(v0,v1) s′.

For x = di, if qv0
a−→F q

′, then s′ can be chosen s.t. sv1
a−→F s

′.

b) Let x = bw. For everyv0-jumping backward transition qv0
a←−q′, there exists

a v1-jumping backward transition sv1
a←−s′ s.t. q′ τx(v0,v1) s′.

Moreover, if qv0
a←−F q′, then s′ can be chosen s.t. sv1

a←−F s′.

4.3.3 Composing strategies and transitivity

In this section, fix preorders v0, v1, v′1 and v2. We show how Duplicator’s strategies

can be composed horizontally with a partial composition operator ./: The idea is that

two strategies for a (v0,v1)- and a (v′1,v2)-game starting from positions 〈q, r〉 and

〈r, s〉, respectively, can be composed into a strategy for a (v0,v2)-game starting from

position 〈q, s〉 (under the assumption v1 ⊆ v′1, see next). We show that composition

preserves winning strategies (Lemma 4.3.5), and, in turn, this is used to establish that

the one-argument transformer is transitive (Corollary 4.3.7).

Let x ∈ {di, de, f}, and consider states q, r, s. Let σ0 be a Duplicator strategy in

the game G0 = Gx
q,r(v0,v1) between q and r, and let σ1 be a Duplicator strategy in

the game G1 = Gx
r,s(v′1,v2) between r and s. If, additionally, Duplicator’s v1-jumps

in G0 can be interpreted as Spoiler’s v′1-jumps in G1, then we can define a composite

4.3. Jumping simulation transformers 83

qi

G0

v

0

qi+1

ai

riv

1

ri+1

ai

G1

siv

2

si+1

ai

G

Figure 4.1: Composing games

strategy, denoted σ0 ./ σ1, for Duplicator in the game G = Gx
q,s(v0,v2) between q and

s. Therefore, we say that σ0 and σ1 are composable if, additionally, v1 ⊆ v′1.

We now define σ0 ./ σ1 for two composable strategies σ0 and σ1. Duplicator plays

G and at the same time updates G0, G1 accordingly. In round i, if the G-configuration is

〈qi, si〉, then there exists ri s.t. the G0-configuration is 〈qi, ri〉 and the G1-configuration

is 〈ri, si〉. The i-th round of the game is shown in Figure 4.1. Let Spoiler in G0 choose

a v0-jumping transition qiv0
ai−→qi+1 in G. This is also a transition for Spoiler in G0.

By applying σ0, we get a matching v1-jumping transition riv1
ai−→ri+1 for Duplicator.

Sincev1 ⊆v′1, the transition above is alsov′1-jumping. Therefore, it can be interpreted

as a transition by Spoiler in G1. Thus, let Spoiler in G1 take transition riv′1
ai−→ri+1.

By applying σ1, we get a v2-jumping transition siv2
ai−→si+1 for Duplicator in G1.

Since the latter is also a transition for Duplicator in G, strategy σ0 ./ σ1 is defined as to

play siv2
ai−→si+1 in G. The configurations are updated as follows: The game G0 goes

to 〈qi+1, ri+1〉, G1 goes to 〈ri+1, si+1〉 and G goes to 〈qi+1, si+1〉.
The definition of composition for x = bw is analogous, and can be obtained by just

inverting the direction of transitions.

The crucial property of the composition operator ./ is that the composition of two

winning strategies is winning.

Lemma 4.3.5. For x ∈ {di, de, f, bw}, if σ0 and σ1 are winning, then σ0 ./ σ1 is

winning.

Proof. First, notice that, since v1 ⊆ v′1, also vF1 ⊆ [v′1]F , which we often use below.

For x = di, assume qiv0
ai−→F qi+1. Since σ0 is winning, riv1

ai−→F ri+1, thus

riv′1
ai−→F ri+1. Since σ1 is winning, siv2

ai−→F si+1. This shows that σ0 ./ σ1 is

84 Chapter 4. Jumping simulations

winning for x = di.

For x = bw, accepting states are propagated as above (by flipping transitions). For

initial states, assume qi v0 I . Since σ0 is winning, ri v1 I , therefore ri v′1 I . Since σ1

is winning, si v2 I . Therefore, σ0 ./ σ1 is winning for x = bw.

For x = de, assume qiv0
ai−→F qi+1. Since σ0 is winning in G0, there exists k ≥ i

s.t. rkv1
ak−→F rk+1, thus rkv′1

ak−→F rk+1. Since σ1 is winning in G1, there exists

j ≥ k ≥ i s.t. sjv2
aj−→F sj+1. Thus, σ0 ./ σ1 is winning for x = de.

Finally, for x = f, assume qiv0
ai−→F qi+1 for infinitely many i’s. Since σ0 is win-

ning, riv1
ai−→F ri+1 for infinitely many i’s, which implies riv′1

ai−→F ri+1 for infinitely

many i’s. Since σ1 is winning, siv2
ai−→F si+1 for infinitely many i’s. Hence, σ0 ./ σ1

is winning for x = f.

As an immediate corollary, we have the following closure property of transformers.

Corollary 4.3.6. Let x ∈ {di, de, f, bw}. For preorders v0,v1,v′1,v2, assume v1 ⊆
v′1. Then,

q τx(v0,v1) r and r τx(v′1,v2) s implies q τx(v0,v2) s

By taking v=v0=v1=v′1=v2 in the corollary above, we have that τx(v) is tran-

sitive. Since it is also clearly reflexive, it is a preorder.

Corollary 4.3.7. Let x ∈ {di, de, f, bw}. For any preorder v, τx(v) is a preorder.

4.4 Language containment and inclusion

In this section, we relate jumping simulations to jumping containment and inclusion. In

Section 4.4.1, we establish that jumping simulations are sound under-approximations of

jumping containment (cf. Lemma 4.4.1). In Section 4.4.2, we show that jumping con-

tainment can be used to prove jumping language inclusion (cf. Lemma 4.4.2). Moreover,

if the input preorder is jumping-safe, then also non-jumping language inclusion—that

is, ordinary language inclusion—can be under-approximated (see Theorem 4.4.3 in

Section 4.4.3). Thus, jumping simulations can be used as an under-approximation to

language inclusion.

Going from backward containment to forward language inclusion is a non-trivial

task, since it requires filling the gap between finite paths (as in backward containment)

and infinite ones (as in ω-language inclusion). In Section 4.4.4, we convert a sequence

4.4. Language containment and inclusion 85

of longer and longer finite paths into a single infinite path; we discuss coherence, which

is a sufficient condition for the infinite path to be fair.

4.4.1 Jumping simulation implies jumping containment

We start off by establishing that jumping simulations imply jumping containment. This

is an analogue of the corresponding classic result about ordinary simulation preorders.

Lemma 4.4.1 (Simulation implies containment). Jumping simulations imply jumping

containment. Formally, for x ∈ {di, de, f, bw}, let �x= τx(v0,v1). Then, for two

states q and s, and x ∈ {di, de, f},

q �x s implies q ⊆fw(v0,v1) s

q �bw s implies q ⊆bw(v0,v1) s

Proof. We first prove the lemma for forward transformers x ∈ {di, de, f}. By the

inclusions in Lemma 4.3.1, it suffices to consider x = f. Let q �f s, and assume

w ∈ Lv0(q). That is, there exists a fair v0-jumping path

π = q0v0
a0−→q1v0

a1−→· · ·

starting at q0 = q. In the simulation game, from the initial configuration 〈q, s〉, we let

Spoiler play as to follow π. That is, in round i, Spoiler plays transition qiv0
ai−→qi+1.

Since q �f s, Duplicator has a winning strategy to reply with. Thus, Duplicator builds

a v1-jumping path

π′ = s0v1
a0−→s1v1

a1−→· · ·

starting at s0 = s. Since π is fair, Spoiler plays accepting transitions infinitely often. But

Duplicator is winning for x = f, therefore also Duplicator plays accepting transitions

infinitely often. Thus π′ is fair as well, and w ∈ Lv1(s).

For x = bw, let q �bw s and let

π = q0 w0 q̂0
a0−→ q1 w0 q̂1

a1−→ · · · an−1−→ qn w0 q̂n, with q̂n = q

be an initial w0-jumping path ending in q. The argument is the same as above. The

simulation game starts from configuration 〈q, s〉, and Spoiler plays by choosing back-

ward transitions according to π. Since q �bw s, Duplicator has a winning strategy in

86 Chapter 4. Jumping simulations

the simulation game. Therefore, Duplicator builds a matching initial w1-jumping path

π′ ending in s,

π′ = ŝ0
a0−→ s1 w1 ŝ1

a1−→ · · · an−1−→ sn w1 ŝn, with ŝn = s

By the definition of backward jumping simulation,

1) If qi wF0 q̂i, then Spoiler is accepting: q̂i vF0 qi
ai−1←− q̂i−1. Since Duplicator is

winning, she is accepting as well: ŝi vF1 si
ai−1←− ŝi−1. Therefore, si wF1 ŝi.

2) Since q0 is initial and q0 w0 q̂0 �bw ŝ0, there exists s0 initial s.t. s0 v1 ŝ0.

Thus, take π′′ = s0 w1 ŝ0
a0−→ s1 w1 ŝ1

a1−→ · · · an−1−→ sn w1 ŝn to be the initial

w1-jumping path as required in the definition of backward containment.

4.4.2 Jumping containment implies jumping inclusion

In the previous section, we have shown that forward and backward jumping simulations

under-approximate forward and backward jumping containments, respectively. In this

section, we give a condition under which jumping containment between states can show

jumping inclusions between automata. Specifically, given two automata Q and S, we

show that,

• If every initial state of the former is in jumping forward containment with some

initial state of the latter, then the jumping language of the former is included in

the jumping language of the latter.

• Dually, if every accepting state of the former is in jumping backward containment

with some accepting state of the latter, then the jumping language of the former

is included in the jumping language of the latter.

Lemma 4.4.2. Let Q and S be two nondeterministic automata. Then,

∀q ∈ IQ · ∃s ∈ IS · q ⊆fw(v0,v1) s =⇒ Lv0(Q) ⊆ Lv1(S)

∀q ∈ FQ · ∃s ∈ FS · q ⊆bw(v0,v1) s =⇒ Lw0(Q) ⊆ Lw1(S)

The proof of the forward case is trivial. For the backward case, we need to link

backward containment to forward language inclusion. This requires to move from the

finite paths of backward containment to the infinite paths of language inclusion. We

postpone this till Section 4.4.4, where we introduce coherent sequences of finite paths,

4.4. Language containment and inclusion 87

which are showed to induce infinite, fair paths. This allows us to prove the backward

case of Lemma 4.4.2, whose proof is given at the end of Section 4.4.4.

In the next section, we draw some useful consequence of Lemma 4.4.2.

4.4.3 Deciding ordinary language inclusion

In the previous section, we have shown that jumping forward and backward con-

tainments can be used to establish jumping language inclusion between automata.

Here, we specialize the approach to get good under-approximations of ordinary (i.e.,

non-jumping) language inclusion. This shows that jumping simulation, like ordinary

simulation, can be used to prove language inclusion between automata.

Let Q and S be two automata. In Section 4.4.2, we have considered v0-jumping

paths in Q and v1-jumping paths in S, for any two preorders v0 and v1. Here, since

we are interested in showing ordinary language inclusion betweenQ and S , we consider

ordinary paths in Q and jumping-safe paths in S. That is, we take v0= Id and v1=v,

where v is a jumping-safe preorder. Jumping-safety allows us to convert fair jumping

paths in S into ordinary ones. It is important for v to be a subset of S × S, for paths

should not jump to the other automaton.

Therefore, we consider a simulation transformer �x= τx(Id,v), where we allow

only Duplicator to v-jump during the simulation game. This induces a reflexive (but

not necessarily transitive) relation �x, which is coarser than both w, by Lemma 4.3.3,

and the corresponding ordinary x-simulation vx, by Lemma 4.3.2. This asymmetry in

the definition makes �x—and, in particular, �f and �bw—potentially much coarser

than any other known PTIME-computable under-approximations to language inclusion.

Theorem 4.4.3 (Jumping simulation implies language inclusion). Let Q and S be two

nondeterministic automata.

1. Let v be a jumping-safe preorder on S (i.e., v⊆ S × S). If every initial state of

Q is forward v-simulated by some initial state of S, then the language of Q is

included in that of S.

Formally, for x ∈ {di, de, f}, let �x= τx(Id,v). Then,

∀q ∈ IQ · ∃s ∈ IS · q �x s =⇒ L(Q) ⊆ L(S)

2. Let w be a jumping safe preorder on S . If every accepting state ofQ is backward

v-simulated by some accepting state of S , then the language of Q is included in

that of S.

88 Chapter 4. Jumping simulations

Formally, let �bw= τbw(Id,v). Then,

∀q ∈ FQ · ∃s ∈ FS · q �bw s =⇒ L(Q) ⊆ L(S)

Proof. For the forward case, let x ∈ {di, de, f}. By Lemma 4.4.1, τx(Id,v) is included

in forward containment ⊆fw (Id,v) . By Lemma 4.4.2, LId(Q) ⊆ Lv(S). But

LId(Q) = L(Q) and, since v is jumping-safe, Lv(S) = L(S). Thus, L(Q) ⊆ L(S).

The backward case is analogous.

Remark 4.4.4. Since v is assumed to be jumping-safe, and jumping-safe preorders are

GFQ, one might wonder whether it is more convenient to first quotient S w.r.t. the

equivalence induced by v, and only then check inclusion with ordinary forward (or

backward) simulation τx(Id, Id). The answer is negative: Even after quotienting, there

might still be (inequivalent) v-related states, and this can be exploited by Duplicator

while playing the game for τx(Id,v). We believe that this asymmetry has a great

potential in efficiently under-approximating language inclusion.

4.4.4 Coherent sequences of jumping paths

In this section, we present a general method to show the existence of fair paths based

on the existence of certain sequences of finite paths. We apply this technique to prove

Lemma 4.4.2 from Section 4.4.2.

Fix an infinite word w = a0a1 · · · ∈ Σω. The idea is to start with a sequence of

longer and longer finite initial paths Π := π0, π1, . . . over suitable prefixes of w. We

are interested in finding a sufficient condition for the existence of an initial and fair

infinite path over w. Since fair paths have infinitely many accepting states, a necessary

condition is that the number of accepting states in paths πi’s grows unboundedly.

In the case of deterministic automata, this condition is also sufficient: Indeed, in a

deterministic automaton there exists a unique run over w, which is accepting precisely

when the number of accepting stated visited by its prefixes goes to infinity. In this case,

we say that the πi’s are strongly coherent, since longer paths conservatively extends

shorter ones.

However, in the general case of nondeterministic automata it is quite possible to

have paths that visit arbitrarily many accepting states, and, still, no accepting run exists.

This occurs because accepting states can appear arbitrarily late in the path, as shown in

the next example.

4.4. Language containment and inclusion 89

Example 4.4.1 - Visiting arbitrarily many accepting states is not

sufficient

q s
a

a, b a

Consider the automaton Q above. Take the infinite word w = aba2ba3b · · · . For

every prefix of the form wi = aba2b · · · ai−1bai, there exists a wi-path

πi = q
ab−→ q

a2b−→ · · · a
i−1b−→ q

a−→ s
a−→ s

a−→ · · · a−→ s︸ ︷︷ ︸
i times

visiting the accepting state s i times. Still, no fair path exists over w. Therefore

w 6∈ L(Q).

The issue is that accepting states appear just in the tail of the path, and they never

“stabilize” in any prefix of bounded length. To prevent this, we require accepting states

to spread uniformly across the path. We split the infinite time horizon into slices

0 < j0 < j1 < · · · , and we require that for each interval [0, ji] and index k ≥ i, path

πk visits at least i accepting states within the first ji steps. See Figure 4.2. When this

condition is satisfied, we say that the sequence of paths Π is coherent.

We give the formal definitions for the more general case of jumping paths. For

a (finite or infinite) v-jumping path π = q0v
a0−→q1v

a1−→· · · , let #F (π, j) be the

number of accepting transitions within the first j transitions:

#F (π, j) :=
∑

0≤i<j

[qiv
ai−→F qi+1]

Definition 4.4.5. Fix a word w ∈ Σω. Let Π := π0, π1, . . . be an infinite sequence of

finite v-jumping w-paths. Π is coherent if the following property holds:

∀i · ∃(j > i) · ∀(k ≥ i) · #F (πk, j) ≥ i . (4.1)

Let Π be defined as above. Sometimes we are interested in infinite subsequences

of Π, obtained by removing some of its paths (possibly infinitely many). Formally,

Π′ is an infinite subsequence of Π iff Π′ := πf(0), πf(1), . . . for some f : ω 7→ ω with

f(0) < f(1) < · · · . Coherent sequences are obviously preserved under the operation

of taking infinite subsequences.

90 Chapter 4. Jumping simulations

j0

j1

j2

π0 π1 π2 · · ·

#F = 1

#F = 2

#F = 3

Figure 4.2: Coherent paths

Lemma 4.4.6. If Π is coherent, then any infinite subsequence Π′ thereof is coherent.

The main result of this section states that coherence is strong enough for the existence

of fair paths.

Lemma 4.4.7. Fix a word w · · · ∈ Σω and a finitely-branching automaton Q. If

Π := π0, π1, . . . is a coherent sequence of v-jumping w-paths, then there exists a fair,

v-jumping w-path ρ. Moreover, if all πi’s are initial, then ρ is initial.

Proof. Let Π = π0, π1, . . . be a coherent v-jumping sequence of w-paths. Consider

index j0. Since the πk’s are branches in a finitely branching tree, there are only finitely

many different prefixes of length j0. Therefore, there exists a prefix ρ0 which is

common to infinitely many paths. Let Π′ = π′0, π
′
1, . . . be the infinite subsequence

of Π containing only suffixes of ρ0. By construction, ρ0 contains at least 1 accepting

transition, and each π′ in Π′ extends ρ0. By Lemma 4.4.6, Π′ is coherent. Now consider

index j1. We can apply the same reasoning again to Π′, and we obtain a longer prefix ρ1

extending ρ0, which contains at least 2 accepting transitions. Let Π′′ be the coherent

subsequence of Π′ containing only suffixes of ρ1, and so on. In this fashion, we obtain

an infinite sequence of strongly coherent (finite) v-jumping paths ρ0, ρ1, · · · s.t. ρi
extends ρi−1 and contains at least i+ 1 accepting transitions. The infinite path to which

the sequence converges ρ = limi ρi is the fair v-jumping path we are after.

The machinery of coherent sequences is used to finally prove Lemma 4.4.2 from

Section 4.4.2.

4.5. Reflexivity and jumping-safety 91

Proof of Lemma 4.4.2. Forward case. For any initial state q ∈ IQ of Q, let sq ∈ IS be

a corresponding initial state of S s.t. q ⊆fw(v0,v1) sq, which exists by assumption. By

the definition of containment, Lv0(q) ⊆ Lv1(sq). Then,

Lv0(Q) =
⋃
q∈IQ

Lv0(q) ⊆
⋃
sq∈IS

Lv1(sq) ⊆ Lv1(S)

Backward case. Let �bw=⊆bw(v0,v1), and assume w = a0a1 · · · ∈ Lw0(Q). There

exists an initial and fair w0-jumping path π = q̂0 w0 q0
a0−→ q̂1 w0 q1

a1−→ · · · . Let

k0 < k1 < · · · be any infinite sequence s.t., for any i ≥ 0, q̂ki wF0 qki . This sequence

exists since π is fair. For each i ≥ 0, there exists an accepting proxy pi ∈ FQ s.t.

q̂ki w0 pi w0 qki . Let wi = a0a1 · · · aki−1, and consider the following prefix of π over

wi

πi = q̂0 w0 q0
a0−→ q̂1 w0 q1

a1−→ · · ·
aki−1−→ q̂ki wF0 pi

By assumption, there exists a corresponding accepting proxy ti ∈ FS s.t. pi �bw ti.

Since πi is an initial, w0-jumping path ending at pi, by the definition of backward

containment there exists a corresponding initial, w1-jumping path π′i ending at ti,

π′i = ŝi,0 w1 si,0
a0−→ ŝi,1 w1 si,1

a1−→ · · ·
aki−1−→ ŝi,ki wF1 ti

s.t., for any 0 ≤ k < ki, if q̂k wF0 qk, then ŝi,k wF1 si,k.

Take Π = π′0, π
′
1, Clearly, for any i ≥ 0, π′i contains at least i + 1 accepting

transitions within ki steps. Thus, Π is coherent. As we have already observed, each

π′i is initial. By Lemma 4.4.7, there exists an initial and fair w1-jumping w-path π′.

Therefore, w ∈ Lw1(S).

4.5 Reflexivity and jumping-safety

The central result of this section is that transformers preserve jumping-safe preorders.

See Theorems 4.5.3 and 4.5.4 in Section 4.5.2. This is the main result of the chapter,

which makes jumping simulations interesting and useful.

We derive the above theorems as an easy consequence of a crucial property of

jumping simulation games, which we refer to as reflexivity. Reflexivity is a main

technical tool in dealing with jumping simulations; it studied in Section 4.5.1.

In the rest of this section, fix a preorderv, and let�x= τx(v) for x ∈ {di, de, bw, f}.

92 Chapter 4. Jumping simulations

4.5.1 Reflexivity

We study a modified simulation transformer where Spoiler can jump more than Dupli-

cator. Nonetheless, we establish that it is reflexive, that is that Duplicator wins from

diagonal configurations 〈q, q〉.
We have already observed that �x is reflexive (for any v); that is, for any state

q, q �x q holds. Recall that, by Lemma 4.3.3, �x (the transpose of �x) is at least as

coarse as v. It turns out that even the modified transformer τx(�x,v), where Spoiler

has the capability of taking �x-jumps which are “longer” than Duplicator’s v-jumps, is

reflexive.

Lemma 4.5.1 (Reflexivity). For a preorder v and x ∈ {di, de, bw}, let �x= τx(v).

Then, τx(�x,v) is reflexive, i.e., for any state q, q τx(�x,v) q.

This is a crucial property of simulation transformers, and it is used throughout the

rest of the chapter. We prove it later in Section 4.5.3. Note that Lemma 4.5.1 fails for

the fair transformer, as the next example shows.

Example 4.5.1 - The transformer τ f(�f ,v) is not reflexive

q s p

a a
a

Consider the unary automaton above. Let v= Id and let �f be ordinary fair simulation

�f= τ f(Id). Since Σ = {a}, the only possible infinite word is aω. Notice that there is

no fair aω path, neither from s nor from p. Therefore, s fairly simulates p, s �f p, for

the simple reason that Spoiler cannot build a fair path from p. However, since s �f p, if

we consider the fair (�f , Id)-jumping game starting from configuration 〈s, s〉, Spoiler

can now play the following fair �f-jumping path from s:

π = s �f p
a−→F s �f p

a−→F · · ·

Since no ordinary fair path exists from s, Duplicator loses. Therefore, s τ f(�f , Id) s

does not hold.

The corollary below is an immediate consequence of Lemma 4.5.1, and it is at the

heart of the central preservation property of Theorems 4.5.3 and 4.5.4 of Section 4.5.2.

4.5. Reflexivity and jumping-safety 93

Corollary 4.5.2. For a preorder v and x ∈ {di, de, bw}, let �x= τx(v). Then, for

y ∈ {di, de}, ⊆fw(�y,v) and ⊆bw(�bw,v) are reflexive.

Proof. For any state q, by Lemma 4.5.1, q τx(�x,v) q, and, by Lemma 4.4.1, jumping

simulation implies jumping containment.

4.5.2 Preserving jumping-safe preorders

In this section we state the central result of this chapter: direct, delayed and backward

simulation transformers preserve jumping-safe preorders. See Theorems 4.5.3 and 4.5.4.

The proofs are elementary; they crucially use the reflexivity property of Corollary 4.5.2.

This opens the possibility of repeatedly applying simulation transformers to the

identity relation (which is trivially jumping-safe) to get coarser and coarser jumping-safe

preorders; this is explored in Section 4.6.

Forward transformers

Theorem 4.5.3. The (the transpose of) direct and delayed jumping transformer preserve

jumping-safe preorders. Formally, for a preorder v and x ∈ {di, de}, let �x= τx(v).

If v is a jumping-safe preorder, then �x is a jumping-safe preorder coarser than v.

In analogy with forward simulations, it is the transpose of�x which is jumping-safe,

not �x itself.

Proof. Let v be jumping-safe. By Lemma 4.3.3, �x is coarser than v. We show that

�x is jumping safe, i.e., L�x
(Q) = L(Q). The right-to-left direction is immediate. For

the other direction,

L�x

(Q) =
⋃
q∈I

L�x

(q)
(0)

⊆
⋃
q∈I

Lv(q) = Lv(Q)
(1)
= L(Q)

where inclusion (0) follows from q ⊆x(�x,v) q (by Corollary 4.5.2), and equality (1)

holds since v is jumping-safe.

Theorem 4.5.3 fails for the fair transformer. In the example below we show that this

holds already by taking as input the identity relation v= Id.

94 Chapter 4. Jumping simulations

Example 4.5.2 - The fair transformer does not preserve

jumping-safe preorders

q s

a, b
a

b

It is well-known that ordinary fair simulation vf= τ f(Id) is not a GFQ preorder

[44]. It turns out that this happens precisely because wf is not jumping-safe. Consider

the automaton above. State q recognizes the language (Σ∗ab)ω, and q wf s. Consider

w = bω; w admits the following fair wf -jumping path from q:

π = q wf s b−→ q wf s b−→ · · ·

Therefore, w ∈ Lwf
(q). But w 6∈ L(q), since there is no ordinary fair path from q over

w. Therefore, wf is not jumping-safe.

Backward transformer

Theorem 4.5.4. The backward jumping simulation transformer preserves (the transpose

of) jumping-safe preorders. Formally, for a preorder v, let �bw= τbw(v). If w is a

jumping-safe preorder, then �bw is a jumping-safe preorder coarser than w.

Proof. By Lemma 4.3.3, �bw is coarser than w. Since w is jumping-safe, it suffices

to show L�bw
(Q) = Lw(Q). The right-to-left direction follows directly from the

inclusion w⊆�bw (by Lemma 4.3.3). For the other direction, we use Lemma 4.4.2,

where we take both automata to be Q: Let q be any accepting state. By Corollary 4.5.2,

q ⊆bw(�bw,v) q. Therefore, taking s = q satisfies the premise of Lemma 4.4.2. Thus,

L�bw
(Q) ⊆ Lw(Q).

4.5.3 Proof of reflexivity

In this section, we prove Lemma 4.5.1. We do so by showing a winning strategy

for Duplicator in Gx
q,q(�x,v). Recall that �x= τx(v), and in the game Gx

q,q(�x,v)

Spoiler takes �x-jumps while Duplicator takes v-jumps. Therefore, since �x is at least

4.5. Reflexivity and jumping-safety 95

as coarse as v, we need to show that Duplicator wins even if Spoiler is allowed to

“jump more”.

The following lemma states two basic properties of this special (�x,v)-jumping

games. It is the counterpart of Lemma 4.3.4 from Section 4.3.

Lemma 4.5.5. Let q �x s.

a) Let x ∈ {di, de, f}. For every�x-jumping forward transition q �x a−→ q′, there

exists a v-jumping forward transition sv a−→s′ s.t. q′ �x s′.

For x = di, if q �di a−→F q
′, then s′ can be chosen s.t. sv a−→F s

′.

b) Let x = bw. For every �-jumping backward transition q �bw a←− q′, there

exists a v-jumping backward transition sv a←−s′ s.t. q′ �bw s′.

Moreover, if q �bw a←−F q′, then s′ can be chosen s.t. sv a←−F s′.

Proof. For readability, we write just � instead of �x.

Point a). Fix a �-jumping forward transition from q, as

in the top row on the right. Since q � q̂ and q̂ a−→ q′, by

Lemma 4.3.4(a), there exists a v-jumping forward transi-

tion from q, as in the middle row. In particular, notice that

q′ � r′. Since q � s, by Lemma 4.3.4(a) again, we obtain

the v-jumping transition from s in the bottom row. Notice

that q′ � r′ � s′. By transitivity (cf. Corollary 4.3.7),

q′ � s′.

q q̂ q′

q r̂ r′

s ŝ s′

� a−→

= �

v a−→
� �

v a−→

For x = di, assume q� a−→F q
′. There exists qF accepting s.t. q � qF � q̂. By

the previous part, there exists a transition qFv a−→F t
′ with q′ � t′. The transition is

accepting for qF ∈ F . Since qF � q � s, by transitivity (cf. Corollary 4.3.7) qF � s.

By Lemma 4.3.4(a), there exists an accepting transition sv a−→F s
′ with t′ � s′, and,

thus, q′ � s′. The proof for Point b) is identical, by invoking Lemma 4.3.4(b).

As an immediate consequence, we have that Duplicator has�x-preserving strategies

(cf. Section 2.3) in the game Gx
q,q(�x,v).1

Corollary 4.5.6. For x ∈ {di, de, f, bw}, let �x= τx(v). For any state q, there exists

a �x-respecting strategy for Duplicator in Gx
q,q(�x,v).

1This is analogous to Corollary 6 of [55] in the context of alternating Büchi automata.

96 Chapter 4. Jumping simulations

However, while winning strategies are �x-preserving, the converse does not hold in

general. Nonetheless, for x ∈ {di, bw}, we can construct a winning strategy with an

inductive use of Lemma 4.5.5.

Proof of Lemma 4.5.1 (for x ∈ {di, bw}). Let us stipulate that in round i the game is

in configuration 〈qi, si〉. The initial configuration is 〈q0, s0〉 = 〈q, q〉. In round i,

Duplicator ensures the invariant qi � si. For i = 0, the invariant clearly holds. For

i > 0, assume qi � si.

For x = di, let Spoiler take a �-jumping forward transition qi�
ai−→qi+1. By

Lemma 4.5.5(a), Duplicator has a matching v-jumping forward transition siv
ai−→si+1

s.t. qi+1 � si+1. The invariant is preserved. For the winning condition, if Spoiler takes

an accepting transition, so can do Duplicator.

For x = bw, transitions are matched backwards in a similar way, by invoking

Lemma 4.5.5(b). For the winning condition, 1) propagation of accepting states is clear.

Moreover, 2) for initial states, if qi � I , then, from the invariant and transitivity (cf.

Corollary 4.3.7), si � I . Therefore, by the definition of �, si v I .

The case x = de For the delayed transformer, winning strategies have a more com-

plex structure. In the rest of this section, let �=�de. The idea is that, by appropriately

composing a �-respecting strategy and a winning strategy, we get a winning strategy in

Gde
q,q(�,v) (cf. [55]).

We need two preliminary facts. First, since � is transitive, composition preserves

the property of being �-respecting.

Lemma 4.5.7. If σ0 and σ1 are �-respecting (and composable), then σ0 ./ σ1 is

�-respecting.

Second, de-winning strategies propagate accepting states under composition on the left.

Lemma 4.5.8. Let σ0, σ1 be two composable strategies for Duplicator inGde
q0,r0

(v0,v1)

and Gde
r0,s0

(v′1,v2), respectively. If r0 ∈ F and σ1 is a winning strategy, then, for any

(σ0 ./ σ1)-conform play π = π0 × π2 from 〈q0, s0〉,

π0 = q0v0
a0−→q1v0

a1−→· · · π2 = s0v2
a0−→s1v2

a1−→· · ·

Duplicator is eventually accepting, i.e., there exists i ≥ 0 s.t. siv2
ai−→F si+1.

Proof. Let π = π0 × π2 be any (σ0 ./ σ1)-conform play, Moreover, let π1 =

r0v1
a0−→r1v1

a1−→· · · be the intermediate play. It follows that π1 × π2 is σ1-conform.

Since r ∈ F and σ1 is winning, there exists i ≥ 0 s.t. siv2
ai−→F si+1.

4.5. Reflexivity and jumping-safety 97

We can now finish the proof for the last case of Lemma 4.5.1.

Proof of Lemma 4.5.1 (for x = de). The idea is to split the play in Gde
q,q(�,v) into

stages k0 < k1 < · · · (starting at k0 = 0), and define a sequence of strategies σ0, σ1, . . . ,

s.t., during the i-th stage, Duplicator plays according to the i-th strategy. Stage i starts

when, in round ki, Spoiler is accepting. Therefore, during stage i, there is a pending

obligation for Duplicator to visit an accepting state. When this obligation is eventually

fulfilled by σi, the next stage can start as soon as Spoiler is accepting again. When this

does not happen, there are only finitely many stages. Otherwise, a new stage i+ 1 starts

when Spoiler is accepting in round ki+1, and Duplicator switches to the next strategy

σi+1.

In round i, we stipulate that the current configuration of the game is 〈qi, si〉, where,

initially, 〈q0, s0〉 = 〈q, q〉. Moves of Spoiler take the form of �-jumping transitions

qi�
ai−→qi+1, whereas Duplicator’s responses are v-jumping transitions of the form

siv
ai−→si+1.

Formally, we define two sequences of indices {ki}i≥0 and {hi}i≥0 by induction.

Initially, let k0 = h0 = −1. For i ≥ 0,

ki+1 = min({j > hi | qj�
aj−→F qj+1} ∪ {ω})

hi+1 = min({j ≥ ki+1 | sjv
aj−→F sj+1} ∪ {ω})

Intuitively, hi is the time Duplicator matches the i-th pending obligation and ki+1 is

the time Spoiler raises the next, (i + 1)-th pending obligation. If the i-th pending

obligation is not eventually fulfilled, then ki < hi = ki+1 = · · · = ω. If the i-

th pending obligation is the last one to be raised and it is eventually fulfilled, then

hi < ki+1 = hk+1 = · · · = ω. Otherwise, when infinitely many obligations are raised

and fulfilled, the sequence does not converge. In general, the two sequences are thus

interleaving:

k0 ≤ h0 < k1 ≤ h1 < · · ·

At any stage i ≥ 0,

• Let qF0 = q0 and, for i > 0 and ki < ω, let qFi ∈ F be the accepting state s.t.

qki � qFi �
aki−→qki+1

which exists by the definition of ki.

• Let σ0
i be a �-respecting strategy in the game Gde

qFi ,q
F
i

(�,v), which exists by

Corollary 4.5.6.

98 Chapter 4. Jumping simulations

• Assuming qFi � ski , let σ1
i be a winning strategy in the game Gde

qFi ,ski
(v,v).

Let k be the current round, and let π = π0 × π1 be the current partial play, where

π0 = q0�
a0−→q1�

a1−→q2�
a2−→· · ·� ak−1−→qk

π1 = s0v
a0−→s1v

a1−→s2v
a2−→· · ·v ak−1−→sk

Let Spoiler play the jumping transition qk�
ak−→qk+1. Assume the game is in stage i,

that is, ki ≤ k < ki+1. Let π[ki, k] = π′0 × π′1 be the modified suffix of π starting in

round ki, where

π′0 = qFi �
aki−→qki+1�

aki+1−→ · · ·� ak−1−→qk

π′1 = skiv
aki−→ski+1v

aki+1−→ · · ·v ak−1−→sk

Then, Duplicator plays according to the following strategy σi:

σi(π) := [σ0
i ./ σ

1
i](π[ki, k])

Notice that π′0 starts at qFi (and not at qki), since σ0
i is a strategy starting from configura-

tion 〈qFi , qFi 〉.
σ0
i and σ1

i are composable. To show that σi is well-defined, we need to ensure that

σ1
i always exists, i.e., that qFi � ski holds throughout the game. This holds initially,

since both qF0 and sk0 equal q, and � is reflexive. Inductively, assume qFi � ski

holds. Therefore, σi is well-defined. Since during stage i the play is σi-conform,

and both components σ0
i , σ

1
i are �-respecting, by Lemma 4.5.7, σi is �-respecting.

Therefore, for any round k with ki ≤ k ≤ ki+1, sk � tk. In particular, at the end of

the stage qki+1
� ski+1

. By the definition of qFi+1, qFi+1 � qki+1
, and, by transitivity (cf.

Corollary 4.3.7), qFi+1 � ski+1
.

Finally, to show that σi is winning, it suffices to show that, for any i > 0, if ki < ω,

then hi < ω. Therefore, assume ki is finite, which implies sFi is defined and accepting.

By Lemma 4.5.8, there exists j ≥ ki s.t. sj vF ŝj . Take hi to be a minimal such j.

4.6 Proxy simulation hierarchies

We have seen in Section 4.5.2 that the direct, delayed and backward transformers

preserve jumping-safe preorders. A natural idea is to compose transformers in order to

get even coarser jumping-safety-preserving transformers: One can start with a given

jumping-safe preorder v, and repeatedly apply these transformers (in some order);

4.6. Proxy simulation hierarchies 99

since transformers are non-decreasing (by Lemma 4.3.3), one obtains a non-decreasing

chain of jumping-safe preorders.

In Section 4.6.1, we show that transformers are idempotent; thus, we rule out the

possibility of applying the same transformer twice. In Section 4.6.2, we consider

hierarchies obtained by composing alternately forward and backward transformers

starting from the identity relation; this gives rise to proxy simulations. Finally, in Sec-

tion 4.6.3, we compare proxy simulations against iteratively quotienting the automaton

w.r.t. ordinary forward and backward simulations.

4.6.1 Idempotence

We show that transformers are idempotent (up to transposition); thus, there is no benefit

in composing the same transformer with itself.

Lemma 4.6.1 (Idempotence). The direct, delayed, and backward jumping transformers

are idempotent (up to transposition). Formally, for a preorder v and x ∈ {di, de, bw},
let �= τx(v). Then, τx(�) =�.

The lemma above can be interpreted by saying that the coarser �-jumps do not give

more power to Duplicator. Compare this with Lemma 4.5.1, where we have shown that

coarser �-jumps do not give more power to Spoiler either.

Proof. We have to show τx(�) =�. The right-to-left inclusion follows directly from

Lemma 4.3.3. For the other direction, let us expand the definitions and rewrite it as

τx(�,�) ⊆ τx(v,v). Assume q τx(�,�) s. Then,

q τx(v,�) q︸ ︷︷ ︸
(0)

τx(�,�) s τx(�,v) s︸ ︷︷ ︸
(1)

where (0) holds trivially since Spoiler can “jump less” than Duplicator (v ⊆ � by

Lemma 4.3.3), and (1) holds by Lemma 4.5.1. By Corollary 4.3.6 twice, q τx(v,v) s.

That is, q � s.

For x = f, the coarser �-jumps do give more power to Duplicator, as the next

example shows.

100 Chapter 4. Jumping simulations

Example 4.6.1 - The fair transformer τ f is not idempotent

Consider the automaton from Example 4.5.1 again. Since q has a fair path over aω but s

doesn’t, the latter cannot fairly simulate the former, i.e., q 6�f s. However, since s �f p,

Duplicator can play the following fair �f-jumping path over aω from s:

π = s �f p
a−→F s �f p

a−→F · · ·

Therefore, q τ f(�f) s holds and τ f is not idempotent, τ f(�f) 6=�f .

Thus, we only compose different transformers. However, also composing direct

with the delayed transformer is not better than the delayed transformer alone.

Lemma 4.6.2. For x ∈ {di, de}, let �x= τx(v). Then,

τdi(�de)⊆ �de

τde(�di)⊆ �de

Proof. For the first inclusion, assume q τdi(�de) s. Then, by Lemma 4.3.1, q τde(�de) s,

and, by Lemma 4.6.1, q �de s.

For the second inclusion, assume q τde(�di) s. That is, q τde(�di,�di) s. Obviously,

q τde(v,�di) q (sincev⊆�di by Lemma 4.3.3). Also, s τdi(�di,v) s by Lemma 4.5.1,

and, by Lemma 4.3.1, s τde(�di,v) s. Putting the pieces together,

q τde(v,�di) q τde(�di,�di) s τde(�di,v) s

By Corollary 4.3.6, q τde(v,v) s; that is, q �de s.

Therefore, we restrict ourselves to composing forward and backward transformers

in a strictly alternating fashion, as we explore in the next section.

4.6.2 Proxy simulations

For two transformers τ and τ ′, let their composition be τ ; τ ′, where τ is applied first:

τ ; τ ′(v) = τ ′(τ(v))

As basic building blocks we define the four composite transformers below, obtained by

composing a forward transformer with the backward one:

τdi+bw := τdi; τbw τbw+di := τbw; τdi

τde+bw := τde; τbw τbw+de := τbw; τde

4.6. Proxy simulation hierarchies 101

Forward proxy simulations are obtained by applying a cascade of τdi+bw/τde+bw

operations starting from the identity relation. See Figure 4.3(a), where each node in the

tree is a forward proxy simulation. Backward proxy simulations are defined similarly,

but w.r.t. transformers τbw+di/τbw+de. See Figure 4.3(b).

Definition 4.6.3. � is a forward proxy simulation iff there exists a sequence of trans-

formers τ0τ1 . . . τn ∈ {τdi+bw, τde+bw}∗ s.t. � = τ0; τ1; · · · ; τn(Id). Similarly, � is a

backward proxy simulation iff there exists a sequence of transformers τ0τ1 . . . τn ∈
{τbw+di, τbw+de}∗ s.t. � = τ0; τ1; · · · ; τn(Id).

Proxy simulations are jumping-safe by an immediate inductive argument from

Theorems 4.5.3 and 4.5.4.

Lemma 4.6.4. If � is a forward or backward proxy simulation, then � (resp., �) is

jumping-safe. In particular, � is GFQ.

Remark 4.6.5. In previous work [28], we introduced two preorders, which we called

direct and delayed proxy simulations. They coincide with the first level τbw+di(Id) and

τbw+de(Id) of the backward hierarchy, respectively. Here, we obtain an entire hierarchy

of coarser jumping-safe PTIME preorders, thus improving upon [28].

Proxy simulations along a branch of the tree form a non-decreasing chain of jumping-

safe preorders. That is, if τ0τ1 · · · τn is a prefix of τ0τ1 · · · τn′ , with n′ ≥ n, then

τ0; τ1; · · · ; τn(Id) ⊆ τ0; τ1; · · · ; τn′(Id). On finite automata, these chains eventually

stabilize after a finite number of steps. For any automaton, there exists a uniform n s.t.,

for any sequence of transformers τ0τ1 · · · ,

τ0; τ1; · · · ; τn(Id) = τ0; τ1; · · · ; τn+1(Id)

We say that a proxy simulation� is maximal iff�= τ0; τ1; · · · ; τn(Id), with n as above.

Maximal simulations have the property of being a fixpoint of both a forward

and a backward transformer. We exemplify this in the case of forward proxy sim-

ulations. Let � be a maximal proxy simulation in the forward hierarchy. Then,

� = τ0; τ1; · · · ; τn(Id) = τ0; τ1; · · · ; τn+1(Id), with τn+1 = τx+bw, for x ∈ {di, de}.
Consequently,

� ⊆ [τx(�)]−1 ⊆ τbw(τx(�)) (by Lemma 4.3.3 twice)

= τx; τbw(�) (by definition of composition)

= � (since � is maximal)

102 Chapter 4. Jumping simulations

Id

...
...

...
...

τdi+bw

...
...

...
...

τde+bw

τdi+bw

...
...

...
...

τdi+bw

...
...

...
...

τde+bw

τde+bw

co
ar

se
rp

re
or

de
rs

(a) Forward hierarchy

Id

...
...

...
...

τbw+di

...
...

...
...

τbw+de

τbw+di

...
...

...
...

τbw+di

...
...

...
...

τbw+de

τbw+de

co
ar

se
rp

re
or

de
rs

(b) Backward hierarchy

Figure 4.3: Proxy simulations hierarchies

4.6. Proxy simulation hierarchies 103

Thus, � = [τx(�)]−1 = τbw(τx(�)). That is, � = τx(�) and � = τbw(�). Therefore,

� is a fixpoint of both τbw and τx (up to transposition). For maximal backward proxy

simulations �’s, an analogous argument shows that � = τx(�) and � = τbw(�).

Proxy simulations along different branches are generally incomparable preorders.

Thus, we get a great number of maximal, incomparable proxy simulations, and it is

not clear if there is any reason to prefer any one of them over the others. Moreover,

incomparable simulations cannot be simultaneously used for quotienting; this happens

already in the first level of the hierarchy, as shown for the forward hierarchy in the next

example. A similar example can be given for the backward hierarchy.

Example 4.6.2 - Simultaneous quotienting w.r.t. τdi+bw(Id) and

τde+bw(Id) is incorrect

p q s

a
a

b

a b
b

a

≈di ≈de

Consider the automaton above. Let �di= τdi+bw(Id) and �de= τde+bw(Id), and let

≈di and ≈de be the corresponding induced equivalences. Direct and delayed simula-

tion are trivially the identity, except for states q and s which are delayed simulation

equivalent. Therefore, they are also �de-equivalent, q ≈de s.

Since direct simulation is the identity, �di is just backward simulation. States p

and q are �di-equivalent, and the only ones to be related by �di. However, they are

not �de-equivalent: In particular, q 6�de p, since Spoiler can jump from q to s (since

s delayed-simulates q) and take the backward b transition therefrom, which is not

available from p.

Hence, we have only the following non-trivial equivalences:

p ≈di q ≈de s

104 Chapter 4. Jumping simulations

However, like in Example 4.1.1, quotienting w.r.t. the equivalence induced by the

transitive closure of ≈di ∪ ≈de is incorrect: Indeed, it would put p, q and s in the same
equivalence class, and the new word baω, not in the language of the original automaton,

would be incorrectly accepted by the quotient automaton.

In the next example, we show that proxy simulation quotients can outperform other

simulation-like quotients.

Example 4.6.3 - Proxy simulation quotients achieve arbitrarily high

compression ratios

s

q0

q1

q2

q3

· · ·

qk

b

a

a

a
a

a

a

a

a

a

a

a

b

b b

b

b

b

q s

a, b

a

b

b

a) Family of automata Qk b) The quotients Qk/ ≈

We show that backward proxy simulation quotients can outperform many other

quotient techniques based on simulation-like preorders. Consider the family of automata

Qk above. Each automaton has k + 2 states. We consider quotienting Qk w.r.t. various

simulation-like preorders.

Direct and delayed simulation No two different states are comparable w.r.t. de-

layed simulation (and, thus, w.r.t. direct simulation). Indeed, no state can simulate q0:

From q0, Spoiler can play both actions a and b, whereas from states s, q1, q2, . . . , qk only

one of these actions is available. This implies that no two different states in the ring

are comparable: From configuration 〈qi, qj〉 with i 6= j, Spoiler repeatedly plays a until

forcing configuration 〈q0, qh〉, for some h 6= 0; from the latter configuration, Spoiler

wins as above. (We assume that Duplicator does not go to s, which would make her

lose early.) Finally, s cannot simulate any state qi (since action a is unavailable from s),

4.6. Proxy simulation hierarchies 105

and no state qi can simulate s: If i 6= 0, qi cannot do b, and if i = 0, Spoiler goes from s

to q1 with action b and then wins as above.

Multipebble and fixed-word simulations Duplicator does not benefit from ei-

ther having multiple pebbles, or from knowing the input word in advance. Indeed,

Spoiler’s choices are actually independent of Duplicator’s moves (if Duplicator does

not lose early). In other words, Duplicator loses even if she knows in advance what tran-

sition will be played next. Consequently, no two states are in multipebble or fixed-word

simulation. This also shows that proxy simulations are incomparable with the latter.

Backward simulation Also, no two different states are backward simulation equiv-

alent. For example, states in the ring are backward incomparable, since different states

can only reach the initial state via a different number of a’s. Also, no state in the

ring can simulate s: From configuration 〈s, qi〉, it suffices for Spoiler to take transition

s
a←− qi, and then we are in the previous case. So, backward simulation quotienting

does not help either.

While no previous quotienting method managed to reduce the size of Qk, we finally

show that backward proxy simulations can.

Backward proxy simulations We have observed above that there are no two

backward simulation-equivalent states. However, backward simulation is not the identity

itself. Indeed, s backward simulates all the states in the ring except q0:

q1, q2, . . . , qk vbw s

Indeed, if Spoiler takes any transition qi+1
a←− qi, then Duplicator can reply with

s
a←− qi, and similarly if Spoiler goes to s via action b. This gives more power to

Duplicator in the delayed proxy simulation game, with the consequence that any two

states in the ring are τbw+de(Id)-equivalent. To see why, notice that the ability of

vbw-jumping to s before taking a transition effectively adds an edge b between the

following states:

q1, q2, . . . , qk
b−→ q0, q1, . . . , qk

Let ≈ be the equivalence induced by τbw+de(Id). To show qi ≈ qj , we describe how

Duplicator can force infinitely many visits to the accepting state q0. We distinguish two

cases.

106 Chapter 4. Jumping simulations

• In the first case, consider configurations of the form 〈s, qj〉. Spoiler has to play

action b, and Duplicator takes a jumping b-transition qj vbw s
b−→ q0 to q0, which

is accepting. Duplicator stays in q0 as long as Spoiler plays transition s b−→ s.

If at any point Spoiler plays transition s b−→ q0, then we are in configuration

〈q0, q0〉, from which Duplicator clearly wins.

• In the second case, consider configurations of the form 〈qi, qj〉, with i 6= j. As

long as Spoiler plays action a, Duplicator does the same and stays in the ring.

In this way, she will eventually visit q0. Otherwise, if at any point Spoiler plays

action b (from some configuration of the form 〈q0, qk〉 or 〈s, qk〉), then Duplicator

jumps to q0 immediately, and we are either in configuration 〈q0, q0〉, which is

immediately winning for Duplicator, or in 〈s, q0〉, as in the previous case.

Notice that Duplicator never actually “stops” in state s, but only transits through

it as to take jumping b-transitions.

Therefore, by letting ≈ be the equivalence induced by τde+bw(Id), we have

q0 ≈ q1 ≈ q2 ≈ · · · ≈ qk

The quotient automatonQk/≈ on the right has only 2 states, and τde+bw(Id)-quotienting

achieves arbitrarily high compression ratios.

Notice that the direct counterpart τbw+di(Id) does not help in this example, since

states in the ring are τbw+di(Id)-incomparable: Indeed, from configuration 〈qi, qj〉, with

i 6= j, Spoiler can play action a until she reaches the accepting state q0, and Duplicator

will not be accepting at that time. Thus, this example also shows that τbw+de(Id)

quotients can be better than τbw+di(Id) quotients.

Forward proxy simulations Since delayed and direct simulation are just the iden-

tity, τdi+bw(Id) and τde+bw(Id) both coincide with backward simulation; the forward

hierarchy thus coincides with the backward one, and the same considerations as above

can be made.

4.6.3 Iterated quotienting

We compare quotienting with proxy simulation against what we call iterated quotienting.

In iterated quotienting, forward and backward simulation equivalences are repeatedly

used to quotient the automaton, until no two states are either forward or backward

4.6. Proxy simulation hierarchies 107

equivalent.

Fix a starting automaton Q; for x ∈ {di, de}, let ≈x be x-simulation equivalence

and let ≈bw be backward simulation equivalence. Iterated quotienting gives rise to two

hierarchies of automata, depending on whether we start by quotienting w.r.t. forward or

backward simulation: Let Q0 = S0 = Q, and, for i ≥ 0,

Qi+1 = Si/ ≈x , where ≈x is computed on Si
Si+1 = Qi/ ≈bw , where ≈bw is computed on Qi

Remark 4.6.6. Note that quotienting w.r.t. forward simulation disrupts backward

simulation, and vice versa; thus, one needs to recompute the simulation at every step.

In general, iterated quotienting and quotienting w.r.t. proxy simulations are incom-

parable. Below, we show an example where proxy simulations perform better.

Example 4.6.4 - Proxy quotients can outperform iterated

quotienting

p q svdi

a, b
a

b

a b
b, c

Σ

Consider the automaton above. No two states are either forward or backward simulation

equivalent. Thus, iterated quotienting does not produce any reduction.

There is not even any so-called “little brother” [19], w.r.t. neither forward nor

backward simulation. (A state s′ is a forward little brother if there exist states q and q′

s.t. q a−→ q′, q a−→ s′ and s′ vdi q′. Similarly, a state s′ is a backward little brother if

there exist states q and q′ s.t. q a←− q′, q a←− s′ and s′ vbw q′.)

108 Chapter 4. Jumping simulations

However, quotienting w.r.t. proxy simulation merges states p and q. This is shown

in detail later in Example 4.7.2.

However, it turns out that iterated quotienting is closely related to another hierarchy

of GFQ relations. Let ≈fw-x
0 =≈bw-x

0 = Id, and, for i ≥ 0,

≈fw-x
i+1 =� ∩ �, where �= τx(≈bw-x

i) (4.2)

≈bw-x
i+1 =� ∩ �, where �= τbw(≈fw-x

i) (4.3)

That is, we build a hierarchy similar to proxy simulation, but before going to the next

level, we take the induced equivalence of the current preorder.

The following lemma holds for any equivalence ≈. It says that τx(≈) computed

on Q is the same as τx(Id) computed on Q/ ≈. Notice that the latter is just ordinary

x-simulation.

Lemma 4.6.7. Let ≈ be any equivalence on Q, and consider the quotient automaton

Q/ ≈. For x ∈ {di, de, bw},

q τx(≈) s︸ ︷︷ ︸
inQ

⇐⇒ [q] τx(Id) [s]︸ ︷︷ ︸
inQ/≈

The following lemma says that the i-th automaton after iterated quotienting corresponds

to Q quotiented by the i-th equivalence in the hierarchy of Equations (4.2) and (4.3).

Lemma 4.6.8. For any i ≥ 0,

Qi = Q/ ≈fw-x
i and Si = Q/ ≈bw-x

i

Proof. By induction. For i = 0 it holds trivially. For i ≥ 0, we have

Qi+1 = Si/ ≈fw-x (by induction hypothesis)

= (Q/ ≈bw-x
i)/ ≈fw-x

= Q/ ≈fw-x
i+1

where the last step follows from Lemma 4.6.7, since computing forward simulation

on Q/ ≈bw-x
i is the same as computing τx(≈bw-x

i) on Q, whose induced equivalence is

≈fw-x
i+1 . The calculation for Si+1 is analogous.

4.7. Proxy simulations vs Mediated preorder 109

4.7 Proxy simulations vs Mediated preorder

In this section we compare proxy simulations against another GFQ preorder which

has been studied in literature called mediated preorder [4]. In Section 4.7.1 we recall

the definition of mediated preorder for nondeterministic automata. In Section 4.7.2

we compare in detail quotienting w.r.t. mediated preorder and proxy simulations; in

general, the two approaches are incomparable. Finally, in Section 4.7.3 we show how

mediated preorder can be interpreted as a variant of proxy simulation.

4.7.1 Mediated preorder

Mediated preorder has been originally introduced and studied in the context of alternat-

ing Büchi automata [4]. It arises as a combination of direct and backward simulation, in

a spirit not far from jumping simulations. In the context of nondeterministic automata,

it can be defined as follows. (With “◦” we denote relational composition: Given two

binary relations R0 and R1, (x, z) ∈ (R0 ◦R1) iff ∃y · (x, y) ∈ R0 ∧ (y, z) ∈ R1.)

Definition 4.7.1. Let vdi be direct simulation and let vbw be backward simulation. A

binary relation R is a mediated simulation iff

1) R ⊆ vdi ◦ wbw (where wbw is the transpose of vbw), and

2) R ◦ vdi ⊆ R.

In other words, if R is a mediated simulation and q R s for two states q and s, then

1) There exists a state q̂ s.t. q vdi q̂ and s vbw q̂. State q̂ is called a mediator, and

depends in general on q and on s.

2) For any state ŝ s.t. s vdi ŝ, we have q R ŝ.

Mediated simulations are closed under union, and mediated preorder vM is defined as

the union of all mediated simulations, and, therefore, the largest such simulation.

vM is correctly called a preorder. First, it is clearly reflexive, since the identity

relation is a mediated simulation. Second, is is also transitive: Indeed, the composite

relation�:=vM ◦ vM is included invM. This is established by showing that� is itself

a mediated simulation, which can be done with the following calculations: Condition 2)

110 Chapter 4. Jumping simulations

� ◦ vdi ⊆ � follows from

� ◦ vdi = (vM ◦ vM) ◦ vdi by associativity

= vM ◦ (vM ◦ vdi) by 2) on vM

⊆ vM ◦ vM = �

and condition 1) � ⊆ vdi ◦ wbw follows from

� = vM ◦ vM by 1) on vM

⊆ vM ◦ (vdi ◦ wbw) by associativity

= (vM ◦ vdi) ◦ wbw by 2) on vM

⊆ vM ◦ wbw by 1) on vM

⊆ (vdi ◦ wbw) ◦ wbw by associativity

= vdi ◦ (wbw ◦ wbw) since wbw is transitive

⊆ vdi ◦ wbw

Finally, mediated preorder is at least as coarse as forward direct simulation. This

follows directly from the fact that vdi is itself a mediated simulation: 1) vdi ⊆ vdi

◦ wbw, and 2) vdi ◦ vdi ⊆ vdi (by transitivity of vdi). [4] establishes that mediated

preorder can be used for quotienting.

Theorem 4.7.2. vM is a GFQ preorder coarser than vdi.

4.7.2 Comparison

We compare proxy simulation w.r.t. mediated preorder quotients. In general, the

two approaches are incomparable. For example, mediated preorder and the backward

simulation τbw+di(Id) are incomparable; this is not surprising, as the former is at least as

coarse as direct simulation, while the latter is at least as coarse as backward simulation.

Below, we show an example where proxy simulation is better than mediated preorder.

4.7. Proxy simulations vs Mediated preorder 111

Example 4.7.1 - Backward proxy simulation quotients can

outperform mediated quotients

p q svbw

a
b

b, c

a, b
a

b

Σ

Consider the automaton above. We show that τbw+di(Id) achieves greater reduction than

vM. The only direct or backward related states (except identical ones) are as follows:

q, s vdi p and q vbw s

Mediated preorder vM is just forward simulation in this example: The only new

potential pair of states in mediated preorder not already in vdi is (s, q) (since s vdi

s wbw q). But if s vM q, then, since q vdi p, by the second condition defining vM,

one should have s vM p as well. But (s, p) 6∈ vdi ◦ wbw, therefore s 6vM q. Thus,

vM=vdi, and mediated preorder does not help quotienting the automaton.

However, p and q are τbw+di(Id)-equivalent: q τbw+di(Id) p since from p Duplicator

can play actions a and b; p τbw+di(Id) q since Duplicator can play action a from q, and

she can jump from q to the vbw-larger s if she needs to take action b.

Also mediated preorder and the forward proxy simulation τdi+bw(Id) are incompa-

rable. This is more interesting, since they are both coarser than direct simulation. This

is shown in the next example, which is dual to Example 4.7.1.

112 Chapter 4. Jumping simulations

Example 4.7.2 - Forward proxy simulation quotients can

outperform mediated quotients

p q svdi

a, b
a

b

a b
b, c

Σ

Consider the automaton above. (It is the same automaton as in Example 4.6.4.) We

show that τdi+bw(Id) can achieve a better reduction than vM. Direct and backward

simulation-related states are as follows (as usual, we ignore the identity relation):

q vdi s and q, s vbw p

Like in Example 4.7.1, also here mediated preorder coincides with forward simulation:

Indeed, mediated preorder is a subset of vdi ◦ wbw, which is just vdi in this example.

Yet, p and q are τdi+bw(Id)-equivalent. p clearly simulates q, since Duplicator can

take both backward actions a and b from p. Also, q simulates p: If Spoiler plays action

a, then Duplicator can directly play the backward a-transition from q; otherwise, if

Spoiler plays action b, then Duplicator can jump from state q to the vdi-larger state s,

and play the backward b-transition from the latter state.

Finally, we show an example where mediated preorder gives a greater reduction

than proxy simulations. This is slightly more involved; the reason is explained in

Section 4.7.3.

4.7. Proxy simulations vs Mediated preorder 113

Example 4.7.3 - Mediated quotients can outperform proxy

simulation quotients

r

p0 q0 s0

p1 q1 s1

wdi

wbw

Σ

c
a

a, b

a, c
a

a
a a

a, b

c
a

a, b

The only states related by ordinary forward and backward simulation are as follows

(as usual, we omit the identity):

q0 vdi p0

q1 vdi s1

and
q0 vbw s0

q1 vbw p1, s1

First, we show that there are mediated preorder-equivalent states.

Mediated preorder q1 and s1 are mediated preorder equivalent:

• q1 vM s1: just because of q1 vdi s1.

• s1 vM q1: via mediator s1, since s1 vdi s1 wbw q1. This is compatible with

condition 2) for mediated preorder, since the only state vdi-larger than q1 is s1,

and s1 vM s1 trivially holds.

Then, we show that there are no equivalent states w.r.t. neither forward nor backward

proxy simulations. This implies that mediated preorder can achieve better reduction

than proxy simulations.

114 Chapter 4. Jumping simulations

Forward proxy simulation Let �= τdi+bw(Id). Clearly, no two states from differ-

ent “rows” can be �-comparable. For states in the same row, we proceed by excluding

all possibilities.

• q0 6� p0: Duplicator cannot jump, since there is no state vdi-larger than p0.

Spoiler wins immediately by playing the backward a-transition from q0, which is

unavailable to Duplicator from p0.

• q0 6� s0: Duplicator cannot jump, since there is no statevdi-larger than s0. Spoiler

can play the jumping transition q0 vdi p0
c←− r, while action c is unavailable to

Duplicator, who loses.

• q1 6� s1: Spoiler takes transition q1
a←− q0. Duplicator cannot jump, since there

is no state vdi-larger than s1. If Duplicator takes transition s1
a←− p0, then the

game goes to configuration 〈q0, p0〉, which is winning for Spoiler (first point

above).

Otherwise, if Duplicator takes transition s1
a←− s0, then the game goes to

configuration 〈q0, s0〉, from which Spoiler wins as in the point above.

In Section 4.7.3 we interpreted mediated preorder as a special kind of jumping

simulation game. From the discussion there, it will be clear that, since s1 vM q1,

even if q1 6� s1, Duplicator cannot immediately lose in the first round of the

latter game: We really need to allow Spoiler (and only Spoiler) to actively jump

in the second round of the simulation game. That’s why Example 4.7.3 has a

higher depth w.r.t. the previous examples. Indeed, one can show that if players

are allowed to jump only in the first round, then vM and (the transpose of) �
would coincide.

• p0 6� s0 and p1 6� s1: Again, Duplicator cannot jump from neither s0 nor s1.

From both configurations 〈p0, s0〉 and 〈p1, s1〉, Spoiler can play the backward

c-transitions, while Duplicator can’t.

• q1 6� p1: Spoiler can take the jumping b-transition q1 vdi s1
b←− s0, and

Duplicator cannot do any b from p1.

Backward proxy simulation Let �= τbw+di(Id). Again, no two states from

different “rows” are �-comparable. For states in the same row, we reason as follows.

• p1 6� s1: Spoiler can take a forward c-transition, and Duplicator can’t.

4.7. Proxy simulations vs Mediated preorder 115

• q1 6� s1: Spoiler can jump from q1 to the vbw-larger state p1, and then wins as in

the previous point.

• q1 6� p1: Spoiler takes a forward a-transition and Duplicator can’t.

• p0 6� q0 and p0 6� s0: In both cases, Spoiler takes a forward c-transition from p0,

and Duplicator, even if vbw-jumping, cannot simulate it.

• q0 6� s0: Spoiler takes transition q0
a−→ q1, and Duplicator is forced to take

transition s0
a−→ s1. From configuration 〈q1, s1〉, Spoiler wins as above.

4.7.3 Mediated preorder as a jumping simulation game

A deeper analysis shows that mediated preorder shares a structure which is very similar

to forward proxy simulations. Let wM be the transpose of mediated preorder, and

assume q wM s. We interpret mediated preorder as a special kind of vdi-jumping

backward simulation game. Let Spoiler jump to state q̂ s.t. q vdi q̂. By condition 2)

of mediated preorder, q̂ wM s. By condition 1), there exists a mediator ŝ s.t. s vdi ŝ

and q̂ vbw ŝ. So, let Duplicator reply by jumping to mediator ŝ. Therefore, if Spoiler

selects a backward transition q̂ a←− q′, then, by the definition of backward simulation,

Duplicator can select matching transition ŝ a←− s′ s.t. q′ vbw s′. This interaction is very

similar to the one of τdi+bw(Id), which now is more convenient to write as τbw(vdi).

We remark two important differences.

1. We summarize the first difference as “proxies are dynamic, while mediators are

static”: With this we mean that the mediator state ŝ above depends only on q̂, and

not on the completed transition q̂ a←− q′. Conversely, proxies in jumping games

(like the one for τbw(vdi)) generally depend on the full move by Spoiler.

This gives more power to Duplicator, and it is the key reason as to why τbw(vdi)

outperforms vM in Example 4.7.2: Indeed, when Spoiler moves from p, Duplica-

tor jumps to a state depending on whether Spoiler plays an a or a b action; in the

former case, Duplicator just stays in q, while in the latter case she jumps to s.

2. The second difference concerns the situation when jumps are allowed during the

simulation game. In jumping simulation games, we allow both players to jump at

any round. For example, in the game for τbw(vdi), both players can always jump

to vdi-larger states before taking a backward transition.

116 Chapter 4. Jumping simulations

In mediated preorder games, players can jump only in the first round, and then

take a backward transition. Indeed, condition 2) of mediated preorder allows

Spoiler to jump during the first round, while condition 1) allows the same for

Duplicator. But, after the jump, in mediated preorder one requires q′ vbw s′,

which is to say q′ τbw(Id) s′. That is, from the second round on, we fall back to

an ordinary backward simulation game with no jumps.

This discrepancy between mediated simulation games and proxy simulation games

is exploited in Example 4.7.3 to show that mediated preorder can outperform

proxy simulations. In particular, to show a difference between mediated preorder

and forward proxy simulations, it is necessary to have a jumping game with at

least two non-trivial rounds—i.e., such that diagonal configurations 〈x, x〉 are not

reached before two rounds. This explains why Example 4.7.3 is more complex

than the previous ones.

4.8 Computing jumping simulations

We present simple and efficient PTIME algorithms for computing jumping simulation

transformers. In previous work [44], computing simulations has been reduced to solving

2 player games with a parity winning condition [58]. We take an equivalent approach

based on solving fixpoint equations over suitable transition systems.

4.8.1 Jumping predecessor operators

Let v0 and v1 be two preorders. Configurations are of the form 〈q, s〉, with q, s ∈ Q,

and C = Q×Q is the set of all configurations. We take the point of view of Spoiler,

and we define a controlled predecessor operator CPre(·) s.t., for sets of configurations

X , Y and Z, CPre(X, Y, Z) represents all configurations from which Spoiler has a

move s.t., for any Duplicator’s reply, either

• Spoiler has taken an accepting transition, Duplicator hasn’t, and the game is

forced into X; or

• Duplicator cannot take an accepting transition, and the game is forced into Y ; or

• The game is forced into Z.

4.8. Computing jumping simulations 117

Formally, we have the following definition.

CPre(X, Y, Z) =
⋃
a∈Σ

{〈q, s〉 | ∃(qv0
a−→q′) · ∀(sv1

a−→s′) ·

either (qv0
a−→F q

′) ∧ ¬(sv1
a−→F s

′) ∧ 〈q′, s′〉 ∈ X

or ¬(sv1
a−→F s

′) ∧ 〈q′, s′〉 ∈ Y

or 〈q′, s′〉 ∈ Z}

Based on the above definition for CPre(·), we obtain two more predecessor operators

by specialization. For sets of configurations X and Y ,

• CPre1(X, Y) is the set of configurations from which Spoiler can ensure to either

take an accepting transition, while preventing Duplicator from doing so, and to

go in X; or, to go in Y .

• CPre0(X, Y) is the set of configurations from which Spoiler can ensure that either

Duplicator does not take an accepting transition and go in X , or to go in Y .

Formally,

CPre1(X, Y) = CPre(X, Y, Y)

CPre0(X, Y) = CPre(X,X, Y)

Having these predecessor operators in hand, we are ready to write down suitable fix-

point equations representing the winning region W x of Spoiler, for x ∈ {di, de, f, bw}.
The jumping simulation preorder can be obtained by complementation,

τx(v0,v1) = C \W x

4.8.2 Direct and backward simulations

Spoiler wins the direct simulation game iff she can drive the game to a configuration

where she can take an accepting transition and Duplicator can’t:

W di = µX · CPre1(C,X)

For backward simulation, Spoiler wins also if the game reaches a configuration from

which she can jump to an initial state, but Duplicator can’t.

W bw = µX · T ∪ CPre1′(C,X)

where T = {〈q, s〉 | q v0 I ∧ s 6v1 I}

The predecessor operator CPre1′(·) is the same as CPre1(·), except that transitions are

taken backwards, in accord with the definition of backward simulation.

118 Chapter 4. Jumping simulations

4.8.3 Fair simulation

Spoiler wins the fair simulation game if she can eventually force the game into a position

from which Duplicator cannot take accepting transitions anymore, while Spoiler can

still take accepting transitions infinitely often.

W f = µX · νY · µZ · CPre(Y, Z,X)

4.8.4 Delayed simulation

The fixpoint formula for jumping delayed simulation is an adaption to the jumping case

of an analogous formula for ordinary delayed simulation [73]. Spoiler wins the delayed

game iff she can eventually take an accepting transition (and Duplicator can’t), and go

to a configuration from which Duplicator cannot take accepting transitions anymore.

W de = µX · CPre1(νY · CPre0(Y,X), X)

Chapter 5

Multipebble simulations for ABAs

Contents
5.1 Applications of alternating automata 124

5.1.1 Automata complementation 124

5.1.2 Linear temporal logic . 125

5.1.3 Alternating automata with existential and universal states . 126

5.2 Simulations for alternating Büchi automata 127

5.3 Multipebble simulations for alternating Büchi automata 130

5.4 Basic properties of multipebble simulations 135

5.4.1 Multipaths . 135

5.4.2 Hierarchies of multipebble simulations 136

5.4.3 Containment and language inclusion 138

5.5 Uniform simulation games . 145

5.5.1 Translation to uniform automata 146

5.5.2 Correctness of the translation 152

5.6 Transitivity . 158

5.6.1 Proof overview . 159

5.6.2 Direct simulation . 162

5.6.3 Delayed and fair simulation 168

5.6.4 Comparison with previous work [29] 174

5.7 Multipebble simulations and subset-like constructions 177

5.7.1 Characterizing (n, 1)-fair simulation 177

119

120 Chapter 5. Multipebble simulations for ABAs

5.7.2 Characterizing (1, n)-fair simulation 184

5.7.3 Characterizing (n, n)-fair simulation 191

5.8 Quotienting . 193

5.8.1 Quotienting difficulties 195

5.8.2 Minimax quotients . 196

5.8.3 Requirements for delayed simulation 204

5.8.4 Semielective quotients 208

5.9 Computing multipebble simulations 219

5.9.1 Direct simulation . 220

5.9.2 Fair simulation . 220

5.9.3 Delayed simulation . 222

5.10 Complexity of multipebble simulations 225

5.10.1 PSPACE-membership . 227

5.10.2 Domino-tiling games . 232

5.10.3 PSPACE-hardness of (1, n)-simulations 233

5.10.4 EXPTIME-hardness of (1, n)-simulations on ABAs 236

5.10.5 EXPTIME-hardness of (1,
√
n)-simulations on NBAs . . . 240

Overview

We generalize multipebble simulation relations from nondeterministic to alternating

Büchi automata (ABA). As in the previous chapters, our aim is to obtain relations which

can be used for quotienting and for showing language inclusion. While in the fixed-word

and proxy simulations of Chapters 3 and 4 we have addressed quotienting and language

inclusion for nondeterministic automata, in this chapter we develop techniques which

can be applied to alternating automata.

Alternating automata are a model of computation where existential and universal

choice coexist. The standard model of alternation considers transitions as positive

boolean combinations of successors. In this chapter, instead, we adopt the model

of [55], where the states are partitioned into existential and universal states. For a

comparison with the standard model and applications, see Section 5.1.

121

Multipebble simulations are designed to given more power to Duplicator in the

simulation game than in ordinary 1-pebble simulation. Having multiple pebbles allows

Duplicator to “hedge her bets” to delay decisions, thus yielding a simulation relation

which is coarser than ordinary 1-pebble simulation. We consider multiple pebbles

on both sides, i.e., (k0, k1)-simulations, with k0 pebbles on the left and k1 pebbles on

the right. Intuitively, Duplicator controls pebbles on universal states on the left and

existential states on the right (and dually for Spoiler). This generalizes previous work

on ordinary (1, 1)-simulation for nondeterministic Büchi automata (NBA) [44] and

ABA [55], and (1, k)-simulation for NBA [42].

We consider direct, delayed and fair simulations. In each case, (k0, k1)-simulations

form a complete lattice, where (1, 1)- and (n, n)-simulations are the bottom and top

element (if the automaton has n states), respectively, and the order is strict in general.

We show that multipebble simulations can be used to prove language inclusion between

ABA, and, for the direct and delayed variant, they can also be used for quotienting

ABA. More generally, multipebble simulations fulfill the simulations desiderata of

Section 2.5:

(Da) Multipebble simulation implies language inclusion.

(Db) (k0, k1)-direct and (1, n)-delayed simulations are GFQ.

(Dc) For any fixed k0, k1 > 0, (k0, k1)-simulation is computable in polynomial time.

(Dd) (1, 1), (1, n), (n, 1) and (n, n)-simulations are transitive, where n is the number

of states in the automaton.

The GFQ property generally fails for naı̈ve quotients, and other notions of quotients

have to be introduced. Additionally, multipebble simulations yield new insights into the

Miyano-Hayashi construction for alternation removal [92].

Summary of results and structure of the chapter

We explain in greater detail the results of this chapter, together with a summary of

its structure. See also Table 5.1. The material presented is a major extension of [29].

Moreover, many results are new and have not been published before; they are marked

with a star in the list below.

• In Section 5.2, we review previous work on simulation preorders for alternating

Büchi automata.

122 Chapter 5. Multipebble simulations for ABAs

Pebbles
Language incl.
(Section 5.4.3) (1, 1)

fixed
(k0, k1)

(1, n) (n, 1) (n, n)

all sims. X X X X X

Transitivity (Sec. 5.6)

all sims. X × X X X

Quotienting (Sec. 5.8)

Direct sim. X X X X X
Delayed sim. X × X × ×

Fair sim. × × × × ×
Complexity (Sec. 5.10)

on NBAs PTIME PTIME PSPACE — —

on ABAs PTIME PTIME EXPTIME EXPTIME PSPACE

Table 5.1: Multipebble simulations summary

• In Section 5.3, we introduce our generalization to multiple pebbles.

• In Section 5.4, we discuss fundamental properties of multipebble simulations.

In particular, in Section 5.4.2 we show that (k0, k1)-simulations can be naturally

arranged into a bidimensional hierarchy as follows (where the inclusions, in

general, are strict):

...
... . .

.

v(2,1) ⊆ v(2,2) ⊆ · · ·

⊆ ⊆

v(1,1) ⊆ v(1,2) ⊆ · · ·

• Language inclusion (Da): In Section 5.4.3, we show that all simulations we

consider imply language inclusion. That is, for any k0, k1 > 0, (k0, k1)-direct,

delayed and fair simulation imply language inclusion.

• Uniform simulation games*: In Section 5.5, we introduce a restricted class of

multipebble simulation games, called uniform games, where we make further

assumptions on the structure of plays and on the behavior of players. We show

that uniform games are equivalent to ordinary, unrestricted games, in the sense

123

that, for any ordinary game, there exists a uniform game where the winner is

preserved. Many subsequent results are proved, without loss of generality, in the

restricted case of uniform games.

• Transitivity (Dd): In general, (k0, k1)-simulations are not transitive. However,

limit simulation are transitive, i.e., when Duplicator uses either just one or n

pebbles on either side (where n is the number of the states in the automaton).

Transitivity for (1, 1)-simulations has been established in [55]. In Section 5.6, we

extend this result to (1, n), (n, 1) and (n, n)-direct, delayed and fair simulations.

The result for (n, n)-transitivity has not been published before.

• Subset constructions: Maximal fair multipebble simulations give new insights into

classical subset constructions for alternating automata. In Section 5.7, we show

that (n, 1)-fair simulation characterizes the Miyano-Hayashi alternation-removal

construction, while (1, n)-simulation characterizes a kind of dual construction.

Finally, (n, n)-fair simulation is shown to characterize both. The characterization

for (1, n) and (n, n)-simulation has not been published before.

• Quotienting (Db): Quotienting in alternating automata is non-trivial. In Sec-

tion 5.8, we generalize minimax and semielective quotients from [55], and we

show that they are sound for direct and delayed multipebble simulation, respec-

tively.

However, while unrestricted (k0, k1)-direct simulation is GFQ (w.r.t. minimax

quotients), we show that only (1, n)-delayed simulation is GFQ (w.r.t. semi-

elective quotients). Indeed, for the (k0, k1), (n, 1) and (n, n) cases of delayed

simulation, we show that there is no reasonable sound definition of quotient.

• Algorithms and complexity (Dc)*: (k0, k1)-direct, delayed and fair simulation is

computable in polynomial time for fixed k0, k1 > 0. However, for large number

of pebbles, the problem becomes PSPACE-hard. In certain cases, it is even

EXPTIME-hard. See Section 5.9 for practical algorithms, and Section 5.10 for

complexity results. No computational complexity result was previously known,

even for (1, k)-simulations on NBAs (i.e., in the setting of [42]).

124 Chapter 5. Multipebble simulations for ABAs

5.1 Applications of alternating automata

Alternating automata are a model of computation with both universal and existential

choice. The standard model of alternation considers as transitions positive boolean

combinations of successors. I.e., for a state p and input symbol a, a valid transition is,

e.g., δ(p, a) = (q∧r)∨s; this means that the rest of the input has to be accepted by either

both q and r, or by s alone. Alternating automata find their applications in efficient

translations of modal and temporal logics (such as LTL [115]), and as intermediate

representations in automata complementation algorithms.

Note that alternating automata are easily seen to be closed under union and intersec-

tion; for example, given two states p and q, their intersection is given by a new state r

s.t., on input a, δ(r, a) = δ(p, a) ∧ δ(q, a). Complementation is slightly more involved,

since we also need to dualize the acceptance condition, as shown next.

5.1.1 Automata complementation

Complementation of Büchi automata is a difficult task, both theoretically [117, 106], and

practically [113]. Its applications in formal verification include checking the correctness

of LTL translation algorithms [63], and the Safraless approach to synthesis [79].

For a given automaton B with n states, its complement Bc can have as many

as Ω(2n logn) states. Therefore, even a small reduction in size in B can result in

an exponentially smaller complement automaton Bc. Thus, reducing an automaton

before complementation is crucial to any complementation procedure. Moreover,

complementation algorithms that manipulate intermediate automata can benefit from

quotienting these intermediate representations as well. One such example is given by

the so-called Rank-based complementation [81], which utilizes a small intermediate

alternating automaton. Schematically, it works as follows: Given a nondeterministic

Büchi automaton B with n states,

• One builds an alternating co-Büchi automaton C with n states (obtained by just

dualizing the transition relation and the acceptance condition) accepting the

complement language: L(C) = Σω \ L(B).

• From C, one builds an equivalent weak alternating automaton W with O(n2)

states (following the construction in [81]) s.t. L(W) = L(C).

• FromW , one applies the standard Miyano-Hayashi de-universalization construc-

tion in order to remove universal non-determinism [92], and obtains an equivalent

5.1. Applications of alternating automata 125

nondeterministic Büchi automaton Bc with O(2n logn) states s.t. L(Bc) = L(W).

Overall, one has L(Bc) = Σω \ L(B), that is, Bc is the complement automaton

one is looking for.

Simulation-based optimizations can be applied at every stage of the algorithm. In

particular, the intermediate weak alternating automaton W can be quotiented with

simulation-based methods before it is fed into the exponential Miyano-Hayashi con-

struction. Moreover, the Miyano-Hayashi construction itself can be optimized with

on-the-fly simulation-based pruning of transitions, in the spirit of [54].

5.1.2 Linear temporal logic

The capability of having arbitrary positive boolean formulas in the transitions makes

alternating automata a natural model when translating from modal and temporal logics.

Here, we recall the translation for the temporal logic LTL [115]. Formulas in linear

temporal logic (LTL) are build from a set of (positive and negative) atomic symbols Σ

by combining boolean and temporal connectives, as per the following abstract syntax:

φ ::= a | ¬a | φ ∧ φ | φ ∨ φ |Xφ | φUφ | φRφ, where a ∈ Σ

LTL formulas are interpreted over ω-words: For a LTL formula φ, a word w ∈ Σω, and

a time point i < ω, we write w, i |= φ if the suffix of w starting at position i satisfies φ.

The satisfaction relation is defined by structural induction on formulas:

w, i |= a iff w(i) = a

w, i |= ¬a iff w(i) 6= a

w, i |= φ0 ∧ φ1 iff w, i |= φ0 and w, i |= φ1

w, i |= φ0 ∨ φ1 iff w, i |= φ0 or w, i |= φ1

w, i |= Xφ iff w, i+ 1 |= φ

w, i |= φ0Uφ1 iff there exists j ≥ i s.t. w, j |= φ1 and,

for any i ≤ k < j, w, k |= φ0

w, i |= φ0Rφ1 iff for every j ≥ i, either w, j |= φ1,

or there exists i ≤ k < j s.t. w, k |= φ0

Intuitively, atomic symbols a ∈ Σ are used to check the current input symbol in the

word; boolean symbols are as usual; the formula Xφ holds now if in the next instant φ

126 Chapter 5. Multipebble simulations for ABAs

holds; the formula φ0Uφ1 holds if eventually in the future φ1 holds, and, at any time

strictly before then, φ0 holds; finally, φ0Rφ1 is the dual of φ0Uφ1.

Given an LTL formula φ0, the set of words w s.t. w, 0 |= φ holds is ω-regular, and

it can be succinctly recognized by an alternating automaton of size linear in the number

of subformulas of φ0. States of the automaton are subformulas of φ0. The initial state is

φ0 itself. Transitions are defined by structural induction on formulas [115]:

• if φ = a, then δ(a, a) = true and δ(a, b) = false, for b 6= a;

• if φ = ¬a, then δ(¬a, a) = false and δ(¬a, b) = true, for b 6= a;

• if φ = ψ0 ∧ ψ1, then δ(φ, a) = δ(ψ0, a) ∧ δ(ψ1, a);

• if φ = ψ0 ∨ ψ1, then δ(φ, a) = δ(ψ0, a) ∨ δ(ψ1, a);

• if φ = Xψ, then δ(φ, a) = ψ;

• if φ = ψ0Uψ1, then δ(φ, a) = δ(ψ1, a) ∨ (δ(ψ0, a) ∧ φ);

• if φ = ψ0Rψ1, then δ(φ, a) = δ(ψ1, a) ∧ (δ(ψ0, a) ∨ φ).

Accepting states are those of the form ψ0Rψ1; the additional states true and false

recognize Σω and ∅, respectively. The transition for U is obtained by applying the usual

fixpoint characterization

ψ0Uψ1 = ψ1 ∨ (ψ0 ∧X(ψ0Uψ1)) ,

and similarly for R.

If Aφ0 is the automaton obtained by the procedure above from φ0, then one can

prove that Aφ0 recognizes exactly the words w which are models for φ0; i.e., L(Aφ0) =

{w ∈ Σω | w, 0 |= φ0} [115]. Therefore, φ0 is satisfiable iff Aφ0 has non-empty

language, which shows a linear-time reduction from LTL satisfiability to non-emptiness

of alternating automata. Again, simulation-based optimizations can be applied to Aφ0
before it is fed into more expensive constructions.

5.1.3 Alternating automata with existential and universal states

Both the complementation and translation procedures from LTL make use of alternating

automata with transitions containing arbitrary boolean combinations. In the simplified

model with existential and universal states of [55] (which is the one that we consider

5.2. Simulations for alternating Büchi automata 127

in this chapter), one only considers a normal form for transitions, where there is only

a purely disjunctive or a purely conjunctive combination at every state. This more

restrictive model of alternation is no longer suited for translating from temporal logics,

or for complementation.

One workaround is to introduce epsilon transitions, and to generalize simulations

to this new setting. This is done, e.g., in [54], where it is proposed a translation from

LTL to alternating automata with epsilon transitions, along with a notion of simulation

for the new model. The intuition is that, by using epsilon transitions and additional

intermediate states, one can simulate arbitrary boolean combinations with just existential

and universal states. The same technique can also be applied in the complementation

algorithm.

In this chapter, we do not consider models or simulations with epsilon transitions.

This this makes our quotienting techniques not directly applicable to alternating au-

tomata obtained from LTL or from complementation. However, this chapter can serve as

a roadmap for the design of more complex GFQ multipebble simulations for quotienting

automata with a richer model of alternation, in the same way as [55] provides the

theoretical foundations for the extensions of [54] in the 1-pebble case. Moreover, con-

sidering a simplified alternation model allows us to isolate the key technical difficulties

in quotienting alternating automata, which would would be otherwise obscured by a

more complex model. Thus, the choice of a restrictive model of alternation allows us to

expose these issues in their simplest form. Any generalization of multipebble simula-

tions to alternating automata with either boolean combinations or epsilon transitions

will have to consider and address the technicalities that we solve here.

5.2 Simulations for alternating Büchi automata

In this section, we review previous work on simulations for ABAs. All the definitions

and results presented here are from [55].

Extending simulations to alternating models In ordinary single-pebble simu-

lation games for nondeterministic models, Spoiler always moves the left pebble and

Duplicator the right one. When generalizing simulations to alternating models, in order

for simulation to be compatible with language inclusion and quotienting (i.e., desiderata

(Da) and (Db)), the two players need to “swap side” when pebbles are on universal

states; more precisely, when a pebble is on a universal state, it is controlled by Spoiler

128 Chapter 5. Multipebble simulations for ABAs

if it is on the right and by Duplicator if it is on the left.

Formally, given a simulation game played on an alternating automaton Q =

(Q,Σ, qI ,∆, E, U, F), if the current configuration of the simulation game is 〈q, s〉,
then, in next round,

1. Spoiler selects an input symbol a ∈ Σ, and

• If q ∈ E, then Spoiler selects a transition q a−→ q′.

• If s ∈ U , then Spoiler selects a transition s a−→ s′.

2. Duplicator replies:

• If q ∈ U , then Duplicator selects a transition q a−→ q′.

• If s ∈ E, then Duplicator selects a transition s a−→ s′.

This is well-defined since a state is either existential or universal, but not both; the next

configuration is 〈q′, s′〉. Notice that,

• If both pebbles are existential, then we have the same behavior as in usual

simulation games on nondeterministic models.

• If both pebbles are universal, the usual behavior is reversed, with Spoiler moving

on the right and Duplicator replying on the left.

• If the left pebble is existential and the right pebble universal, then only Spoiler

plays in this round.

• Symmetrically, if the left pebble is universal and the right pebble existential, then

only Duplicator plays—except for the choice of the next input symbol which is

always up to Spoiler.

Premature end condition One needs to address what happens if a pebble cannot

be moved because there exists no a-successor. We say that a pebble on state q is stuck if

q has no a-successor (where a is clear from the context). In nondeterministic models, if

the left pebble is stuck, then Duplicator wins, and, symmetrically, if the right pebble is

stuck, then Spoiler wins. Since the left and right pebbles are also those controlled by

Spoiler and Duplicator, respectively, one might be tempted to generalize this principle

by saying:

If Spoiler’s pebble is stuck, then Duplicator wins; and vice versa.

5.2. Simulations for alternating Büchi automata 129

Indeed, this is how the winning condition for alternating simulation is defined in [55]

when the game ends early.

However, this turns out to be incorrect. For example, consider the following

situation:

q sv

a

With the rule above, Duplicator wins since the pebble on s is stuck (there is no a-

successor), however aω = L(q) 6⊆ L(s) = ∅, and simulation preorder does not imply

language inclusion (Da). Therefore, if we let Duplicator win when Spoiler is stuck on

a universal right pebble, then the simulation is too coarse; on the other side, letting

Spoiler win when Duplicator is stuck on a universal left pebble is too restrictive.

The corrected rule only regards the side in which pebbles are stuck, and not the

player controlling them:

If the left pebble is stuck, then Duplicator wins; and vice versa.

Remark 5.2.1. Of course, one can assume w.l.o.g. that automata are total, so that

simulation games never end prematurely. Nonetheless, we prefer to give a definition

which works in the general case, and then assume totality only when proving its

properties (as [55] does).

Simulation desiderata If the game does not end prematurely, two infinite paths

π0 = q0
a0−→ · · · and π1 = s0

a0−→ · · · are built. The winner depends on the type of

simulation one is considering. The notions of direct, delayed and fair simulation for

nondeterministic models [44] immediately generalize to alternating models. We recall

them once again:

x = di : ∀(i ≥ 0) · qi ∈ F =⇒ si ∈ F

x = de : ∀(i ≥ 0) · qi ∈ F =⇒ ∃(j ≥ i) · sj ∈ F

x = f : π0 fair =⇒ π1 fair

As usual, one writes q vx s iff Duplicator wins the x-simulation game starting from

configuration 〈q, s〉.

Theorem 5.2.2 ([55]). Simulations for ABA satisfy the simulation desiderata (Da)-(Dd).

130 Chapter 5. Multipebble simulations for ABAs

Among the simulation desiderata, quotienting (Db) is the most delicate, and repre-

sents the main issue when dealing with alternating models. The strength of vx is that

it allows to relate together existential and universal states. While being as general as

possible allows for more reduction under quotienting, it also raises considerable issues

when mixed quotient classes with both existential and universal states are formed. We

present quotienting for alternating simulations in Section 5.8.

We are now ready to introduce our generalization of simulation to multiple pebbles.

5.3 Multipebble simulations for alternating Büchi

automata

In this section, we define multipebble simulations for alternating models, thus generaliz-

ing both the alternating simulations of [55] (cf. Section 5.2) to multiple pebbles, and the

multipebble simulations of [42] (cf. Section 3.2) from nondeterministic to alternating

Büchi automata.

Intuition We have seen that, in ordinary 1-pebble simulations for alternating models,

players can sometimes control both left and right pebbles, depending on the existen-

tial/universal type of the pebble. (Recall that Duplicator controls right existential and

left universal pebbles; symmetrically, Spoiler controls left existential and right universal

pebbles.) In a multipebble simulation game, we give more power to Duplicator in order

to get a coarser simulation relation. “More power” takes the form of allowing Duplicator

to have multiple pebbles, both on the left and on the right. When up to k0 > 0 pebbles

are used on the left and k1 > 0 on the right, we call it a (k0, k1)-simulation game;

ordinary simulation corresponds to (1, 1)-simulation, and the multipebble simulations

for NBAs of [42] correspond to (1, k)-simulation.

Having more pebbles on both sides allows Duplicator to “hedge her bets” by splitting

pebbles to several successors, in order to delay committing to particular decisions. To

ensure that more pebbles are never harmful, we allow pebbles to be “taken away”

from their current position; in particular, not all pebbles need to be used at any time.

Therefore, k + 1 pebbles are always at least as good as k pebbles (on either side).

We call a pebble existential if it is on an existential state, and universal otherwise.

Pebbles are moved by conservatively extending the rule for 1-pebble simulations:

Duplicator controls right existential and left universal pebbles, while Spoiler controls

5.3. Multipebble simulations for alternating Büchi automata 131

left existential and right universal pebbles. However, the two players move pebbles in a

rather different way. While Duplicator is allowed to split pebbles to several successors

and to take them away, Spoiler is forced to move each pebble independently to exactly

one successor; in other words, Spoiler cannot take pebbles away, or split them.

We have not yet specified in which order pebbles should be moved. Since our

aim is to get a simulation relation which is as large as possible (but satisfying the

simulation desiderata), we make Spoiler move all pebbles under her control first, and

then Duplicator will follow by moving the remaining pebbles—perhaps splitting them

and taking away unwanted ones (possibly including Spoiler’s). Thus, a generic round

of the (k0, k1)-simulation game is informally played as follows:

• Spoiler selects an input symbol a ∈ Σ, and, for every existential-left and universal-

right pebble, she selects an a-successor.

• Duplicator selects a (possibly empty) set of successors for every universal-left

and existential-right pebble. Then, amongst all successor pebbles (including

Spoiler’s), she selects at most k0 right and at most k1 left pebbles.

The winning condition for games that stop prematurely is as follows:

If any left pebble gets stuck, then Duplicator wins;

otherwise, if all right pebbles are stuck, then Spoiler wins.

In any other case, two multipaths are built, i.e., paths of sets of states, and the winner

depends on a predicate on such multipaths.

The design of the winning condition for multipebble simulations is delicate; it

usually takes the form of an implication (for two properties of multipaths P0 and P1):

If the left multipath satisfies P0, then the right multipath satisfies P1.

For example, in ordinary 1-pebble fair simulation, both predicates P0 and P1 state

that the path is fair. A necessary requirement is that simulation implies containment

(Da). Therefore, the winning condition should be s.t., if an automaton B simulates an

automaton A, and a word w ∈ Σω is accepted by A, then Spoiler should be able to

play s.t. a winning Duplicator is a witness for w to be accepted by B. In general, the

left condition P0 should be a necessary condition for w to be accepted by A, while

the right condition P1 should be a sufficient condition for w to be accepted by B. For

multipebble simulations, we take P0 and P1 to be the notions of being “universally” and

“existentially fair”, respectively (see later, Definitions 5.3.3 and 5.3.2).

132 Chapter 5. Multipebble simulations for ABAs

Definition We now formally define the multipebble simulation game. Let Q be an

alternating automaton, q0 ∈ 2Q,k0 a k0-set and s0 ∈ 2Q,k1 a k1-set. For any set q ⊆ Q,

let qE := q ∩ E be the set of existential states in q, and similarly qU := q ∩ U . We

define the basic (k0, k1)-simulation game G(k0,k1)(q0, s0) as follows. (Formally, Spoiler

is Player 0 and Duplicator is Player 1.) Spoiler’s positions are in PSp := 2Q,k0 × 2Q,k1 ,

and Duplicator’s in PDup := 2Q,k0×2Q,k1×Σ×2Q,k0×2Q,k1 . In the initial configuration

〈q0, s0〉, left pebbles are on q0 and right pebbles on s0. If the current configuration at

round i is 〈qi, si〉, then the next configuration 〈qi+1, si+1〉 is determined in two steps as

follows:

• First, Spoiler chooses a transition 〈(qi, si), (qi, si, ai,q′, s′)〉 ∈ ΓSp ⊆ PSp×PDup

iff ai is chosen as the next input symbol, and

– q′ is obtained from qEi by choosing exactly one successor for each pebble

in qEi . Formally1, q′ ∈
⊗
{∆(q, a) | q ∈ qEi }.

If two states have exactly the same set of successors, we can assume that

Spoiler chooses the same successor for both.

– Symmetrically, s′ is obtained from sUi by choosing one successor for each

pebble in sUi , i.e., s′ ∈
⊗
{∆(s, a) | s ∈ sUi }.

For notational convenience, we henceforth write Spoiler’s transitions just as

(qi, si, ai,q
′, s′) ∈ ΓSp.

• Then, Duplicator chooses a transition 〈(qi, si, ai,q′, s′), (qi+1, si+1)〉 ∈ ΓDup ⊆
PDup × PSp iff

– qi+1 is a non-empty k0-subset of q′ ∪∆(qUi , a), and

– si+1 is a non-empty k1-subset of s′ ∪∆(sEi , a).

Thus, qi
ai=⇒ qi+1 and si

ai=⇒ si+1, which we simply write as 〈qi, si〉
ai=⇒ 〈qi+1, si+1〉.

Remark 5.3.1. Notice that Duplicator is always allowed to “take pebbles away”, and to

“hedge her bets” by splitting pebbles into different successors.

The game ends prematurely when either 1) some left pebble is stuck, and Duplicator

wins in this case, or 2) no left pebble is stuck and all right pebbles are stuck, and Spoiler

1The unordered cartesian product
⊗

is defined in Section 2.2.

5.3. Multipebble simulations for alternating Büchi automata 133

wins in this case. In all other cases, all left pebbles can be moved and at least one right

pebble can be moved, and the players build two infinite, nonempty multipaths

π0 = q0
a0=⇒ q1

a1=⇒ · · ·

π1 = s0
a0=⇒ s1

a1=⇒ · · ·

with induced play π = π0 × π1 = 〈q0, s0〉
a0=⇒ 〈q1, s1〉

a1=⇒ · · · . We define different

winning conditions W x ⊆ P ω
Sp for Duplicator, for x ∈ {di, de, f}, corresponding to

the generalization to multiple pebbles of direct, delayed and fair simulation. The

corresponding x-game is Gx
(k0,k1)(q0, s0).

The winning condition for delayed and fair simulation needs some technical prepa-

ration, which consists in the notion of “being existentially/universally good”. Recall the

definition of “being eventually good” from Section 3.2: si =⇒∗F sj iff, for any sj ∈ sj ,

there exists si ∈ si s.t. si −→∗F sj . In this chapter, we write =⇒∃F instead of =⇒∗F .

Definition 5.3.2 (Existentially good pebbles). si is existentially good at round j iff

si =⇒∃F sj , and si is existentially good, written good∃(si), iff there exists j ≥ i s.t. si

is existentially good at round j. A multipath π1 is existentially fair iff si is existentially

good for infinitely many i’s.

We introduce a dual notion: Given a source state qi ∈ qi and a destination state

qj ∈ qj with i ≤ j, we write qi −→∀F qj iff every path π = qi
ai−→ qi+1

ai+1−→ · · · aj−i−→ qj

going from qi to qj necessarily visits an intermediate accepting state qk ∈ F , for some

i ≤ k ≤ j.

Definition 5.3.3 (Universally good pebbles). qi is universally good at round j, written

qi =⇒∀F qj , iff, for any qj ∈ qj and qi ∈ qi, qi −→∀F qj . Similarly, qi is universally

good, written good∀(qi), iff there exists j ≥ i s.t. qi is universally good at round j. A

multipath π0 is universally fair iff si is universally good for infinitely many i’s.

While qi =⇒∀F qj does not require per se the existence of any path at all, qi =⇒ qj is

guaranteed by construction.

We are now ready to define the winning condition for direct, delayed and fair

multipebble simulation.

1. Direct (k0, k1)-simulation. Duplicator wins if, whenever some left pebble q ∈ qi

is accepting, then every right pebble s ∈ si is accepting:

π ∈ W di ⇐⇒ (∀i · qi ∩ F 6= ∅ =⇒ si ⊆ F)

134 Chapter 5. Multipebble simulations for ABAs

2. Delayed (k0, k1)-simulation. Duplicator wins if, whenever qi is universally good,

then there exists j ≥ i s.t. sj is existentially good:

π ∈ W de ⇐⇒
(
∀i · good∀(qi) =⇒ ∃(j ≥ i) · good∃(sj)

)
3. Fair (k0, k1)-simulation. Duplicator wins if, whenever π0 is universally fair, then

π1 is existentially fair:

π ∈ W f ⇐⇒ (π0 universally fair =⇒ π1 existentially fair)

A k1-set s x-simulates a k0-set q, written q vx(k0,k1) s, if Duplicator has a winning

strategy in Gx
(k0,k1)(q, s). We overload the simulation relation vx(k0,k1) on singletons,

and write q vx(k0,k1) s iff {q} vx(k0,k1) {s}. For two automata A and B, let A vx(k0,k1) B
iff qAI vx(k0,k1) q

B
I , where the simulation is computed on the disjoint union of A and B.

Remark 5.3.4 (Simulations for finite words). In the context of automata over finite

words, one can use the following variant of multipebble direct simulation:

1’. Direct’ (k0, k1)-simulation. Duplicator wins if, whenever every left pebble q ∈ qi

is accepting, then some right pebble s ∈ si is accepting:

π ∈ W di′ ⇐⇒ (∀i · qi ⊆ F =⇒ si ∩ F 6= ∅)

In [29], this notion is called existential multipebble simulation, while the notion we

currently use in this thesis is called universal multipebble simulation. Multipebble

existential-direct simulation is generally unsuitable for working with automata over

infinite words, and we do not discuss it further in this thesis. For example, it does not

imply ω-language inclusion (already for non-deterministic automata),

Example 5.3.1 - Multipebble existential-direct simulation does not

imply ω-language inclusion

q

q′

ab c

s

s′0 s′1

a a
b c

vdi′

(1,2)

5.4. Basic properties of multipebble simulations 135

Note that q vdi′

(1,2) s holds since Duplicator wins by splitting two right pebbles to

{s′0, s′1}. However, L(q) 6⊆ L(s), since (ab)ω ∈ L(q), but (ab)ω 6∈ L(s).

In the next section, we explore some basic properties of multipebble simulations.

5.4 Basic properties of multipebble simulations

5.4.1 Multipaths

Fix a multipath π = s0
a0=⇒ s1

a1=⇒ · · · .

Lemma 5.4.1 (Translation property). For any h ≤ i ≤ j ≤ l,

si =⇒∀F sj implies sh =⇒∀F sl

si =⇒∃F sj implies sh =⇒∃F sl

Proof. If si =⇒∀F sj , then, by definition, any path from si to sj has to visit an accepting

state. By definition, any path from sh to sl induces a path from si to sj . Therefore, also

any path from sh to sl has to visit and accepting state. That is, sh =⇒∀F sl.

Assume si =⇒∃F sj . By definition of multipath, for each pebble s′′ ∈ sl there exists

s′ ∈ sj s.t. s′ −→∗ s′′. By si =⇒∃F sj , there exists s ∈ si s.t. s −→∗F s′. Again by the

definition of multipath, there exists q ∈ sh s.t. q −→∗ s. Therefore,

q −→∗ s −→∗F s′ −→∗ s′′

which implies q −→∗F s′′. Therefore, sh =⇒∃F sj .

The following is an immediate corollary of the previous lemma.

Corollary 5.4.2. In a existential/universal fair multipath, pebbles are always existen-

tially/universally good, respectively.

π is universally fair iff ∀j ≥ 0 · good∀(sj)

π is existentially fair iff ∀j ≥ 0 · good∃(sj)

Let π = s0
a0=⇒ · · · and π′ = s′0

a0=⇒ · · · be two multipaths.

Lemma 5.4.3 (Monotonicity). If, for any i ≤ j, si ⊆ s′i and sj ⊆ s′j , then

s′i =⇒∀F s′j implies si =⇒∀F sj

si =⇒∃F s′j implies s′i =⇒∃F sj

136 Chapter 5. Multipebble simulations for ABAs

Proof. Immediate from the definition of being existentially/universally good.

As a consequence of the first part, being universally good infinitely often is monotone

w.r.t. taking submultipaths.

Lemma 5.4.4. If π′ is universally fair and π ⊆ π′, then π is universally fair.

For two multipaths π and π′ as above, define the union multipath

π ∪ π′ = (s0 ∪ s′0)
a0=⇒ (s1 ∪ s′1)

a1=⇒ · · ·

Existentially fair multipaths are closed under finite union.

Lemma 5.4.5. Let π and π′ be two multipaths as above, and consider the union

multipath π ∪ π′. If si =⇒∃F sj in π and s′i =⇒∃F s′j in π′, then si ∪ s′i =⇒∃F sj ∪ s′j in

π ∪ π′. In particular, if π and π′ are existentially fair, then π ∪ π′ is existentially fair.

Proof. Immediate from the definition of being existentially good.

Inclusion of strategies We lift the inclusion of multipaths to strategies. For two

Duplicator strategies σ0 and σ1, let σ0 ⊆ σ1 iff, for every Spoiler strategy δ and partial

plays π0 and π1 of the same length, if π0 is (δ, σ0)-conform and π1 is (δ, σ1)-conform,

then π0 ⊆ π1.

5.4.2 Hierarchies of multipebble simulations

Direct, delayed and fair simulation are naturally ordered by inclusion, like in the

ordinary simulation case (cf. Lemma 2.5.4).

Lemma 5.4.6. For every alternating Büchi automaton B, and k0, k1 > 0,

vdi
(k0,k1) ⊆ vde

(k0,k1) ⊆ vf
(k0,k1)

Moreover, for each inclusion, there exists an automaton Q s.t. the inclusion is strict.

Proof. The inclusion is immediate from the definition of direct, delayed and fair simu-

lation, since the winning condition for Duplicator gets progressively weaker from left

to right. The strictness follows from the ordinary 1-pebble case.

Multipebble simulation relations are clearly monotone in the number of pebbles,

since having more pebbles is never harmful for Duplicator (unneeded pebbles can

always be thrown away). Thus, vx(k0,k1) is in general non-decreasing in k0, k1.

5.4. Basic properties of multipebble simulations 137

Furthermore, in certain cases more pebbles do actually give more power to Duplica-

tor, which makes vx(k0,k1) strictly increasing in some examples. This is similar to the

k-simulations for NBAs studied in [42] (cf. Section 3.2), but in our context there are

two independent directions of “growing power”, since Duplicator uses pebbles on both

sides of the simulation game.

Theorem 5.4.7. For x ∈ {di, de, f} and 0 < k0 ≤ k′0, 0 < k1 ≤ k′1,

a) Inclusion: For every ABA Q, vx(k0,k1) ⊆ vx(k′1,k′2).

b) Strictness: If either k0 > k′0 or k1 > k′1, then there exists an ABA Q′ such that

vx(k0,k1) 6=vx(k′1,k′2).

Proof. Point 1) follows directly from the definitions, and Point 2) is illustrated in the

next example.

Example 5.4.1 - The multipebble hierarchy is strict

q0

q1 q2

q3

a a

Σ \ b1 Σ \ b2

Σ′

s0

s2s1 s3

s4

a
a

a

c1
c2 c3

Σ′

vx(2,3)

Consider the two automata above, where Σ = {b1, b2, c1, c2, c3} and the alphabet is

Σ′ = {a} ∪ Σ. Duplicator wins by “hedging her bets” on both sides, using two pebbles

on the left and three pebbles on the right: Indeed, Spoiler plays action a, and Duplicator

splits pebbles to 〈{q1, q2}, {s1, s2, s3}〉. From the latter configuration, Spoiler cannot

play neither b1 nor b2: Otherwise, at least one left pebble would be stuck and Duplicator

would win. Therefore, Spoiler has to play an action ci ∈ {c1, c2, c3}, and Duplicator can

move the corresponding right pebble si to s4, and drop the others. From configuration

〈q3, s4〉, Duplicator obviously wins. Hence, q vx(2,3) s holds.

To see that the two left pebbles are actually necessary for Duplicator to win, it

suffices to note that if there were only one left pebble, then Spoiler could play either

138 Chapter 5. Multipebble simulations for ABAs

vx(n,1) ⊆ vx(n,2) ⊆ · · · ⊆ vx(n,n)

⊆ ⊆ ⊆

...
...

...

vx(2,1) ⊆ vx(2,2) ⊆ · · · ⊆ vx(2,n)

⊆ ⊆ ⊆

vx(1,1) ⊆ vx(1,2) ⊆ · · · ⊆ vx(1,n)

Figure 5.1: Multipebble simulation hierarchy

letter b1 or letter b2, and every right pebble would get stuck, which is winning for

Spoiler. Similarly, if there were only two right pebbles, a state si ∈ {s1, s2, s3} would

necessarily remain uncovered, and Spoiler would win by playing action ci.

This example can easily be generalized to arbitrary pebbles (k0, k1); moreover,

similar examples can be designed using the acceptance condition instead of the stuckness

condition.

The bidimensional hierarchy of multiple pebbles arising from Point 2) of the theorem

above is exemplified in Figure 5.1.

5.4.3 Containment and language inclusion

A basic feature of simulation relations is to constitute an under-approximation for

fair containment between states, and, more generally, for language inclusion between

automata (Da). Also multipebble simulations fulfil this desideratum.

Theorem 5.4.8 (Multipebble simulations imply containment). For x ∈ {di, de, f}, any

ABA Q, states q, s ∈ Q, and k0, k1 > 0,

q vx(k0,k1) s implies L(q) ⊆ L(s)

By the containment between direct, delayed and fair simulation established in

Lemma 5.4.6, it is sufficient to consider fair simulation, which is the coarsest one.

Basically, the theorem is proved by showing that, if w ∈ L(q), then Spoiler can play

the simulation game in order to force Duplicator witness w ∈ L(s). This requires three

main ingredients:

5.4. Basic properties of multipebble simulations 139

• First, universally fair multipaths should be necessary for w ∈ L(q). That is,

w ∈ L(q) implies that Spoiler can force a universally fair multipath on the left.

• Second, if the left multipath is universally fair, then the right multipath is existen-

tially fair. This follows immediately from the definition of fair simulation.

• Third, existentially fair multipaths should be sufficient for the existence of fair

ordinary paths.

From the third condition, we would like to conclude w ∈ L(s). Recall that acceptance

for alternating automata is defined in terms of a game between Automaton (which wants

to show acceptance) and Pathfinder (which wants to disprove it). Thus, to conclude

w ∈ L(s), one should show a winning strategy for Automaton in the acceptance

game. What the third point ensures, instead, is that, for any fixed Pathfinder’s strategy,

Automaton has a winning counter-strategy. That is, Pathfinder does not have a winning

strategy. Since the acceptance game is determined, Automaton has a winning strategy.

Remark 5.4.9. This issue does not arise in 1-pebble games, since, in those games,

Duplicator’s strategy in the simulation game step-wise induces a strategy for Automaton

in the acceptance game. Consequently, a winning strategy for Automaton can be built

on the fly from Duplicator’s strategy in 1-pebble games.

In the following, let w = a0a1 · · · and assume that π = q0
a0=⇒ q1

a1=⇒ · · · and

π′ = s0
a0=⇒ s1

a1=⇒ · · · are the left and right multipaths at the end of the simulation

game, respectively.

The second ingredient holds by the definition of fair simulation. The third ingredient

is the content of the following lemma.

Lemma 5.4.10. If π′ is an existentially fair multipath, then there exists a fair path

πacc ∈ π′.

Proof. We define the sequence of indices {ij}j≥0 as follows: i0 = 0 and, inductively,

ij is the least index i > ij−1 s.t. sj−1 =⇒∗F si. The sequence i0, i1, · · · is well-

defined by Corollary 5.4.2, since π is fair. For any j ≥ 0, consider the finite prefix

πj = s0
a0=⇒ s1

a1=⇒ · · ·
aij−1
=⇒ sij of π′. Fix any state s ∈ sij . By the definition of

being existentially good, there exists a path π′j ∈ πj ending in s which visits at least j

accepting states.

Let Π = π′0, π
′
1, Clearly, Π is a coherent sequence of paths. By Lemma 4.4.7,

there exists a fair path πacc ∈ π′.

140 Chapter 5. Multipebble simulations for ABAs

It remains to settle the first ingredient. To this end, we have to argue that, if there

exists an accepting run, then there exists a universally fair multipath. By Lemma 5.4.4,

one can discard non-maximal multipaths, and concentrate on multipaths which are

“large” by construction. Such “large” multipaths can be obtained by requiring that

universal states induce all their successors in the multipath; we call multipaths with this

property U -saturating multipaths.

Definition 5.4.11 (U -saturating multipaths). A multipath π0 = q0
a0=⇒ q1

a1=⇒ · · · is

U -saturating iff, for any k ≥ 0,
⋃

∆(qUk , ak) ⊆ qk+1.

U -saturating multipaths are necessary for the existence of an accepting run.2

Lemma 5.4.12. If w = a0a1 · · · ∈ L(q), then there exists a universally fair U -

saturating multipath π = q0
a0=⇒ q1

a1=⇒ · · · starting at q0 = {q}.

Remark 5.4.13. U -saturating multipaths are just a different representation for strategies

of Pathfinder in the acceptance game Gω(q, w) (with q0 = {q}), and universally fair

such multipaths represent winning strategies.

In general, Duplicator tries to prevent Spoiler from building a universally fair

multipath on the left. By Lemma 5.4.4, Duplicator is always better off by splitting

pebbles maximally on the left and, when she has sufficiently many left pebbles, she can

force a U -saturating multipath π on the left. Such strategies are called left-blind.

Definition 5.4.14 (Left blind strategy). A Duplicator’s strategy σ is left-blind iff, for

every round k, if σ(πk)(ak,q
′
k, s
′
k) = (qk+1, sk+1), then qk+1 = q′k ∪

⋃
∆(qUk , ak).

By definition, if π × π′ is conform to a left-blind strategy, then π is U -saturating.

Therefore, left-blind strategies induce U-saturating left multipaths, and, consequently,

left-blind strategies suffice for Duplicator in (n, k)-fair (and delayed) simulation games.

Lemma 5.4.15. Let x ∈ {de, f}. If q vx(n,k) s, then there exists a left-blind winning

strategy for Duplicator.

Before we turn to the proof of the lemma, let us introduce the useful notion of

restricted move. Sometimes we consider Spoiler’s move when restricted to a certain

subset of states. Recall that, when Spoiler moves from configuration 〈q, s〉, she chooses

a successor for each state in qE and sU . For subsets q̂ ⊆ q and ŝ ⊆ s, the restriction of

Spoiler’s move to q̂, ŝ is just this choice restricted to q̂E, ŝE .
2In fact, they are also sufficient, but we do not need this property.

5.4. Basic properties of multipebble simulations 141

Definition 5.4.16 (Restricted move). Let m = (q, s, a,q′, s′) ∈ ΓSp be a valid move by

Spoiler. By definition, q′ ∈
⊗

∆(qE, a) and s′ ∈
⊗

∆(sU , a). For q̂ ⊆ q and ŝ ⊆ s,

the move m restricted to q̂, ŝ, written m↓q̂,̂s, is defined as follows (see Section 2.2 for

the notation ↓):

m↓q̂,̂s = (q̂, ŝ, a, q̂′, ŝ′) ∈ ΓSp

where

q̂′ = q′ ↓∆(q̂E ,a)∈
⊗

∆(q̂E, a)

ŝ′ = s′ ↓∆(ŝU ,a)∈
⊗

∆(ŝU , a)

Restricted moves are used below in the proof of Lemma 5.4.15. They are also used

in Sections 5.6 and 5.7.

Proof (of Lemma 5.4.15). Let σ be a Duplicator’s winning strategy in G = Gx
(n,k)(q, s).

We define a left-blind strategy σlb which acts like σ on right pebbles, and show that

it is winning as well. As the main game G evolves according to σlb, we bookkeep an

auxiliary game G′ (which is of the same type as G) which evolves according to σ. The

two games progress in locksteps, while maintaining the following invariant: If

πlb
k = 〈qlb

0 , s0〉
a0=⇒ 〈qlb

1 , s1〉
a1=⇒ · · · 〈qlb

k , sk〉

is the current σlb-conform partial play in G, then the σ-conform partial play πk in G′ is

πk = 〈q0, s0〉
a0=⇒ 〈q1, s1〉

a1=⇒ · · · 〈qk, sk〉

where qi ⊆ qlb
i for any 0 ≤ i ≤ k; therefore, πk ⊆ πlb

k .

At round k, let Spoiler move in G as m = (qlb
k , sk, ak,q

′, s′) ∈ ΓSp. By the

invariant, qk ⊆ qlb
k . Thus, move m induces, in G′, the restricted move m ↓qk,sk=

(qk, sk, ak, q̂
′, s′), for some q̂′ ⊆ q′. We apply σ in G′, to obtain σ(πk, (qk, sk, ak, q̂

′, s′)) =

(q′′, s′′). We define σlb(πlb
k , (q

lb
k , sk, ak,q

′, s′)) = (qk+1, sk+1) in G, where qk+1 =

q̂′ ∪
⋃

∆(qlb
k ∩ U, ak) and sk+1 = s′′. Clearly, σlb is left-blind.

We now argue that σlb is winning for delayed simulation. Let πlb = qlb
0

a0=⇒ qlb
1

a1=⇒
· · · , π = q0

a0=⇒ q1
a1=⇒ · · · , and π′ = s0

a0=⇒ s1
a1=⇒ · · · . Assume qlb

i =⇒∀F qlb
j .

Since π ⊆ πlb, by Lemma 5.4.4, qi =⇒∀F qj . But σ is winning in G′, therefore there

exists k ≥ i s.t. si =⇒∃F sk. The argument for fair simulation is similar.

We are now finally ready to prove that simulation implies language inclusion.

142 Chapter 5. Multipebble simulations for ABAs

Proof (of Theorem 5.4.8). It suffices to prove the claim for k0 = k1 = n, where n is

the cardinality of the automaton, since, by Theorem 5.4.7, (n, n)-simulation contains

(k0, k1)-simulation.

Assume q vf
(n,n) s and let w = a0a1 · · · ∈ L(q). Let Gsim = Gf

(n,n)(q, s) be the fair

simulation game between q and s, let Gacc
0 = Gω(q, w) be the acceptance game for w

from q, and let Gacc
1 = Gω(s, w) be the acceptance game for w from s. We show that,

for any Pathfinder’s strategy δ in Gacc
1 , there exists a counter-strategy for Automaton in

Gacc
1 s.t. Automaton wins the resulting play. Since the acceptance game is determined,

it follows that Automaton has a winning strategy in Gacc
1 . Thence, w ∈ L(s).

Fix a strategy δ for Pathfinder in Gacc
1 . Let q0 = {q} and s0 = {s}. The structure of

the proof is as follows.

1. Since w ∈ L(q), by Lemma 5.4.12, there exists a universally fair U -saturating

multipath

π = q0
a0=⇒ q1

a1=⇒ · · ·

2. By Lemma 5.4.15, we can assume that Duplicator in Gsim uses a left-blind

winning strategy σlb. Therefore, Duplicator plays in a uniform way on the left, by

splitting pebbles maximally to all successors of universal states.

3. On the left of the simulation game, Spoiler plays as to force π (which is possible,

since Duplicator plays according to the left-blind strategy σlb). On the right,

Spoiler’s moves are determined by Pathfinder’s strategy δ (as we detail later).

4. Let πω = π × π′ be the resulting σlb-conform play, where

π′ = s0
a0=⇒ s1

a1=⇒ · · ·

5. Since σlb is winning and π is universally fair, π′ is existentially fair.

6. By Lemma 5.4.10, there exists a fair path πacc = s
a0−→ s1

a1−→ · · · ∈ π′.

7. The winning strategy δ′ of Automaton in Gacc
1 is defined as to force the play πacc.

Since πacc is fair, Automaton wins this play.

It remains to explain Point 3. above, i.e., how Pathfinder’s strategy δ in Gacc
1 determines

how Spoiler plays on the right of the simulation game. This is done by running several

Gacc
1 -acceptance games in parallel; for each one of them, we bookkeep the current,

5.4. Basic properties of multipebble simulations 143

δ-conform partial play by using a logbook [55]. Assume that, at round k, the current

partial play in Gsim is

πk = 〈q0, s0〉
a0=⇒ 〈q1, s1〉

a1=⇒ · · · ak−1
=⇒ 〈qk, sk〉

and that the remaining input word to be read is wk = akak+1 Then, a logbook Lk
for round k is a finite set of partial plays from Gacc

1 :

Lk = {πk,j := 〈s0,j, w0〉
a0−→ 〈s1,j, w1〉

a1−→ · · · ak−1−→ 〈sk,j, wk〉 | 1 ≤ j ≤ jk}

There are |Lk| = jk partial plays in Lk. We say that Lk is valid if it further satisfies the

following logbook properties:

sk = {sk,1, . . . , sk,jk} (LP1)

∀(πk,j ∈ Lk) · πk,j is a δ-conform partial play (LP2)

(LP1) is a “covering” condition; it says that, for each right pebble, there is a corre-

sponding entry in the logbook. Condition (LP2) ensures that the logbook records only

δ-conform partial plays.

In the first round k = 0, the initial Gsim-configuration is 〈q0, s0〉, and the acceptance

game Gacc
1 is in configuration 〈s, w〉. Therefore, L0 = {〈s, w〉} is a valid logbook.

Inductively, assume that Lk is a valid logbook for round k, and that the current

configuration of the simulation game is 〈qk, sk〉. Then, Spoiler plays input symbol ak.

The next left configuration qk+1 is uniquely determined by π, as discussed in Points

1.–3. above. The next right configuration sk+1 is determined as follows.

• For any right pebble s ∈ sk, let π′s be the corresponding δ-conform partial play in

Lk ending in s, which exists by (LP1) and (LP2).

• For each universal right pebble s ∈ sUk , a successor state s′ is obtained by applying

Pathfinder’s strategy δ:

s′ := δ(π′s)

• This induces a Spoiler’s move on the right in the simulation game: Let s′ =

{δ(π′s) | s ∈ sUk }, then Spoiler moves as

(qk, sk, ak,q
′, s′) ∈ ΓSp

for some q′ ⊆ qk+1 uniquely determined by π.

144 Chapter 5. Multipebble simulations for ABAs

• Duplicator applies her strategy σlb, obtaining

σlb(πk, (qk, sk, ak,q
′, s′)) = 〈qk+1, sk+1〉.

The logbook Lk+1 is updated as follows. For any s′ ∈ sk+1 and s ∈ sk s.t. s ak−→ s′,

add πs′ := π′s
ak−→ s′ to Lk+1. Clearly, πs′ is δ-conform. Therefore, only conform plays

are added to Lk+1, and condition (LP2) is satisfied. Since the process is repeated for

any s′ ∈ sk+1, also condition (LP1) is satisfied, and Lk+1 is a valid logbook.

Language inclusion is not “reached” by either direct, delayed or fair simulation; in

fact, even (n, n)-fair simulation is finer than language inclusion.

Example 5.4.2 - Multipebble fair simulation is not necessary for

ω-language inclusion

q0

q1

a

b

b

s0

s1 s2

a

a b

a b

6vf
(n,n)

Consider the two automata above, for which inclusion holds, but simulation doesn’t.

Indeed, L(q0) = L(s0) = aω + a∗bω, therefore inclusion holds. However, q0 6vx(n,n) s0,

for any x ∈ {di, de, f}. To see this, it suffices to consider fair simulation (which is the

coarsest by Lemma 5.4.6), for which we show a winning strategy for Spoiler. From

the initial configuration 〈{q0}, {s0}〉, Spoiler starts by repeatedly choosing transition

q0
a−→ q0. Duplicator can either remain in s0, or “hedge her bets” by going to {s0, s1}.

In either case, Spoiler keeps looping on q0. Since q0 is accepting, Duplicator has to

eventually take the pebble on s0 away, because the latter is not accepting. Therefore, at

some point the game is forced to configuration 〈{q0}, {s1}〉, from which Spoiler plays

transition q0
b−→ q1 and Duplicator loses, his remaining pebble on s1 being stuck.

The use of the stuckness condition is not essential, and one can similarly argue with

the acceptance condition (by adding a rejecting sink state).

5.5. Uniform simulation games 145

5.5 Uniform simulation games

In this section, we show that, without loss of generality, multipebble simulation games

can be simplified in order to satisfy some useful restrictions. We call these restricted

games uniform simulation games. There is no loss of generality in the sense that we can

translate arbitrary games to uniform games, while preserving the winner of the game.3

The properties of uniform games will be generally useful for the presentation of more

advanced topics; in certain cases, like in transitivity (cf. Section 5.6), it is even not clear

how to conduct the proofs without these restrictions in place.

Let π = π0×π1 be a play of the game over w = a0a1 · · · , with π0 = q0
a0=⇒ q1

a1=⇒
· · · and π1 = s0

a0=⇒ s1
a1=⇒ · · · . Uniform simulation games satisfy the following

properties:

(U1) At any round k, pebbles are either all existential or all universal: qk∪sk ∈ 2E∪2U .

(U2) Pebbles are never “taken away” by Duplicator. I.e., for any k and for any s ∈ sk,

there exists s′ ∈ sk+1 s.t. s ak−→ s′, and similarly for qk.

(U3) Pebbles merge only in distinguished sink states. I.e., for s0, s1 ∈ sk and s′ ∈ sk+1,

if s0
ak−→ s′ and s1

ak−→ s′, then s′ is a special sink state.

(U4) Existentially fair multipaths are also universally fair. (This follows immediately

from the previous point.)

Condition (U1) ensures that, at any given round, Spoiler and Duplicator control

either all or none of the pebbles of a given side. Condition (U2) facilitates reasoning

since pebbles never “disappear” from the automaton; instead, they always go somewhere,

perhaps in a special sink state. Condition (U3) guarantees that pebbles can only merge

in a restricted fashion. Finally, Condition (U4) simplifies reasoning about delayed and

fair simulation when games are composed together (like for transitivity); it follows

from (U3) when the sink state is accepting: Indeed, if a pebble which has not visited an

accepting state is about to merge with a pebble which has visited an accepting state (a

good pebble), then the former pebble is moved directly to an accepting sink state.

Definition 5.5.1 (Uniform simulation games). A simulation game satisfying (U1)-(U4)

is called a uniform simulation game.

3The translation that we present does not preserve the language, or other features of the automaton in
general.

146 Chapter 5. Multipebble simulations for ABAs

We translate a non-uniform simulation game into a uniform game in a natural way:

Given a simulation game G between two automata Q and S , we construct two uniform

automata U(Q) and U(S) s.t. the simulation game G ′ between U(Q) and U(S) is a

uniform simulation game. We present this translation in Section 5.5.1.

Of course, after proving the relevant properties in the simpler setting of uniform

games, we need a way to transfer these results back in the original non-uniform setting.

For this purpose, we use the following bridge lemma, which shows how winning

strategies for Duplicator can be translated back and forth between uniform and non-

uniform games.

Lemma 5.5.2 (Bridge Lemma). For any simulation game G, let G ′ be the associated

uniform simulation game (as above). Then,

• If σ is a winning strategy for Duplicator in G, then there exists a winning strategy

σ′ for Duplicator in G ′.

• Conversely, if σ′ is a winning strategy for Duplicator in G ′, then there exists a

winning strategy σ for Duplicator in G.

Consequently, Duplicator wins G iff she wins G ′.

The Bridge Lemma is proved in Section 5.5.2.

5.5.1 Translation to uniform automata

We explain the construction in an incremental fashion. The idea is to expand a single

transition in Q into two sequential transitions in U(Q), plus some auxiliary control

transitions. For the time being, we ignore the acceptance condition and we concentrate

on the branching structure of the automaton. Accepting states will be considered later.

Existential transitions We explain the idea by first showing how to translate an

existential transition in Q (i.e., a transition from an existential state). In order to satisfy

(U1), the transition structure of U(Q) should be s.t. existential and universal states

alternate in a fixed pattern. We use the transition pattern existential-universal: An

existential transition p a−→ q in Q with p ∈ E is translated into two transitions in

U(Q):

LpMI Jp, a, qKII LqMI
a a

5.5. Uniform simulation games 147

where LpMI is existential and Jp, a, qKII is universal. We say that a pebble on LpMI is in

stage I, and that a pebble on Jp, a, qKII is in stage II.

To accommodate (U2), we introduce an inert sink state ⊥, and when Duplicator

wishes to take pebbles away in Q, we instead allow her to move pebbles to ⊥ in

U(Q). This also addresses (U3), since Duplicator can always avoid pebbles to merge

by moving some of them to ⊥. Since both left and right pebbles are generally taken

away by Duplicator, we add transitions to ⊥ from both stage I and stage II states:

LpMI Jp, a, qKII LqMI

⊥

a

a

a

a

Σ

So far, nothing prevents Duplicator from moving all right pebbles to ⊥ and trivially

win from there (since ⊥ can perform any action in Σ). We need a way to ensure that

at least one right pebble is not on ⊥. We introduce a new input symbol X, which is a

control symbol that is available only from stage II states; in particular, X is not available

from ⊥:

LpMI Jp, a, qKII LqMI

⊥

a

a

a

a,X

Σ

In this way, if Duplicator moves every right pebble on ⊥ at stage I, then Spoiler would

play X at stage II and immediately win, since no pebble on the right could do X.

Therefore, this effectively prevents Duplicator from moving every right pebble to ⊥.

However, Duplicator could still move some left pebble to ⊥ at stage II, thus inhibit-

ing Spoiler from future uses of X—since ⊥ cannot do X. We prevent this by splitting

the sink state into a left ⊥L and right ⊥R copy, and by further allowing the left copy ⊥L
to perform a X action:

LpMI Jp, a, qKII LqMI

⊥R ⊥L

a
a

a
a,X

Σ Σ,X

148 Chapter 5. Multipebble simulations for ABAs

Now, action X is no longer disabled by the presence of any left pebble on ⊥L. Inci-

dentally, this also prevents Duplicator from moving all left pebbles to ⊥L: Should this

happen, action X would be enabled in any following round; in particular, Spoiler could

play X in stage I of the next round, and Duplicator would lose since no state on the right

can do X at stage I. This concludes the description for translating existential transitions.

Universal transitions The translation of a universal transition p a−→ q with p ∈ U
is the same, with the only difference that stage II states are of the form Jp, aKII , and thus

independent from q:

LpMI Jp, aKII LqMI

⊥R ⊥L

a
a

a
a,X

Σ Σ,X

Branching structure Summing up, the translation preserves the branching struc-

ture in the following sense:

• For existential transitions, choice happens at stage I states, while stage II states

are essentially deterministic (except for control transitions). Indeed, stage I states

LpMI have one successor Jp, a, qKII for each transition p a−→ q. On the other hand,

stage II states Jp, a, qKII are deterministic (except for control transitions to ⊥L),

since the successor state LqMI is uniquely determined.

• For universal transitions, the situation is symmetric: Choice happens at stage

II states, while stage I state are essentially deterministic. Indeed, stage II states

Jp, aKII have one successor state LqMI for each transition p a−→ q. On the other

hand, stage I states LpMI are deterministic (except for the control transition to⊥R),

since the successor state Jp, aKII is uniquely determined by state p and action a.

Accepting states For delayed and fair simulation, both ⊥L and ⊥R are accepting.

Indeed, for pebbles which are taken away to be harmless, they need to go to an accepting

state and become good. For direct simulation, this is not correct, and the left sink state

⊥L needs to be rejecting. Indeed, if a left pebble is thrown away to ⊥L, this should not

trigger any obligation for Duplicator. This is the sole difference between the reduction

for delayed/fair simulation and direct simulation.

5.5. Uniform simulation games 149

For non-sink states, the acceptance condition is dealt with at stage II states: all

stage I states are rejecting, and stage II states Jp, a, qKII and Jp, aKII are accepting iff

the corresponding source state p is accepting.

Remark 5.5.3. For delayed and fair simulation, the exact time when pebbles are accept-

ing is irrelevant (provided they are eventually accepting), and we could have given an

equally valid definition by having the acceptance condition on stage I states. However,

for direct simulation, having the acceptance condition shifted from stage I to stage II

states is crucial. Indeed, since accepting states have to be matched instantaneously in

direct simulation, if the acceptance condition were on stage I states and some left pebble

were accepting, then Duplicator would need to throw away some right stage II pebble in

order to have only accepting ones. Since right stage II pebbles are universal, Duplicator

does not control them, and thus she cannot move them to a sink state— throwing them

away would contradict requirement (U2).

Spoiler’s point of view By the above discussion, we have shown that Duplicator

gains no extra power in the uniform simulation game. We now argue similarly for

Spoiler.

• Spoiler never moves any right pebble in ⊥L at stage II. Should this happen,

Duplicator would win as follows. Duplicator simultaneously moves all left

pebbles on ⊥L, and all right pebbles on ⊥R at stage I of the next round. From

the latter position, the right pebble on ⊥L can now perform any action, so Spoiler

cannot anymore win by playing X. For the acceptance condition, we have two

cases.

1. For delayed and fair simulation, all pebbles on sink states are accepting.

Therefore, the winning condition is satisfied.

2. For direct simulation, all left pebbles are on ⊥L, which is not accepting in

this case. Thus, no obligation is triggered at all.

• Symmetrically, Spoiler never moves any left pebble on ⊥R at stage I. Should

this happen, action X will be permanently disabled and Duplicator would win

as follows. Duplicator moves all right pebbles to ⊥R, which is usually losing

for Duplicator when Spoiler can play X at stage II. But the left pebble on ⊥R
disables X from being played, and Duplicator wins by safely staying with all

right pebbles in ⊥R. The winning condition is satisfied for both delayed/fair and

direct simulation, since all right pebbles are on the accepting sink ⊥R.

150 Chapter 5. Multipebble simulations for ABAs

• Spoiler can play the control action X to punish Duplicator only if all right pebbles

are on ⊥R. Otherwise, if Spoiler plays X while some right stage II pebble is

not on ⊥R, at least one right pebble ends up in ⊥L. This last event, as we have

already seen in the first point above, is winning for Duplicator.

This concludes the informal description of the translation. We now formally describe

the translation; see also Figure 5.2.

Definition 5.5.4. For an ABA Q = (Q,Σ, qI ,∆, E, U, F) and x = {di, de, f}, we

define its x-uniformization as the ABA Ux(Q) = (Q′,Σ′, q′I ,∆
′, E ′, U ′, F ′x), where

Σ′ = Σ ∪ {X}

E ′ = {LpMI | p ∈ Q} ∪ {⊥R,⊥L}

U ′ = {Jp, a, qKII | p ∈ E and (p, a, q) ∈ ∆}∪

∪ {Jp, aKII | p ∈ U, a ∈ Σ}

Q′ = E ′ ∪ U ′

q′I = LqIMI

F ′de = F ′f = {Jp, a, qKII , Jp, aKII | p ∈ F, a ∈ Σ} ∪ {⊥R,⊥L}

F ′di = {Jp, a, qKII , Jp, aKII | p ∈ F, a ∈ Σ} ∪ {⊥R}

∆′ = {(LpMI , a, Jp, a, qKII),

(Jp, a, qKII , a, LqMI),

(LpMI , a,⊥R),

(Jp, a, qKII , a,⊥L), (Jp, a, qKII ,X,⊥L) | p ∈ E and (p, a, q) ∈ ∆} ∪

{(LpMI , a, Jp, aKII),

(Jp, aKII , a, LqMI),

(LpMI , a,⊥R),

(Jp, aKII , a,⊥L), (Jp, aKII ,X,⊥L) | p ∈ U and (p, a, q) ∈ ∆} ∪

{(⊥R, a,⊥R), (⊥L, a,⊥L) | a ∈ Σ} ∪ {(⊥L,X,⊥L)}

5.5. Uniform simulation games 151

p

q1

q2

...

qk

a

a

a

LpMI

...

Lq1MI

Lq2MI

...

LqkMI

a

a

a

a

a

a

⊥R ⊥L

a

Σ

a,X
a,X

a,X

Σ,X

(a) Existential transitions

p

q1

q2

...

qk

a

a

a

LpMI

Lq1MI

Lq2MI

...

LqkMI

a

a

a

a

⊥R ⊥L

a

Σ

a,X

Σ,X

(b) Universal transitions

Figure 5.2: Translation to uniform automata and games

152 Chapter 5. Multipebble simulations for ABAs

5.5.2 Correctness of the translation

The translation to uniform automata does not preserve the language—in fact, the

uniformized automaton accepts Σω for x = di, and even more in the other cases.

Nonetheless, the translation preserves the winner of simulation games: In Lemma 5.5.5,

we show that winning strategies for Duplicator can be “ported” from the original

simulation game to its uniform version. In Lemma 5.5.6, we show the reverse direction.

Together, they prove the Bridge Lemma 5.5.2.

Lemma 5.5.5. For two ABAsQ and S , let n2 = |S|. For x ∈ {di, de, f} and k1, k2 > 0,

if σ is a winning strategy for Duplicator in the (k1, k2) x-simulation game Gx
(k1,k2)(Q,S),

then there exists a winning strategy Ux(σ) for Duplicator in the uniform (k1 + 1, n2 + 1)

x-simulation game Gx
(k1+1,n2+1)(Ux(Q),Ux(S)).

One more pebble is needed in the uniform game on the left hand side since pebbles

may be on the sink state. We also require n2 + 1 pebbles on the right hand side, which

allows us to use a simplified winning strategy for Duplicator in the uniform game.

Proof. Let G = Gx
(k1,k2)(Q,S) be the original game, and let G ′ be the associated

uniform game, where G ′ = Gx
(k1+1,n2+1)(Ux(Q),Ux(S)). Given a winning strategy σ

for Duplicator in G, we define a winning strategy Ux(σ) for Duplicator in G ′. Each

round in G is simulated by two rounds in G ′. Moreover, since G ′ is a uniform simulation

game, every stage I round, where all pebbles are existential, is followed by a stage

II round, where all pebbles are universal. When left pebbles in G are discarded, then

at stage II of the current round they are moved to the left sink state ⊥L. When right

pebbles are discarded, they are moved to ⊥R at stage I of the next round.

Intuitively, pebbles are synchronized between G and G ′ as follows.

• At stage I, Spoiler moves left existential pebbles, those of which represent exis-

tential pebbles in G do induce a corresponding move by Spoiler in the latter game,

and the others just go to the unique non-sink successor.

• Duplicator’s reply at stage I is to just move right pebbles to every non-sink

successor (that’s why we need n2 pebbles on the right in G ′), except for pebbles

in G ′ which do not represent any pebble in G: those are pebbles which where

discarded in the previous round, and now they are moved to the right sink state

⊥R. This defines Ux(σ) on stage I rounds, and the game G ′ goes to stage II.

5.5. Uniform simulation games 153

• At stage II, Spoiler moves right universal pebbles: Those representing universal

states in G induce a corresponding move there, and the others just go to the unique

non-sink successor.

• Spoiler mimics in G stages I and II of G ′.

• Duplicator replies in G according to σ.

• Duplicator’s reply at stage II it so move to ⊥L those left pebbles whose cor-

responding pebbles in G where thrown away by σ in the previous step. The

remaining pebbles are moved to the corresponding successors, as dictated by σ.

This defines Ux(σ) on stage II rounds.

We proceed with a formal exposition. Without no loss of generality, we assume

that there initially is one pebble on a sink state on either side. Let πk be the current

σ-conform partial play in G, and let π′k be the current Ux(σ)-conform partial play in G ′,
where

πk = 〈q0, s0〉
a0=⇒ 〈q1, s1〉

a1=⇒ · · · ak−1
=⇒ 〈qk, sk〉

π′k = 〈qI0, sI0〉
a0=⇒ 〈qII0 , sII0 〉

a0=⇒ 〈qI1, sI1〉
a1=⇒ 〈qII1 , sII1 〉

a1=⇒ · · · ak−1
=⇒ 〈qIk, sIk〉

with q0 = {qI}, s0 = {sI}, qI0 = {LqIMI ,⊥R} and sI0 = {LsIMI ,⊥L}. We maintain the

following invariant:

qIk = LqkMI ∪ {⊥L} and LskMI ∪ {⊥R} ⊆ sIk

The extra pebbles in sIk \ LskMI and not in ⊥R represent those that where discarded in

the previous round, and they are meant to be moved by Duplicator to ⊥R at stage I of

the current round.

The invariant immediately implies that, if σ is winning for Duplicator in G, then

σ′ is winning for Duplicator in G ′: Indeed, whenever a pebble is accepting in G, the

corresponding stage I pebble in G ′ has only non-sink stage II accepting successors.

Vice versa, the only non-sink accepting pebbles in G ′ are those at stage II which have a

stage I predecessor pebble whose corresponding one in G is accepting. Therefore, the

accepting behavior of pebbles in G at any round is matched exactly in G ′ at stage II of

the same round.

First, assume Spoiler selects ak as the next input symbol. We represent Spoiler’s

movement of pebbles in G ′ as a function g′ mapping each pebble to his successor; the

corresponding move in G is indicated by function g. By the previous discussions, we

154 Chapter 5. Multipebble simulations for ABAs

assume, with no loss of generality, that Spoiler does not put any left pebble in ⊥R.

At stage I, all pebbles are existential in G ′. For each left pebble LqMI ∈ LqEk MI which

corresponds to an existential pebble q ∈ E in G, assume Spoiler selects a successor

g′(LqMI) := Jq, ak, q′KII s.t. q
ak−→ q′. The corresponding pebble q ∈ qEk in G is

moved to g(q) := q′. For each left pebble q ∈ LqUk MI which corresponds to a universal

pebble q ∈ U in G, with no loss of generality, we assume that Spoiler selects the

unique non-sink successor g′(LqMI) := Jq, akKII . And the pebble on ⊥L stays there, i.e.,

g′(⊥L) := ⊥L. By the invariant, there is no other pebble. Let qII := g′(qIk). Spoiler

plays action

(qIk, s
I
k, ak,q

II , ∅) ∈ ΓSp
G′

Let sIE := LsEk MI be the set of right pebbles in G ′ which represent existential pebbles

in G, let sIU := LsUk MI be the universal ones, and let sIsink := sIk \ (sIE ∪ sIU) be the

remaining pebbles. Duplicator’s move at stage I is independent of σ:

1. Duplicator moves pebbles in sIE to every successor:

sIIE := ∆′(sIE, ak) = {Js, ak, s′KII | LsMI ∈ sIE, s
ak−→ s′}

2. Duplicator move pebbles in sIU to the unique non-sink successor:

sIIU := {Js, akKII | LsMI ∈ sIU}

3. Duplicator move pebbles in sIsink to the sink state ⊥R.

We have sIE ∪ sIU = LskMI . Define sII := sIIE ∪ sIIU ∪ {⊥R}, and let

Ux(σ)(π′k, (q
I
k, s

I
k, ak,q

II , ∅)) := 〈qII , sII〉

which brings the uniform game to stage II, where Spoiler has to play again.

Clearly, Spoiler has to play action ak again, since otherwise all left pebbles would

be stuck. Moreover, we assume, with no loss of generality, that Spoiler does not put

any right pebble in ⊥L. At stage II, all pebbles are universal in G ′. For each pebble

Js, ak, s′KII ∈ sIIE which corresponds to an existential pebble s ∈ E in G, Spoiler

is forced to select the unique non-sink successor g′(Js, ak, s′KII) := Ls′MI . For each

pebble Js, akKII ∈ sIIU which corresponds to a universal pebble s ∈ U in G, Spoiler

selects a successor g′(Js, akKII) := Ls′MI s.t. s ak−→ s′. Spoiler moves the corresponding

5.5. Uniform simulation games 155

pebble s ∈ sUk in G to g(s) := s′. The pebble on ⊥R stays there: g′(⊥R) = ⊥R. Let

sIk+1 := g′(sII), and at stage II Spoiler plays

(qII , sII , ak, ∅, sIk+1) ∈ ΓSp
G′

We now have enough information to define Spoiler’s move in G. Let q′ = g(qEk)

and s′ = g(sUk) as defined by the two consecutive Spoiler’s moves in G ′ above. Then,

Spoiler in G plays

(qk, sk, ak,q
′, s′) ∈ ΓSp

G

We apply Duplicator’s winning strategy σ in G, to obtain

σ(πk, (qk, sk, ak,q
′, s′)) = 〈qk+1, sk+1〉

This directly induces the long sought move for Duplicator in G ′ at round II. Let

qIk+1 := Lqk+1MI ∪ {⊥L}. Let π′′ = π′k
ak=⇒ 〈qII , sII〉 and define Ux(σ) as

Ux(σ)(π′′, (qII , sII , ak, ∅, sIk+1)) := 〈qIk+1, s
I
k+1〉

No right pebble is thrown away, and, at this point, right pebbles are moved independently

of sk+1 above. The invariant holds: On the right, it suffices to note that Duplicator at

stage I moved pebbles to every non-sink successor. On the left, it holds by the very

definition of qIk+1.

Lemma 5.5.6. Let Q and S be two ABAs, and let k1, k2 > 0. For x ∈ {di, de, f},
if σ is a winning strategy for Duplicator in the uniform (k1, k2) x-simulation game

Gx
(k1,k2)(Ux(Q),Ux(S)), then there exists a winning strategy σ′ for Duplicator in the

(k1, k2) x-game Gx
(k1,k2)(Q,S).

Proof. Let G = Gx
(k1,k2)(Ux(Q),Ux(S)) and G ′ = Gx

(k1,k2)(Q,S). Given a winning

strategy σ for Duplicator in G, we define a winning strategy σ′ for Duplicator in G ′.
Without no loss of generality, we assume that σ never moves pebbles to sink states, since

throwing pebbles away has, in fact, the same effect; in this way, we save one pebble on

each side of G ′. Two rounds in G (stage I + stage II) correspond to a single round in

G ′. Pebbles are synchronized between G and G ′ in the obvious way. In particular, when

pebbles in G are discarded, the corresponding pebbles in G ′ are discarded as well.

Formally, let πk be the current σ-conform partial play in G, and let π′k be the current

σ′-conform partial play in G ′, where

πk = 〈qI0, sI0〉
a0=⇒ 〈qII0 , sII0 〉

a0=⇒ 〈qI1, sI1〉
a1=⇒ 〈qII1 , sII1 〉

a1=⇒ · · · ak−1
=⇒ 〈qIk, sIk〉

π′k = 〈q0, s0〉
a0=⇒ 〈q1, s1〉

a1=⇒ · · · ak−1
=⇒ 〈qk, sk〉

156 Chapter 5. Multipebble simulations for ABAs

with qI0 = {LqIMI}, sI0 = {LsIMI}, q0 = {qI} and s0 = {sI}. We maintain the following

invariant: At round k,

qIk = LqkMI and sIk = LskMI

Assume Spoiler in G ′ selects ak as the next input symbol. We represent Spoiler’s

movement of pebbles in G ′ as a function g′ mapping each pebble to his successor; the

corresponding move in G is indicated by function g.

• For each existential left pebble q ∈ qEk , assume Spoiler selects a successor

g′(q) := q′ s.t. q ak−→ q′.

The corresponding pebble LqMI ∈ qIk in G is moved at stage I to g(LqMI) :=

Jq, ak, q′KII , and then at stage II to Lq′MI .

• For each universal right pebble s ∈ sUk , assume Spoiler selects a successor

g′(s) := s′ s.t. s ak−→ s′.

The corresponding pebble LsMI ∈ sIk in G is moved at stage I to Js, akKII , and then

at stage II to g(Js, akKII) := Ls′MI .

Summing up, Spoiler in G ′ plays action

(qk, sk, ak,q
′, s′) ∈ ΓSp

G′ , where q′ := g′(qEk) and s′ := g′(sUk)

This induces a move for Spoiler in G, as we have outlined above.

• For each pebble LqMI ∈ LqEk MI , Spoiler selects the non-sink successor g(LqMI).

• For each pebble LqMI ∈ LqUk MI , Spoiler is forced to select the unique non-sink

successor Jq, akKII . In this case, we extend g by g(LqMI) := Jq, akKII .

Therefore, Spoiler in G at stage I plays as

(qIk, s
I
k, ak,q

II
k , ∅) ∈ ΓSp

G , where qII = g(qIk)

We assume that Duplicator in G never throws pebbles away at stage I. This is

safe, since the only reason for throwing pebbles away is to satisfy the acceptance

condition. Indeed, if a pebble is thrown away at stage I for such a reason, then the

same pebble could have been thrown away at stage II of the previous round. This

holds since accepting states at stage II are completely determined by states at stage I,

5.5. Uniform simulation games 157

and Duplicator can decide in advance whether a pebble should be thrown away. Thus,

assume Duplicator replies with

σ(πk, (q
I
k, s

I
k, ak,q

II
k , ∅)) = 〈qIIk , sIIk 〉

which brings G to stage II, where Spoiler has to play again. Let

sIIE = {Js, ak, s′KII | Js, ak, s′KII ∈ sIIk }

sIIU = {Js, akKII | Js, akKII ∈ sIIk }

Since we have assumed that no pebble is ever moved to a sink state by σ, sIIk = sIIE ∪ sIIU ,

which is nonempty for σ is winning. The move of Spoiler at stage II of G is determined

as follows.

• For each pebble Js, akKII ∈ sIIU , Spoiler selects the non-sink successor g(Js, akKII),

as defined above.

• For each pebble Js, ak, s′KII ∈ sIIE , Spoiler is forced to select the unique non-sink

successor Ls′MI . In this case, we extend g by g(Js, ak, s′KII) := Ls′MI .

Therefore, Spoiler plays

(qIIk , s
II
k , ak, ∅, sIII) ∈ ΓSp

G , where sIII = g(sIIk)

and Duplicator replies with

σ(πk〈qIIk , sIIk 〉, (qIIk , sIIk , ak, ∅, sIII) = 〈qIk+1, s
I
k+1〉

Notice that pebbles are allowed to be thrown away at stage II in G.

This induces the long sought move for Duplicator in G ′. Let qk+1 = {q′ | Lq′MI ∈
qIk+1}, sk+1 = {s′ | Ls′MI ∈ sIk+1}, and define σ′ as

σ′(π′, (qk, sk, ak,q
′, s′)) := 〈qk+1, sk+1〉

The invariant holds by the very definition of qk+1 and sk+1.

We now argue about the winning condition. The fundamental observation is that

accepting pebbles in G ′ are in one-to-one correspondence with accepting pebbles at

stage II in G. This holds since, if a pebble is accepting in G ′, then the corresponding

stage I pebble in G has only accepting successors. Since, by assumption, no pebble

is thrown away at stage I, an accepting pebble G ′ will induce exactly one accepting

pebble at stage II in G. And this is the only way in which pebbles can be accepting in

G. Therefore, the acceptance condition in G ′ is matched exactly (modulo 1-step) in G.

Since Duplicator wins G, so does G ′.

158 Chapter 5. Multipebble simulations for ABAs

5.6 Transitivity

In this section, we establish that (1, n), (n, 1) and (n, n) simulations are transitive,

where n is the number of states of the automaton. Transitivity is crucially used in the

proofs for quotienting (cf. Section 5.8) and for the subset constructions (cf. Section 5.7).

Thus, for this section, we have the following main result.

Theorem 5.6.1. Let Q be an ABA with n states, and let x ∈ {di, de, f}. Then, vx(1,n),

vx(n,1) and vx(n,n) are transitive.

While the limit multipebble simulations in the above theorem are transitive, in

general (k1, k2)-simulation is not transitive, and this holds already for NBAs (cf. [42]).

Example 5.6.1 - (1, k)-simulation with 1 < k < n is not transitive

q0

q1

...

Q

a

b, c, d, e

r0

r1 r2

...
...

R

a a

b, c d, e

v(1,2)

s0

s1 s2 s3 s4

...
...

...
...

S

a
a a

a

b c d e

v(1,2)

Consider the automata Q,R and S above. With two pebbles,R can simulate Q and S
can simulateR. However, S cannot (1, 2)-simulate Q:

Q 6v(1,2) S

Intuitively, the pebble inQ is simulated by two pebbles inR, each of which is simulated

by two pebbles in S. Therefore, four pebbles in S suffice to simulate Q, but not less.

We do not directly prove transitivity for arbitrary automata. Instead, we do it for

uniform automata. In this way, we can exploit the special properties of the induced

uniform simulation games (cf. Section 5.5). This makes the proofs easier; in the (n, n)

case, it is not even clear how to define certain fundamental notions in the general case

of non-uniform games.

Transitivity is translated back to arbitrary automata by using the Bridge Lemma 5.5.2:

For example, assume q vf
(n,n) r vf

(n,n) s. By taking Lemma 5.5.2 forth, U(q) vf
(n,n)

5.6. Transitivity 159

U(r) vf
(n,n) U(s). Since simulation is transitive on uniform automata, U(q) vf

(n,n) U(s).

By taking Lemma 5.5.2 back, q vf
(n,n) s.

The rest of this section is organized as follows.

• In Section 5.6.1, we give an high level view of the proof idea. We describe

composition of strategies and their properties.

• In Section 5.6.2, we prove transitivity of direct simulation for uniform games, by

instantiating the framework from Section 5.6.1.

• In Section 5.6.3, we do the same for delayed and fair simulation.

• Finally, in Section 5.6.4, we note that the notion of delayed simulation from [29]

is not transitive, and we explain why. The definition of delayed simulation in this

thesis is transitive, as we prove.

5.6.1 Proof overview

The main idea is to define an associative join operation ./ for Duplicator’s strategies,

and to show that ./ preserves winning strategies. The approach is borrowed from [55].

All simulation games in this section are uniform (cf. Section 5.5). We consider

(n, n)-simulation; the (1, n)- and (n, 1)-case arise as a special instance thereof, by

restricting sets of pebbles to be singletons in the obvious way. Let GL = G(n,n)(q, r)

and GR = G(n,n)(r, s) be the simulation games between q and r, and between r and s,

respectively. GL is the left game and GR is the right game. Let σL (left strategy) and σR
(right strategy) be two Duplicator’s strategies in GL and GR, respectively. We construct

a joint strategy σL ./ σR for Duplicator in the simulation game G = G(n,n)(q, s). G is

the outer game. The crucial part of the following sections is to properly define σL ./ σR.

The main result is that composition preserves winning strategies:

Lemma 5.6.2 (Preservation of winning strategies). If σL is a left winning strategy in

GL and σR is a right winning strategy in GR, then σL ./ σR is winning in G.

This immediately implies that v(n,n) is transitive: If q v(n,n) r v(n,n) s, then there

exist two winning strategies σL and σR as above. By the lemma, σL ./ σR is a winning

strategy in G. Thus, q v(n,n) s.

The definition of σL ./ σR follows the same general pattern for all simulations.

While playing the G game, we keep track of several left and right games. Duplicator’s

choices dictated by σR and σL in the right and left games will define the joint strategy

160 Chapter 5. Multipebble simulations for ABAs

σL ./ σR in G. Since games are uniform, at each round pebbles are either all existential

or all universal. Accordingly, we call a round existential/universal and, depending on

which is the case, we have the following flow of information between the various games:

Existential round: G S−S−−−→ GL
D−S−−−−→ GR

D−D−−−−→ G

Universal round: G S−S−−−→ GR
D−S−−−−→ GL

D−D−−−−→ G

The first row above means that, in an existential round, the flow of information goes

left-to-right between games: G S−S−−−→ GL means that Spoiler’s choice in G induces a

corresponding move in left games. Duplicator’s reply in those games is obtained by

applying σL. In turn, this is interpreted as Spoiler’s move in right games, GL
D−S−−−−→ GR.

Finally, Duplicator’s reply in those games is obtained by applying σR. This also defines

a move for σ in G: GR
D−D−−−−→ G. The second row is symmetric, with the flow of

information going right-to-left.

Remark 5.6.3. In non-uniform games, the flow of information would not be as simple as

above (either from left to right, or from right to left). Indeed, in non-uniform games there

might be pebbles on both existential and universal states at a given round. This creates

problems since pebbles in the middle would have circular dependencies: For example,

existential pebbles in the middle depend on the move of Duplicator in left games, which

depends on the move of Spoiler, which needs to move universal pebbles in the middle,

which, in turn, depend on the move of Duplicator in right games, which depends on the

move of Spoiler, which needs to move existential pebbles in the middle, thus forming

a loop. In non-uniform games, it is not clear how to break such dependencies. This

technical difficulty prevented us from proving transitivity for (n, n)-simulations in [29].

The necessary bookkeeping for coordinating the various games and for carrying

the required invariant is done with a logbook. We introduce some notation which is

heavily used in the following sections. At round k ≥ 0, the current logbook is a tuple

Bk = (BL
k , B

R
k , wk, πk), where

• wk = a0a1 . . . ak−1 is the input word constructed so far by Spoiler, with w0 = ε

for k = 0.

• πk is the partial play of length k + 1 of the outer game G between q and s, where

πk = ρLk × ρRk , with

ρLk = q0
a0=⇒ q1

a1=⇒ · · · ak−1
=⇒ qk

ρRk = s0
a0=⇒ s1

a1=⇒ · · · ak−1
=⇒ sk ,

5.6. Transitivity 161

• The left logbook BL
k = {πLk,0, πLk,1, . . . , πLk,l(k)} is a set of σL-conform partial

plays in GL, where each play πLk,i ∈ BL
k has length k + 1 and is of the form

πLk,i = ρLk,i × ψLk,i, with

ρLk,i = qk,i,0
a0=⇒ qk,i,1

a1=⇒ · · · ak−1
=⇒ qk,i,k

ψLk,i = rLk,i,0
a0=⇒ rLk,i,1

a1=⇒ · · · ak−1
=⇒ rLk,i,k

ρLk,i and ψLk,i are the projections of πLk,i to the first and second component, respec-

tively.

• Similarly, the right logbook BR
k = {πRk,0, πRk,1, . . . , πRk,r(k)} is a set of σR-conform

partial plays in GR of length k + 1, of the form

πRk,j = ψRk,j × ρRk,j , with

ψRk,j = rRk,j,0
a0=⇒ rRk,j,1

a1=⇒ · · · ak−1
=⇒ rRk,j,k

ρRk,j = sk,j,0
a0=⇒ sk,j,1

a1=⇒ · · · ak−1
=⇒ sk,j,k

ψRk,j and ρRk,j are the projections of πRk,j to the first and second component, respec-

tively.

Pebbles in qk are called left pebbles, those in sk are called right pebbles, and the

remaining pebbles are called middle pebbles.

Not every logbook describes a legal interaction between G, GL and GR. We say

that a logbook Bk is valid iff it satisfies certain logbook properties. These properties

depend on the specific simulation game, and they will be instantiated in the following

sections.

Main technical difficulties The main issue in properly combining left and right

games is that middle pebbles are shared in non-trivial patterns between them. In

(1, 1)-simulation, there is just one left and one right game, and the standard argument

is to interpret Duplicator’s move in the left game as Spoiler’s move in the right game

(and vice versa). But now there are several left and several right games. Consequently,

a number of difficulties arise. For example, in an existential round:

(D1) Pebbles might be dropped, thus making it difficult to keep track of intermediate

games and to prove invariants.

(D2) For both delayed and fair simulation, we even have an acceptance condition

mismatch between right and left games. Indeed, at some point one needs to

162 Chapter 5. Multipebble simulations for ABAs

translate existentially fair paths in left games into universally fair paths in right

games, and the former condition does not imply the latter in general.

(D3) The same middle pebble might be shared among several left games. For each left

game, Duplicator might prescribe different successors to these pebbles. These

conflicts have to be resolved.

Difficulties (D1) and (D2) are solved by considering only uniform games. Specifically,

(D1) is solved by (U2), and (D2) is solved by (U4). Difficulty (D3) is handled differently

between direct and delayed/fair simulation, as we remark in the construction.

5.6.2 Direct simulation

We consider (n, n)-direct simulation; the (1, n)- and (n, 1)-cases are just a special case

thereof. We instantiate the framework of Section 5.6.1 to direct simulation. At round

k ≥ 0, the current logbook is a tuple Bk = (BL
k , B

R
k , wk, πk) (see Section 5.6.1), and it

is valid iff it satisfies the logbook properties below.

qk =
⋃
i

qk,i,k (DiLeft)

sk =
⋃
j

sk,j,k (DiRight)

∀(r ∈ rLk,i,k) · ∃j · (r ∈ rRk,j,k) (DiMiddleL)

∀(r ∈ rRk,j,k) · ∃i · (r ∈ rLk,i,k) (DiMiddleR)

∀(q ∈ qk, s ∈ sk) · ∃(i, j) ·

(q ∈ qk,i,k) ∧ (s ∈ sk,j,k)

∧
(rLk,i,k ∩ rRk,j,k 6= ∅)

(Middle)

Intuitively, property (DiLeft) states that left pebbles in left games cover left pebbles in G,

and dually for property (DiRight). These two properties holds by the very way sets qk

and sk are constructed. Property (DiMiddleL) states that middle pebbles in left games

are also (middle pebbles) in some right game, and dually for property (DiMiddleR).

Taken together, these two properties state that middle pebbles are always shared between

left and right games; i.e., no middle pebble exists on one side which does not belong to

the other side as well. They are established inductively, and they are used to ensure that

certain sets defined during the construction are non-empty. Finally, property (Middle)

says that for any left and right pebble in G, there exist a left and right game containing

those two pebbles, respectively; moreover, these two games share a middle pebble. This

5.6. Transitivity 163

property is established inductively, and it is used to deal with the winning condition for

direct simulation.

We inductively show how to build a valid logbook and simultaneously define the

joint strategy σ0 ./ σ1. For the initial round k = 0, the initial configuration in G0 is

〈q, r〉, the one in G1 is 〈r, s〉, and the one in G is 〈q, s〉. Therefore, the initial logbook

B0 := ({〈{q}, {r}〉}, {〈{r}, {s}〉}, ε, 〈{q}, {s}〉) is clearly valid.

Inductively assume that, at round k, Bk is a valid logbook. We show how to build a

new logbook Bk+1 = (BL
k+1, B

R
k+1, wk+1, πk+1) for the next round, and we show that

it is valid. We distinguish two cases, based on whether we are in an existential or in a

universal round.

Existential round Assume that Spoiler moves as follows:

(qk, sk, ak,q
′, ∅) ∈ ΓSp

G , (S)di

i.e., the next input symbol is ak, and (existential) left pebbles are moved from qk to

q′. Notice that all pebbles are existential by assumption, so Spoiler does not move any

pebble in sk, which explains the empty set in the last component. Let the input word for

the next logbook be wk+1 := wk · ak.

Move (S)di above immediately induces a move by Spoiler in every left game: For

any left partial play πLk,i ending in configuration 〈qk,i,k, rLk,i,k〉 with qk,i,k ⊆ qk, let

q′i = q′ ↓∆(qk,i,k,ak) be the choice of Spoiler (S)di restricted to qk,i,k (cf. Section 2.2).

Accordingly, we let the left Spoiler in the i-th left game play

(qk,i,k, r
L
k,i,k, ak,q

′
i, ∅) ∈ ΓSp

GL
, (S-L)di

and we then apply left Duplicator’s strategy σL thereto, obtaining

σL(πLk,i)(ak,q
′
i, ∅) = 〈qk+1,i,k+1, r

L
k+1,i,k+1〉 . (D-L)di

By definition, rLk+1,i,k+1 is obtained by selecting a set of successors in ∆(r, ak) for each

r ∈ rLk,i,k. Let ci(r) be this set of successors, and let ci(r) = ∅ for r 6∈ rLk,i,k. We

call ci : Q 7→ 2Q a choice function; by definition, rLk+1,i,k+1 =
⋃
r∈Q ci(r). Since the

game is uniform, pebbles are not thrown away (U2), and ci(r) 6= ∅ for every r ∈ rLk,i,k.

Difficulty (D3) is solved by considering all possible successors of a pebble over all

left games it might belong to: We collapse all these choices ci’s into a unique function

c : Q 7→ 2Q, by defining c(r) =
⋃
i ci(r) for any r ∈ Q.

164 Chapter 5. Multipebble simulations for ABAs

The next configuration of the i-th left game is 〈qk+1,i,k+1, r
L
k+1,i,k+1〉, which induces

the corresponding partial play at round k + 1 πLk+1,i = πLk,i
ak=⇒ 〈qk+1,i,k+1, r

L
k+1,i,k+1〉.

Accordingly, the new left logbook BL
k+1 is defined as BL

k+1 := {πLk+1,0, . . . , π
L
k+1,l(k)}.

The number of left games is preserved in an existential round.

We now propagate the choices of left Duplicator to the right. Initially, the new right

logbook BR
k+1 is empty. Each right game spawns several new right games.

• Let 〈rRk,j,k, sk,j,k〉 be the current configuration of the j-th right game. By property

(DiMiddleR), each r ∈ rRk,j,k belongs to some rLk,i,k. But ci is non-empty on rLk,i,k,

therefore c is non-empty on rRk,j,k.

Each pebble r induces a global set of successors c(r). Let Xj = c(rRk,j,k) =

{c(r) | r ∈ rRk,j,k} be the set of all possible successors of rRk,j,k, and let Yj = ⊗Xj
be the set of all possible combinations of successors. Each set in Yj is obtained

by fixing a representative for each set c(r). By the discussion above, Xj does not

contain the empty set, therefore Yj 6= ∅.

• For every choice of successors rRk+1,h,k+1 ∈ Yj , create a new right game:

– Set rRk+1,h,k+1 induces a move by Spoiler in the j-th right game:

(rRk,j,k, sk,j,k, ak, r
R
k+1,h,k+1, ∅) ∈ ΓSp

GR
. (S-R)di

We apply Duplicator’s winning strategy σR

σR(πRk,j)(ak, r
R
k+1,h,k+1, ∅) = 〈rRk+1,h,k+1, sk+1,h,k+1〉 (D-R)di

Since the game is uniform, by (U2) Duplicator does not drop any middle

pebble from rRk+1,h,k+1.

– Create a new partial play

πRk+1,h = πRk,j
ak=⇒ 〈rRk+1,h,k+1, sk+1,h,k+1〉

and add it to the new right logbook BR
k+1.

The number of right games is not preserved in an existential round, since each right

game might create several new right games.

Let sk+1 =
⋃
h sk+1,h,k+1 (cf. (D-R)di) and qk+1 =

⋃
i qk+1,i,k+1 (cf. (D-L)di). We

define Duplicator’s move in G as

(σL ./ σR)(πk)(ak,q
′, ∅) := 〈qk+1, sk+1〉 . (D)di

5.6. Transitivity 165

Invariant Conditions (DiLeft) and (DiRight) are immediately satisfied by the

definition of qk+1 and sk+1.

Condition (DiMiddleL) is established inductively. Consider any i-th left game, and

take any middle pebble r′ ∈ rLk+1,i,k+1. We have to show that it belongs to some right

game as well, i.e., that there exists h s.t. r ∈ rRk+1,h,k+1. By construction, there exists

a predecessor r ∈ rLk,i,k s.t. r′ ∈ ci(r) ⊆ c(r). By induction hypothesis, there exists

j s.t. the predecessor r is in rRk,j,k. Since r′ ∈ c(r) is a successor of r, and for any

choice of successors a new right game is created, by construction there exists some h

s.t. r′ ∈ rRk+1,h,k+1.

In an existential step, condition (DiMiddleR) holds by construction. Take any

middle pebble r ∈ rRk+1,h,k+1 in any right game, and we have to show that it belongs

to some left game as well, i.e., that there exists i s.t. r ∈ rLk+1,i,k+1. By construction,

there exists j s.t. rRk+1,h,k+1 ∈
⊗

c(rRk,j,k). This implies that there exists r′ ∈ rRk,j,k s.t.

r ∈ c(r′), which is to say r ∈ ci(r′) for some i. Consequently, by the definition of ci,

r ∈ rLk+1,i,k+1.

Finally, the rectangularity condition (Middle) is established inductively. Take any

q ∈ qk+1 and s ∈ sk+1. We have to find i, h s.t. q ∈ qk+1,i,k+1, s ∈ sk+1,h,k+1, and

rLk+1,i,k+1∩rRk+1,h,k+1 6= ∅. By construction, there exist q′ ∈ qk and s′ ∈ sk s.t. q′ ak−→ q

and s′ ak−→ s. By induction hypothesis, there exist i, j s.t. q′ ∈ qk,i,k, s′ ∈ sk,j,k,

and rLk,i,k ∩ rRk,j,k 6= ∅. So, take some r ∈ rLk,i,k ∩ rRk,j,k, and consider the set ci(r).

By definition, rLk+1,i,k+1 =
⋃
ci(r

L
k,i,k). Since r ∈ rLk,i,k, we have ci(r) ⊆ rLk+1,i,k+1.

Consider now the set Yj =
⊗

c(rRk,j,k). Since r ∈ rRk,j,k and ci(r) is a non-empty

subset of c(r), by the definition of unordered product there exists h s.t. rRk+1,h,k+1 ∈ Yj
and rRk+1,h,k+1 selects some element in ci(r). That is, rRk+1,h,k+1 ∩ ci(r) 6= ∅. But

ci(r) ⊆ rLk+1,i,k+1, therefore rLk+1,i,k+1 ∩ rRk+1,h,k+1 6= ∅.

Universal round Assume that Spoiler moves as follows:

(qk, sk, ak, ∅, s′) ∈ ΓSp
G , (S)di′

i.e., the next input symbol is ak, and universal right pebbles are moved from sk to s′.

Accordingly, we define the input word for the next logbook as wk+1 := wk · ak.

Move (S)di′ above immediately induces a move by Spoiler in every right game: For

any right partial play πRk,j ending in configuration 〈rRk,j,k, sk,j,k〉 with sk,j,k ⊆ sk, let

s′j = s′ ↓∆(sk,j,k,ak) be the choice of Spoiler (S)di′ restricted to ak-successors of sk,j,k (cf.

166 Chapter 5. Multipebble simulations for ABAs

Section 2.2). Accordingly, we let the right Spoiler in the j-th right game play

(rRk,j,k, sk,j,k, ak, ∅, s′j) ∈ ΓSp
GR

, (S-R)di

and we then apply right Duplicator’s strategy σR thereto, obtaining

σL(πRk,j)(ak, ∅, s′j) = 〈rRk+1,j,k+1, sk+1,j,k+1〉 . (D-R)di′

That is, Duplicator selects, for each state r ∈ rRk,j,k, a set of successors cj(r) ⊆ ∆(r, ak).

We extend cj to elements outside rRk,j,k by just setting cj(r) = ∅ for r 6∈ rRk,j,k. Then,

by definition, rRk+1,j,k+1 =
⋃
cj(r

R
k,j,k) 6= ∅. Notice that, since the game is uniform, no

pebble is thrown away, that is, cj(r) 6= ∅ for any r ∈ rRk,j,k. Difficulty (D3) is solved as

in existential rounds, by considering all possible successors. Thus, let c(r) =
⋃
j cj(r).

Let πRk+1,j = πRk,j
ak=⇒ 〈rRk+1,j,k+1, sk+1,j,k+1〉, and define the new right logbook

BR
k+1 as BR

k+1 := {πRk+1,0, π
L
k+1,1, . . . , π

R
k+1,r(k)}. The number of right games is pre-

served in a universal round.

Initially, the new left logbook BL
k+1 is empty. Each left game induces several new

left games.

• Let 〈qk,i, rLk,i,k〉 be the current configuration of the i-th left game. By (DiMiddleL),

each r ∈ rLk,i,k belongs to some rRk,j,k. But cj is non-empty on rRk,j,k, therefore, c

is non-empty on rLk,i,k.

Let Xi = c(rLk,i,k) = {c(r) | r ∈ rLk,i,k} be the set of potential successors of states

r in rLk,i,k as dictated in (D-R)di′ , and let Yi = ⊗Xi be the set of all possible

combinations of successors. By the discussion above, Yi 6= ∅.

• For each rLk+1,h,k+1 ∈ Yi, create a new left game:

– Set rLk+1,h,k+1 induces the following move by Spoiler:

(qk,i, r
L
k,i,k, ak, ∅, rLk+1,h,k+1) ∈ ΓSp

GL
. (S-L)di′

We apply the left Duplicator’s winning strategy σL:

σL(πLk,i)(ak, ∅, rLk+1,h,k+1) = 〈qk+1,h,k+1, r
L
k+1,h,k+1〉 , (D-L)di′

Since the game is uniform, by (U2) Duplicator does not drop any right

pebble.

– Create a new partial play π′k+1 = πLk,i
ak=⇒ 〈qk+1,h,k+1, r

L
k+1,h,k+1〉 and add

it to the new left logbook BL
k+1.

5.6. Transitivity 167

The number of left games is not preserved in a universal round.

Let qk+1 =
⋃
h qk+1,h,k+1 (cf. (D-L)di′) and sk+1 =

⋃
j sk+1,j,k+1 (cf. (D-R)di′).

Finally, we define Duplicator’s move in G as

(σL ./ σR)(πk)(ak, ∅, s′) := 〈qk+1, sk+1〉 . (D)di′

Invariant Conditions (DiLeft) and (DiRight) are immediately satisfied by the

definition of qk+1 and sk+1.

Condition (DiMiddleR) is established inductively. Take any middle pebble r ∈
rRk+1,j,k+1 in any right game, and we have to show that it belongs to some left game

as well, i.e., that there exists h s.t. r ∈ rLk+1,h,k+1. By construction, there exists a

predecessor r′ ∈ rRk,j,k s.t. r ∈ cj(r′) ⊆ c(r′). By induction hypothesis, there exists i s.t.

the predecessor r′ is in rLk,i,k. Since r ∈ c(r′) is a successor of r′, by construction we

have that there exists h s.t. r is chosen as a successor, i.e., r ∈ rLk+1,h,k+1.

In a universal round, condition (DiMiddleL) holds by construction. Take any middle

pebble r ∈ rLk+1,h,k+1 in any right game, and we have to show that it belongs to some left

game as well, i.e., that there exists i s.t. r ∈ rRk+1,i,k+1. By construction, there exists i s.t.

rLk+1,h,k+1 ∈
⊗

c(rLk,i,k). This implies that there exists r′ ∈ rLk,i,k s.t. r ∈ c(r′), which is

to say r ∈ cj(r′) for some j. Consequently, by the definition of cj , r ∈ rRk+1,j,k+1.

Finally, the rectangularity condition (Middle) is established inductively. Take any

q ∈ qk+1 and s ∈ sk+1. We have to find h, j s.t. q ∈ qk+1,h,k+1, s ∈ sk+1,j,k+1, and

rLk+1,h,k+1∩rRk+1,j,k+1 6= ∅. By construction, there exist q′ ∈ qk and s′ ∈ sk s.t. q′ ak−→ q

and s′ ak−→ s. By induction hypothesis, there exist i, j s.t. q′ ∈ qk,i,k, s′ ∈ sk,j,k, and

rLk,i,k ∩ rRk,j,k 6= ∅. So, take some r ∈ rLk,i,k ∩ rRk,j,k, and consider the set cj(r). By

definition, rRk+1,j,k+1 =
⋃
cj(r

R
k,j,k). Since r ∈ rRk,j,k, we have cj(r) ⊆ rRk+1,j,k+1.

Consider now the set Yi =
⊗

c(rLk,i,k). Since r ∈ rLk,i,k and cj(r) is a non-empty

subset of c(r), by the definition of unordered product there exists h s.t. rLk+1,h,k+1 ∈ Yi
and rLk+1,h,k+1 selects some element in cj(r). That is, rLk+1,h,k+1 ∩ cj(r) 6= ∅. But

cj(r) ⊆ rRk+1,j,k+1, therefore rLk+1,h,k+1 ∩ rRk+1,j,k+1 6= ∅.
This concludes the description of the joint strategy σL ./ σR.

Lemma 5.6.4. vdi
(1,n), vdi

(n,1) and vdi
(n,n) are transitive.

Proof. We consider (n, n)-simulation; the other cases are similar. We refer to the

logbook Bk at round k as defined above. Assume that some left pebble q ∈ qk ∩ F
is accepting, and take an arbitrary pebble s ∈ sk. By (Middle), there exist i, j s.t.

q ∈ qk,i,k, s ∈ sk,j,k and there exists a common middle pebble r ∈ rLk,i,k ∩ rRk,j,k. Since

168 Chapter 5. Multipebble simulations for ABAs

q is accepting and σL is winning, r is accepting as well. But σR is winning, therefore s

is accepting. Since s was arbitrary, all right pebbles are accepting in sk.

5.6.3 Delayed and fair simulation

We instantiate the framework from Section 5.6.1. For fair simulation, we can make the

following two simplifying assumptions:

(FA1) Duplicator always splits pebbles maximally on universal left states. That is, she

uses only left-blind strategies (cf. Definition 5.4.14). This solves difficulty (D3)

for universal pebbles.

As a consequence, left games all share the same left pebbles: I.e., if left pebbles

in the outer game are those in

ρLk = q0
a0=⇒ q1

a1=⇒ · · · ak−1
=⇒ qk

then ρLk,i = ρLk for any i.

(FA2) Duplicator splits pebbles uniformly on existential right states, although not neces-

sarily maximally. That is, if an existential right pebble belongs to several games,

then the same successors are selected in all these games. This solves difficulty

(D3) for existential pebbles.

This is achieved by taking the union over all successors defined by the original

winning strategy in the different games. This is correct only if there are uniformly

finitely many different games at any round, since winning plays for Duplicator in

delayed and fair simulation are closed only under finite union (cf. Lemma 5.4.5).

We ensure this by bookkeeping at most one game for any given configuration.

Consequently, all right games share the same right pebbles: I.e., if right pebbles

in the outer game are those in

ρRk = s0
a0=⇒ s1

a1=⇒ · · · ak−1
=⇒ sk

then ρRk,j = ρRk for any j.

Remark 5.6.5. Neither of the two assumptions above is correct for direct simulation.

The reason is that the acceptance condition for direct simulation is not “monotone”

w.r.t. having neither more left nor more right pebbles. For example, (FA1) is incorrect

since having more left pebbles is more likely to cause a visit to an accepting state, and

5.6. Transitivity 169

this might force Duplicator to possibly drop some right pebble in order to satisfy the

winning condition. Similarly, (FA2) is incorrect since more right pebbles might fall

outside accepting states, thus possibly violating the acceptance condition.

Thanks to the assumptions above, we just need two logbook properties: The first

property (MiddleR) is a refinement of (DiMiddleR) for direct simulation, and it says

that “every left every path in any right game is also a right path in some left game”. We

use it to ensure that certain sets defined during the construction are non-empty, and to

propagate the acceptance condition from left games to right games. The second property

(ExtensionL) is “new right paths in left games from ψLk,i always arise as an extension of

old ones from ψLk′,l”.

∀(ρ ∈ ψRk,j) · ∃i · (ρ ∈ ψLk,i) (MiddleR)

∀(ψLk,i = rLk,i,0
a0=⇒ · · · ak−1

=⇒ rLk,i,k) · ∀(k′ ≤ k) · ∃l · ψLk′,l = rLk,i,0
a0=⇒ · · · ak−1

=⇒ rLk,i,k′

(ExtensionL)

Inductively assume that, at round k, Bk is a valid logbook, and we show how to

build a new logbook Bk+1 = (BL
k+1, B

R
k+1, wk+1, πk+1) for the next round.

Existential round Assume that Spoiler moves as follows:

(qk, sk, ak,qk+1, ∅) ∈ ΓSp
G . (S)f

Let the input word for the next logbook be wk+1 := wk · ak. This immediately induces

a move by Spoiler in every left game: Indeed, any left partial play πLk,i ends in a

configuration of the form 〈qk, rLk,i,k〉, thus, we let the left Spoiler in the i-th left game

play

(qk, r
L
k,i,k, ak,qk+1, ∅) ∈ ΓSp

GL
, (S-L)f

and we then apply left Duplicator’s strategy σL thereto, obtaining

σL(πLk,i)(ak,qk+1, ∅) = 〈qk+1, r
L
k+1,i,k+1〉 . (D-L)f

Since the game is uniform, Duplicator does not throw any left pebble in qk+1 away. By

assumption (FA2), Duplicator selects successors by means of a uniform choice function

c : Q 7→ 2Q (i.e., independent of i) s.t., for each state r ∈ rLk,i,k, c(r) is a subset of

∆(r, ak), and c(r) = ∅ for r 6∈ rLk,i,k. In the former case, c(r) is non-empty by (U2). By

construction, rLk+1,i,k+1 =
⋃
c(rLk,i,k). The next configuration of the i-th left game is

〈qk+1, r
L
k+1,i,k+1〉 which naturally defines the corresponding partial play at round k + 1

170 Chapter 5. Multipebble simulations for ABAs

πLk+1,i = πLk,i
ak=⇒ 〈qk+1, r

L
k+1,i,k+1〉. Then, πLk+1,i is added to Bk+1L only if there exists

no other path already in BL
k+1 ending in the same configuration 〈qk+1, r

L
k+1,i,k+1〉.

Initially, the new right logbook BR
k+1 is empty. For each right game j, we do the

following.

• Let 〈rRk,j,k, sk〉 be the current configuration of the j-th right game. Since c is

non-empty on rLk,i,k, for any i, by property (MiddleR), c is non-empty on rRk,j,k.

Let Xj = c(rRk,j,k) = {c(r) | r ∈ rRk,j,k} be the set of potential successors of states

r in rRk,j,k as dictated by (D-L)di, and take Yj = ⊗Xj to be the set of all possible

combinations of successors. Xj does not contain the empty set, thus Yj 6= ∅.

• For every rRk+1,h,k+1 ∈ Yj , create a new right game:

– First, make the right Spoiler select transition

(rRk,j,k, sk, ak, r
R
k+1,h,k+1, ∅) ∈ ΓSp

GR
(S-R)f

Then, we apply the Duplicator’s winning strategy σR:

σR(πRk,j)(ak, r
R
k+1,h,k+1, ∅) = 〈rRk+1,h,k+1, sk+1〉 (D-R)f

Since the game is uniform, by (U2) Duplicator does not drop any left

pebble. Moreover, by assumption (FA2), Duplicator splits pebbles on the

right uniformly across different games: Consequently, the set sk+1 does not

depend on the current right game h.

– Create a new partial play πRk+1,h = πRk,j
ak=⇒ 〈rRk+1,h,k+1, sk+1〉, and, if there

exists no other play in BR
k+1 ending in 〈rRk+1,h,k+1, sk+1〉, then add it to BR

k+1.

We define Duplicator’s move in G as

(σL ./ σR)(πk)(ak,qk+1, ∅) := 〈qk+1, sk+1〉 (D)f

Again, by (U2) Duplicator does not throw left pebbles away. The last component of the

new logbook is πk+1 = πk
ak=⇒ 〈qk+1, sk+1〉.

Invariant Condition (MiddleR) is established inductively. Take any middle path

ρ′ ∈ ψRk+1,h. By construction, ρ′ ends in some state r′ ∈ rRk+1,h,k+1, and there exist j

and ρ ∈ ψRk,j s.t. ρ′ = ρ
ak−→ r′. Assume ρ ends in state r. By construction, r′ ∈ c(r).

By induction hypothesis, there exists i s.t. ρ ∈ ψLk,i. We recall that Duplicator uses the

5.6. Transitivity 171

same uniform choice function c across different left games. But r′ ∈ c(r), therefore r′

is selected as a successor of r also in the i-th left game. Thus, r′ ∈ rLk+1,i,k+1, implying

ρ ∈ ψLk+1,i.

Condition (ExtensionL) holds since, by definition, πLk+1,i extends πLk,i, therefore,

ψLk+1,i extends ψLk,i.

Universal round Assume that Spoiler moves as follows:

(qk, sk, ak, ∅, sk+1) ∈ ΓSp
G , (S)f′

i.e., the next input symbol is ak, and right pebbles are moved from sk to sk+1. Ac-

cordingly, we define the input word for the next logbook as wk+1 := wk · ak. This

immediately induces a move by Spoiler in every right game: Let the right Spoiler in the

j-th right game play

(rRk,j,k, sk, ak, ∅, sk+1) ∈ ΓSp
GR

, (S-R)f′

By assumption (FA1), Duplicator’s strategy σR is left-blind:

σR(πRk,j)(ak, ∅, sk+1) = 〈rRk+1,j,k+1, sk+1〉 (D-R)f′

rRk+1,j,k+1 = ∆(rRk,j,k, ak) (5.1)

Let πRk+1,j = πRk,j
ak=⇒ 〈rRk+1,j,k+1, sk+1〉, and add it to the new right logbook BR

k+1 only

if there exists no other play in BR
k+1 ending in 〈rRk+1,j,k+1, sk+1〉.

Initially, the new left logbook BL
k+1 is empty. For each left game i,

• Let 〈qk, rLk,i,k〉 be the current configuration of the i-th left game.

Let Xi = ∆(rLk,i,k, ak) be the set of all ak-successors of states from rLk,i,k, as

dictated in (D-R)f′ , and let Yi = ⊗Xi be the set of all possible combinations of

successors. Clearly, Yi 6= ∅.

• For each rLk+1,h,k+1 ∈ Yi, create a new left game:

– First, we have the left Spoiler select transition

(qk, r
L
k,i,k, ak, ∅, rLk+1,h,k+1) ∈ ΓSp

GL
(S-L)f′

By assumption (FA1), σL is left-blind:

σL(πLk,i)(ak, ∅, rLk+1,h,k+1) = 〈qk+1, r
L
k+1,h,k+1〉 (D-L)f′

qk+1 = ∆(qk, ak) (5.2)

172 Chapter 5. Multipebble simulations for ABAs

Also, since the game is uniform, by (U2) Duplicator does not drop any right

pebble.

– Create a new partial play πLk+1,h = πLk,i
ak=⇒ 〈qk+1, r

L
k+1,h,k+1〉 and, if there

exists no other play in BL
k+1 ending in 〈qk+1, r

L
k+1,h,k+1〉, then add it to

BL
k+1.

We define Duplicator’s move in G as

(σL ./ σR)(πk)(ak, ∅, sk+1) := 〈qk+1, sk+1〉 (D)f′

The last component of the new logbook is πk+1 = πk
ak=⇒ 〈qk+1, sk+1〉.

Invariant Condition (MiddleR) is established inductively. Take any middle path

ρ′ ∈ ψRk+1,j in any right game. By construction, ψRk+1,j = ψRk,j
ak=⇒ rRk+1,j,k+1. Therefore,

there exists a prefix ρ ∈ ψRk,j of ρ′. By induction hypothesis, there exists i s.t. ρ ∈ ψLk,i.
Since ρ ends in a universal state, and Duplicator uses a left-blind strategy σR, there

exists h s.t. ρ ∈ ψLk+1,h.

Condition (ExtensionL) holds since, by construction, πLk+1,h extends πLk,i, for some

i. Therefore, ψLk+1,h extends ψLk,i.

This concludes the description of the joint strategy σL ./ σR.

The limit logbook Before turning to the proof of transitivity for fair simulation, we

define a limit version of the logbook, and study its properties. We introduce the limit

logbook Bω = (BL
ω , B

R
ω , w, πω), which is constructed as follows. The infinite word

w = a0a1 · · · is just the one built by Spoiler, and it is equal to the limit of the sequence

of finite words w0, w1, Similarly, πω is just the limit of π0, π1, Therefore,

πω = ρLω × ρRω , with

ρLω = q0
a0=⇒ q1

a1=⇒ · · ·

ρRω = s0
a0=⇒ s1

a1=⇒ · · · .

The left limit logbook BL
ω = {πLω,h0 , π

L
ω,h1

, . . . } contains all infinite sequences of

configurations which are limit of finite sequences in BL
0 , B

L
1 , That is, πLω,h is in

BL
ω iff there exists a strongly coherent sequence of partial plays πL0,h(0) ∈ BL

0 , π
L
1,h(1) ∈

BL
1 , . . . s.t. πLω,h = limk π

L
k,h(k) is the limit of this sequence. We have:

πLω,h = ρLω × ψLω,h, with

ψLω,h = rL0,h(0),0
a0=⇒ rL1,h(1),1

a1=⇒ · · · .

5.6. Transitivity 173

The right limit logbook BR
ω = {πRω,g0 , π

R
ω,g1

, . . . } is defined in an analogous way

w.r.t. BR
0 , B

R
1 , . . . : π

R
ω,g ∈ BR

ω iff there exists a strongly coherent sequence of partial

plays πR0,g(0) ∈ BR
0 , π

R
1,g(1) ∈ BR

1 , . . . s.t. πRω,g = limk π
R
k,g(k). We write:

πRω,g = ψRω,g × ρRω , with

ψRω,g = rR0,g(0),0
a0=⇒ rR1,g(1),1

a1=⇒ · · ·

A limit version of the logbook property (MiddleR) holds for the limit logbook:

Lemma 5.6.6. Let Bω = (BL
ω , B

R
ω , w, πω) be the limit logbook as defined above. Then,

∀(ρ ∈ ψRω,g) · ∃h · (ρ ∈ ψLω,h) (LimMiddleR)

Proof. Assume ρ is any path in ψRω,g, and let ρk be the finite prefix of ρ of length

k + 1. Consider the set of multipaths Ψ = {ψLk,i | ρk ∈ ψLk,i} containing prefixes of ρ.

By (ExtensionL), every multipath ψLk,i extends a previous multipath ψLk−1,l, for some

l. Therefore, if ρk ∈ ψLk,i, then ρk−1 ∈ ψLk−1,l. Thus, Ψ is closed under prefixes. It

represents a finitely branching tree with finite branches from Ψ, whose vertices are

labelled with sets of states.

By definition, ρk belongs to ψRk,g(k). By (MiddleR), for each k there exists h(k) s.t.

ρk ∈ ψLk,h(k). Therefore, the tree represented by Ψ is infinite. By König’s Lemma,

there exists a single infinite branch ψLω,h containing all finite prefixes of ρ. Therefore,

ρ ∈ ψLω,h.

Lemma 5.6.7. For x ∈ {de, f}, vx(1,n), vx(n,1) and vx(n,n) are transitive.

Proof. We consider (n, n) simulation; the other cases are similar.

• x = de: Assume that qi =⇒∀F qi′ in ρLω . We show that there exist l, l′ s.t. l ≥ i

and sl =⇒∃F sl′ in ρRω .

Consider any right play πRω,g = ψRω,g × ρRω , and any infinite branch ρ ∈ ψRω,g. We

argue that ρ visits an accepting state after round i. By (LimMiddleR), ρ ∈ ψLω,h for

some h. Let πLω,h = ρLω × ψLω,h be the corresponding left play. Since qi =⇒∀F qi′

in ρLω by assumption, and πLω,h is conform to the winning strategy σL, there exist

j, j′ s.t. j ≥ i and rLj,h(j),j =⇒∃F rLj′,h(j′),j′ . Since the game is uniform, by (U4),

rLj,h(j),j =⇒∀F rLj′,h(j′),j′ . Therefore, by the definition of =⇒∀F , ρ visits an accepting

state after round i.

Therefore, every infinite branch ρ ∈ ψRω,g visits an accepting state after round i.

There exists a uniform i′′ ≥ i s.t. this visit happens before round i′′ for any such

174 Chapter 5. Multipebble simulations for ABAs

ρ. Thus, rRi,g(i),i =⇒∃F rRi′′,g(i′′),i′′ . Since πRω is conform to the winning strategy σR,

there exist l, l′ s.t. sl =⇒∃F sl′ in ρRω .

• x = f: Assume that ρLω is universally fair, and we show that ρRω is existentially

fair.

Consider any right play πRω,g = ψRω,g × ρRω , and any infinite branch ρ ∈ ψRω,g. We

argue that ρ is fair. By (LimMiddleR), ρ ∈ ψLω,h for some h. Let πLω,h = ρLω×ψLω,h
be the corresponding left play. Since ρLω is universally fair by assumption, and

πLω,h is conform to the winning strategy σL, ψLω,h is existentially fair. Since the

game is uniform, by (U4), ψLω,h is universally fair. Since ρ ∈ ψLω,h, by definition ρ

is fair.

Since ρ was arbitrary, ψRω,g is universally fair by definition. Since πRω is conform

to the winning strategy σR, ρRω is existentially fair.

5.6.4 Comparison with previous work [29]

The notion of multipebble delayed simulation that we study in this thesis differs from

the one introduced in [29]. The one from [29] is not adequate as it turns out not to be

transitive, as incorrectly claimed therein.

To compare the new notion from this thesis and the old one from [29], we rephrase

both in a common formalism. Both notions refer to pebbles being good in some interval,

with two important differences.

1. The first difference lies in how those intervals are relatively ordered. In the current

definition, π ∈ W de iff

∀(i ≤ i′) · qi =⇒∀F qi′ implies ∃(j ≤ j′) · i ≤ j ∧ sj =⇒∃F sj′ (de)

while in the notion from [29] we have π ∈ W de′ iff

∀(i ≤ i′) · qi =⇒∀F qi′ implies ∃(j ≤ j′) · i′ ≤ j′ ∧ sj =⇒∃F sj′ (de’)

2. The second difference is that i′ and j′ above are required to be the minimal indices

satisfying qi =⇒∀F qi′ and sj =⇒∃F sj′ , respectively, while we require no such

restriction here.

That is, here we require the past endpoints to be ordered i <= j, while in [29] it is the

future endpoints that are required to be ordered i′ <= j′. The two notions differ only if

5.6. Transitivity 175

there is more than one left pebble: For (1, k)-simulations, i and j can always be taken

equal to i′ and j′, respectively, and the two notions coincide.

Per se, the different synchronization requirement is not a problem for transitivity.

However, the further minimality restriction on endpoints i′ and j′ does not behave nicely

when several games are composed together, since Spoiler might actually force accepting

states to be visited too early, as we show in the next example.

Example 5.6.2 - (n, 1) and (n, n)-delayed simulation from [29] are

not transitive

q0

q1 q2

q3 q4

q5 q6

Q

a a

a, b b, c

a a

a, b a

r0

r1 r2

r3 r4

r5 r6

R

a

a, b

a

a, b

a

b, d

a

a

s0

s1

s2

s3

S

a

b

a

a, b

vde′

(1,2) vde′

(1,2)

The notion of delayed simulation from [29] is not transitive in the (n, 1) and (n, n)

case. This was incorrectly claimed in Theorem 6 therein for the (n, 1) case. Consider

the automata Q, R and S above. Clearly, more right pebbles don’t help Duplicator.

Thus, vde′

(n,1)=vde′

(n,n). With two left pebbles,R simulates Q and S simulatesR:

• Q vde′

(2,1) R: From the initial configuration 〈q0, r0〉 (Round 0), Spoiler plays action

a and transition r0
a−→ ri, for i ∈ {1, 2}. Duplicator splits pebbles maximally

on the left, and the game goes to configuration 〈{q1, q2}, ri〉 (Round 1). Then,

Spoiler is forced to play action b, and Duplicator’s reply depends on i.

– If i = 1, then Duplicator drops the left pebble on q2, and the game goes to

configuration 〈q3, r3〉 (Round 2). Duplicator has satisfied the acceptance

obligation {q1, q2} =⇒∀F q3 since r3 ∈ F . From the latter position, Dupli-

176 Chapter 5. Multipebble simulations for ABAs

cator plays a “copycat strategy”, and the game goes to 〈q5, r5〉 (Round 3),

where it stays forever. Even if {q1, q2} =⇒∀F q5 holds at Round 3, this does

not raise any obligation, since the the additional minimality constraint from

[29] fails. Thus, Duplicator wins in this case.

– If i = 2, then Duplicator always keeps both left pebbles, and the game

goes to 〈{q3, q4}, r4〉 (Round 2). Then, Spoiler plays action a, and the

game goes to 〈{q5, q6}, r6〉. Duplicator satisfies the acceptance obligation

{q1, q2} =⇒∀F {q5, q6} since r6 ∈ F . Then, the game stays forever in

〈{q5, q6}, r6〉, and no new obligation is raised, thanks to by the minimality

condition. Thus, Duplicator wins also in this case.

• R vde′

(2,1) S: From the initial configuration 〈r0, s0〉 (Round 0), Spoiler plays

action a and Duplicator splits left pebbles maximally. Then, the game goes

to configuration 〈{r1, r2}, s1〉 (Round 1), from which Spoiler is forced to play

action b. Therefore, the game goes to configuration 〈{r3, r4}, s2〉 (Round 2), at

which point Duplicator fulfills with s2 ∈ F the obligation {r3, r4} =⇒∀F {r3, r4}.
Then, the game goes to 〈{r5, r6}, s3〉 (Round 3), where it stays forever. No more

obligations are raised (by the minimality condition), and Duplicator wins.

However, Q 6vde′

(2,1) S. (This suffices to show that vde′

(n,1) is not transitive, since

vde′

(2,1)=vde′

(3,1) in this example.) Indeed, from configuration 〈q0, s0〉 (Round 0), let

Spoiler play action a and transition s0
a−→ s1. Duplicator is forced to split pebbles

maximally, to prevent Spoiler from playing actions not available in S. Thus, the game

goes to configuration 〈{q1, q2}, s1〉 (Round 1), from where Spoiler is forced to play

action b, bringing the game to 〈{q3, q4}, s2〉 (Round 2). Then, Spoiler plays action a,

and Duplicator has three options for left pebbles, each of those is losing:

• Throw away the pebble on q4: The game goes to 〈q5, s3〉, from which Spoiler

wins by playing action b, which is unavailable form s3.

• Throw away the pebble on q3: The game goes to 〈q6, s3〉, and Duplicator loses

since q6 ∈ F but right pebble can be accepting in the future.

• Keep both pebbles: The game goes to 〈{q5, q6}, s3〉. An obligation is raised since

{q1, q2} =⇒∀F {q5, q6}, but Duplicator cannot match it, and she loses.

Therefore, Spoiler wins in either case, and Q 6vde′

(2,1) S.

5.7. Multipebble simulations and subset-like constructions 177

5.7 Multipebble simulations and subset-like con-

structions

In this section, we establish connections between multipebble fair simulation and

well-known subset constructions for nondeterministic and alternating Büchi automata.

Given an automaton A, a subset-like construction produces another automaton T (A)

recognizing the same language as A, s.t. T (A) satisfies some additional desirable

property depending on T—for example, one might be interested in removing universal

states from the automaton. Construction T characterizes (k0, k1)-fair simulation, iff

(k0, k1)-fair simulation between A and B can be decided by computing (1, 1)-fair

simulation between T (A) and T (B):

Q vf
(k0,k1) S ⇐⇒ T (Q) vf

(1,1) T (S)

Let n be the maximal number of states in A and B. In Section 5.7.1, we show that a

well-known subset construction for alternation removal in Büchi automata, the so-called

Miyano-Hayashi construction [92], characterizes (n, 1)-fair simulation. In Section 5.7.2,

we show that a dual construction can be defined as to characterize (1, n)-fair simulation.

Finally, in Section 5.7.3 we show that even (n, n)-fair simulation can be reduced to

(1, 1)-fair simulation, by performing the MH-construction on A and its dual on B.

5.7.1 Characterizing (n, 1)-fair simulation

In this section, we show that a well-known subset construction for alternating Büchi

automata, called the Miyano-Hayashi construction [92], characterizes (n, 1)-fair simu-

lation. For an automaton A, letMH(A) be the automaton resulting from applying the

MH-construction.

Theorem 5.7.1. Let Q and S be two ABAs, and let n = |Q|. Then,

Q vf
(n,1) S ⇐⇒ MH(Q) vf

(1,1) MH(S)

Remark 5.7.2. The statement below (notice the (1, 1)-simulation in the premise)

Q vf
(1,1) S =⇒ MH(Q) vf

(1,1) MH(S)

178 Chapter 5. Multipebble simulations for ABAs

had already appeared in [55]. We prove a stronger property by taking (n, 1)-simulation

in the premise. The converse direction

MH(Q) vf
(1,1) MH(S) =⇒ Q vf

(n,1) S

has not appeared before. It can only be established in the context of multipebble

simulations.

In Section 5.7.1.1 we introduce the construction, in Section 5.7.1.2 we show its

correctness, and in Section 5.7.1.3 we prove the theorem. Along the way, we give

examples showing that all the stated properties are tight and cannot be improved.

5.7.1.1 The Miyano-Hayashi construction

The Miyano-Hayashi (MH) construction [92] is a subset-like construction which trans-

forms an alternating Büchi automaton Q into a nondeterministic (non-alternating)

Büchi automatonMH(Q) recognizing the same language. It removes universal non-

determinism from Q. Therefore, we say it performs the de-universalization of Q.

The idea is similar to the analogous construction over finite words, with extra

bookkeeping needed for recording visits to accepting states, which may not occur at

the same time for different runs. A set of obligations is maintained, encoding the

requirement that, independently of how universal non-determinism is resolved, an

accepting state has to be eventually reached.

Definition 5.7.3 (The Miyano-Hayashi construction [92]). Given an alternating Büchi

automaton Q = (Q,Σ, qI ,∆, F, E, U), the Miyano-Hayashi construction yields a

nondeterministic Büchi automaton

MH(Q) := (Q′,Σ,qI ,∆
′, F ′, E ′, U ′)

where macrostates in Q′ ⊆ 2Q × 2Q consist of pairs 〈q,o〉 of subsets of Q s.t. o ⊆ q,

the initial macrostate is qI := ({qI}, {qI} \ F), there are no universal states U ′ := ∅
(hence, E ′ = Q′), the set of accepting macrostates is

F ′ := {(q,o) | o = ∅},

and there is a transition ((q,o), a, (q′,o′)) ∈ ∆′ iff there exists q′′ ∈
⊗

∆(qE, a) s.t.

q′ = ∆(qU , a) ∪ q′′

and,

5.7. Multipebble simulations and subset-like constructions 179

• if o = ∅, then o′ = q′ \ F ,

• otherwise, o′ =
(
∆(oU , a) ∪ o′′

)
\ F , where o′′ = q′′ ↓∆(oE ,a) is the restriction

of q′′ to ∆(oE, a) (which is well defined, since oE ⊆ qE by construction; cf.

Section 2.2).

There is a tight relationship between obligations in the MH-construction and univer-

sally good multipaths.

Lemma 5.7.4. Let π = (q0,o0)
a0−→ (q1,o1)

a1−→ · · · be any path in MH(Q). If

(qj,oj) ∈ F ′ (that is, oj = ∅), then there exists i ≤ j s.t. qi is universally good at

round j, i.e., qi =⇒∀F qj .

The MH-construction produces a different automaton only if there are universal

states. I.e., if U = ∅, then MH(Q) = Q. In particular, since MH(Q) is non-

alternating by definition,MH(MH(Q)) =MH(Q), i.e., the Miyano-Hayashi con-

struction is an idempotent operation.

Lemma 5.7.5. For any ABA Q,MH(MH(Q)) =MH(Q).

5.7.1.2 Correctness of the construction

The MH-construction is correct in the sense that it preserves the language of the

automaton: L(Q) = L(MH(Q)) [92]. An even stronger property holds:

• MH(Q) (n, 1)-delayed/fair simulates Q. See Lemma 5.7.6 below.

• Q (1, 1)-fair simulatesMH(Q). See Lemma 5.7.7 below.

Since multipebble simulation implies language inclusion (cf. Theorem 5.4.8), L(Q) =

L(MH(Q)) follows immediately.

Lemma 5.7.6. For any ABA Q and x ∈ {de, f}, Q vx(n,1) MH(Q).

Proof. By Lemma 5.4.6, it suffices to prove Q vde
(n,1) MH(Q). Duplicator uses a

strategy σ which mimics exactly the MH-construction: Duplicator maximally hedges her

bets on left universal pebbles inQ, and the right pebble inMH(Q) is moved by copying

Spoiler’s moves from left existential pebbles in Q. Formally, there exists a strategy

σ which maintains the following invariant: If at round k the current configuration is

〈qk, (q′k,ok)〉, then qk = q′k.

180 Chapter 5. Multipebble simulations for ABAs

We now argue that σ is winning for Duplicator. Let π = 〈q0, (q0,o0)〉 a0=⇒
〈q1, (q1,o1)〉 a1=⇒ · · · be any σ-conform play. Define the sequence of indices {ij}j≥0

as i0 = 0 and, inductively, ij+1 is the least index > ij s.t. qij =⇒∀F qij+1
If no such

index exists, take ij+1 = ij+2 = · · · = ω. By the definition of the MH-construction,

oij = ∅ for any ij < ω.

By the definition of delayed simulation, assume k and h are rounds s.t. qh =⇒∀F qk.

Let ij be the largest index ≤ h s.t. qij =⇒∗F qk. It exists by Lemma 5.4.1. By the

maximality of ij and by the minimality in the definition of ij+1, ij ≤ h ≤ ij+1 ≤ k < ω.

By the MH-construction, oij+1
= ∅. Therefore, there exists a finite ij+1 ≥ h s.t.

(qij+1
,oij+1

) ∈ F ′.

Example 5.7.1 - Lemma 5.7.6 is tight

q0

q11 q12

q2

Q

s0

s1

s2

MH(Q)

a a

a, b a, c

a

a

a

a

6vde,f
(k,n), 6vdi

(n,n)

Consider the automaton Q above and its de-universalizationMH(Q). The states in

MH(Q) are s0 = ({q0}, {q0}), s1 = ({q11, q12}, {q12}) and s2 = ({q2}, {q2}). We

have

1) Q 6vf
(1,1) MH(Q), therefore n pebbles on the left are necessary in Lemma 5.7.6.

Indeed, Duplicator needs at least two pebbles on the left to win, in order to prevent

Spoiler from playing either action b or c in the second round.

2) Q 6vdi
(n,n) MH(Q), thus delayed or fair simulation are necessary in Lemma 5.7.6.

Indeed, in the first round Spoiler plays action a and Duplicator splits pebbles on

the left. The next configuration is 〈q1, s1〉, with q1 := {q11, q12}. But q1∩F 6= ∅
and s1 6∈ F . Thus, Duplicator loses the direct simulation game.

5.7. Multipebble simulations and subset-like constructions 181

Lemma 5.7.7. MH(Q) vf
(1,1) Q.

Proof. Duplicator has a winning strategy σ maintaining the following invariant: At

round k, let the current partial play be πk = ρk × ρ′k, where

ρk = (q0,o0)
a0−→ (q1,o1)

a1−→ · · · ak−1−→ (qk,ok)

ρ′k = q0
a0−→ q1

a1−→ · · · ak−1−→ qk

If πk is σ-conform, then ρ′k ∈ ρk (with abuse of notation, we actually mean ρ′k ∈ q0
a0−→

q1
a1−→ · · · ak−1−→ qk). In particular, qk ∈ qk, i.e., Duplicator can always force the right

pebble to be somewhere in qk. Clearly, the invariant holds for the initial configuration:

For k = 0, (s0,o0) = ({q}, {q} \ F) and q0 = q. Inductively, assume that the invariant

ρ′k ∈ ρk holds for k ≥ 0. Duplicator ensures the invariant holds in the next round k + 1.

Assume that Spoiler chooses action (qk,ok)
ak−→ (qk+1,ok+1). We consider two cases:

• qk ∈ E: By the MH-construction, there exists q′ ∈ qk+1 s.t. qk
ak−→ q′. Duplicator

moves the right pebble from qk to qk+1 := q′,

• qk ∈ U : By the MH-construction, ∆(qk, ak) ⊆ qk+1. Hence, no matter which

transition qk
ak−→ qk+1 Spoiler chooses on the right, qk+1 ∈ qk+1.

In both cases, assume transition qk
ak−→ qk+1 is taken on the right. Let ρk+1 = ρk

ak−→
(qk+1,ok+1) and ρ′k+1 = ρ′k

ak−→ qk+1. The invariant ρ′k+1 ∈ ρk+1 is preserved.

We argue that this invariant-preserving strategy σ is winning for Duplicator. Let

πω = ρω × ρ′ω be any σ-conform play, and let π = q0
a0=⇒ q1

a1=⇒ · · · be the projection

of ρω to the first component. Assume ρω is fair. I.e., (qj,oj) is accepting for infinitely

many j’s. By Lemma 5.7.4, qi =⇒∀F qj holds for infinitely many i’s and j’s with i ≤ j.

Therefore, π is universally fair. By the invariant, ρ′ω ∈ π. Since π is universally fair, by

Lemma 5.4.4, ρ′ω is universally fair. In particular, it is fair.

182 Chapter 5. Multipebble simulations for ABAs

Example 5.7.2 - Lemma 5.7.7 is tight

s0

s1

s2

s3

MH(Q)

q0

q11 q12

q21 q22

q3

Q

a a

a a

a a

a

a

a

a

a

6vdi,de
(n,n)

Consider the automaton Q above and its de-universalizationMH(Q) on the left.

We showMH(Q) 6vx(n,n) Q, for x ∈ {di, de}. Therefore, fair simulation is necessary

in Lemma 5.7.7.

AutomatonMH(Q) has states s0 = ({q0}, {q0}), s1 = ({q11, q12}, {q12}), s2 =

({q21, q22}, ∅), and s3 = ({q3}, {q3}). Duplicator does never take any decision during

the game. Indeed, automatonMH(Q) does not have universal states by construction,

and automaton Q has only deterministic states, except for the initial state q0, which is

universal. In particular, she can never split pebbles. Hence, vx(n,n)=vx(1,1).

Suppose Spoiler plays as follows

π = 〈s0, q0〉
a−→ 〈s1, q11〉

a−→ 〈s2, q21〉(
a−→ 〈s3, q3〉)ω

At round k = 2, s2 ∈ F ′, but q21 6∈ F . Therefore, Spoiler wins w.r.t. the direct winning

condition. Moreover, after round k the right pebble remains forever in the non-accepting

state q3 6∈ F . Thus, Spoiler wins also w.r.t. the delayed winning condition.

5.7.1.3 Multipebble simulations and the Miyano-Hayashi-construction

Since the de-universalization of an automaton Q does not have universal states, Dupli-

cator never needs extra pebbles on the left.

Lemma 5.7.8. For ABAs Q and S , and for any k0, k1 > 0, ifMH(Q) vf
(k0,k1) S , then

5.7. Multipebble simulations and subset-like constructions 183

MH(Q) vf
(1,k1) S,

We now prove that the MH-construction characterizes (n, 1)-fair simulation.

Proof. Proof (of Theorem 5.7.1) We use transitivity, cf. Theorem 5.6.1.

Q vf
(n,1) S =⇒

=⇒ MH(Q) vf
(1,1) Q vf

(n,1) S vf
(n,1) MH(S) by Lemma 5.7.7 and 5.7.6

=⇒ MH(Q) vf
(n,1) Q vf

(n,1) S vf
(n,1) MH(S) by Theorem 5.4.7

=⇒ MH(Q) vf
(n,1) MH(S) by Theorem 5.6.1

=⇒ MH(Q) vf
(1,1) MH(S) by Lemma 5.7.8

MH(Q) vf
(1,1) MH(S) =⇒

=⇒ Q vf
(n,1) MH(Q) vf

(1,1) MH(S) vf
(1,1) S by Lemma 5.7.6 and 5.7.7

=⇒ Q vf
(n,1) MH(Q) vf

(n,1) MH(S) vf
(n,1) S by Theorem 5.4.7

=⇒ Q vf
(n,1) S by Theorem 5.6.1

Theorem 5.7.1 does not hold for either direct or delayed simulation 4.

Example 5.7.3 - The MH-construction preserves neither direct, nor

delayed simulation

q0

q11 q12

q21 q22

q3

Q

a a

a a

a a

a

s0

s11 s12

s21 s22

s3

S

a a

a a

a a

a

vdi
(1,1)

q′0

q′1

q′2

q′3

MH(Q)

a

a

a

a

s′0

s′1

s′2

s′3

MH(S)

a

a

a

a

6vdi,de
(n,n)

4Unlike as incorrectly claimed in [55].

184 Chapter 5. Multipebble simulations for ABAs

Consider the two automataQ and S on the left above, and their de-universalizations

MH(Q) andMH(S) on the right. For x ∈ {di, de}, Q vx(1,1) S, butMH(Q) 6vx(n,n)

MH(S). Therefore, the MH-construction does not preserve either direct, or delayed

simulation.

• Q vdi
(1,1) S: Suppose Spoiler on the right takes transition s0

a−→ s1i, for

i ∈ {1, 2}. Then, Duplicator on the left takes transition q0
a−→ q11. The

winning condition is satisfied because s1i is accepting for any i ∈ {1, 2}. From

configuration 〈q11, s1i〉, Duplicator can ensure that no other accepting state is

visited in Q on the left.

• MH(Q) 6vx(n,n) MH(S): The macrostates in MH(Q) are defined as q′0 =

({q0}, {q0}), q′1 = ({q11, q12}, {q12}), q′2 = ({q21, q22}, ∅) and q′3 = ({q3}, {q3}).
Similarly, the macrostates in MH(S) are defined as s′0 = ({s0}, {s0}), s′1 =

({s11, s12}, ∅), s′2 = ({s21, s22}, {s21, s22}) and s′3 = ({s3}, {s3}). Since both

automata are deterministic, multipebble simulation collapses to 1-pebble simula-

tion. Spoiler wins by playing the infinite word aω: In the two induced left path

π = q′0
a−→ q′1

a−→ q′2(
a−→ q′3)ω and right path π′ = s′0

a−→ s′1
a−→ s′2(

a−→ s′3)ω,

q′2 ∈ F ′, but neither s′2 nor s′3 is accepting.

5.7.2 Characterizing (1, n)-fair simulation

Theorem 5.7.1 provides a characterization of left pebbles in terms of the Miyano-

Hayashi subset-like construction. In this section, we show that a construction dual to

MH characterizes pebbles on the right (i.e., (1, n)-fair simulation) in a similar way. We

call it the fair subset construction; for an automaton, A, let F(A) be the automaton

obtained by applying the construction.

Theorem 5.7.9. Let Q and S be two uniform ABAs, and let n = |S|. Then,

Q vf
(1,n) S ⇐⇒ F(Q) vf

(1,1) F(S)

The restriction to uniform automata (cf. Section 5.5) is not essential, but, for

simplicity, we only define the fair subset construction in this case. In Section 5.7.2.1

we introduce the construction, in Section 5.7.2.2 we prove its correctness, and in

Section 5.7.2.3 we prove the theorem. We show with examples the tightness of the

stated properties.

5.7. Multipebble simulations and subset-like constructions 185

5.7.2.1 The fair subset construction

The construction is defined for uniform automata (cf. Section 5.5). A general definition

for arbitrary automata can be given, but it would require a more complex model of

alternation not considered in this thesis.

Definition 5.7.10 (The fair subset construction). Given a uniform ABA Q,

Q = (Q,Σ, qI ,∆, F, E, U)

the fair subset construction yields a uniform ABA F(Q),

F(Q) = (Q′,Σ,qI ,∆, F
′, E ′, U ′)

where macrostates inQ′ ⊆ 2Q×2Q consist of pairs of subsets ofQ, the initial macrostate

is qI := ({qI}, {qI} ∩ F), the set of accepting macrostates is

F ′ = {(q,g) | g = q 6= ∅}

and ((q,g), a, (q′,g′)) ∈ ∆′ iff either

• q ⊆ E and

q′ ⊆
⋃

∆(q, a)

g′ =

{
(
⋃

∆(g, a) ∪ F) ∩ q′ if g 6= q

q′ ∩ F otherwise.

Intuitively, q′ is obtained by selecting a possibly empty set of a-successors from

every state q ∈ q; g′ is updated to keep track of which states have visited an

accepting state.

• q ⊆ U and

q′ ∈
⊗

∆(q, a)

g′ =

{
q′ ↓∆(g,a) ∪(q′ ∩ F) if g 6= q

q′ ∩ F otherwise.

Intuitively, q′ is obtained by selecting exactly one a-successor from every state

q ∈ q; like above, g′ is updated to keep track of which states have visited an

accepting state.

186 Chapter 5. Multipebble simulations for ABAs

(See Section 2.2 for the notation ↓).) Since Q is uniform, the two cases above are

exhaustive. Accordingly, a macrostate (q,g) is existential (q,g) ∈ E ′ iff q ⊆ E, and

universal (q,g) ∈ U ′ iff q ⊆ U .

Remark 5.7.11. Unlike the Miyano-Hayashi procedure (see Section 5.7.1.1), the fair

subset construction does not actually perform alternation removal. That is, if Q is an

alternating automaton, then F(Q) is still alternating. The sole purpose of the fair subset

construction is to describe multipebble simulations in terms of 1-pebble simulations.

Notice that, if Q is uniform, so it is F(Q). Also, it always holds that, if (q,g) is a

reachable configuration, then g ⊆ q and q ∩ F ⊆ g. Notice that g′ depends uniquely

on q, g, q′ and input symbol a. In pictures, we do not represent the sink state (∅, ∅).

The following lemma is immediate from the definition of the fair subset construction.

Lemma 5.7.12. Let π = (q0,g0)
a0−→ (q1,g1)

a1−→ · · · be any path in F(Q).

a) If (qi,gi), (qj,gj) ∈ F ′ with i ≤ j, then qi =⇒∃F qj .

b) If qi =⇒∃F qj =⇒∃F qk, then there exists k′ s.t. i ≤ k′ ≤ k and (qk′ ,gk′) ∈ F ′.

5.7.2.2 Correctness of the construction

The fair subset construction preserves the language of the automaton: L(Q)=L(F(Q)).

Similarly to the MH-construction, we show the following stronger properties:

• F(Q) (1, 1)-direct simulates Q. See Lemma 5.7.13 below.

• Q (1, n)-fair simulates F(Q). See Lemma 5.7.14 below.

Lemma 5.7.13. For a uniform Q, Q vdi
(1,1) F(Q).

Proof. The winning strategy for Duplicator is to simply mimic Spoiler’s behavior.

Formally, if 〈qk, (qk,gk)〉 is the current configuration at round k, then Duplicator

maintains the following invariant: qk = {qk}. This is clearly winning, since if qk ∈ F ,

then {qk} ∩ F ⊆ gk ⊆ {qk}, therefore gk = qk and (qk,gk) ∈ F ′.
Since F(Q) is uniform, we need to consider only purely existential and purely

universal rounds. In an existential round, qk ⊆ E. If Spoiler moves as qk
a−→ qk+1,

Duplicator replies as (qk,gk) = ({qk},gk)
a−→ (qk+1,gk+1) := ({qk+1},gk+1), where

gk+1 := {qk+1} ∩ F .

In a universal round, qk ⊆ U . If Spoiler moves as (qk,gk) = ({qk},gk)
a−→

(qk+1,gk+1), then qk+1 ∈
⊗

∆({qk}, a), implying qk+1 = {q′}, for some q′ ∈
∆(qk, a). Thus, Duplicator replies as qk

a−→ qk+1, with qk+1 := q′.

5.7. Multipebble simulations and subset-like constructions 187

Lemma 5.7.14. For a uniform Q, F(Q) vf
(1,n) Q, where n = |Q|.

Proof. The winning strategy for Duplicator is to simply mimic Spoiler’s action, possibly

using multiple pebbles. Let 〈(qk,gk),q′k〉 be the current configuration at round k.

Duplicator maintains the following invariant: q′k = qk. This is winning, since, if

Spoiler builds a fair path, then (qk,gk) ∈ F ′ infinitely often, and, by Lemma 5.7.12(a),

qi =⇒∃F qj for arbitrarily large i; that is, right pebbles are existentially good infinitely

often and Duplicator builds an existentially fair multipath.

Since F(Q) is uniform, we only need to consider purely existential and purely

universal rounds. In an existential round, qk ⊆ E. If Spoiler moves as (qk,gk)
a−→

(qk+1,gk+1), then, by the definition of fair subset construction, qk+1 ⊆
⋃

∆(qk, a).

Duplicator replies on the right as qk
a

=⇒ qk+1, thus preserving the invariant. (Without

loss of generality, we can assume that qk+1 6= ∅, otherwise Spoiler would trivially lose

as she could not be accepting anymore in F(Q).)

In a universal round, qk ⊆ U . If Spoiler performs action a and moves the right

pebbles from qk to qk+1, then qk+1 ∈
⊗

∆(qk, a). Duplicator replies on the left as

(qk,gk)
a−→ (qk+1,gk+1), for some gk+1, which is uniquely determined by the fair

subset construction.

Example 5.7.4 - n pebbles are needed in Lemma 5.7.14

s0

s2s1 s3

s4

F(Q)

a a a

b c b, c

a

q

qb qc

q′

Q

a a

b c

a

6vf
(1,1)

Consider the automata above. We have F(Q) vf
(1,2) Q, but F(Q) 6vf

(1,1) Q. On

the left F(Q) is s.t. s0 = ({q}, {q}), s1 = ({qb}, {qb}), s2 = ({qc}, {qc}), s3 =

({qb, qc}, {qb, qc}), s4 = ({q′}, {q′}). Spoiler wins by taking transition s0
a−→ s3.

188 Chapter 5. Multipebble simulations for ABAs

Duplicator has to choose either transition q a−→ qb or q a−→ qc. In either case, Spoiler

can play either c or b, respectively, and Duplicator loses.

Example 5.7.5 - Fair simulation is needed in Lemma 5.7.14

s0

s2s1 s3

s4 s5 s6 s7

s8

F(Q)

a a a

a, b a, c a, c a, b a

b
c b

b, c

a

q

qb qc

q′b q′c

q′′

Q

a a

a, b a, c

b c

a

6vdi,de
(n,n)

We have F(Q) 6vdi,de
(n,n) Q. On the left F(Q) is s.t. s0 = ({q}, ∅), s1 = ({qb}, {qb}),

s2 = ({qc}, ∅), s3 = ({qb, qc}, {qb}), s4 = ({q′b}, ∅), s5 = ({q′c}, {q′c}), s6 =

({q′b}, {q′b}), s7 = ({q′b, q′c}, {q′b, q′c}), s8 = ({q′′}, ∅). Spoiler wins as follows: At

round 0, she takes transition s0
a−→ s3. Duplicator is forced to split pebbles on the

right by taking transition {q} a
=⇒ {qb, qc}. From configuration 〈s3, {qb, qc}〉, Spoiler

takes transition s3
a−→ s7. Duplicator is still forced to use both pebbles, and she

takes transition {qb, qc}
a

=⇒ {q′b, q′c}. From configuration 〈s7, {q′b, q′c}〉, Spoiler plays

transition s7
b−→ s8. Duplicator has to drop the pebble from q′c, and to take transition

{q′b, q′c}
b

=⇒ {q′′}. The following rounds are obvious as Spoiler is forced to play aω and

configuration 〈s8, {q′′}〉 repeats indefinitely. Spoiler wins because s7 ∈ F ′ at round 2,

but it is not the case that {q′b, q′c} =⇒∃F {q′′} for any later round.

5.7.2.3 Multipebble simulations and the fair subset construction

Intuitively, Duplicator never needs to split pebbles on a fair subset automaton F(S),

since, by the definition of the fair subset construction, she can always find a successor

“large enough” where to place her single pebble. In the lemma below, we formalize

5.7. Multipebble simulations and subset-like constructions 189

this intuition. (The corresponding statement for the MH-construction holds for trivial

reasons, cf. Lemma 5.7.8.)

Lemma 5.7.15. For an ABAQ and a uniform ABA S , let k0, k1 > 0, ifQ vf
(k0,k1) F(S),

then Q vf
(k0,1) F(S).

Proof. Let n = |F(S)|. It suffices to prove the statement for k1 = n. Let G =

Gf
(k0,n)(Q,F(S)) and G ′ = Gf

(k0,1)(Q,S), and assume that Duplicator wins G. We

show that she wins G ′ as well.

Let the current configuration of G and of G ′ be 〈qk,xk〉 and 〈q′k, (sk,gk)〉, respec-

tively, where xk = {(sj,k,gj,k)}j≤n. Duplicator wins by maintaining the following

invariant: qk = q′k and sk =
⋃
{sj,k}j≤n. This is achieved as follows. The left pebbles

in G ′ are moved isomorphically to left pebbles in G. We discuss how to synchronize

right pebbles. When Duplicator in G splits right pebbles to several successors, Dupli-

cator in G ′ moves the unique right pebble to the union of those, which exists by the

definition of fair subset construction. Similarly, when Spoiler in G ′ moves the unique

right pebble to some successor, this fixes a successor for each right pebble in G, and

this will be the move of Spoiler in the latter game.

Assumer Spoiler plays action ak in G. Then, action ak is also played by Spoiler in

G ′. Since S is uniform, F(S) is uniform as well, and right pebbles in G are either all

existential or all universal.

• {sj,k}j≤n ⊆ 2E . Assume Duplicator moves right pebbles in G as

{(sj,k,gj,k)}j≤n
ak=⇒ {(sj,k+1,gj,k+1)}j≤n

By definition, for each sj,k+1 there exists sj′,k s.t. sj′,k
ak=⇒ sj,k+1 (in Q). By the

invariant, sk =
⋃
{sj,k}j≤n. Therefore, by letting sk+1 :=

⋃
{sj,k+1}j≤n, we have

sk
ak=⇒ sk+1. Thus, the following is a valid transition in F(Q)

(sk,gk)
ak−→ (sk+1,gk+1)

for some gk+1 uniquely fixed by the fair subset construction. Thus, Duplicator

moves the right pebble in G ′ as above, from (sk,gk) to (sk+1,gk+1).

• {sj,k}j≤n ⊆ 2U . Assume Spoiler moves the unique right pebble in G ′ as

(sk,gk)
ak−→ (sk+1,gk+1)

By the definition of the fair subset construction, sk+1 ∈
⊗

∆(sk, ak). For

each macrostate sj,k ⊆ sk, the move above induces a successor macrostate

190 Chapter 5. Multipebble simulations for ABAs

sj,k+1 ∈
⊗

∆(sj,k, ak) by letting sj,k+1 = sk+1 ↓∆(sj,k,ak) (see Section 2.2 for

the notation ↓). Therefore, Spoiler in G moves pebbles from {(sj,k,gj,k)}j≤n to

{(sj,k+1,gj,k+1)}j≤n as defined above, for sets {gj,k+1}j≤n uniquely fixed by the

fair subset construction. Also in this case,
⋃
{(sj,k+1)}j≤n = sk+1.

We now argue that Duplicator wins G ′. Let w = a0a1 · · · , and let π = π0 × π1 and

π′ = π0 × π′1 be the two resulting plays in G and in G ′, respectively, where

π0 = q0
a0=⇒ q1

a1=⇒ · · ·

π1 = x0
a0=⇒ x1

a1=⇒ · · · , with xk = {(sj,k,gj,k)}j≤n
π′1 = (s0,g0)

a0−→ (s1,g1)
a1−→ · · ·

By the invariant, sk =
⋃
{sj,k | (sj,k,gj,k) ∈ xk}. Assume π0 is universally fair. We

show that π′1 is fair.

Since Duplicator wins G and π0 is universally fair, π1 is existentially fair. Therefore,

in G, right pebbles are good infinitely often. Let i0 ≤ i1 ≤ i2 be s.t.

xi0 =⇒∃F xi1 =⇒∃F xi2

Arbitrarily large such numbers exist since π1 is existentially fair. By definition, for

any right pebble x′′ = (s′′,g′′) ∈ xi2 , there exists a right pebble x′ = (s′,g′) ∈ xi1

s.t. x′ −→∗F x′′. In turn, this means that there exist k′ and an accepting pebble

y′ = (t′, f ′) ∈ xk′ s.t. i1 ≤ k′ ≤ i2 and x′ w0−→ y′
w1−→ x′′, where w0 = w[i1, k

′ − 1]

and w1 = w[k′, i2 − 1]. Similarly, for any such x′ = (s′,g′) ∈ xi1 , there exists

x = (s,g) ∈ xi0 s.t. x −→∗F x′. As above, there exists k ≤ k′ and an accepting pebble

y = (t, f) ∈ xk s.t. i0 ≤ k ≤ i1 and x −→ y −→ x′ −→ y′ −→ x′′. Since y and y′

are accepting, by Lemma 5.7.12(a), t =⇒∃F t′. By Lemma 5.4.1, t =⇒∃F s′. By the

invariant, si2 is the union of all these s′. Therefore, by taking unions, si0 =⇒∃F si2 by

Lemma 5.4.5.

By applying the same argument to further indices i3 and i4 s.t. i2 ≤ i3 ≤ i4 and

xi2 =⇒∃F xi3 =⇒∃F xi4

we get si2 =⇒∃F si4 . By Lemma 5.7.12(b), there exists j s.t. i0 ≤ j ≤ i4 s.t. (sj,gj) ∈
F ′. Since i0 can be taken arbitrarily large, π′1 is fair.

While the Miyano-Hayashi construction is an idempotent operation, this is not true

for the fair subset construction. Yet, F2(Q) is simulation-equivalent to F(Q).

5.7. Multipebble simulations and subset-like constructions 191

Lemma 5.7.16. F2(Q) ≈f
(1,1) F(Q).

Proof. F(F(Q)) vf
(1,n′) F(Q) holds by Lemma 5.7.14, with n′ = |F(Q)|. By

Lemma 5.7.15, F(F(Q)) vf
(1,1) F(Q). Conversely, F(Q) vf

(1,1) F(F(Q)) by

Lemma 5.7.13.

We prove that the fair subset construction characterizes (1, n)-fair simulation.

Proof (of Theorem 5.7.9). We use transitivity, cf. Theorem 5.6.1.

Q vf
(1,n) S =⇒ F(Q) vf

(1,n) Q vf
(1,n) S vf

(1,1) F(S) by Lemma 5.7.14 and 5.7.13

=⇒ F(Q) vf
(1,n) Q vf

(1,n) S vf
(1,n) F(S) by Theorem 5.4.7

=⇒ F(Q) vf
(1,n) F(S) by Theorem 5.6.1

=⇒ F(Q) vf
(1,1) F(S) by Lemma 5.7.15

F(Q) vf
(1,1) F(S) =⇒

=⇒ Q vf
(1,1) F(Q) vf

(1,1) F(S) vf
(1,n) S by Lemma 5.7.13 and 5.7.14

=⇒ Q vf
(1,n) F(Q) vf

(1,n) F(S) vf
(1,n) S by Theorem 5.4.7

=⇒ Q vf
(1,n) S by Theorem 5.6.1

5.7.3 Characterizing (n, n)-fair simulation

As we have seen with Theorem 5.7.1 in Section 5.7.1.1, the Miyano-Hayashi construc-

tion characterizes (n, 1)-fair simulation. Similarly, by Theorem 5.7.9 in Section 5.7.2.1,

the fair subset construction characterizes (1, n)-fair simulation. In this section, we use

both results to characterize (n, n)-fair simulation.

Theorem 5.7.17. Let Q be an ABA, and let S be a uniform ABA. Moreover, let n =

max{|Q| , |S|}. Then,

Q vf
(n,n) S ⇐⇒ MH(Q) vf

(1,1) F(S)

Proof. We use transitivity (cf. Theorem 5.6.1).

Q vf
(n,n) S =⇒ MH(Q) vf

(1,1) Q vf
(n,n) S vf

(1,1) F(S) by Lem. 5.7.7 and 5.7.13

=⇒ MH(Q) vf
(n,n) Q vf

(n,n) S vf
(n,n) F(S) by Theorem 5.4.7

=⇒ MH(Q) vf
(n,n) F(S) by Theorem 5.6.1

=⇒ MH(Q) vf
(1,n) F(S) by Lemma 5.7.8

=⇒ MH(Q) vf
(1,1) F(S) by Lemma 5.7.15

192 Chapter 5. Multipebble simulations for ABAs

MH(Q) vf
(1,1) F(S) =⇒

=⇒ Q vf
(n,1) MH(Q) vf

(1,1) F(S) vf
(1,n) S by Lemma 5.7.6 and 5.7.14

=⇒ Q vf
(n,n) MH(Q) vf

(n,n) F(S) vf
(n,n) S by Theorem 5.4.7

=⇒ Q vf
(n,n) S by Theorem 5.6.1

Moreover, we also show that the two constructions commute with each other, up

to fair-simulation equivalence. The proof of the following theorem is at the end of the

section.

Theorem 5.7.18. For a uniform Q,MH(F(Q)) ≈f
(1,1) F(MH(Q)).

Before proving Theorem 5.7.18, we need some preliminary result.

In Theorem 5.7.17, the MH-construction is applied on the left and the fair con-

struction on the right. In the next lemma, we study what happens in the symmetric

case.

Lemma 5.7.19. LetQ be an uniform ABA, and let S be an ABA. Let n = max{|Q| , |S|}.
Then,

Q vf
(n,n) S ⇐⇒ F(Q) vf

(n,n) MH(S)

Proof.

Q vf
(n,n) S =⇒ F(Q) vf

(1,n) Q vf
(n,n) S vf

(n,1) MH(S) by Lem. 5.7.14 and 5.7.6

=⇒ F(Q) vf
(n,n) Q vf

(n,n) S vf
(n,n) MH(S) by Theorem 5.4.7

=⇒ F(Q) vf
(n,n) MH(S) by Theorem 5.6.1

F(Q) vf
(n,n) MH(S)

=⇒ Q vf
(1,1) F(Q) vf

(n,n) MH(S) vf
(1,1) S by Lemma 5.7.13 and 5.7.7

=⇒ Q vf
(n,n) F(Q) vf

(n,n) MH(S) vf
(n,n) S by Theorem 5.4.7

=⇒ Q vf
(n,n) S by Theorem 5.6.1

The following is an immediate corollary of Theorem 5.7.17 and Lemma 5.7.19

when Q = S.

5.8. Quotienting 193

Corollary 5.7.20. For any uniform ABA Q, let n = |Q|. Then,

MH(Q) vf
(1,1) F(Q) vf

(n,n) MH(Q)

We can finally prove that the Miyano-Hayashi construction and its dual commute

with each other up to (1, 1)-fair simulation equivalence.

Proof (of Theorem 5.7.18). Let n = max{|Q| , |F(Q)| , |MH(Q)|}.

F(Q) vf
(n,n) MH(Q) by Corollary 5.7.20

=⇒ MH(F(Q)) vf
(1,1) F(MH(Q)) by Theorem 5.7.17

F(MH(Q)) vf
(1,n) MH(Q) vf

(1,1) F(Q) by Lem. 5.7.14 and Cor. 5.7.20

=⇒ F(MH(Q)) vf
(1,n) F(Q) by Theorem 5.4.7 and 5.6.1

=⇒ F(MH(Q)) vf
(1,1) F(Q) by Lemma 5.7.15

=⇒ F(MH(Q)) vf
(1,1) F(Q) vf

(n,1) MH(F(Q)) by Lemma 5.7.6

=⇒ F(MH(Q)) vf
(n,1) MH(F(Q)) by Theorem 5.4.7 and 5.6.1

=⇒ F(MH(Q)) vf
(1,1) MH(F(Q))

where the last step follows from the simple fact that F(MH(Q)) has only existential

states and Duplicator cannot split pebbles on the left in this case.

5.8 Quotienting

In this section, we show how and when multipebble simulation preorders can be used

for quotienting alternating Büchi automata, i.e., when they are good for quotienting

(GFQ) (cf. Section 2.4.4). The motivation for considering quotienting w.r.t. multipebble

simulations is that the reduction in size can be substantial; this holds already for

nondeterministic automata, as shown in the following example.

194 Chapter 5. Multipebble simulations for ABAs

Example 5.8.1 - Multipebble delayed simulation quotients can

achieve arbitrary large compression ratios

r

q

p0

p1

p2

p3

· · ·

pk

aa, b

a

a

a

a

a

a

a

a

a

a
b

r

p

q

a, b

a, b

a

a b

a) Family of automata Qk b) The quotients Qk/ ≈2-de

Consider the family of automata Qk above, over the alphabet Σ = {a, b}. Each Qk has

k + 3 states. We analyze quotienting w.r.t. usual forward and backward simulation, and

then w.r.t. multipebble simulation.

Forward 1-pebble simulation No two pi, pj (with i 6= j) are forward simulation

equivalent. First, note that p1 does not simulate p0: Indeed, p0 can go to r, from which

both actions a and b are enabled, while from p1 one can either go to q or to p2, but

neither of them can do both a and b. The same reasoning shows that p0 is not simulated

by any pj , with j 6= 0. Finally, pi is not simulated by pj , with i 6= j, since from

configuration 〈pi, pj〉 Spoiler can force configuration 〈p0, pk〉 (for some k 6= 0), and

then win as above. Therefore, for i 6= j, pi and pj are forward simulation incomparable.

Backward simulation No two pi, pj (with i 6= j) are backward simulation equiva-

lent: Indeed, r is the unique initial state, and pi can backward go to r via a unique path

in i+ 1 steps; therefore for i 6= j, pi and pj are backward simulation incomparable.

5.8. Quotienting 195

Multipebble simulation However, all pj’s are multipebble delayed simulation

equivalent (and k = 2 pebbles suffice):

p0 ≈2-de p1 ≈2-de · · · ≈2-de pk

Indeed, p1 2-simulates p0 as follows:

• If Spoiler plays p0
a−→ p1, then Duplicator just plays p1

a−→ p2, getting one step

close to the accepting state p0.

• If Spoiler plays p0
a−→ r, then Duplicator splits pebbles to {q, p2}. Then, if

Spoiler plays r a−→ p0, then Duplicator drops the pebble on q and goes from p2

to p3 (she gets two steps closer to the accepting state p0). Otherwise, if Spoiler

plays r b−→ p0, then Duplicator drops the pebble on p2 and goes from q to p0,

thus visiting an accepting state.

A similar argument shows that any pj simulates p0. It is not difficult to see that this

implies that any pj in fact simulates any pi. Therefore, all pj’s are 2-delayed simulation

equivalent. After quotienting, we obtain the 3-states quotient automaton Qk/ ≈2-de

on the right. Thus, the compression ratio achieved by multipebble simulation w.r.t.

1-pebble forward and backward simulations can be arbitrarily large.

The results of this section are summarized in Table 5.2 (the (1, 1) case is from [55]).

We have seen in Section 2.5 that fair simulation is not GFQ, and this holds already

for nondeterministic Büchi automata. Therefore, we only consider direct and delayed

simulation. In Section 5.8.2, we present minimax quotients [55] for multipebble direct

simulation, and we prove that vdi
(k0,k1), for any k0, k1 > 0, is GFQ when considering (an

extension of) minimax quotients.

In Section 5.8.3, we explain why minimax quotients do not work for delayed

simulation. This leads to Section 5.8.4, where we present semielective quotients [55]

for delayed simulation. We we prove that multipebble (1, n)-delayed simulation is GFQ

for semielective quotients, where n is the size of the automaton. Perhaps surprisingly,

we show that vde
(1,k) for 1 < k < n, and vde

(k,1) for k > 1, are not GFQ in general.

5.8.1 Quotienting difficulties

When quotienting in alternating models where each state can be either existential or

universal, problems arise if one has both existential and universal states in the same

196 Chapter 5. Multipebble simulations for ABAs

Simulation \Pebbles (1, 1) (k0, k1) (1, n) (n, 1)/(n, n)

Direct simulation

(minimax quotients)

Section 5.8.2

X X X X

Delayed simulation

(semielective quotients)

Section 5.8.4

X × X ×

Table 5.2: Quotienting summary (X= GFQ, ×= not GFQ)

equivalence class. In this case, one has what is called a mixed equivalence class. The

issue is that it is not clear whether a mixed class should be declared existential or

universal in the quotient automaton. Basically, the proper treatment of mixed classes is

the main issue when quotienting alternating automata.

Of course, one could sidestep the problem by splitting each mixed class into two

separate classes, one existential and the other universal. However, this might double the

number of states in the quotient, and it also makes the problem uninteresting. Thus, we

insist on having mixed classes in the quotient automaton.

In [55], the problem of mixed classes is solved by unilaterally declaring them ex-

istential. Consequently, since universal states in mixed classes are now interpreted

“existentially”, the transition relation needs to be designed carefully as to avoid introduc-

ing spurious computations in the automaton. Two kind of quotients are defined, namely

minimax and semielective, to be used, respectively, with direct and delayed simulation.

Remark 5.8.1. Another difference between quotienting alternating and non-alternating

models is that, in alternating models, the monotonicity property of Lemma 2.4.7 fails;

that is, coarser relations does not necessarily give rise to quotient automata recognizing

coarser languages. In fact, when two existential states are merged together, the language

grows, while when two universal states are merged together, the language shrinks.

Since usually both existential and universal states are involved, the overall result is

unpredictable in general.

5.8.2 Minimax quotients

Minimax quotients [55] are a generalization of max quotients for alternating models.

Recall that, in max quotients, one considers only transitions induced by maximal

successors. In minimax quotients, the same thing happens for existential states, and, for

5.8. Quotienting 197

universal states, one consider only transitions to minimal successors. In the following,

fix an ABA Q = (Q,Σ, qI ,∆, E, U, F), together with a preorder �⊆ Q×Q.

Definition 5.8.2 (Minimal successors). For a symbol a ∈ Σ and states q and q′ inQ, q′

is a �-minimal a-successor of q iff q a−→ q′ and, for any other q′′ ∈ Q s.t. q a−→ q′′, if

q′′ � q′, then q′ � q′′. Let min�a (q) be the set of �-minimal a-successors of q.

The minimax quotient automaton Qm
≈ = (Q≈,Σ, q

I
≈,∆

m
≈, E

m
≈, U

m
≈ , F≈) is defined as

follows. States in the quotient are equivalence classes of states, Q≈ = [Q], the initial

state is qI≈ = [qI] and final states are those in F≈ = [F]. Existential and mixed classes

are declared existential in the quotient, Em
≈ = [E], and universal classes are declared

universal in the quotient: Um
≈ = [Q] \ Em

≈. The transition relation is defined as follows:

([q], a, [q′]) ∈ ∆m
≈ iff either

• q ∈ E and ∃(q̂ ∈ [q], q̂′ ∈ [q′]) s.t. (q̂, a, q̂′) ∈ ∆ and q̂′ ∈ max�a (q̂), or

• q ∈ U and ∃(q̂ ∈ [q], q̂′ ∈ [q′]) s.t. (q̂, a, q̂′) ∈ ∆ and q̂′ ∈ min�a (q̂).

Remark 5.8.3. The restriction to maximal/minimal successors in pure classes is not

needed for correctness, although it is beneficial in reducing the size of the transition

relation. In mixed classes, since they are declared existential, considering only minimal

successors of universal states is required for correctness. (Dually, if they were declared

universal, then the restriction to maximal successors of existential states would be

required.)

Theorem 5.8.4 (Cf. Theorem 2 of [55]). Direct simulation is GFQ for minimax

quotients.

The following is a simple, but crucial lemma for the further study of the properties

of quotients. It follows from the definition of simulation.

Lemma 5.8.5 (cf. Corollary 3 of [55]). Let q and s be two equivalent states, q ≈x s.
Then,

1. If q, s ∈ E, then ∀(q′ ∈ maxv
x

a (q)) · ∃(s′ ∈ maxv
x

a (s)) · q′ ≈x s′.

2. If q, s ∈ U , then ∀(q′ ∈ minv
x

a (q)) · ∃(s′ ∈ minv
x

a (s)) · q′ ≈x s′.

3. If q ∈ E and s ∈ U , then ∀(q′ ∈ maxv
x

a (q), s′ ∈ minv
x

a (s)) · q′ ≈x s′.

198 Chapter 5. Multipebble simulations for ABAs

Remark 5.8.6. As a consequence of case 3. above, equivalent states in minimax mixed

classes have only transitions to equivalent states. In other words, mixed classes are

deterministic states in the minimax quotient, thus it does not really matter whether they

are declared existential or universal.5

5.8.2.1 Improved minimax quotients

Lemma 5.8.5 is saying even more: If we restrict ourselves to maximal/minimal succes-

sors, then, for two equivalent states p and r (existential or universal), every transition

from p is subsumed by some transition from r going to an equivalent state. Thus, for

each quotient class [q] ∈ [Q], we can fix a representative dqe ∈ [q] among the class, s.t.

any transition from any other q̂ ∈ [q] can be simulated by dqe alone.

Therefore, it suffices to consider just the transitions induced by representatives.

In general, this reduces the number of transitions. For 1-pebble simulations, by

Lemma 5.8.5, we obtain exactly the same transitions. However, in the context of

multipebble simulations, fixing representatives can reduce the size of the transition

relation.

Formally, fix a representative-selection function d·e : Q 7→ Q s.t., for every q ∈ Q,

1) it picks an element from the class, i.e., dqe ∈ [q], and 2) it respects the class, i.e.,

for any q′ ∈ Q with q′ ∈ [q], dqe = dq′e. The minimax+ quotient automaton Qm+
≈ =

(Q≈,Σ, q
I
≈,∆

m+
≈ , E

m+
≈ , Um+

≈ , F≈) is defined as the minimax one, with the following

differences. Quotient states inherit the type of representatives: That is, if dqe ∈ E,

then [q] ∈ Em+
≈ , and if dqe ∈ U , then [q] ∈ Um+

≈ . Transitions are defined as follows:

([q], a, [q′]) ∈ ∆m+
≈ iff either

• dqe ∈ E and ∃(q̂′ ∈ [q′]) s.t. (dqe, a, q̂′) ∈ ∆ and q̂′ ∈ max�a (dqe), or

• dqe ∈ U and ∃(q̂′ ∈ [q′]) s.t. (dqe, a, q̂′) ∈ ∆ and q̂′ ∈ min�a (dqe).

Remark 5.8.7. Fixing representatives it is not required for correctness, but in the

multipebble case it can reduce the size of the transition relation.

We prove that direct multipebble simulation is GFQ for minimax+ quotients.

Theorem 5.8.8. For k0, k1 > 0, (k0, k1)-direct simulation is GFQ for minimax+ quo-

tients.
5In fact, states q ∈ E and s ∈ U with q ≈x s are already deterministic in the original automaton,

after non-maximal transitions from q and non-minimal transitions from s have been removed. Thus, it is
possible to make such q’s universal (or the s’s existential), and mixed classes won’t even arise.

5.8. Quotienting 199

We prove the theorem above in Section 5.8.2.3. Below, we compare minimax and

minimax+ quotients (in the (1, 1)-case they coincide), and in Section 5.8.2.2 we propose

some further improvement to the latter.

Transition structure Minimax+ quotients are actually a family of quotients, where

each concrete quotient depends on the choice of a representative for each equivalence

class. In general, different choices of representatives induce different transition struc-

tures since, for two equivalent existential states q0 and q1, any maximal transition from

q0 might be subsumed only by a set of maximal transitions from q1.

Therefore, the fact that direct simulation is GFQ w.r.t. minimax quotients for any

choice of representatives is a non-trivial correctness property. Moreover, it allows one

to choose representatives as to reduce the number of outgoing transitions from every

quotient state.

However, from Lemma 5.8.5, it follows that, in the case of (1, 1)-quotients, any

choice of representatives will induce exactly the same transitions. Indeed, for (1, 1)-

simulations, if two existential states are equivalent, then any maximal transition of

one is simulated by a single maximal transition of the other; by maximality, these

transition in fact go to equivalent states, i.e., to the same equivalence class. Therefore,

for (1, 1)-simulation the transition structure does not depend on representatives, and

minimax and minimax+ quotients coincide.

Mixed classes The choice of representatives for mixed classes determines whether

the quotient state is declared to be existential or universal. Since (1, 1)-minimax mixed

classes are deterministic (cf. Remark 5.8.6), it does not make any difference whether

the class is declared to be existential or universal in (1, 1)-quotients.

However, this does not need to be the case for general (k0, k1)-quotients. Indeed,

(k0, k1)-minimax mixed classes are non-deterministic in general, and the choice of

representative does really change the semantics of the quotient automaton. Anyway,

Theorem 5.8.8 shows that quotienting is correct for any such choice. In particular,

one can in fact declare minimax mixed classes to be either existential or universal, by

choosing a suitable existential or a universal representative, respectively.

5.8.2.2 Further improvements

We consider two ways of further reducing the number of transitions in the quotient

automaton:

200 Chapter 5. Multipebble simulations for ABAs

1. We allow a transition to be subsumed by a set of transitions in the definition of

maximality/minimality of a-successors.

2. We allow representatives to depend on the input symbol a ∈ Σ, i.e., there might

be different representatives for different input symbols a0, a1,

Maximal sets of successors In general (k1, k2)-quotients it is not necessary to

consider every maximal/minimal successor of a given representative, but it is safe to

discard those successors which are (k1, k2)-simulated by a set of other maximal/minimal

successors. For instance, for a given existential representative dqe ∈ E and symbol

a ∈ Σ, we say that q′ is a set of maximal a-successors of dqe iff

q′ ⊆ max�a (dqe) ∧
(
∀q′′ ∈ max�a (dqe) \ q′ · q′′ � q′

)
where �=vdi

(k1,k2). A similar definition can be given for sets of minimal successors of

universal states. Notice that the above definition is non-deterministic, in the sense that

there might be different sets of maximal/minimal successors: In this case, one can just

take any such ⊆-maximal/minimal set of successors.

Formally, one has a transition ([q], a, [q′]) ∈ ∆m+
≈ iff either

• dqe ∈ E and ∃ q̂′ ∈ [q′] ∩ q′ s.t. (dqe, a, q̂′) ∈ ∆ and q′ is a set of maximal

a-successors of dqe, or

• dqe ∈ U and ∃ q̂′ ∈ [q′] ∩ q′ s.t. (dqe, a, q̂′) ∈ ∆ and q′ is a set of minimal

a-successors of dqe.

Non-uniform representatives An other way of reducing the number of transi-

tions in the quotient automaton is to relax the way representatives are chosen. Instead

of fixing a representative once and for all for every equivalence class, one can let

the representative depend on the input symbol. That is, for every a ∈ Σ, we select

a (possibly different) representative dqea, and a-successors in the quotient are those

maximal/minimal successors induced by dqea. Since quotient states have to be de-

clared either existential or universal, non-uniform representatives need to be either

all existential or all universal for a given class. That is, either
⋃
a∈Σ{dqea} ⊆ E or⋃

a∈Σ{dqea} ⊆ U holds.

In this way, for each input symbol a, one can select the representative dqea with

the least number of maximal/minimal successors. The only tradeoff is whether mixed

classes should have existential or universal representatives; in this case, one can compare

5.8. Quotienting 201

the best existential representative against the best universal one, and then selects the

best of these two.

This induces an improved notion of minimax quotient where transitions are defined

as follows: ([q], a, [q′]) ∈ ∆m+
≈ iff either

• dqea ∈ E and ∃ q̂′ ∈ [q′] s.t. (dqea, a, q̂′) ∈ ∆ and q̂′ ∈ max�a (dqea), or

• dqea ∈ U and ∃ q̂′ ∈ [q′] s.t. (dqea, a, q̂′) ∈ ∆ and q̂′ ∈ min�a (dqea).

Since the choice of representative does not affect the transitions for (1, 1)-quotients,

this notion coincides with the usual one for (1, 1)-simulations. Non-uniform represen-

tatives can be used in addition to the previous optimization regarding maximal sets of

successors.

5.8.2.3 Correctness of minimax+ quotients

The rest of the section is devoted to the proof of Theorem 5.8.8. In the following,

we write just [q] for [q]m+, where we quotient w.r.t. the equivalence induced by the

transitive closure of vdi
(k1,k2), for any fixed k1, k2 > 0. For simplicity, we just say that

“the quotient is taken w.r.t. vdi
(k1,k2)”. We actually prove the following stronger statement,

where we show that quotienting does not only preserves the language, but even maximal

multipebble direct simulation itself.

Theorem 5.8.9. Let Q be an ABA with n states, and let Q′ be its quotient w.r.t. (the

equivalence induced by the transitive closure of) vdi
(k1,k2). Then, for any state q in Q

and its corresponding quotient class [q] in Q′, q is (n, n)-direct simulation equivalent

to [q], i.e., q ≈di
(n,n) [q].

Theorem 5.8.9 immediately follows from Lemmas 5.8.10 and 5.8.12 below, since

q ≈di
(n,n) q.

Lemma 5.8.10. If q vdi
(n,n) s, then [q] vdi

(n,n) s, where the quotient is taken w.r.t.

vdi
(k1,k2).

Remark 5.8.11. Lemma 5.8.10 holds even if we do not require maximality of transitions

induced from existential states in the quotient. Indeed, the lemma holds for any possible

way of selecting transitions from existential states—even if none is selected: The reason

is that any other way of selecting transition other than the maximal ones (i.e., adding

non-maximal transitions or removing strictly maximal ones) would only reduce the

set of behaviors of the quotient automaton, and this would make Spoiler weaker, thus

preserving the direction of the lemma.

202 Chapter 5. Multipebble simulations for ABAs

Proof (of Lemma 5.8.10). Let G = Gdi
(n,n)([q], s) be the outer simulation game, and let

G′ = Gdi
(n,n)(q, s) be the inner simulation game. While playing the outer game G, we

update the inner game G′ in order to maintain the following invariant: If at round i

the outer game is in configuration 〈[qi], si〉, then qi vdi
(n,n) si. It is easily seen that the

invariant implies the lemma: Indeed, if [qi]∩F ′ 6= ∅, then, by the definition of quotient,

there exists q̂ ∈ qi s.t. [q̂] ∈ F ′. By the definition of di-simulation, all states in the

quotient are accepting, i.e., [q̂] ⊆ F , and, in particular, q̂ ∈ F . Thus, qi ∩ F 6= ∅. By

the invariant and by the definition of di-simulation, si ⊆ F .

Assume the current configuration in G is 〈[q], s〉, and q vdi
(n,n) s. We show that,

no matter what Spoiler does, Duplicator can ensure to go in a configuration of the

form 〈[q′], s′〉 s.t. q′ vdi
(n,n) s′. W.l.o.g. we assume that q is a set of representatives;

that is, q = {q0, . . . , qk} with qi = dqie. If not, just replace any element q̂ ∈ q

with an equivalent representative dq̂e. This gives a new set dqe. This operation is

correct since direct simulation vdi
(k1,k2) preserves final states (so final states can only

be replaced by final states), and vdi
(k1,k2)⊆vdi

(n,n), where vdi
(n,n) is transitive. Therefore,

dqe ≈ q vdi
(n,n) s, which implies dqe vdi

(n,n) s.

We partition the two sets [q] and s into existential and universal states, as follows:

[q] = [qE] ∪ [qU]

s = sE ∪ sU

Here, with qE we mean a set of states in E, and similarly with the other sets above.

Therefore, [qE] is the set of classes with existential representatives in qE , and [qU] is

the set of classes with universal representatives in qU . By the assumption above, and by

the definition of minimax quotients, classes in [qE] are existential, and classes in [qU]

are universal. Let Spoiler choose input symbol a and transition

([q], s, a, [q̄], s̄) ∈ ΓSp
G

that is, existential-left pebbles in [qE] are moved to [q̄], and universal-right pebbles in

sU are moved to s̄. By the definition of minimax quotient, transitions from existential

classes in [qE] are those induced by their existential representatives in qE . Also, we

take the elements in q̄ to be those who receive the transitions coming from qE . As

noted above, we do not actually require maximality of transitions from existential states.

Spoiler’s move in G directly induces the move by Spoiler in G′ below

(q, s, a, q̄, s̄) ∈ ΓSp
G′

5.8. Quotienting 203

Then, we apply Duplicator’s winning strategy in G′, to obtain

(q, s, a, q̄, s̄,q′, s′) ∈ ΓDup
G′

where, by the definition of Duplicator’s move, q′ is a subset of q̄ ∪∆(qU , a) and s′ is a

subset of s̄∪∆(sE, a). To ensure that transitions from qU to q′ do induce corresponding

transitions between the classes [qU] and [q′], we assume with no loss of generality that

Duplicator only selects vdi
(k1,k2)-minimal a-successors of states in qU . Indeed, for each

non-minimal a-successor there exists a smaller, minimal one which is at least as good

for Duplicator.

This implies that Duplicator’s move in G′ directly induces a corresponding move in

G. Therefore, we can define Duplicator’s response in G as

([q], s, a, [q̄], s̄, [q′], s′) ∈ ΓDup
G

q′ vdi
(n,n) s′ since Duplicator is playing according to a winning strategy in G′, and the

invariant is preserved.

Lemma 5.8.12. If q vdi
(n,n) s, then q vdi

(n,n) [s], where the quotient is taken w.r.t.

vdi
(k1,k2).

Remark 5.8.13. The lemma holds even if we do not require minimality of transitions

from universal states, since selecting transitions in the quotient other that minimal ones

would only make Spoiler weaker. This is dual to Lemma 5.8.10.

Proof (of Lemma 5.8.12). The structure of the proof is similar to that of Lemma 5.8.10.

Let G = Gdi
(n,n)(q, [s]) be the outer and let G′ = Gdi

(n,n)(q, s) be the inner simulation

game. We maintain the following invariant: If at round i the outer game is in configura-

tion 〈qi, [si]〉, then qi vdi
(n,n) si. Clearly, the invariant implies the lemma: If qi ∩F 6= ∅,

then, by the invariant, si ⊆ F , and, by the definition of quotient, [si] ⊆ F ′.

Assume that the current configuration in G is 〈q, [s]〉, with q vdi
(n,n) s. We show

that, no matter what Spoiler does, Duplicator can force a configuration of the form

〈q′, [s′]〉 s.t. q′ vdi
(n,n) s′. As in Lemma 5.8.10, we can safely assume that s is a set of

representatives, that is, s = dse.
We partition the two sets q and [s] into existential and universal states, as follows:

q = qE ∪ qU

[s] = [sE] ∪ [sU]

204 Chapter 5. Multipebble simulations for ABAs

Here, with qE we mean a set of states in E, and similarly with the other sets above.

Therefore, [sE] is the set of classes with existential representatives in sE , and [sU] is the

set of classes with universal representatives in sU . By the definition of quotient, classes

in [sE] are existential and classes in [sU] are universal. Let Spoiler choose input symbol

a and transition

(q, [s], a, q̄, [̄s]) ∈ ΓSp
G

where existential-left pebbles in qE are moved to q̄, and universal-right pebbles in [sU]

are moved to [̄s]. By the definition of minimax quotient, transitions from universal

classes in [sU] are those induced by their universal members. As in Lemma 5.8.10,

we can assume that these transitions go from representatives in sU to elements in s̄.

Notice that we do not require minimality of transitions from universal states here: as in

Lemma 5.8.10, allowing less transitions would only make Spoiler weaker. Spoiler’s

move in G directly induces the move by Spoiler in G′ below

(q, s, a, q̄, s̄) ∈ ΓSp
G′

Then, we apply Duplicator’s winning strategy in G′, to obtain

(q, s, a, q̄, s̄,q′, s′) ∈ ΓDup
G′

where, by the definition of Duplicator’s move, q′ is a subset of q̄ ∪∆(qU , a) and s′ is a

subset of s̄∪∆(sE, a). To ensure that transitions from sE to s′ do induce corresponding

transitions between the classes [sE] and [s′], we assume with no loss of generality that

Duplicator only selects vdi
(k1,k2)-maximal a-successors of states in sE . Indeed, for each

non-maximal successor there exists a larger, maximal one which is at least as good for

Duplicator. This implies that Duplicator’s move in G′ directly induces a corresponding

move in G. Therefore, we define Duplicator’s response in G as

(q, [s], a, q̄, [̄s],q′, [s′]) ∈ ΓDup
G

Since Duplicator is playing according to a winning strategy in G′, q′ vdi
(n,n) s′, and the

invariant is preserved.

5.8.3 Requirements for delayed simulation

Quotienting w.r.t. delayed simulation is more difficult. We rule out several optimizations

that are correct in the direct simulation case by considering several requirements peculiar

to delayed simulation.

5.8. Quotienting 205

Non-maximal successors We have seen in Section 2.6.3 that, already for non-

deterministic automata, transitions to non-maximal successors (of existential states)

cannot be discarded with delayed simulation. Indeed, only considering maximal suc-

cessors is incorrect since a visit to an accepting state might only occur by performing

a non-maximal transition. See also Example 2.6.2. (This is not the case with direct

simulation, since, if a simulation-smaller state is accepting, then every larger state is

accepting as well.)

Requirement 1. Consider all transitions from existential states.

No fixed representatives for existential states One might wonder whether

representatives can be fixed in advance in delayed simulation quotients, like in minimax

quotients. This turns out to be incorrect for existential states. The reason is the same as

above: Fixing a representative might prevent accepting states from being visited.

Example 5.8.2 - No fixed representatives for existential states

p q

p′ q′

Q a
b

a

b

a
b

a b

s≈

p′ q′

Q≈
a, b

a b

a b

Consider the automaton Q above, which is a NBA. Clearly, p ≈de
(1,1) q. For example, if

p does a and goes to the accepting state, then q can do a and go to p, from which the

accepting state can be reached in the next round. Both p and q accept aω and bω.

The automaton on the right is the naı̈ve quotient of Q w.r.t. ≈de
(1,1), obtained by

considering all transitions. If transitions are fixed to be those induced by p, then the

dashed b-transition s≈
b−→ q′ would disappear, and the quotient automaton would

not accept bω anymore. Similarly, if q is taken as a representative, then the dashed

a-transition s≈
a−→ p′ would disappear and bω could not be recognized.

Therefore, fixed representatives cannot be chosen, and transitions from every exis-

tential state in a quotient class have to be considered.

206 Chapter 5. Multipebble simulations for ABAs

Requirement 2. Consider transitions from all existential states.

Combining this with the previous requirement, we have to consider all transitions from

all existential states.

Existential mixed classes In minimax quotients, as a by-product of the ability of

choosing representatives, mixed classes can be declared either universal or existential

(by choosing an suitable representative). From the previous requirement, we know that,

for delayed simulation, existential representatives cannot be fixed. However, it might

still be the case that a mixed class could be declared either existential (and all transitions

from equivalent existential states need to be considered), or universal (by picking a

universal representative).

We show that this is not the case, and that mixed classes have to be declared nec-

essarily existential. Intuitively, if a mixed class were to be declared universal, then,

for correctness, non-maximal transitions from existential states should be discarded—

otherwise, any non-maximal transition would overly restrict the behavior of the mixed

class. On the other side, we know from Requiement 1 that all transitions from existen-

tial states need to be considered, thus, non-maximal transitions cannot be discarded.

Therefore, mixed classes cannot be declared universal.

Example 5.8.3 - Mixed classes need to be declared existential

qu

qe

a, b

q0 q1

Q

a, b

a b

a b

q≈

a, b

q0 q1

Q≈

a b

a b

Consider the automaton Q above. Clearly,

qu ≈de
(1,1) qe, q0 vde

(1,1) qe and q1 vde
(1,1) qe

5.8. Quotienting 207

Therefore, state q0 is a non-maximal a-successor of qe, and state q1 is non-maximal

b-successors of qe, since, in both cases, qe is the only maximal successor.

Now consider the quotient automaton Q≈, obtained by identifying qu and qe in the

quotient state q≈ = {qu, qe}. State q≈ is a mixed class. Assume that it is declared

universal. We need to decide whether the dashed transitions, which go to non-maximal

successors of qe, need to be included in the quotient or not. If we include them, they

over-constrain the behavior of the mixed class (since it is universal), and Q≈ would

recognize the empty language. Yet, removing any of them would disconnect accepting

states, and Q≈ would still recognize the empty language. Therefore, if q≈ is declared

universal, then no modification to the transition structure preserves the language.

Requirement 3. Declare mixed classes existential.

Transitions from universal states in mixed classes This is the only require-

ment which is specific to multipebble simulations.

As we have seen, from Requiement 3, mixed classes need to be declared existential,

and, from Requirements 1 and 2, all transitions from all existential states in a mixed

class should be considered (i.e., no representatives and no pruning of successors).

It remains to decide what is the contribution of universal states in mixed classes. For

the (1, 1)-simulations on ABA in [55], it is actually possible to ignore universal states

altogether. In the multipebble context this is incorrect. The reason is similar as for

Requiement 1, since ignoring such transitions might prevent visiting accepting states.

Example 5.8.4 - Transitions from universal states in mixed classes

are needed

qe

q0 q1

qu q2

Q

a a

b c

a

b, c

q≈

q0 q1 q2

Q≈

a a
a

b

c

b, c

208 Chapter 5. Multipebble simulations for ABAs

Consider the automaton Q above. States qe and qu are (1, 2)-delayed simulation

equivalent. Under quotienting, we get the mixed class q≈ = {qe, qu} in Q≈.

The dashed transition q≈
a−→ q2 is due to the universal state qu. If we remove it,

Q≈ would recognize the empty language, while Q has clearly non-empty language.

Therefore, we cannot remove transitions induced by universal state in mixed classes.

Requirement 4. Consider (minimal) transitions from universal states in mixed classes.

5.8.4 Semielective quotients

By considering all requirements in the previous section, we obtain the following notion

of semielective quotient [55].

1. Existential states induce transitions both in existential and in mixed classes.

This is as in naı̈ve quotients, and, by the examples in the previous section, it is

unavoidable.

2. Universal states induce minimal transitions, both in universal and in mixed classes.

We can still fix representatives, but just for universal states. Formally, fix a function d·e :

U 7→ U s.t., for any universal state q ∈ U , its representative dqe ∈ U is itself a universal

state; moreover, for any other equivalent universal state q′ ∈ [q] ∩ U , dqe = dq′e.
We define the semielective quotient automaton Qse

≈ = (Q≈,Σ, q
I
≈,∆

se
≈, E

se
≈ , U

se
≈ , F≈) as

follows. States in the quotient are equivalence classes of states, Q≈ = [Q], the initial

state is qI≈ = [qI] and final states are those in F≈ = [F]. Existential states are both

existential and mixed classes, i.e., Ese
≈ = [E], and universal states purely universal

classes, i.e., U se
≈ = Q≈ \ Ese

≈ . ∆se
≈ is defined as follows: ([q], a, [q′]) ∈ ∆se

≈ iff either

• ∃(qE ∈ [q] ∩ E, q̂′ ∈ [q′]) s.t. (qE, a, q̂′) ∈ ∆, or

• ∃(qU ∈ [q] ∩ U, q̂′ ∈ [q′]) s.t (dqUe, a, q̂′) ∈ ∆ and q̂′ ∈ min�a (dqUe).

All successors of existential states are considered, both in mixed and existential classes.

For universal states, only their representatives induce transitions, and only to minimal

successors.

Remark 5.8.14. The notion of semielective quotients from [55] does not use representa-

tives. For the same reason as in Section 5.8.2.1, for (1, 1)-simulations they coincide.

5.8. Quotienting 209

Remark 5.8.15. While the restriction to minimal successors of universal states in mixed

classes is needed for correctness, this is not the case for universal classes. Nonetheless,

it helps reducing the number of transitions in semielective quotients.

The reason why semielective quotients preserve the language is more subtle than for

minimax quotients. In the latter case, we have seen in Section 5.8.2.1 that we can fix

representatives, and, since equivalence classes inherit the type from the representative,

there is no universal/existential mismatch for transitions in mixed classes.

However, in semielective quotients we cannot fix representatives, and mixed classes

have to be declared existential. For (1, 1)-simulations, by Lemma 5.8.5, transitions

from universal states are still redundant. Therefore, one can ignore them, and there is

no type mismatch.

Theorem 5.8.16 (Cf. Theorem 5 of [55]). Delayed simulation is GFQ for semielective

quotients.

However, we have seen in Example 5.8.4 that, for multipebble simulation, transitions

from universal states in mixed classes are necessary for correctness. This creates a type

mismatch in mixed classes. Certainly, the restriction to minimal successors is necessary

for correctness. Why it suffices follows from the fact that there is an essentially unique

minimal transition (up to equivalence). In fact, (1, 1) and (1, n) simulations admit least

successors.

Definition 5.8.17 (Least successors). For a state s, we say that s′ ∈ ∆(s, a) is an

�-least a-successor of s, if for every other a-successor s′′ ∈ ∆(s, a), s′ � s′′. Let

least�a (s) be the set of (necessarily �-equivalent) a-least successors of s.

Either there is no a-least successor, i.e., least�a (s) = ∅, or least�a (s) = min�a (s) and

a-minimal/least successors are all equivalent to each other. While a-least successors

do not exist in general (k0, k1)-simulations, they do exist in the limit (1, 1) and (1, n)

cases for universal states which are simulation-equivalent to some existential state. (The

(1, 1) case follows from Lemma 5.8.5.) Essentially, this says that there is a unique way

of selecting a transition from a universal state in a mixed class.

Lemma 5.8.18. Let s ∈ U and q ∈ E. For x ∈ {di, de, f}, if q ≈x(1,n) s, then there

exists s′ ∈ least
vx

(1,n)
a (s). Consequently, min

vx
(1,n)

a (s) = least
vx

(1,n)
a (s) 6= ∅.

The lemma fails for both the (1, k), with 1 < k < n and the (k, 1) case, with k > 1,

as we show in Examples 5.8.5 and 5.8.6, respectively.

210 Chapter 5. Multipebble simulations for ABAs

Proof. Let s ∈ U , q ∈ E, and q ≈x(1,n) s. From s vx(1,n) q and by the definition of

simulation, there exists q′ ⊆ ∆(q, a) and s′ ∈ ∆(s, a) s.t. s′ vx(1,n) q′.

We show that s′ is an a-least successor of s. Let s′′ be any other a-successor of s.

From q vx(1,n) s and since s ∈ U , by the definition of simulation it follows that, for any

q′ ∈ q′, we have q′ vx(1,n) s
′′. Since s′ vx(1,n) q′, and any element in q′ is simulated by

s′′, by transitivity (cf. Theorem 5.6.1), s′ vx(1,n) s
′′.

Therefore, for (1, n)-simulations there exists a unique equivalence class of minimal

successors of universal states in mixed classes. This allows us to show that maximal

(1, n)-delayed simulation is GFQ for semielective quotients.

Theorem 5.8.19. (1, n)-delayed simulation is GFQ for semielective quotients.

Remark 5.8.20. Alternatively, correctness follows from the fact that universal states in

mixed classes are essentially deterministic in the original automaton, in the sense that

they become so (up to equivalence) by removing non-minimal transitions.

Notice that, in Theorem 5.8.19, we state that the maximal (1, n)-delayed simulation

is GFQ, where n is the number of states in the automaton. Perhaps surprisingly, this

is tight, in the sense that neither (1, k)-delayed simulation for 1 < k < n, nor (k, 1)-

delayed simulation for k > 1 are GFQ in general. In both cases, Lem. 5.8.18 fails.

Example 5.8.5 - (1, k)-delayed simulation is not GFQ for 1 < k < n

q0

qu qe

q1 q2 q3 q4

a a

a a a a

a a a a

e

a a

b, c, d

b c d

b, c

c, d

a

5.8. Quotienting 211

Unlike for NBA [42], quotienting ABA w.r.t. (1, k)-de simulation does not preserve

the language of the automaton in general. The problem lies again in mixed classes,

where it is absolutely necessary to select (1, n)-minimal transitions of universal states,

and this can only be done by looking at the maximal (1, n)-simulation, and not just at

any (1, k)-fragment thereof.

Consider the automaton above, and let k = 2. We have the following simulations:

• qu vde
(1,k) qe: From configuration 〈qu, qe〉, Spoiler has to select input symbol a, and

Duplicator selects transitions qu
a−→ q1 and qe

a
=⇒ {q3, q4}. From configuration

〈q1, {q3, q4}〉, Duplicator clearly wins.

• qe vde
(1,k) qu: On the right, if Spoiler selects transition qu

a−→ q1, then Duplicator

wins since q2 can do (after one a step) b, c, d. Therefore, assume Spoiler selects

transition qu
a−→ q2.

On the left, assume Spoiler selects transition qe
a−→ q3 (the other case qe

a−→ q4

is analogous). From configuration 〈q3, q2〉, Duplicator splits 2 pebbles and wins.

• q2 6vde
(1,n) q1: Spoiler can play action e.

• q1 vde
(1,n) q2: Duplicator wins by splitting pebbles to the three a-successors of q2.

• q1 6vde
(1,k) q2: With only k = 2 pebbles, Duplicator loses.

Therefore, the two equivalent states qu and qe form a mixed class in the quotient.

The only difference between the (1, n)- and (1, k)-semielective quotient is the dashed

transition above: If (1, n)-simulation is considered, then state q2 is not a minimal a-

successor of qu (since state q1 is a strictly smaller successor) and the dashed transition is

correctly discarded in the quotient. However, if (1, k)-simulation is considered, then q2

becomes a minimal successor of qu, (for k = 2, q1 and q2 become incomparable), and

the dashed transition is now included. But this is incorrect, as the quotient automaton

would accept the word w = aaeaω 6∈ L(q0) = aaa{b+ c+ d}aω.

Technically, Lemma 5.8.18 fails for (1, k)-simulations: While q1 is an a-least

successor of qu w.r.t. (1, n)-de simulation, there exist no such a-least successor w.r.t

(1, k)-de simulation.

212 Chapter 5. Multipebble simulations for ABAs

Example 5.8.6 - (k, 1)-delayed simulation is not GFQ for k > 1

qe

qu

q0 q1

Q

a

a a
a, b a, c

q≈
a

q0 q1

Q≈

a a
a, b a, c

Even (k, 1)-delayed simulation is not GFQ for semielective quotients, for k > 1. We

actually show that in such a setting, mixed classes cannot be declared existential, and

this holds already for k = 2. From Requiement 3, we know that mixed classes cannot

be declared universal either, and this holds already for (1, 1)-simulation (hence, for

(k, 1)-simulation). Therefore, there is no way of defining a suitable quotient structure

as to make (k, 1)-delayed simulation GFQ.

Consider the automaton Q above. It recognizes the language L(Q) = aω.

• qu vde
(2,1) qi, for i = 0, 1: Every time the left pebble is on qu, Duplicator splits

pebbles maximally to {q0, q1}. In the next round, the game is thus in configuration

〈{q0, q1}, qu〉. Spoiler is forced to play action a, and she takes transition qu
a−→ qi,

with i = 0, 1. Thus, the game goes back to the initial configuration 〈qu, qi〉.
Duplicator wins since she visits accepting states infinitely often.

• qu vde
(2,1) qe: Duplicator wins as above.

• qe vde
(2,1) qu: Spoiler is forced to play action a, and the game goes to a configura-

tion of the form 〈qu, qi〉, from which Duplicator wins as above.

Therefore, if ≈ is the equivalence induced by vde
(2,1), then qu ≈ qe and, in the quotient

automatonQ≈, q≈ = {qu, qe} is a mixed class. By Requiement 3, q≈ has to be declared

existential in Q≈. However, if q≈ is existential, then there is no way of choosing any

subset of the two dashed transitions as to make Q≈ recognize precisely aω.

Technically, Lemma 5.8.18 fails for (k, 1)-simulations: With k > 1 left pebbles,

qu ∈ U has no a-least successor (even if qu ≈ qe ∈ E), since no single transition

5.8. Quotienting 213

qu
a−→ q0 or qu

a−→ q1 alone subsumes transition qe
a−→ qu. Indeed, only the multi-

transition qu
a

=⇒ {q0, q1} subsumes the latter.

5.8.4.1 Correctness

In the rest of this section we prove Theorem 5.8.19. Actually, we prove the stronger state-

ment that quotienting w.r.t (1, n)-delayed simulation not only preserves the language,

but also (1, n)-fair simulation.

Theorem 5.8.21. Let Q be an ABA with n states, and let Q′ be its quotient w.r.t. vde
(1,n).

Then, for any state q inQ and its corresponding quotient class [q]se inQ′, q is (1, n)-fair

simulation equivalent to [q]se, i.e., q ≈f
(1,n) [q]se.

Remark 5.8.22. It is possible to show that quotienting even preserves (1, n)-delayed

simulation itself. However, for simplicity, we show it only for fair simulation.

The two directions of the equivalence in Theorem 5.8.21 are stated as Lemmas 5.8.25

and 5.8.28, respectively.

5.8.4.2 Q simulates Q≈ (Lemma 5.8.25)

The general proof strategy here is as with Theorem 3 in [55] (cf. also Section 4.5):

We show the existence of simulation-preserving strategies (which are not necessarily

winning), and we obtain winning strategies via a modified composition of a simulation-

preserving strategy and a winning strategy.

Respecting strategies For sets of states q and s, we write q � s iff, for all

q ∈ q, q vde
(1,n) s. �-respecting winning strategies (cf. Section 2.3) exist6 in the basic

simulation game between [q] and any q̂ ∈ [q].

Lemma 5.8.23 (cf. Corollary 6 of [55]). If [q] � s, then there exists a �-preserving

strategy σ for Duplicator in the basic simulation game between [q] and s. In particular,

this holds when s = {q̂}, for any q̂ ∈ [q].

Proof. We write q vσ s when Duplicator wins the delayed simulation game Gde(q, s)

by following winning strategy σ. Let G = G([q], s) be the basic simulation game

between [q] and s, and, at round k, let the current configuration in G be 〈[qk], sk〉. We

prove [qk] � sk, and show a (memoryless) strategy ensuring this property.
6This is analogous to Corollary 4.5.6 in the context of jumping simulations.

214 Chapter 5. Multipebble simulations for ABAs

By proceed by induction. At the initial round [q0] � s0 holds by assumption, where

q0 = q and s0 = s.

For the inductive step, assume [qk] � sk. Let Spoiler choose the next input symbol

ak. We consider two cases, depending on whether [qk] is existential or universal.

First case: [qk] ∈ E ′. Let Spoiler move as

([qk], sk, ak, [qk+1], s′) ∈ ΓSp
G

By the definition of semielective quotient, there exist q̂ ∈ [qk] and q′ ∈ [qk+1] s.t.

q′ ∈ ∆(q̂, a). By induction hypothesis, q̂ vde
(1,n) sk. Let σ̂ be a winning strategy

for Duplicator in G(q̂, sk). We distinguish two sub-cases, depending on whether q̂ is

existential or universal.

• First sub-case: q̂ ∈ E. Let Spoiler choose transition (q̂, sk, ak, q
′, s′) ∈ ΓSp

G(q̂,sk),

and let sk+1 be the result of Duplicator playing according to strategy σ̂, i.e.,

σ̂(q̂, sk)(ak, q
′, s′) = (q′, sk+1). Clearly, q′ vde

(1,n) sk+1 since winning strategies

are vde
(1,n)-preserving. Therefore, by transitivity, [qk+1] � sk+1.

• Second sub-case: q̂ ∈ U . Notice that Spoiler has already fixed a successor q′ of q̂,

but in the game G(q̂, sk), it is Duplicator that has to select a successor of q̂, and

this is done according to the winning strategy σ̂. This is a mismatch between the

two games.

The issue is solved by noticing that, by the definition of semielective quotient,

q′ is not an arbitrary ak-successor of q̂, but a minimal one, i.e., q′ ∈ min
vde

(1,n)
ak (q̂).

Since [qk] is an existential state in the quotient containing a universal state q̂, it

is a mixed class. Therefore, there exists an existential state qE ∈ [qk] ∩ E s.t.

q̂ ≈ qE . By Lemma 5.8.18, min
vde

(1,n)
ak (q̂) = least

vde
(1,n)

ak (q̂), therefore q′ is a ak-least

successor of q̂. Now, let Spoiler select transition (q̂, sk, ak, ∅, s′) ∈ ΓSp
G(q̂,sk), and

assume Duplicator’s winning strategy σ̂ selects some state q̂′ as an ak-successor

of q̂: σ̂(q̂, sk)(ak, ∅, s′) = (q̂′, s′′). But q′ is an ak-least successor, therefore

q′ vde
(1,n) q̂

′ vde
(1,n) s′′. By transitivity, we have q′ vde

(1,n) s′′. Take sk+1 := s′′.

Clearly, [qk+1] � sk+1.

In either case, [qk+1] � sk+1. Therefore, we define σ as

σ(πk)(ak, [qk+1], s′) = ([qk+1], sk+1)

5.8. Quotienting 215

Second case: [qk] ∈ U ′. Let Spoiler choose transition

([qk], sk, ak, ∅, s′) ∈ ΓSp
G

By the definition of semielective quotient, qk ∈ U . Let let dqke ∈ U be the universal

representative of qk. By induction hypothesis, dqke vde
(1,n) sk, and let σ̂ be a correspond-

ing winning strategy for Duplicator. Let Spoiler choose transition (dqke, sk, ak, ∅, s′) ∈
ΓSp
G(dqke,sk). Duplicator replies according to σ̂: σ̂(dqke, sk)(ak, ∅, s′) = (q′, s′′). Clearly,

q′ vde
(1,n) s′′. Let q′′ be any a-minimal successor of dqke s.t. q′′ vde

(1,n) q
′. By transitivity,

q′′ vde
(1,n) s′′. Take sk+1 := s′′ and qk+1 := q′′. By minimality of qk+1 and the defini-

tion of semielective+ quotient, there exists an ak-transition from [qk] to [qk+1]. Thus,

Duplicator’s response can be defined as

σ(πk)(ak, ∅, s′) = ([qk+1], sk+1)

Clearly, [qk+1] � sk+1. This concludes the description of the second case.

The following lemma states that composition preserves �-respecting strategies, and,

moreover, if there is an initial pending obligation, then that obligation will be satisfied.7

Lemma 5.8.24. Let [q] � r vde
(1,n) s, and let σ0 be a �-respecting strategy in G([q], r)

and σ1 is a winning strategy in Gde(r, s). Define σ := σ0 ./ σ1. Then,

1. σ is �-respecting in G([q], s).

2. If r ∈ F , then for any σ-conform play 〈[q0], s0〉
a0=⇒ 〈[q1], s1〉

a1=⇒ · · · starting at

〈[q0], s0〉 = 〈[q], s〉, there exists j ≥ 0 s.t. s0 =⇒∃F sj .

Proof. For Point 1), consider the definition of the logbook as in the proof of transitivity

(cf. Section 5.6.3), and the shape it takes in the (1, n)-simulation case. At round k, if the

outer game is in configuration 〈[qk], sk〉, then the unique left game is in configuration

〈[qk], rk〉 for some rk. Moreover, for any rk,i ∈ rk, 〈rk,i, sk〉 is the current configuration

of some right game, where the pebbles in sk are the same in all right games. This is

with no loss of generality, as we can reason as in assumption (FA2). Since σ0 is �-

respecting, [qk] � rk. Since σ1 is winning, and winning strategies are vde
(1,n)-respecting,

rk,i vde
(1,n) sk. Therefore, rk � sk, which implies [qk] � sk.

For Point 2), further assume r ∈ F . Consider any play πRω,g = ψRω,g × ρRω in

the limit right logbook BR
ω , where ψRω,g = r0

a0−→ r1
a1−→ · · · with r0 = r, and

ρRω = s0
a0=⇒ s1

a1=⇒ · · · . Since ψRω,g is rooted at r ∈ F and πRω,g is conform to the

winning strategy σ1, there exists j ≥ 0 s.t. s0 =⇒∃F sj .
7This is analogous to Lemmas 4.5.7 and 4.5.8 in the context of jumping simulations.

216 Chapter 5. Multipebble simulations for ABAs

We are now ready to prove the first direction of Theorem 5.8.21.

Lemma 5.8.25. If qvde
(1,n)s, then [q]sevf

(1,n)s, where the quotient is taken w.r.t. vde
(1,n).

Proof. At any round k,

• Fix a representative qFk ∈ [qk] s.t. qFk ∈ F is accepting if [qk] ∈ F ′.

• For any q ∈ [qk], fix a �-preserving strategy σ0
[qk],q in the basic simulation game

G([qk], q) (which exists by Lemma 5.8.23).

• For every q ∈ [qk], fix a winning strategy for Duplicator σde
q,sk

in the delayed

simulation game Gde
(1,n)(q, sk).

The idea is to use a modified join of a �-preserving strategy and a de-winning

strategy [55]. First, we keep track of the oldest pending obligation:

i(k) := min
(
{i ≤ k | [qi] ∈ F ′ ∧ ∀(i ≤ j ≤ k) · sj 6=⇒∃F sk} ∪ {k}

)
That is, at round k, i(k) is the oldest obligation which is still not satisfied, and i(k) = k

if no obligation is currently pending. Intuitively, Duplicator tries to satisfy the oldest

pending obligation. Meanwhile, if more obligations do arise, they are simply discarded,

and index i(k) does not change. Therefore, Duplicator is not winning w.r.t. the delayed

acceptance condition, as she might “skip” some obligation (but only finitely many).

However, if infinitely many obligations do arise, then Duplicator satisfies infinitely

many of them (in fact, all of them by Lemma 5.4.1).

σ is defined via the following modified join:

σ(πk) := (σ0
[qi(k)],q

F
i(k)

./ σde
qF
i(k)

,si(k)
)(πk[i(k), k])

πk[i(k), k] := 〈[qi(k)], si(k)〉
ai(k)
=⇒ 〈[qi(k)+1], si(k)+1〉

ai(k)+1
=⇒ · · · 〈[qk], sk〉

where πk[i(k), k] is the subsequence of πk starting at i(k). This achieves two goals:

(Goal-0) To satisfy the oldest obligation (achieved by σde
qF
i(k)

,si(k)
), and

(Goal-1) To preserve the capability of satisfying future obligations (achieved by σ0
[qi(k)],q

F
i(k)

).

By Lemma 5.8.24, Point 1), σ is �-respecting. This means that [qi] � si at any round

i; in particular, [qi(k)] � si(k), which implies qFi(k)vde
(1,n)si(k). Therefore, the strategy

σde
qF
i(k)

,si(k)
exists and σ is well-defined. Thus, simulation is preserved at any round, and

(Goal-1) is achieved.

5.8. Quotienting 217

(Goal-0) is achieved as well. Let π = 〈[q], s〉 a0=⇒ 〈[q1], s1〉
a1=⇒ · · · be any σ-

conform play, and, at round k, let i(k) ≤ k be the oldest pending obligation. As long

as this obligation is not satisfied, i.e., si(k) 6=⇒∃F sk, π is conform to strategy σ0
[qh],qFh

./

σde
qFh ,sh

. By Lemma 5.8.24, Point 2), there exists j ≥ i(k) s.t. si(k) =⇒∃F sj .

Remark 5.8.26. Let us remark again that the proof above fails to show the stronger

property [q]sevde
(1,n)s, since the strategy σ as defined above may miss intermediate

obligations. In fact, σ only preserves infinitely many obligations.

5.8.4.3 Q≈ simulates Q (Lemma 5.8.28)

(1, n)-equivalent universal states can mimic each other’s minimal transitions, and go to

(1, n)-equivalent states. It is an immediate consequence of the fact that right pebbles

cannot be split on universal states.

Lemma 5.8.27 (cf. Corollary 3, Point 2 of [55]). Let q, s ∈ U . For x ∈ {di, de, f}, if

q ≈x(1,n) s, then, for any q′ ∈ min
vx

(1,n)
a (q), there exists s′ ∈ min

vx
(1,n)

a (s) s.t. q′ ≈x(1,n) s
′.

Proof. For states q and s in U , let q ≈x(1,n) s, and, for another state q′, let q′ ∈

min
vx

(1,n)
a (q). By the definition of simulation, there exists s′ ∈ ∆(s, a) s.t. s′ vx(1,n) q

′.

We show that any such s′ is in fact an x-minimal a-successor of s. Let s′′ ∈ ∆(s, a)

be any other a-successor of s s.t. s′′ vx(1,n) s
′, and we have to show s′ vx(1,n) s

′′ as

well. Since q vx(1,n) s, from the definition of simulation, there exists q′′ ∈ ∆(q, a) s.t.

q′′ vx(1,n) s
′′. Hence, we have the following chain of inclusions:

q′′ vx(1,n) s
′′ vx(1,n) s

′ vx(1,n) q
′

By transitivity (cf. Theorem 5.6.1), q′′ vx(1,n) q
′, and, by the minimality of q′, q′ vx(1,n)

q′′. By transitivity again, all states in {q′′, s′′, s′, q′} are equivalent. Therefore, s′ vx(1,n)

s′′ and q′ ≈x(1,n) s
′.

We now prove the other direction of Theorem 5.8.21. While it suffices to show that

[q]se (1, n)-fair simulates q, we actually prove that [q]se (1, 1)-direct simulates q.

Lemma 5.8.28. For any q ∈ Q, q vdi
(1,1) [q]se.

We can prove a stronger statement since more transitions are available in semielective

quotients than in minimax quotients—in particular, we exploit minimal transitions from

universal states in mixed classes. Moreover, the statement holds when quotienting w.r.t.

even fair, or ordinary simulation.

218 Chapter 5. Multipebble simulations for ABAs

Proof. We maintain the following invariant: If (sk, [qk]) is the current configuration in

Gdi
(1,1)(q, [q]), then sk ∈ [qk]. Clearly, the invariant implies that the winning condition

for direct simulation is satisfied: If sk ∈ F , then [qk] ∈ F ′.
The initial configuration is (s0, [q0]) with s0 = q, and [q0] = [q], and the invariant

clearly holds since q ∈ [q]. Inductively, assume the current configuration is (sk, [qk])

and the invariant sk ∈ [qk] holds. We distinguish three different cases.

Case 1: sk ∈ E. By the definition of semielective quotient, [qk] ∈ E ′. Assume

Spoiler chooses transition

(sk, [qk], ak, sk+1, ∅) ∈ ΓSp

From (sk, ak, sk+1) ∈ ∆, the invariant sk ∈ [qk] and by the definition of semielective

quotient, there exists a transition ([qk], ak, [sk+1]) ∈ ∆se
≈ . Thus, Duplicator can select

transition

(sk, [qk], ak, sk+1, ∅, sk+1, [sk+1]) ∈ ΓDup

Clearly sk+1 ∈ [sk+1], and the invariant is preserved. We have not used any property of

simulation here, just the definition of semielective quotients.

Case 2: sk ∈ U ∧ [qk] ∈ E ′. Spoiler only chooses ak,

(sk, [qk], ak, ∅, ∅) ∈ ΓSp

Let dske ∈ U be the representative of sk, and let s′ ∈ min
vde

(1,n)
ak (dske) be any de-minimal

ak-successor of dske. By the definition of semielective quotient and by the minimality

of s′, there exists a transition ([qk], ak, [s
′]) ∈ ∆se

≈ . Moreover, since dske ≈de
(1,n) sk,

by Lemma 5.8.27, there exists sk+1 ∈ min
vde

(1,n)
ak (sk) s.t. sk+1 ≈de

(1,n) s
′. Therefore,

[s′] = [sk+1] and Duplicator can choose transition

(sk, [qk], ak, ∅, ∅, sk+1, [s
′]) ∈ ΓDup

Obviously, sk+1 ∈ [s′] = [sk+1], and the invariant is preserved.

Case 3: sk ∈ U ∧ [qk] ∈ U ′. We use the minimality of successors of universal states

in universal classes. Assume Spoiler chooses transition

(sk, [qk], ak, ∅, [qk+1]) ∈ ΓSp

From the definition of quotient, there exists a transition (dqke, ak, qk+1) ∈ ∆ s.t.

qk+1 ∈ min
vde

(1,n)
ak (dqke). From the invariant sk ∈ [qk], we have sk ≈de

(1,n) dqke. By

5.9. Computing multipebble simulations 219

Lemma 5.8.27, there exists sk+1 ∈ min
vde

(1,n)
ak (sk) s.t. sk+1 ≈de

(1,n) qk+1. Therefore,

Duplicator can select transition

(sk, [qk], ak, ∅, [qk+1], sk+1, [qk+1]) ∈ ΓDup

s.t. sk+1 ∈ [qk+1], thus preserving the invariant.

5.9 Computing multipebble simulations

In this section, we show how to solve multipebble simulation games. We encode each

simulation game into a finite 2-player arena with a ω-regular winning condition. The

winning region of Duplicator is then characterized by a (fixed) fixpoint formula ϕ.

In each case, for a fixed number of pebbles k, we get an arena of size polynomial in

n, over which ϕ can be evaluated in polynomial time. Therefore, k-pebble simulation is

in PTIME for fixed k > 0.

We show that these constructions imply that finite-memory strategies suffice for

Duplicator. Better bounds might be given (i.e., memoryless strategies), but our finite-

memory characterization suffices in the rest of the chapter.

The approach is similar for direct, delayed and fair simulation. Let x ∈ {di, de, f}.
We define a finite x-arena Gx = (P x, P x

0 , P
x
1 , p

x
I ,Γ

x,Γx0 ,Γ
x
1), where

• P x = P x
0 ∪ P x

1 is the set of configurations,

• P x
0 is the set of Spoiler’s configurations,

• P x
1 is the set of Duplicator’s configurations,

• pxI ∈ P x
0 is the initial configuration,

• Γx = Γx0 ∪ Γx1 is the set of transitions,

• Γx0 ⊆ P x
0 × P x

1 is the set of transitions of Spoiler, and

• Γx1 ⊆ P x
1 × P x

0 is the set of transitions of Duplicator.

We take the view of Duplicator. In the following, let cprex(·) : 2P
x
0 7→ 2P

x
0 be a

monotone controlled predecessor operator s.t., for any X ⊆ P x
0 , CPrex(X) is the set of

configurations from where Duplicator can force the game into X in one round:

CPrex(X) := {p0 ∈ P x
0 | ∀((p0, p1) ∈ Γx0) · ∃((p1, p

′
0) ∈ P x

1) · p′0 ∈ X}

220 Chapter 5. Multipebble simulations for ABAs

5.9.1 Direct simulation

Fix an ABAQ. The arena Gdi for direct simulation is the same as in the definition of the

associated ordinary simulation game (cf. Section 5.3). That is, P di
0 = PSp, P di

1 = PDup,

Γdi
0 = ΓSp and Γdi

1 = ΓDup. The winning condition for direct simulation is a safety

condition. Let T di be the set of safe configurations,

T di = {〈q, s〉 | q ∩ F 6= ∅ implies s ⊆ F}

Then, q vdi
(k1,k2) s iff Duplicator can ensure never leaving T di when starting from the

initial configuration pdi
I := 〈q, s〉. This can be verified by checking whether pdi

I ∈ W di,

where

W di = νX · T di ∩ CPrex(X)

5.9.2 Fair simulation

The arena for fair simulation Gf is similar to the one for direct simulation, with the

difference that we need extra bookkeeping for recording whether pebbles have visited

accepting states or not.

• Spoiler’s configurations are of the form 〈q,b, s,g〉 ∈ P f
0 , with q,b, s,g ⊆ Q.

• Duplicator’s configurations are of the form 〈q,b, s,g, a,q′, s′〉 ∈ P f
1 , with

q,b, s,g,q′, s′ ⊆ Q and a ∈ Σ.

The additional sets b and g are always a subset of q and s, respectively, and they keep

track of which pebbles in q and s are, respectively, “bad” or “good”. When bj = ∅
holds at round j, there are no more bad left pebbles, and we say that the red light flashes.

This event witnesses the existence of i ≤ j s.t. qi =⇒∀F qj . Similarly, when gj = sj ,

all right pebbles are good, we say that the green light flashes, implying that there exists

i ≤ j s.t. si =⇒∃F sj . This terminology is borrowed from [104]. After a light flashes,

the corresponding set b/g is reset to an initial condition in order to start tracking new

bad/god pebbles. Then, the winning condition for fair simulation requires that if the red

light flashes infinitely often, then the green light flashes infinitely often.

Formally, we have the following transitions. For any transition in the simulation

game (q, s, a,q′, s′) ∈ ΓSp, there is a transition in the arena

(〈q,b, s,g〉, 〈q,b, s,g, a,q′, s′〉) ∈ Γf
0

5.9. Computing multipebble simulations 221

Similarly, for any (q, s, a,q′, s′,q′′, s′′) ∈ ΓDup, we have

(〈q,b, s,g, a,q′, s′〉, 〈q′′,b′, s′′,g′〉) ∈ Γf
1

where the new sets b′ and g′ are defined as follows:

g′ =

{
s′′ ∩ F if g = s

{s ∈ s′′ | s ∈ F or s ∈ ∆(g, a)} otherwise

b′ =

{
q′′ \ F if b = ∅
{q ∈ q′′ | q 6∈ F and q ∈ ∆(b, a)} otherwise

Intuitively, bad states in b′ are those states in q′ which are not accepting and with

some bad predecessor in b. Notice the similarity of the this update rule with the

MH-construction from Section 5.7.1.1. Similarly, good states in g′ are those states in s′

which are either accepting, or with some good predecessor in g. This rule comes from

the fair subset construction of Section 5.7.2.1.

Let T f
0 = {〈q,b, s,g〉 | b = ∅} be the set of configurations where the red light

flashes, and let T f
1 = {〈q,b, s,g〉 | g = s} be the set of configurations where the

green light flashes. The winning criterion for fair simulation is translated in a 1-pair

Street condition (also known as a reactivity condition [87]): If T f
0 is visited infinitely

often, then T f
1 is visited infinitely often. Therefore, q vf

(k1,k2) s iff pf
I ∈ W f , where

pf
I = 〈q,q \ F , s, s ∩ F 〉, and

W f = νX ·µY ·νZ ·(T f
1 ∩ CPref(X)) ∪ (T f

0 ∩ CPref(Y)) ∪ ((P f
0 \ T f

0) ∩ CPref(Z))

The correctness of the construction is established with the following observation:

Lemma 5.9.1. Let π = p0
a0=⇒ p1

a1=⇒ · · · be an infinite sequence of configurations in

a play of Gf , with pi = 〈qi,bi, si,gi〉. Let π0 = q0
a0=⇒ q1

a1=⇒ · · · and π1 = s0
a0=⇒

s1
a1=⇒ · · · be the projections of π to the first and third component, respectively. Then,

for any j ≥ 0,

if pj ∈ T f
0 , then ∀(i < j, pi ∈ T f

0) · qi =⇒∀F qj
if pj ∈ T f

1 , then ∀(i < j, pi ∈ T f
1) · qi =⇒∃F qj

In particular,

• π0 is universally fair iff the red light flashes infinitely often, i.e., iff pi ∈ T f
0 for

infinitely many i’s.

• π1 is existentially fair iff the green light flashes infinitely often, i.e., iff pi ∈ T f
1 for

infinitely many i’s.

222 Chapter 5. Multipebble simulations for ABAs

Finite memory strategies suffice for Duplicator The set W f is Duplicator’s

winning region in a parity game with three priorities. Since parity games are memoryless

determined [41], Duplicator has memoryless winning strategies in Gf . A memoryless

strategy in Gf corresponds to a finite-memory strategy in the original simulation game

Gf . This latter strategy is obtained by keeping track of the extra sets b and g encoded

in Gf . Since there are at most 2n · 2n such pairs of sets, the memory needed in Gf can

be uniformly bounded by 22n.

Lemma 5.9.2. If Duplicator has a winning strategy in Gf , then she has a winning

strategy σ̂ of memory bounded by 22n.

We do not claim that the upper bound above is optimal, but it suffices for establishing

the complexity results of Section 5.10.

5.9.3 Delayed simulation

In fair simulation, the red and green lights flash independently of each other. This

suffices there, since the winning condition for fair simulation is does not depend on

exactly when such flashes occur, as it can only observe whether flashes appear infinitely

often or not. In delayed simulation, the winning condition is more subtle, and timing

matters now: Indeed, every time the red light flashes, then eventually the green light

has to flash. Such obligations are not cumulative, in the sense that every red flash has to

be satisfied separately by a green flash.

For simplicity, we do not present a general solution for the (k0, k1)-case, and we

deal just with the (1, k)-case. Indeed, for approximating language inclusion, one should

use the coarser fair simulation, and, from the results about quotienting of Section 5.8,

(k0, k1)-delayed simulation is not GFQ for k0 > 1. Thus, one rarely needs to compute

arbitrary (k0, k1)-delayed simulation

The winning condition for delayed simulation requires that, every time the red

light flashes, a separate green light has to flash. In principle, one should record a new

obligation for the green light each time the red light flashes. However, by Lemma 5.4.1,

If i0 ≤ i1 and si1 =⇒∃F sj , then si0 =⇒∃F sj,

that is, a green flash a time i1 subsumes a green flash at a previous time i0. Therefore,

once the green light flashes at some round, we also have a green flash at all previous

rounds. This suggests that all previous obligations are immediately satisfied.

5.9. Computing multipebble simulations 223

The algorithm of [42] Based on this intuition, the algorithm in [42] tries to satisfy

just the most recent red flash:

When the red light flashes, reset right good pebbles.

That is, every time a new obligation arrives, one forgets the previous one(s) and starts

afresh. This is sound in the sense that, if a green light flashes, then all previous

obligations are satisfied. However, if the red light flashes too quickly, then right pebbles

are continually reset, and they might not have enough time to visit accepting states

before the next red flash. Therefore, the update rule of [42] is not complete, and it

actually computes an under-approximation to (1, k)-delayed simulation.

The (corrected) algorithm The issue of completeness is solved by bookkeeping

two different pending obligations: 1) The oldest pending obligation, called the principal

obligation, and 2) The most recent pending obligation, called the fresh obligation. We

say that the green light flashes when the principal obligation is satisfied. The principal

and fresh obligations are updated as follows:

When the red light flashes, reset right good pebbles for the fresh obligation. When the

green light flashes, the fresh obligation becomes the new principal obligation.

Formally, let {q}, s,g,h,q′, s′ ⊆ Q and a ∈ Σ. Then,

• Spoiler’s configurations in Gde are of the form 〈{q}, s,g,h〉 ∈ P de
0 .

• Duplicator’s configurations in Gde are of the form 〈{q}, s,g,h, a,q′, s′〉 ∈ P de
1 .

Good pebbles for the principal and fresh obligation are recorded in sets g and h,

respectively. Transitions are as follows: If ({q}, s, a,q′, s′) ∈ ΓSp, then

(〈{q}, s,g,h〉, 〈{q}, s,g,h, a,q′, s′〉) ∈ Γde
0

and, if ({q}, s, a,q′, s′, {q′′}, s′′) ∈ ΓDup, then

(〈{q}, s,g,h, a,q′, s′〉, 〈{q′′}, s′′,g′′,h′′〉) ∈ Γde
1

224 Chapter 5. Multipebble simulations for ABAs

, where the new sets g′′ and h′′ are updated as follows:

g′ = {s ∈ s′′ | s ∈ F or s ∈ ∆(g, a)}

h′ = {s ∈ s′′ | s ∈ F or s ∈ ∆(h, a)}

g′′ =

{
h′ if g = s

g′ otherwise

h′′ =

{
s′′ ∩ F if q′′ ∈ F
h′ otherwise

Duplicator wins iff the green light flashes infinitely often. Let T de be the set of

configurations where the green light flashes, i.e.,

T de = {〈{q}, s,g,h〉 | g = s}

Therefore, q vde
(k1,k2) s iff pI0 ∈ W de, where pde

I = 〈{q}, s,g,g〉, with g = s if q 6∈ F
and g = s ∩ F otherwise, and

W de = νX · µY · (T de ∩ CPrede(X)) ∪ CPrede(Y)

Remark 5.9.3. The algorithm for (1, k)-delayed simulation of [29] is more complex

as it keeps track not only of the oldest and newest pending obligations, but also of all

intermediate ones. This results in a queue of good pebbles which can potentially be of

exponential length. We simplify this queue to one length two, by just keeping its first

and last element (g and h).

Correctness is established with the following observation.

Lemma 5.9.4. Let π = p0
a0=⇒ p1

a1=⇒ · · · be an infinite sequence of configurations in

a play of Gde, where, for any i ≥ 0, pi has the shape pi = 〈qi, si,gi,hi〉. Then,

• If Spoiler triggers an obligation at round i which is not eventually met by Dupli-

cator, then the green light flashes only finitely many times.

Formally, if qi ∈ F and, for all j ≥ i, si 6=⇒∃F sj , then, there exists a round j ≥ i

(when a previous obligation is met), s.t., for any round k ≥ j, sk 6= gk.

• If Spoiler triggers only finitely many obligations, and these are met by Duplicator,

then the green light does not flash only finitely many times.

Formally, if there exists i s.t. qi ∈ F and j ≥ i s.t. si =⇒∃F sj , and, for all k ≥ i,

qk 6∈ F , then, for any k ≥ j, hk = gk = sk.

5.10. Complexity of multipebble simulations 225

Complexity Type Pebbles Lower bound Upper bound Where

(A,B) (A,B) (A,B)

PSPACE

di, de, f (1, n) (NBA, NBA) (NBA, ABA) Section 5.10.3

(n, 1) (UBA, UBA) (ABA, UBA) (similar)

de, f (n, n) (UBA, NBA) (ABA, ABA) (similar)

EXPTIME

de, f (1, n) (UBA, NBA) Section 5.10.4

(n, 1) (UBA, NBA) (conjecture)

(1,
√
n) (NBA, NBA) Section 5.10.5

di (1, n) (UBA, NBA) (conjecture)

(n, 1) (UBA, NBA) (conjecture)

(n, n) (UBA, NBA) (conjecture)

Table 5.3: Complexity summary

Example: the first line means that computing vdi
(1,n) is PSPACE-hard already for

NBAs A and B, and it is in PSPACE for a NBA A and an ABA B.

• If Spoiler triggers infinitely many obligations, and these are met by Duplicator,

then the green light flashes infinitely often.

Therefore, Duplicator meets all obligations iff the green light flashes infinitely often.

Finite memory strategies suffice for Duplicator Like for fair simulation, we

can interpret the additional sets g and h in Gde as the memory for Duplicator’s strategies

in the original game Gde. Since there are at most 2n · 2n such pairs of sets, the memory

needed by Duplicator in Gde can be uniformly bounded by 22n.

Lemma 5.9.5. If Duplicator has a winning strategy in the (1, k)-delayed simulation

game Gde, then she has a winning strategy σ̂ of memory bounded by 22n.

5.10 Complexity of multipebble simulations

In this section, we study the theoretical complexity of checking multipebble simulations

for NBAs and ABAs. We consider direct, delayed and fair simulation, as well as

different pebble configurations. No general complexity result for checking multipebble

simulations was previously known, even on NBAs.

226 Chapter 5. Multipebble simulations for ABAs

In Section 5.9, we have presented algorithms for solving multipebble simulation

games. In particular, we have shown that it suffices to solve a finite game of exponential

size with a simple ω-regular winning condition, from which trivial EXPTIME upper

bound follows. Here, we study when such a bound is tight, or a better PSPACE-

completeness characterization can be given.

In general, a PSPACE lower bound holds when Duplicator is allowed to use suffi-

ciently many pebbles, either on A, on B, or on both. (When the number of pebbles is

fixed, the problem is in PTIME, cf. Section 5.9.) This bound is tight, i.e., the problem

is PSPACE-complete, when Duplicator can play without trade-offs during the game. In

this case, alternation is removed and we are left with a 1-player game of exponential

size, which can be solved in PSPACE.

Otherwise, if Duplicator uses many pebbles and she still has to make inherent

choices during the game, then we have to solve a 2-player game of exponential size.

This suffices to encode EXPTIME computations, and we get an EXPTIME lower bound.

In the following, we give more details about the reductions. Our results are sum-

marized in Table 5.3. The cases left open can be presumably solved with reductions

similar to the ones given here.

PSPACE-completeness For lower bounds, we use reductions from certain kinds

of tiling problems. Domino-tiling games provide a natural computational model en-

capsulating the essential content of several complexity classes. In this section, we use

models characterizing PSPACE and EXPTIME. See Section 5.10.2 for an introduction

to domino-tiling games.

A PSPACE-lower bound applies to all types of maximal multipebble simulations

we consider. This happens since, whenever nc pebbles are used on either side, for

some c > 0, the combinatorial structure of the problem allows us to encode 1-player

tiling problems. We explain this technique for the special case of (1, n)-simulations in

Section 5.10.3. The other cases can be dealt with in a similar way.

The PSPACE lower bound is tight when we can show that Duplicator can play

without any tradeoff during the simulation game. With this we mean that there exists

a uniform strategy σ∗ s.t., if Duplicator can win the game, then σ∗ itself is winning.

Therefore, in a simulation game without tradeoffs, Duplicator will always play according

to a fixed strategy σ∗, and σ∗ is a winning strategy exactly when there exists a winning

strategy. Since Duplicator plays according to a strategy σ∗ which has been fixed in

advance, we are in fact eliminating Duplicator from the game, and we are left with a

5.10. Complexity of multipebble simulations 227

1-player game. Additionally, if σ∗ can be assumed to be of exponential memory, then

the size of the game remains exponential even after Duplicator has been eliminated.

Games admitting uniform strategies for Duplicator are in general all (1, n) and

(n, 1)-simulations where Duplicator never controls the single pebble on A, or on B
respectively. This happens precisely when A is an NBA, and B is a UBA, respectively.

For the special case of delayed and fair simulation, even (n, n)-simulation admits

uniform strategies, since Duplicator uses left-blind strategies (cf. Definition 5.4.14).

This implies PSPACE-completeness in all the cases mentioned. See the first half of

Table 5.3. In Section 5.10.1 we illustrate the details for (1, n)-simulations.

EXPTIME-completeness In those cases where Duplicator has many pebbles, but

she also incurs in tradeoffs during the simulation game, an EXPTIME lower bound

applies. In general, this holds in the following cases:

1. We are in a (1, n) or in a (n, 1) simulation game, but Duplicator can sometimes

control the single pebble on A or on B, respectively. This happens precisely

when A is a UBA, or B is an NBA, respectively. We deal with the (1, n) case in

Section 5.10.4.

We conjecture that an EXPTIME lower bound for the (n, 1) case can be shown

with similar techniques.

2. We are in a (1,
√
n) simulation game where Duplicator controls a high, but non-

maximal number of pebbles. Therefore, there is a combinatorial blow-up and

there are tradeoffs. See Section 5.10.5.

3. (Conjecture) We are in a (n, n)-direct simulation game. Here, due to the ac-

ceptance condition of direct simulation, Duplicator has tradeoffs due to the

non-monotonicity of the acceptance condition w.r.t. splitting pebbles.

The first two cases are dealt with for delayed and fair simulation. We leave the direct

simulation case, and the last case, as a conjecture. See the second half of Table 5.3.

5.10.1 PSPACE-membership

In this section, we give PSPACE algorithms for the following simulations:

• (1, n)-direct, delayed and fair simulation, where A is an NBA.

• (n, 1)-direct, delayed and fair simulation, where B is a UBA.

228 Chapter 5. Multipebble simulations for ABAs

• (n, n)-delayed and fair simulation, without any restriction on A or B.

The idea is to show that Duplicator has uniform winning strategies of finite exponential

memory. We call such strategies oblivious.

Definition 5.10.1 (Oblivious strategies). A strategy σ∗ for Duplicator is oblivious w.r.t.

a game G iff it has at most exponential memory and,

If there exists a winning strategy σ in G, then σ∗ is itself winning.

Games admitting uniform oblivious strategies are called simple.

Definition 5.10.2 (Simple simulation games). A simulation game G is simple iff there

exists a strategy σ∗ for Duplicator which is oblivious w.r.t. G.

Therefore, in a simple game Duplicator can be assumed to always play according to

a fixed oblivious strategy σ∗. So, we can plug-in σ∗ into the parity games of Section 5.9,

and we get 1-player parity games where only Spoiler plays. Since σ∗ has exponential

memory, we get a 1-player game of exponential size. The details are standard.

Deciding whether Spoiler wins in such solitary games can be reduced to the empti-

ness problem for nondeterministic parity automata. The last problem can be solved

in NLOGSPACE: Indeed, [119] shows that the emptiness problem for NBAs is in

NLOGSPACE, and there exist translations from parity to polynomially larger Büchi

automata [75].

Therefore, by applying a logarithmic algorithm to an exponential automaton, we

get a NPSPACE procedure. By Savitch’s theorem [105], we can compute simple

simulations in PSPACE. In the rest of this section, we show that certain simulation

games are simple by constructing uniform oblivious strategies σ∗ for Duplicator.

Direct simulation (1, n) and (n, 1)-direct simulation games are simple if Duplicator

does not control the left (right, resp.) pebble, that is, ifA is an NBA (B is a UBA, resp.).

Indeed, in such games Duplicator has a particularly elementary oblivious strategy σ∗:

• Always split pebbles maximally.

• For (1, n): When the left pebble is accepting, throw away non-accepting right

pebbles.

• For (n, 1): When the right pebble is not accepting, throw away accepting left

pebbles.

5.10. Complexity of multipebble simulations 229

Remark 5.10.3. On the other side, in (n, n)-direct simulation games oblivious strategies

do not exist anymore, since there might be trade-offs for Duplicator between discarding

right or left pebbles.

Formally, for the (1, n) case, let A be an NBA and B an ABA. Assume that the

current configuration is 〈q, s〉, and that Spoiler selects input symbol a, and successors

q′ ∈ ∆(q, a) and s′ ∈
⊗

∆(sU , a). Then, σ∗ is defined as to select s′′ = s′ ∪∆(sE, a)

if q′ 6∈ F , and s′′ = (s′∪∆(sE, a))∩F if q′ ∈ F . The next configuration is 〈q′, s′′〉. For

the (n, 1) case, let B be a UBA and A an ABA. Assume that the current configuration

is 〈q, s〉, and that Spoiler selects input symbol a, and successors s′ ∈ ∆(s, a) and

q′ ∈
⊗

∆(qE, a). Then, σ∗ is defined as to select q′′ = q′ ∪∆(qU , a) if s′ ∈ F , and

q′′ = (q′ ∪∆(qU , a)) \ F if s′ 6∈ F . The next configuration is 〈q′′, s′〉.
Clearly, σ∗ is a memoryless strategy. To show that it is oblivious, notice that

σdi ⊆ σ∗ for any winning strategy σdi. Intuitively, this holds since σ∗ throws pebbles

only when strictly necessary. Indeed, for the (1, n)-case, as long as there are no

accepting left pebbles, σ∗ splits pebbles maximally, and obviously subsumes σdi during

these rounds. Moreover, if there is any accepting left pebble, then any pebble that

σ∗ throws away has to be thrown away by σdi as well, since the latter strategy is

winning. Therefore, σ∗ subsumes σdi also in these rounds. The (n, 1)-case is analogous.

Therefore, if there exists a winning strategy σdi, then σ∗ is itself winning, since it always

satisfies the acceptance condition by construction, and it never gets stuck.

Fair simulation Recall that Duplicator has left-blind strategies in (n, k)-delayed

and fair simulation (cf. Definition 5.4.14). Left-blind strategies are clearly oblivious for

(n, 1)-delayed and fair simulation. Moreover, oblivious strategies for (1, n)-simulations

induce oblivious strategies for (n, n)-simulations, by splitting pebbles maximally on

the left. Therefore, we only address the (1, n) case, for which we describe an oblivious

strategy σ∗ for Duplicator.

σ∗ works in phases. During each phase, it splits pebbles maximally, while recording

which pebbles have seen an accepting state since the beginning of the phase.

If the same configuration 〈q, s′〉 with q ∈ F appears f(n) times, then drop pebbles

which have not yet seen an accepting state, and the next phase starts.

f(n) will be chosen large enough s.t. σ∗ throws pebbles away later than any strategy of

memory at most 22n (this suffices by Lemma 5.9.2). Clearly, recording of good pebbles

can be achieved with at most 2n memory, and detecting repetitions can be done with

230 Chapter 5. Multipebble simulations for ABAs

at most n · 2n · f(n) memory. Below, we show that f(n) = 24n in fact suffices, thus,

overall 2O(n) memory suffices for σ∗.

Assume that Duplicator has a winning strategy, and that Spoiler plays a fair path

π0 = q0
a0−→ q1

a1−→ · · · . By Lemma 5.9.2, there exists a winning strategy σ̂ of memory

at most 22n. We show σ̂ ⊆ σ∗ for any such strategy. Let π1 = s0
a0=⇒ s1

a1=⇒ · · ·
and π′1 = s′0

a0=⇒ s′1
a1=⇒ · · · be two multipaths s.t. π = π0 × π1 is σ̂-conform and

π′ = π0 × π′1 is σ∗-conform. Moreover, at round i, let mi be the current state of the

memory for σ̂. We reason by induction on phases. Suppose the current phase starts

at round i, and, by induction hypothesis, si ⊆ s′i. During the entire phase, σ∗ splits

pebbles maximally, so the order is respected.

At the end of the phase, say at round k, the same configuration 〈q, s′k〉 with q ∈ F
has appeared f(n) times. We determine f(n) as to ensure that strategy σ̂ has dropped

bad pebbles, i.e., si =⇒∃F sk. For any j ≥ i, let bj = {s ∈ sj | si 6=⇒∃F {s}} be the set

of pebbles which are not good at round j. Notice that si =⇒∃F sk holds iff bk = ∅. We

choose f(n) large enough to ensure that, for some h s.t. i ≤ h ≤ k, simultaneously,

1. sh is repeated twice (2n),

2. bh is repeated twice (2n), and

3. mh is repeated twice (22n).

Therefore, let f(n) = 2n · 2n · 22n = 24n. By construction, there exist h0 and h1 s.t.

i ≤ h0 < h1 ≤ k and q = qh0 = qh1 , s′k = s′h0 = s′h1 , sh0 = sh1 , bh0 = bh1 , and

mh0 = mh1 . By contradiction, assume si 6=⇒∃F sk. Then, si 6=⇒∃F sh0 by Lemma 5.4.1,

and, by definition, bh0 6= ∅. Let w = ah0ah0+1 · · · ah1−1 and ρ = 〈qh0 , sh0〉
ah0=⇒

· · ·
ah1−1

=⇒ 〈qh1 , sh1〉. Spoiler forces the following play (since σ̂ depends uniquely on the

current configuration and memory state):

π = 〈q0, s0〉
a0=⇒ · · ·

ah0−1

=⇒ ρω

for which qi ∈ F for infinitely many i’s. Let h2 = h0+2·(h1−h0), h3 = h0+3·(h1−h0),

and so on. For any l ≥ 0 and subset b ⊆ shl+1
, let

g(b) =
⋃
s′∈b

{s ∈ shl | s
w−→ s′}

be the set of w-predecessors of b in shl . g does not depend on l since multipaths are

obtained by unrolling the fixed multipath ρ. Bad pebbles can only have bad predecessors,

5.10. Complexity of multipebble simulations 231

and, by definition, bhl+1
is the maximal set of bad pebbles. I.e., for any l ≥ 0,

bhl+1
= νb · b ⊆ shl+1

∧ g(b) ⊆ bhl (†)

We claim that bh0 = bh1 = bh2 = · · · . We proceed by induction. The base case

bh0 = bh1 holds by assumption. Assume bht−1 = bht . By (†), bht+1 = νb · b ⊆
sht+1 ∧ g(b) ⊆ bht . By inductive hypothesis, bht = bht−1 and, since sht+1 = sht ,

bht+1 = νb · b ⊆ sht ∧ g(b) ⊆ bht−1 , which is (†) for l = t− 1. Thus, bht+1 = bht .

Therefore, ∅ 6= bh0 = bh1 = bh2 = · · · , that is, si 6=⇒∃F shl for any l ≥ 0. Thus,

π1 = s0
a0=⇒ s1

a1=⇒ · · · is not an existentially fair multipath. Since Spoiler builds a fair

path π0 = q0
a0−→ q1

a1−→ · · · , this contradicts that σ̂ is winning. Hence, si =⇒∃F sk.

Since si ⊆ s′i by induction hypothesis, by Lemma 5.4.3, s′i =⇒∃F sk. Therefore,

good pebbles in sk are good in s′k as well. Let s′′k be the largest subset of s′k s.t.

s′i =⇒∃F s′′k. Then, sk ⊆ s′′k and s′′k is non-empty. Consequently, Duplicator discards all

pebbles not in s′′k, the green light flashes, and the invariant is preserved for the beginning

of the next phase.

The invariant and the definition of σ∗ guarantee that, if there exists a winning

strategy, then σ∗ is itself winning:

1. σ∗ never gets stuck in an empty set since σ̂ ⊆ σ∗, and σ̂ is winning.

2. Since π0 is fair, configurations of the form 〈qi, si〉 with qi ∈ F appear arbitrarily

many times. By the definition of σ∗, pebbles which have not seen an accepting

state are always eventually dropped.

Therefore, π′1 is existentially fair. Thus, σ∗ is oblivious.

Delayed simulation σ∗ works in phases as in fair simulation: During each phase,

it splits pebbles maximally, while recording which pebbles have seen an accepting

state since the oldest (principal) and the most recent (fresh) pending obligation (cf.

Section 5.9.3).

If a configuration 〈q, s′〉 appears f(n) times and there is a principal pending

obligation, then drop bad pebbles w.r.t. the principal obligation, initialize the next

principal obligation as the current fresh obligation, and the next phase starts.

f(n) can be taken to be 24n for the same reasons as for fair simulation. In particular,

the factor 22n is used to force a repetition of the memory state of any 22n-finite memory

232 Chapter 5. Multipebble simulations for ABAs

strategy, which suffices by Lemma 5.9.5. Strategy σ∗ needs 22n memory for recording

good pebbles w.r.t. the principal and fresh obligation, and n · 2n · f(n) for detecting

repetitions. Therefore, 2O(n) memory suffices also for delayed simulation.

The correctness argument is as for fair simulation, by showing σ̂ ⊆ σ∗ for any

22n-memory winning strategy σ̂ (if any). The crucial observation is that, if there is

a pending obligation, then σ̂ has to drop pebbles after at most 24n rounds, otherwise

Spoiler can force an eventually periodic play where the obligation is never fulfilled. By

appropriately dropping pebbles, σ∗ is guaranteed to fulfill any pending obligation, and,

because this happens after 24n rounds since the obligation is raised, σ∗ is ensured to

have at least as many pebbles as σ̂.

5.10.2 Domino-tiling games

We introduce certain tiling games which are used to prove the PSPACE and EXPTIME

lower bounds in the following sections. We consider Wang tiles [120, 24]. Let T =

{t0, t1, . . . , tk−1} be a finite set of k different tiles. There are two compatibility relations

H, V ⊆ T × T , where H is the horizontal compatibility relation and V is the vertical

compatibility relation. A row is a sequence of tiles. Fix an even number m+ 1, and let

R = Tm+1 be the set of all rows of length m+ 1.

A tiling is a sequence of rows r0r1 · · · ∈ Rω, where each row ri consists of the

m+ 1 tiles ri = ci,0ci,1 · · · ci,m. A tiling is a valid iff the compatibility relations H,V

are satisfied: That is, for any i ≥ 0 and 0 ≤ j ≤ m, the following holds

• Horizontal compatibility: H(ci,j, ci,j+1) if j < m, and H(ci,j, ci+1,0) if j = m.

• Vertical compatibility: V (ci,j, ci+1,j).

Remark 5.10.4. The horizontal compatibility says that, if we arrange rows horizontally,

then any two neighboring tiles satisfy H . This differs from [24], where border tiles are

treated separately, and assumed to match a special-purpose horizontal compatibility

relation H ′. Our is a minor modification, and does not alter the complexity results.

A domino-tiling game starting at a distinguished row r0 ∈ R is played by two

players, named Saboteur and Constructor, which alternate in rounds by choosing tiles.

The first row is fixed, and equals the given r0. Successive rows are built with tiles placed

in a left-to-right fashion, with Constructor starting first. Once a row is completed, the

game moves to the following one. The game stops only if no compatible tile can be

5.10. Complexity of multipebble simulations 233

placed: In this case, Saboteur wins. Otherwise, the game never stops, and an infinite,

rectangular and valid tiling is produced, and Constructor wins.

Given a finite set of tiles T , an even number m + 1 in unary, and an initial row

r0 ∈ R, determining whether Constructor has a winning strategy in the domino-tiling

game starting at r0 is EXPTIME-complete.

Theorem 5.10.5 (cf. [24]). Solving 2-player tiling games is EXPTIME-complete.

If we restrict the game to only one player, i.e., to just Constructor, then the problem

reduces to PSPACE-complete.

Theorem 5.10.6 (cf. [24]). Solving 1-player tiling games is PSPACE-complete.

5.10.3 PSPACE-hardness of (1, n)-simulations

Direct simulation PSPACE-hardness of (1, n)-direct simulation on NBAs is im-

mediate by reduction from trace inclusion: Given two nondeterministic finite state

transition systems A and B (with no acceptance condition), one can decide whether

the set of traces of A is included in that of B by interpreting A and B as automata

with every state accepting, and then checking A vdi
(1,n) B, where n = |B|. Since trace

inclusion is PSPACE-hard [89], vdi
(1,n) is PSPACE-hard.

Delayed and fair simulation We show PSPACE-hardness of (1, n)-delayed and

fair multipebble simulation on NBAs by reducing from the one-player domino-tiling

problem. This reduction will be extended to the two-player version in order to show

EXPTIME-hardness of various multipebble simulation games in the following Sec-

tions 5.10.4 and 5.10.5.

The main idea is as follows. In the tiling game there is only one player, i.e.,

Constructor. Spoiler in the simulation game plays the role of Constructor in the tiling

game. Duplicator ensures that only compatible tiles are put on the board, thus allowing

Spoiler’s play to induce a legal Constructor’s play. When a new tile is added in the

current row, Duplicator checks that the vertical and horizontal constraints are both

satisfied.

• Horizontal constraints are easy to check by just comparing the previous tile with

the new one.

• Vertical constraints need to remember the previous row, and Duplicator uses

pebbles to achieve this.

234 Chapter 5. Multipebble simulations for ABAs

If any constraint is violated, then Duplicator is allowed to go to a special accepting

sink state capable of doing any action in Σ. The game always goes on forever, and

Spoiler wins iff Duplicator has not reached the sink state (since Duplicator is accepting

in the sink state). This implies that the simulation and the tiling game are equivalent,

in the sense that Spoiler wins if, and only if, Constructor wins by building an infinite

and valid tiling. Since one-player domino games are PSPACE-hard by Theorem 5.10.6,

(1, n)-simulation is PSPACE-hard.

The reduction is the same for both delayed and fair simulation. Let the set of k tiles

be T = {t0, t1, . . . , tk−1}, letH,V ⊆ T ×T be the horizontal and vertical compatibility

relations, respectively, and let r0 = c0c1 . . . cm be the initial row of m+ 1 tiles. Let the

alphabet Σ = T be just the set of tiles. The automaton A consists of a single universal

accepting state QA = {C}:

CA :

Σ

Therefore, Spoiler will always build a fair path in A, and delayed simulation collapses

to fair simulation in this case.

The automaton B has states inQB = (T× [m+1])×(T× [m+1])∪{sk} consisting

of pairs of tiles augmented with a position index, and a special sink state sk. Therefore,

n = ((m+ 1) · k)2 + 1. Intuitively, a pebble is on a non-sink state
t, j
u, i ∈ QB when

the last tile that has been laid is t and it is in the j-th tile of the current row. Moreover,

if i ≤ j, then the i-th tile of the current row is u; in particular, if i = j, then u = t.

Otherwise, if i > j, then u is the i-th tile of the past row. Given a state as above, we say

that 〈t, j〉 is the current component and that 〈u, i〉 is the past component.

Fix a source state
t, j
u, i , and let j′ = (j + 1) mod (m+ 1) be the successor index.

On input symbol t′ ∈ T , there are two types of transitions in B.

(Trans-0) Case i = j′: The newly placed tile t′ is checked against horizontal compatibility

with t, and against vertical compatibility with u. If the check fails, then there is an

immediate transition to the universal state sk. Otherwise, the current component is

updated to record that the new tile t′ is placed in position j′. The past component

records this information as well, for future checks.

5.10. Complexity of multipebble simulations 235

B, i = j′ :

t, j

u, i
sk

t′, j′

t′, j′

t′ : ¬H(t, t′) or ¬V (u, t′)

t′

Σ

State sk is the unique accepting state in B.

(Trans-1) Case i 6= j′: The current component is updated to just record that the new tile t′

is placed in position j′. The past component stays unchanged:

B, i 6= j′ :
t, j

u, i

t′, j′

u, i

t′

No check is made for horizontal or vertical compatibility in this case.

A formal definition of automaton B follows.

Definition 5.10.7. B = (QB,Σ,∆B, FB), where

QB = (T × [m+ 1])× (T × [m+ 1]) ∪ {sk}

Σ = T = {t0, t1, . . . , tk−1}

FB = {sk}

∆B = {(

(
〈t, j〉
〈u, i〉

)
, t′,

(
〈t′, j′〉
〈t′, j′〉

)
) | t′ ∈ T and i = j′ = (j + 1) mod (m+ 1)} ∪

{(

(
〈t, j〉
〈u, i〉

)
, t′, sk) | t′ ∈ T, i = (j + 1) mod (m+ 1) and:

¬H(t, t′) or ¬V (u, t′)} ∪

{(

(
〈t, j〉
〈u, i〉

)
, t′,

(
〈u, i〉
〈t′, j′〉

)
) | t′ ∈ T and i 6= j′ = (j + 1) mod (m+ 1)} ∪

{(sk, a, sk) | a ∈ Σ}

Invariant The only way for Duplicator to win is to eventually reach the sink state sk,

by taking some t′-transition to sk, where t′ is an incorrectly placed tile (as in (Trans-0)

above). As long as this does not happen, Constructor/Spoiler has only placed valid tiles,

and the following invariant is preserved: At any round, pebbles in B are on states

236 Chapter 5. Multipebble simulations for ABAs

ei, i

e0, 0
· · · ei, i

ei, i

ei, i

di+1, i+1
· · · ei, i

dm,m

if, and only if, the previous row contains tiles r = d0d1 · · · dm, and the current row

r′ = e0e1 · · · ei has been filled up to position i ≤ m. In particular, there are exactly

m+ 1 B-pebbles on the board, all of which agree on the current component 〈ei, i〉, i.e.,

the last laid pebble. Duplicator does not benefit from having more than m+ 1 pebbles.

Given the initial row r0 = c0c1 · · · cm, pebbles in B are initially placed on states

s0 :=
cm,m

c0, 0

cm,m

c1, 1
· · · cm,m

cm,m

From the discussion above, Constructor wins the domino-tiling problem iff Spoiler wins

the delayed/fair simulation game starting from position 〈C, s0〉.

Theorem 5.10.8. Checking (1, n)-direct, delayed and fair simulation is PSPACE-hard.

5.10.4 EXPTIME-hardness of (1, n)-simulations on ABAs

We show EXPTIME-hardness of (1, n)-delayed and fair simulation on ABAs by reduc-

tion from two-player domino-tiling games. We extend the reduction from one-player

domino-tiling games of Section 5.10.3. The actions of Saboteur are modelled by giving

extra choices to Duplicator. In this section we do so by introducing alternation in the

A automaton, and we use a gadget that allows Duplicator/Saboteur to select the next

input symbol/tile. The B automaton is the same as in the previous section, with some

adjustment to enforce that Duplicator faithfully mimics Saboteur. Automaton B is still

nondeterministic, while A has only universal and deterministic states. (In the next

section, the actions of Saboteur will be modelled differently: Instead of introducing

alternation inA, we will prescribe a fixed but high number of B-pebbles for Duplicator.)

Recall that T = {t0, t1, . . . , tk−1} is the set of k tiles, H,V ⊆ T × T are the

horizontal and vertical compatibility relations, respectively, and r0 = c0c1 . . . cm is the

initial row. We describe the construction in an incremental fashion; the starting point is

the the one of Section 5.10.3.

In general, when modelling the actions of Saboteur by actions of Duplicator, we

need to address the following two abstract issues.

(ModIssue-0) Duplicator can select only valid tiles.

5.10. Complexity of multipebble simulations 237

(ModIssue-1) If Duplicator cannot select any compatible tile, then Duplicator/Saboteur wins

the respective game.

Consider the following modelling attempt (state C is repeated twice for readability).

C S

t0

t1

tk−1

CA0 :
...

T

X

X

X

t0

t1

tk−1

State C is deterministic and models the choices of Spoiler/Constructor (as in Sec-

tion 5.10.3), which is in charge of selecting the next input tile ti ∈ T . Choices of

Saboteur are modelled in a two-step process. State S is a proper universal state, which

can only perform the special action X and go to some state ti ∈ T . Therefore, Spoiler

can only choose symbol X, and Duplicator/Saboteur has to select a successor state ti.

Then, from state ti, there is a characteristic transition ti
ti−→ C back to state C. Thus, if

Duplicator went to state ti, then Spoiler is forced to play action ti, ending the two-step

process. (For compatibility with this two-step process, we allow every state in B to

perform action X—see later.)

We address (ModIssue-0). Nothing prevents Duplicator from selecting an incom-

patible tile and winning immediately by going to state sk in B (cf. Section 5.10.3). To

avoid this, we endow Spoiler with the capability of “punishing” Duplicator whenever

the latter tries to place an incompatible tile. We associate to each action ti ∈ T a

dual action t̄i ∈ T , and we add in A transitions of the form ti
t̄i−→ sk′, where sk′ is a

distinguished sink state in A:

C S

t0

t1

tk−1

C

sk′

A1 :
...

T

X

X

X

t0

t1

tk−1

t̄0

t̄1
t̄k−1

X

Intuitively, if Duplicator plays an incompatible tile ti by going to state ti, then Spoiler

238 Chapter 5. Multipebble simulations for ABAs

can punish her by playing t̄i and going to sk′. From sk′, Spoiler would win by playing

X forever, since we make sure that no non-sink accepting X-loop exists in B.

So far, nothing prevents Spoiler from always playing some barred action t̄i and

trivially winning. In order to prevent this, we need to modify B to ensure that, if ti
actually was a compatible tile, then Spoiler would lose if playing t̄i. We achieve this by

adding in B the following additional transitions to the sink state (Case (Trans-0), where

j′ := (j + 1) mod (m+ 1)):

B, i = j′ :
t, j

u, i
sk

t̄′ : H(t, t′) and V (u, t′)

X

Σ

It remains to address (ModIssue-1): We need a way for Duplicator/Saboteur to

declare that no compatible tile can be placed next. We create a new A-state , together

with the following transitions:

S sk′
X T

X

Intuitively, if Duplicator goes to state , then she claims that, for every tile placed next,

she can prove that this tile is incompatible. From state , there are only ti-transitions to

the sink state sk′, for every tile ti ∈ T (and not barred t̄i-transitions). Therefore, if no

valid tile can be placed next, then Duplicator will go to state , from which Spoiler is

forced to play an incompatible tile ti ∈ T and go to state sk′. Since ti is incompatible,

there exists some pebble on B that goes to the accepting state sk. From configuration

〈sk′, sk〉, Duplicator wins. On the other hand, if Duplicator erroneously believes that

there is no compatible tile that can be placed next, and she moves to nonetheless,

then Spoiler could play some compatible tile ti ∈ T and go to state sk′. Since ti was

compatible, no pebble in B can go to state sk. Therefore, Spoiler would play Xω and

win, since all B-pebbles would be trapped into a non-accepting X-loop. Summing-up,

Duplicator goes to state iff there is no compatible tile to be placed next.

Overall, automaton A is as follows:

5.10. Complexity of multipebble simulations 239

C S

t0

t1

tk−1

C

sk′

A :
...

T

X

X

X

X

t0

t1

tk−1

T

t̄0

t̄1
t̄k−1

X

Automaton B has the same states as in Section 5.10.3. Transitions of kind (Trans-1)

are also the same. On the other hand, transitions of kind (Trans-0) are as follows:

B, i = j′ :

t, j

u, i
sk

t′, j′

t′, j′

t′ : ¬H(t, t′) or ¬V (u, t′)

t̄′ : H(t, t′) and V (u, t′)

t′

X

Σ

A formal definition of the two automata follows.

Definition 5.10.9. Let Σ = T ∪ T ∪ {X}. Then, A = (QA,Σ,∆A, FA), where

QA = {C, S, , sk′} ∪ T

FA = QA

∆A = {(C, t, S) | t ∈ T} ∪

{(S,X, x) | x ∈ T ∪ { }} ∪

{(, t, sk′) | t ∈ T} ∪

{(t, t, C), (t, t̄, sk′) | t ∈ T} ∪

{(sk′,X, sk′)}

240 Chapter 5. Multipebble simulations for ABAs

and B = (QB,Σ,∆B, FB), where

QB = (T × [m+ 1])× (T × [m+ 1]) ∪ {sk}

FB = {sk}

∆B = {(

(
〈t, j〉
〈u, i〉

)
, t′,

(
〈t′, j′〉
〈t′, j′〉

)
) | t′ ∈ T and i = j′ = (j + 1) mod (m+ 1)} ∪

{(

(
〈t, j〉
〈u, i〉

)
, t′, sk) | t′ ∈ T, i = (j + 1) mod (m+ 1) and:

¬H(t, t′) or ¬V (u, t′)} ∪

{(

(
〈t, j〉
〈u, i〉

)
, t̄′, sk) | t′ ∈ T, i = (j + 1) mod (m+ 1) and:

H(t, t′) and V (u, t′)} ∪

{(

(
〈t, j〉
〈u, i〉

)
, t′,

(
〈t′, j′〉
〈u, i〉

)
) | t′ ∈ T and i 6= j′ = (j + 1) mod (m+ 1)} ∪

{(

(
〈t, j〉
〈u, i〉

)
,X,

(
〈t, j〉
〈u, i〉

)
)} ∪

{(sk, a, sk) | a ∈ Σ}

Theorem 5.10.10. Checking (1, n)-delayed and fair simulation on ABAs is EXPTIME-

hard. Moreover, A can be taken with only universal states (UBA), and B an NBA.

It is crucial that there exists exactly one left pebble onA. For example, already with

only two left pebbles, Duplicator could go to A-states {t0, t1}, form which no common

transition is available, and she would obviously win.

5.10.5 EXPTIME-hardness of (1,
√
n)-simulations on NBAs

We show EXPTIME-hardness of (1,
√
n)-delayed and fair multipebble simulation on

NBAs. While in Section 5.10.4 the actions of Saboteur are modelled with universal

states in A, here we use extra existential states in B. To force Duplicator to choose only

one of such extra B-states, we give Duplicator a high, but non-maximal
√
n pebbles.

Recall T = {t0, t1, . . . , tk−1} is the set of k tiles, H,V ⊆ T × T are the horizontal

and vertical compatibility relations, respectively, and r0 = c0c1 . . . cm is the initial row.

Also, for any i, let Ti = (T ∪ T) \ {ti, t̄i}. Again, we modify the construction of

Section 5.10.3 in an incremental fashion. In particular, automaton B therein, is referred

to as B0 in the following.

5.10. Complexity of multipebble simulations 241

We model Saboteur’s choices with gadget B1 below. The idea is to prevent Spoiler

from playing a certain action a ∈ Σ by adding in B an a-transition to the sink state sk.

C ′ S ′

t0

t1

tk−1

C ′

sk

B1 :
...

T

X

X

X

X

t0
t1

tk−1

T

T0

T1
Tk−1

Σ

C S U sk′A :
T X

T

T

X

Intuitively, Duplicator/Saboteur selects the next tile to be placed by moving exactly one

right pebble from S ′ to some state ti. (We show later how to force Duplicator to select

exactly one successor.) When Duplicator is on state ti, Spoiler is forced to play either

action ti or t̄i; otherwise, the right pebble will end up in state sk, and Duplicator would

win from there. If Duplicator believes that no valid tile can be placed next, then she

goes to state . This forces Spoiler to play a tile t ∈ T , and Duplicator wins iff t is not

valid. (Clearly, Duplicator will always keep a pebble on B1, since this gives her more

chances to reach sk.)

We force Duplicator to select exactly one successor of S ′ with two devices:

1. We allow Duplicator to use at mostm+2 pebbles, m+1 of which are on ordinary

states of shape
t, j
u, i , and the remaining one is somewhere in B1.

2. To prevent Duplicator from moving any extra pebble from B0 to B1, we allow

Spoiler to periodically check whether, for each i ∈ [m+ 1], there exists a pebble

on some state
t, j
u, i . By the invariant of Section 5.10.3, Duplicator can always

play as to satisfy these checks. To do so, we add the following transitions.

242 Chapter 5. Multipebble simulations for ABAs

U sk′in A :
[m+ 1]

X

t, j

u, i
skin B0 :

i

Σ

This solves (ModIssue-0) and (ModIssue-1). Summing up, the automaton A has the

shape below.

C S U sk′A :
T X

T

T

[m+ 1]

X

Automaton B is the union of B0 and B1, where B1 is as above, and B0 is as below (where

j′ := (j + 1) mod (m+ 1)).

(Trans-0) B0, i = j′ :

t, j

u, i
sk

t′, j′

t′, j′

i

t′ : ¬H(t, t′) or ¬V (u, t′)

t̄′ : H(t, t′) and V (u, t′)

t′

X

Σ

(Trans-1) B0, i 6= j′ :

t, j

u, i
sk

t′, j′

u, i

i

t′

X

Σ

A formal definition of the two automata follows.

5.10. Complexity of multipebble simulations 243

Definition 5.10.11. Let Σ = T ∪ T ∪ {X} ∪ [m + 1]. Then, A = (QA,Σ,∆A, FA),

where

QA = {C, S, U, sk′}

FA = QA

∆A = {(C, t, S) | t ∈ T} ∪ {(S,X, U)} ∪

{(U, t, C), (t, t̄, sk′) | t ∈ T} ∪ {(U, i, sk′) | i ∈ [m+ 1]} ∪ {(sk′,X, sk′)}

and B = B0 ∪ B1, where B0 = (QB0 ,Σ,∆B0 , FB0), with

QB0 = (T × [m+ 1])× (T × [m+ 1]) ∪ {sk}

FB0 = {sk}

∆B0 = {(

(
〈t, j〉
〈u, i〉

)
, t′,

(
〈t′, j′〉
〈t′, j′〉

)
) | t′ ∈ T and i = j′ = (j + 1) mod (m+ 1)} ∪

{(

(
〈t, j〉
〈u, i〉

)
, t′, sk) | t′ ∈ T, i = (j + 1) mod (m+ 1) and:

¬H(t, t′) or ¬V (u, t′)} ∪

{(

(
〈t, j〉
〈u, i〉

)
, t̄′, sk) | t′ ∈ T, i = (j + 1) mod (m+ 1) and:

H(t, t′) and V (u, t′)} ∪

{(

(
〈t, j〉
〈u, i〉

)
, t′,

(
〈t′, j′〉
〈u, i〉

)
) | t′ ∈ T and i 6= j′ = (j + 1) mod (m+ 1)} ∪

{(

(
〈t, j〉
〈u, i〉

)
, i, sk)} ∪ {(

(
〈t, j〉
〈u, i〉

)
,X,

(
〈t, j〉
〈u, i〉

)
)} ∪ {(sk, a, sk) | a ∈ Σ}

and where B1 = (QB1 ,Σ,∆B1 , FB1), with

QB1 = {C ′, S ′, , sk} ∪ T

FB1 = {sk}

∆B1 = {(C ′, t, S ′) | t ∈ T} ∪ {(S ′,X, x) | x ∈ { } ∪ T} ∪ {(, t̄, x) | t ∈ T} ∪

{(ti, ti, C ′), (ti, t, sk) | t ∈ Ti = (T ∪ T) \ {ti, t̄i}} ∪ {(sk, a, sk) | a ∈ Σ}

Automaton B0 has ((m+ 1) · k)2 + 1 states, while B1 has k + 4 states: Overall, B
has n := ((m+ 1) · k)2 + k + 5 states.

The simulation game is played with a fixed number m + 2 of pebbles. Given an

initial row r0 = c0c1 · · · cm, the initial m + 1 pebbles in B are like in Section 5.10.3,

while the the remaining pebble is on C ′.

244 Chapter 5. Multipebble simulations for ABAs

s0 :=
cm,m

c0, 0

cm,m

c1, 1
· · · cm,m

cm,m C ′

From the considerations above, it follows that Constructor wins the domino-tiling game

iff Spoiler wins the (1,m + 2)-simulation game. (With n pebbles, Duplicator would

always win.) Notice that m+ 2 =
√
n− k − 5/k + 1 is strictly less than n, the size of

automaton B. By adding enough dummy states to B, we can obtain a larger automaton

B′ with n′ = k2n+ k + 5 states, for which m+ 2 =
√
n′.

Theorem 5.10.12. Checking (1,
√
n)-delayed and fair simulation on ABA is EXPTIME-

hard. Moreover, A can be taken to have only deterministic states (therefore, it can be

an NBA or UBA), and B only existential states, i.e., an NBA.

Chapter 6

Conclusions

Contents
6.1 Overview . 245

6.2 Applications . 246

6.3 Recapitulation and further work 247

6.4 Advanced language inclusion checking 250

6.4.1 Subsumption for automata over finite words 251

6.4.2 Subsumption in the rank-based approach 252

6.4.3 Subsumption in the Ramsey-based approach 253

6.4.4 Improved subsumption in Ramsey 256

6.4.5 Further work . 263

6.5 Conclusions . 264

6.1 Overview

In this last chapter, we wrap-up by reviewing applications of our automata simplification

procedures (Section 6.2), we illustrate ideas for further research (Section 6.3), and we

put simulation preorders in perspective by pointing at recent work using simulations in

advanced language inclusion algorithms (Section 6.4). Some final words in Section 6.5

conclude the chapter, and the thesis.

245

246 Chapter 6. Conclusions

6.2 Applications

The methods developed in this thesis allow to reduce the size of automata. In this

section, we briefly touch on three prominent applications where smaller automata are

beneficial.

Universality and inclusion checking

Universality and inclusion checking are important problems in formal verification,

with applications in the automata-theoretic approach to model-checking and in sanity

checking of formal specifications (cf. Section 1.4.1). Known exact algorithms have a

worst-case running time exponential in the number of states (and, since the problem is

PSPACE-complete, this is unavoidable unless P = PSPACE). Therefore, reducing the

size of automata before running expensive universality/inclusion checking procedures

can substantially broaden the applicability of those methods.

For another use of simulations in providing powerful subsumption preorders for

optimizing exact universality/inclusion checking procedures, see Section 6.4.3.

Automata complementation

The ability of complementing automata is a cornerstone feature of automata-theory.

Automata complementation is necessary when translating from expressive temporal

logics, e.g., monadic second-order logic, and it also has applications in checking the

validity of LTL translation algorithms and in synthesis (cf. Section 5.1). Moreover,

if practical complementation procedures are available, then language inclusion and

universality can be reduced to the much easier language emptiness problem.

Therefore, in several applications the ability of obtaining small complement au-

tomata is crucial. Since complementation is an inherently exponential procedure, a

“small” complement automaton can make the difference between being able or not to

store in main memory a suitable representation for it. Thus, simplification procedures

that reduce the size of the output automaton are essential to the feasibility of any

complementation algorithm.

In this thesis, and in particular in Chapter 5, we develop techniques that can be used

to simplify alternating automata. When alternating automata are used as intermediate

representations for the complement automaton, reducing the former eventually results

into a decrease in size of the latter. Has we have pointed out in Chapter 5, however, our

6.3. Recapitulation and further work 247

techniques cannot be immediately applied “out of the box” to complementation. In fact,

we consider a restricted model of alternation with existential and universal states, while

complementation procedures require a more general model of alternation with arbitrary

boolean combinations. However, we believe our techniques can naturally be extended

to the more expressive automata. Cf. also the discussion in Section 5.1.

Automata from temporal logic

Also translation algorithms for temporal logics (in particular, for LTL) can benefit

from intermediate representation via alternating automata, and reducing the size of the

latter can dramatically widen the applicability of LTL translation algorithms. The same

remarks apply here as for complementation (see above, and Section 5.1).

6.3 Recapitulation and further work

We briefly recapitulate the contributions of the central chapters, and we touch upon

some points that we believe are interesting for future work.

Chapter 3: Fixed-word simulations

We have shown that delayed fixed-word simulation is GFQ. However, it is PSPACE-

complete to compute, so the first two questions try to deal with this high complexity.

1. Tractable fragments of fixed-word simulations: In Chapter 3, we have established

that fixed-word delayed simulation is GFQ (cf. Theorem 3.4.2). Unfortunately,

computing fixed-word simulation is computationally expensive (i.e., PSPACE-

complete; cf. Theorem 3.4.5). However, by Corollary 2.4.8, any finer relation is

GFQ as well. Therefore, one could look for tractable fragments of fixed-word

delayed simulation.

2. Rank-based algorithm for computing fixed-word delayed simulation: In Sec-

tion 3.4.4, we have reduced computing fixed-word delayed simulations to the

universality problem of alternating Büchi automata. Another construction might

be possible, by using ideas from the proof of Theorem 3.4.3. Indeed, in that proof

we construct certain “small” ranks which are a sufficient and necessary condition

for fixed-word simulation to hold (cf. Section 3.5). A direct construction of a

248 Chapter 6. Conclusions

nondeterministic Büchi automaton guessing and checking these ranks might be

possible.

Another possible line of investigation is more semantical, and aims at even coarser

relations.

3. Even coarser GFQ simulations: Simulation-like GFQ relations even coarser

than fixed-word delayed simulation might be possible. With Theorem 3.4.3, we

have ruled out the possibility of obtaining one such relation by adding multiple

pebbles. Nonetheless, alternative constructions yielding coarser GFQ relations

might exists; finding these is important to understand the theoretical limits of

quotienting Büchi automata.

Chapter 4: Jumping simulations

4. Better understanding of how forward and backward simulations relate to each

other: The proxy simulation hierarchy comprises incomparable jumping-safe

preorders. A priori, quotienting w.r.t. the induced GFQ equivalence might give

very different results, and this seems to be an essential feature of the theory, i.e.,

forward and backward simulations are inherently incomparable.

Practical experimentation can help finding good recipes for quotienting automata

from real-life scenarios.

5. Generalization to ABAs: The theory of jumping simulations can be extended to

alternating models. However, important notions like jumping-safety do not easily

generalize in the presence of alternation, and more complex properties need to

be introduced. Similar difficulties have been tackled with mediated preorder for

ABAs [4].

6. Coarser notions subsuming both jumping simulations and mediated preorder:

Jumping simulations and mediated preorder can both be described as jumping

games, where jumps occur at certain rounds during the game; such jumps are

prescribed in advance (cf. Section 4.7). This suggests the possibility of a general

jumping scheme subsuming both notions, and which would yield an even coarser

GFQ preorder.

6.3. Recapitulation and further work 249

Chapter 5: Multipebble simulations

First, and foremost, multipebble simulation can be studied for more expressive models

of alternation.

7. Multipebble simulations for more general alternating automata: As we have

already discussed in Sections 6.2 and 5.1, we consider a restricted model of

alternation with existential and universal states, while established applications

of alternating automata, such as in complementation and temporal logic transla-

tion procedures, require more general models of alternation (e.g., with arbitrary

boolean combinations).

Therefore, an important topic for future work is to generalize multipebble simula-

tions to richer models of alternation. This can be done, in the case of alternating

automata with epsilon transitions, along the lines of [54].

We have seen in Chapter 3 that multipebble simulations for NBAs under-approximate

corresponding containment/fixed-word notions. A natural question is whether this car-

ries over to alternating automata.

8. GFQ direct containment over-approximating (k0, k1)-direct simulation on ABAs:

In nondeterministic models, multipebble direct simulation is GFQ because it

under-approximates direct containment, which is GFQ by Theorem 3.3.4 (cf.

Corollary 2.4.8). By Theorem 5.8.8, (k0, k1)-direct simulation is GFQ for ABAs

(w.r.t. minimax quotients). However, it is not clear whether (k0, k1)-direct

simulation is under-approximating some kind of GFQ direct containment on

ABAs. Perhaps, one needs to consider a kind of alternating containment, in the

spirit of [7].

9. GFQ fixed-word delayed simulation over-approximating (1, n)-delayed simula-

tion on ABAs: For the delayed case, containment is not GFQ (cf. Example 3.3.2),

and one has to resort to the finer fixed-word simulation. On ABAs, we have seen

that only (1, n)-delayed simulation is GFQ (w.r.t. semielective quotients), there-

fore a trivial generalization of fixed-word delayed simulation to ABAs would not

work, since it would presumably be at least as coarse as (n, n)-delayed simulation,

which is not GFQ. In a sense, a restricted version of fixed-word simulation for

ABAs should not allow Duplicator to use her extra power on the left.

(In any case, it seems to be technically crucial that minimal successors of universal

states in mixed classes are unique up to equivalence; cf. Lemma 5.8.18).

250 Chapter 6. Conclusions

Another open problem is to compute multipebble simulations in practice.

10. Antichain-based practical algorithms: We have given two different kinds of

algorithms for computing multipebble simulations:

• Theoretical algorithms: In Section 5.10, we have presented algorithms of a

theoretical nature, primarily geared towards providing matching upper- and

lower-bounds.

• Practical algorithms: In Section 5.9, we have given more practical algo-

rithms, by characterizing multipebble simulations as fixpoints of certain

monotone expressions in suitable transition systems.

The algorithms of the second kind provide generic EXPTIME upper bounds on

the problem, although they need to precompute and store in memory a transition

system which is exponentially larger than the original automaton.

However, the exponential transition systems used for computing multipebble

simulations are naturally equipped with structural game simulations, which can

be used to build symbolic representations of the sets involved in the fixpoint

computation, in the style of antichain methods (cf. Section 6.4).

6.4 Advanced language inclusion checking

In this section, we discuss how simulations have recently found applications in optimized

universality and inclusion checking algorithms for nondeterministic Büchi automata.

Given two automataA and B, the language inclusion problem amounts to check whether

L(A) ⊆ L(B); language universality is the special case when L(A) = Σω. For finite

state automata (over finite or infinite words), using their closure properties one can build

1. an automaton Bc recognizing the complement language (say over infinite words)

L(Bc) = Σω \ L(B), and

2. a product automaton A× Bc recognizing the intersection L(A× Bc) = L(A) ∩
L(Bc) = L(A) \ L(B),

and the inclusion problem can be reduced to an emptiness problem (which is easy):

L(A) ⊆ L(B) iff L(A× Bc) = ∅

6.4. Advanced language inclusion checking 251

Different complementation procedures for building Bc give rise to different inclusion

algorithms. However, actually constructing the complement automaton is infeasible

for any such procedure, since Bc can be exponentially larger than B. Fortunately, to

test L(A× Bc) = ∅, Bc needs not be constructed in its entirety, and clever exploration

techniques that keep the complementation step implicit can be employed. These

techniques crucially rely on the existence of structural subsumption preorders which

exist by construction and need not be computed. Methods exploiting subsumption are

sometimes called antichain methods, since they makes use of optimized representations

of the state space based on antichains (i.e., sets with only incomparable elements),

which serve as a symbolic representation of much larger sets.

For finite-word automata, there is just one complementation procedure [98, 68].

Antichain-based subsumption techniques have originally been developed to optimize

such construction; see Section 6.4.1.

For Büchi automata, the situation is more articulated. The literature on complemen-

tation constructions for Büchi automata is rich and it will not be reviewed here; see,

e.g., [117, 106] and references therein. Each complementation construction naturally

gives rise to specific subsumption methods. In this section, we consider two such con-

structions, namely, the rank and Ramsey-based constructions, for which subsumption

methods have been developed and proved useful in practice.

6.4.1 Subsumption for automata over finite words

The earliest reference on antichains methods we are aware of is [100] (see also the

Ph.D thesis [99]), where it is observed that, when complementing a nondeterministic

finite automaton (NFA), the full subset construction building the complete lattice of

subsets can be avoided. Instead, a simplified construction maintaining only an antichain

of ⊆-minimal macrostates suffices (a macrostate in the subset automaton is just a set

of states in the original automaton); in other words, the computation is done in an

abstract lattice of antichains instead of the concrete lattice. In general, the former can

be exponentially more succinct than the latter. Another early reference considering a

similar technique, but for finite tree automata, is [112].

The antichain approach for the complementation of NFAs has been rediscovered

again in [122], as an application of solving a more difficult (but related) problem about

games of incomplete information [23] (see also [102] and Chapter 6 of [8]). More

recently, the theory behind antichain methods has been worked out in more detail [37].

252 Chapter 6. Conclusions

A crucial observation is the following, linking together antichains and simulations [35]:

Subset-like constructions come equipped with large structural simulations.

With “structural” we mean that these simulations are an inherent feature of subset

constructions, and they do not need to be explicitly computed since they can be defined

a priori. For example, in complementing NFAs, ⊆-inclusion between macrostates (sets

of states) is a structural simulation in the complement automaton.

As a recent improvement, [5] has shown how a simulation in the original automaton

can be naturally lifted in a simulation in the complement automaton (the ⊆-inclusion

above corresponds to lifting the identity relation), further improving the already spec-

tacular experimental results of [122].

In the next section, we present antichain methods for Büchi automata inclusion

checking [35, 3].

6.4.2 Subsumption in the rank-based approach

The rank-based complementation construction has been proposed in [81], building on

seminal work on progress measures [76, 77]. The idea is that rejecting computations

can be marked with ranks measuring progress towards rejection. For finite automata,

finite and small ranks suffice, and a complement automaton can be built which guesses

ranks and checks them. From a complexity point of view, if B has n states, then the

complement automaton Bc obtained with the rank construction has 2O(n logn) states in

general, and which is tight by a matching lower bound [90].

Once a complement automaton Bc has been obtained, we are interested in checking

the emptiness of the synchronized product C = A× Bc. Recall that a finite automaton

has non-empty language iff, starting from an initial state, it is possible to visit a final

state which is reachable from itself. In the rank-based approach, this is done with a

simple fixpoint computation. Let z be the set of states which can visit accepting states

infinitely often; z can be characterized as the following fixpoint:

z = νx · µy · (Pre(y) ∪ (F ∩ Pre(x)) (†)

where Pre(·) is the predecessor operator for C (cf. Section 2.4), and F is the set of final

states therein. Then, C is non-empty iff z contains an initial state.

Of course, explicit computation of (†) is infeasible since C is too large to be con-

structed. [35, 36] has observed that a structural forward simulation v can be defined in

6.4. Advanced language inclusion checking 253

a natural way on C (the same observation has been previously made in [54]), and that

the sets computed during the evaluation of (†) are upward-closed1 w.r.t. v. Thus, the

computation can be carried symbolically by just storing and manipulating antichains of

v-minimal elements. With this technique, the performance can be improved by orders

of magnitude w.r.t. previous work.

Antichains everywhere!

Antichain methods are now well-established in automata theory. They are based on a

fundamental and natural observation about subset-like constructions and simulations,

which has been rediscovered independently many times and which we believe will soon

find its way into undergraduate books on automata.

The domain of applications of antichain-based methods is growing at an increasing

pace. Examples include: tree automata inclusion checking [13], LTL-satisfiability and

model-checking [32], LTL-realizability [46] (see also [47]), emptiness of alternating

automata [56], QBF-satisfiability [15]; see also the tool ALASKA, which implements

many of these techniques [33].

Finally, antichain methods can be utilized to compute multipebble simulations in

practice, as we have pointed out in Section 6.3.

6.4.3 Subsumption in the Ramsey-based approach

The Ramsey-based approach has its origins in the original complementation construction

by Büchi himself [18]. The idea is that, for a given automaton B, it is possible to color

all finite words from Σ∗ with finitely many colors, s.t. words with the same color induce

indistinguishable behavior in the automaton (where “indistinguishable” refers to certain

reachability properties in B). Eventually periodic infinite words of the form uvω, with

u, v ∈ Σ∗, can also be colored, but with pairs of colors, by lifting the coloring of u

and v. The way how the coloring is defined ensures that if two infinite words receive

the same color, then they either both lie in L(B) or in Σω \ L(B); that is, the coloring

respects the partitioning of Σω into {L(B),Σω \ L(B)}. Moreover, monochromatic

sets of words are regular languages. Thus, a finite automaton Bu,v recognizing the

equivalence class of uvω can be built. Since the coloring is finite, there are only finitely

many different Bu,v’s, and an automaton Bc can be built by assembling together all

automata Bu,v’s recognizing words uvω 6∈ L(B). By construction, Bc is sound, in the

1In [35, 36], simulation is written the other way around, so their sets are actually downward-closed.

254 Chapter 6. Conclusions

sense that it only recognizes words outside L(B). Moreover, Bc is also complete, in

the sense that every word outside L(B) is in fact recognized by Bc. This direction is

more difficult, and Büchi established it by appealing to the Infinite Ramsey Theorem

[101] (hence the name of the method). Namely, he proved that the coloring extends to

all infinite words (not just to eventually periodic ones), i.e., every infinite word admits

an eventually periodic coloring, and thus falls in the equivalence class of some uvω, and

thus is accepted by some Bu,v.

Early complementation constructions

The construction derived from Büchi’s original paper [18] allows one to build a com-

plement automaton Bc of doubly exponential size 22O(n) (if B has n states). In [109],

the same construction is revisited (see also [70]), and, by using similar ideas, a better

construction is presented, with just a single exponential blow-up 2O(n2). If compared to

the 2O(n logn) complexity of optimal constructions, like, e.g., the rank-based one, this is

suboptimal, which perhaps explains why the construction remained dormant for about

20 years.

Termination analysis

Büchi’s construction received renewed attention following the developments in the

seemingly unrelated field of program termination analysis, when in 2001 [83] intro-

duced the size-change termination principle (SCT). According to the SCT principle, a

program has no infinite computation iff 1) the data it manipulates is well-founded, and

2) every infinite computation induces an infinitely decreasing sequence of values. [83]

established a link between termination analysis and automata, by reducing SCT analysis

to an inclusion problem between Büchi automata. However, after lamenting that no

practical procedure was known for the latter problem, they developed a specialized

algebraic approach for the SCT domain. Correctness once again relied on an appli-

cation of Ramsey’s Infinite Theorem, which is reminiscent of Büchi’s original proof.

This algebraic approach is at the heart of modern Ramsey-based inclusion checking

algorithms for Büchi automata [51, 52, 2, 3].

Decision procedures for temporal logics

That there exists a “fundamental connection between termination analysis of programs

and decision problems for ω-automata” has also been noted in [31]. The motivation

6.4. Advanced language inclusion checking 255

of [31] comes from decision procedures in temporal logics. They also avoid explicit

automata complementation by adapting and generalizing the algebraic approach of [83]

from SCT problems to validity of temporal formulas.

Back to complementation and language inclusion

The connection between SCT and Büchi automata is further strengthened in [50, 51],

which lifts the algebraic approach of [83] to the full domain of inclusion problems for

Büchi automata. More recently, the Ramsey-based approach has been also applied to

checking inclusion of nondeterministic [53] and alternating parity automata [82].

Finally, [14] revisits the Ramsey-based complementation procedure itself. With

a careful fine-tuning, it is shown that the worst case complexity can be reduced from

2O(n2) to 2O(n logn), thus bringing the Ramsey-based complementation procedure on a

par with other optimal complementation methods. This result partly concludes the long

story about the complexity of Büchi’s complementation construction.

Subsumption

Like in the rank-based approach, subsumption is a key concept for taming the complexity

of Ramsey-based algorithms. In the domain of SCT complexity, a subset-subsumption

has been proposed [11], which corresponds to a subsumption for inclusion checking

in a subclass of Büchi automata arising from SCT problems [50, 51]. Lifting subset-

subsumption to all automata was left as an open problem. In [52], subset-subsumption is

lifted to universality checking for the full class of Büchi automata; lifting subsumption

to inclusion checking is left open.

In [2], we have extended the subset-subsumption of [51, 52] to full inclusion

checking. Moreover, we have introduced a simulation-based subsumption which is

coarser than the subset-based one, by lifting forward simulation to a subsumption

preorder (subset-based subsumption corresponds to lifting the identity relation; see

Section 6.4.4 below). Finally, in [3], we further generalize subsumption, by lifting

simultaneously both backward and forward simulation into a subsumption preorder.

In the next section, we explain in more detail the Ramsey-based approach to inclu-

sion checking, and we show how simulation relations give rise to advanced subsumption

relations.

256 Chapter 6. Conclusions

6.4.4 Improved subsumption in Ramsey

We explain the Ramsey-based approach to universality and inclusion checking, fol-

lowing the presentation of [3]. For simplicity, we actually deal with universality

checking—but the theory can be generalized to inclusion. Our aim is to convince the

reader that simulation preorders can serve as fundamental building blocks in powerful

subsumption relations.

Fix a NBA B. Our goal is to check universality of B. A counter-example to

universality of B is an infinite word w 6∈ L(B). Since ω-regular languages are closed

under complementation, and a regular language is non-empty iff it contains an eventually

periodic word, it suffices to look for eventually periodic counter-examples. Thus,

universality checking of B amounts to find two finite words u, v ∈ Σ+ s.t. uvω 6∈ L(B).

However, Σ+ is an infinite object which is difficult to work with. Eventually, we want

to approximate this infinite semigroup with a small, finite one.

The main observation is that, once B is fixed, not all finite words need to be

considered separately. Fix a non-empty finite word w ∈ Σ+. For every pair of states p

and q in Q, exactly one of the following three things may happen (this idea goes back

to Büchi’s theorem [18]; see also [95] and Chapter 5 of [49]):

⊥: There is no path from p to q over w.

0: There is a path from p to q over w passing through an accepting state.

1: There is a path from p to q over w, but no path passes through an accepting state.

Accordingly, we define a domain of observables D = {⊥, 0, 1}. Different words

inducing the same observables for every pair of states are indistinguishable from B’s

point of view, and can be considered equivalent for universality checking purposes.

Let M = DQ×Q be the set of Q×Q-matrices with values in D. For every w ∈ Σ+,

we define a matrix µw ∈M , s.t., for every pair of states (p, q) ∈ Q×Q, cell µw(p, q)

is defined as follows:

µw(p, q) =

⊥ if ¬(p

w−→ q)

1 if p w−→F q

0 if p w−→ q and ¬(p
w−→F q)

Therefore, µ is a mapping from Σ+ to M . An implementation will not usually store

⊥-cells, and matrix µw is represented as a set of {0, 1}-labelled edges inQ×{0, 1}×Q:

µw ≡ {p
x−→ q | if x = µw(p, q) 6= ⊥}

6.4. Advanced language inclusion checking 257

p q

a, b

b

b

(a) Automaton B

µa :
p p

q q

0

µb :
p p

q q

0

1
1

µab :

p p

q q

0

1

(b) Matrices over B

Figure 6.1: Example automaton B and matrices

Since the two representations are equivalent, we sometimes identify matrices with the

corresponding set of edges.

As a running example, consider the automaton B in Figure 6.1(a). Example matrices

are in Figure 6.1(b). Intuitively, a matrix µw simultaneously represents all possible

behaviors of the automaton over the word w; it can be seen as a refinement of the subset

construction, where in the latter only the destination endpoints would be recorded (the

ones on the right). Matrices are called with various names in the literature, like graphs

[83, 51, 2] and boxes [31].

Matrices alone can be used to witness that B is not universal. For example, to show

that the infinite word w = a(ab)ω is not in L(B), it suffices to concatenate the respective

matrices,

p p

q q

µa

0 p

q

µab

0

1
p

q

µab

0

1
· · ·

· · ·

µab

0
1

and notice that there is no infinite path starting at the initial state p labelled with infinitely

many 1’s. This idea can be generalized to test any pair of matrices µu and µv for a

counterexample of the form uvω.

Definition 6.4.1 (Test). Given two matrices µ0 and µ1, let test(µ0, µ1) = > if there

258 Chapter 6. Conclusions

exists an infinite path

π = p
x−−→︸ ︷︷ ︸

∈µ0

q0
y0−−−→︸ ︷︷ ︸

∈µ1

q1
y1−−−→︸ ︷︷ ︸

∈µ1

q2
y2−−−→︸ ︷︷ ︸

∈µ1

· · ·

with p ∈ I , and yi = 1 for infinitely many i’s. Otherwise, let test(µ0, µ1) = ⊥.

In the literature, this test operation is variously called double-graph search [51], two-arc

test [52] or lasso finding test [2]. Testing can be done in polynomial time by solving a

simple graph-theoretic problem. The test is sound in the following sense.

Lemma 6.4.2. For every u, v ∈ Σ+, uvω ∈ L(B) iff test(µu, µv) = >.

In our running example, test(µa, µab) = ⊥, therefore a(ab)ω 6∈ L(B); a positive case is

test(µb, µb) = >, thus bω ∈ L(B).

This seems to suggest an NP algorithm for solving non-universality: Guess two ma-

trices µ0 and µ1, which are small objects, and verify in polynomial time test(µ0, µ1) =

⊥. Unfortunately, not all matrices failing the test are actual counterexamples to univer-

sality, since an arbitrary matrix does not necessarily encode meaningful information.

For example, in the automaton B any matrix containing a non-⊥ edge q
0,1−→ p is not

valid, in the sense that no word w can realize this behavior. To remedy to this problem,

we introduce the subset of valid matrices.

Definition 6.4.3 (Valid matrices). A matrix µ0 ∈ M is valid iff it is in the range of µ,

i.e., iff there exists w ∈ Σ+ s.t. µ0 = µw. Let M v be the set of valid matrices.

We can modify our purported NP algorithm to additionally check that µ0 and µ1

are in M v. However, this last operation is PSPACE-complete2, and it has better to be

so under standard complexity-theoretic assumptions (since universality is PSPACE-

complete).

A more practical method is to adopt a generative approach, and iteratively construct

every valid matrix via a composition operation. To this end, we endow the set of

matrices M with a semigroup structure. First, turn D into a semiring, by adding

a multiplication “·” and an addition “+” operation. Intuitively, the multiplication

describes how observables are composed along a path, while the addition reflects how

the observables from different paths are combined together (like in weighted automata).

They are defined according to the two Cayley tables below:

2Checking that a matrix is valid is equivalent to the emptiness problem for the intersection of a family
of NFAs, which is PSPACE-complete.

6.4. Advanced language inclusion checking 259

· ⊥ 0 1

⊥ ⊥ ⊥ ⊥
0 ⊥ 0 1

1 ⊥ 1 1

+ ⊥ 0 1

⊥ ⊥ 0 1

0 0 0 1

1 1 1 1

With these definitions, the value for µw0·w1(p, q) can be computed recursively based on

the values for µw0(p, ·) and µw1(·, q):

(µw0·w1)(p, q) =
∑
r∈Q

µw0(p, r) · µw1(r, q) (†)

This is a semantic property of mapping µ. Intuitively, there might be different ways

of getting from p to q, and by the property above it suffices to find the “best way”

(according to the semantics of “+”) over all intermediate states r.

Based on this observation, we define a product operation in the semigroup of

matrices M using the formula (†) above [95].

Definition 6.4.4 (Product of matrices). For two matrices µ0 and µ1, their product µ0 ·µ1

is defined as follows, for every p, q ∈ Q:

(µ0 · µ1)(p, q) :=
∑
r∈Q

µ0(p, r) · µ1(r, q)

(This product operation coincides with the usual matrix product over the semiring D.)

In the running example, valid matrices are depicted in Figure 6.1(b), their products are

shown in Figure 6.2(a), and the full Cayley table is given in Figure 6.2(b).

It is easy to show that multiplication is an associative operation, and that valid ma-

trices are preserved under multiplication. Therefore, valid matrices with multiplication

form a semigroup. Additionally, since µ is a morphism of semigroups Σ+ 7→M v (by

definition) and Σ+ is (finitely) generated by Σ, M v is generated byM v
1 := {µa | a ∈ Σ}.

In other words, every valid matrix µa0a1···ak−1
can be obtained as a product of 1-letter

valid matrices µa0µa1 · · ·µak−1
.

This suggests a generate&test approach to universality checking: Since Σ+ is

finitely generated by Σ, we can compute all valid matrices in M by multiplication from

1-letter matrices µa, a ∈ Σ. Then, it suffices to test all pairs of generated matrices

for counterexamples to universality. On automaton B, we obtain the valid matrices in

Figure 6.1(b).

260 Chapter 6. Conclusions

p p

q q

p

q

0 0

µa µa·

p p

q q

0

µa=

=
p p

q q

p

q

0 0
1
1

µa µb·

p p

q q

0
1

µab=

=

p p

q q

p

q

0
1
1

0
1
1

µb µb·

p p

q q

0
1
1

µb=

=
p p

q q

p

q

0
1
1

0

µb µa·

p p

q q

0

µa=

=

(a) Matrix products

· µa µb µab

µa µa µab µab

µb µa µb µab

µab µa µab µab

(b) Multiplication table

Figure 6.2: Example multiplication of matrices

6.4. Advanced language inclusion checking 261

Subsumption

The problem with a naı̈ve implementation of the algorithm above is that M v is still ex-

ponentially large, and, in general, one cannot hope to enumerate all valid matrices. This

is where subsumption enters into the scene: It is possible to define certain subsumption

preorders which allow to prune the search space considerably, making the algorithm

practical.

Definition 6.4.5 (Subsumption of edges [3]). For two edges e = p
x−→ q and e′ =

p′
x′−→ q′ in Q×D×Q, let e v e′ iff p vbw p′, x+ x′ = x′ (i.e., iff x ≤ x′ in the order

⊥ < 0 < 1.), and q vdi q′.

Intuitively, subsumption-larger edges can simulate smaller ones in witnessing an accept-

ing loop. We use subsumption in two ways:

• Section 6.4.4.1: In minimization of matrices, by removing subsumption-smaller

edges.

• Section 6.4.4.2: In comparing matrices, by lifting the subsumption from edges to

matrices, and discarding subsumption-larger matrices.

Remark 6.4.6. The subsumption preorder presented here has been proposed in [3]. It

subsumes the following notions which have been previously considered:

• The original subset-subsumption ⊆ from [11] (subsequently adopted by [51, 52]):

For two edges e = p
x−→ q and e′ = p′

x′−→ q′, let e ⊆ e′ iff p = p′, x+ x′ = x′,

and q = q′.

• The improved subsumptionv′ based on direct simulation from [2]: For two edges

e = p
x−→ q and e′ = p′

x′−→ q′, let e v′ e′ iff p = p′, x+ x′ = x′, and q vdi q′.

6.4.4.1 Minimization of matrices

The first observation is that not every edge in a matrix is necessary, and we can simplify

matrices by removing those edges which are subsumed by v-larger ones. Matrices with

only maximal edges are called minimized matrices (they cannot be further simplified).

Let Mm be the set of minimized matrices.

Ideally, we would like to manipulate only matrices from Mm (instead of all valid

matrices). To do so, composition and test on minimized matrices should faithfully

mimic the corresponding operations on original matrices. However, the minimization

262 Chapter 6. Conclusions

operation removes edges in a non-monotonic way w.r.t. test and multiplication; for

example, the test might pass on a pair (µ0, µ1) and suddenly fail for their minimization

(µ′0, µ
′
1), because an edge used to build an infinite path is no longer present.

To remedy to this problem, we define two alternative notions of test and composition

on minimized matrices, which take into consideration edges deleted during minimiza-

tion. The two notions are called jumping, since they allow the computation to jump

to certain intermediate states (this is related to the notion of jumping simulation from

Chapter 4).

Definition 6.4.7 (Jumping test). Given two matrices µ0 and µ1, jtest(µ0, µ1) holds iff

there exists an infinite jumping path

π = p
x−−→ q0︸ ︷︷ ︸
∈µ0

vbw q′0
y0−−−→ q1︸ ︷︷ ︸
∈µ1

vbw q′1
y1−−−→ q2︸ ︷︷ ︸
∈µ1

vbw q′2
y2−−−→︸ ︷︷ ︸

∈µ1

· · ·

with p ∈ I , and yi = 1 for infinitely many i’s.

Definition 6.4.8 (Jumping product of matrices). For two matrices µ0 and µ1, their

jumping product µ0 ◦ µ1 is defined as follows, for every p, q ∈ Q:

(µ0 ◦ µ1)(p, q) :=
∑

r0vbwr1

µ0(p, r0) · µ1(r1, q)

Jumping product is also an associative operation, and the set of matrices with jumping

product is a semigroup. The jumping operations adequately mimic the non-jumping

ones by the following lemma [3].

Lemma 6.4.9. For two valid matrices µ0 and µ1, let µ′0 and µ′1 be their respective

minimizations. Then,

P1) Preservation of test: test(µ0, µ1) = jtest(µ′0, µ
′
1).

P2) Preservation of composition: µ′0 ◦ µ′1 is a minimization3 of µ0 · µ1.

Minimization is beneficial since it produces sparser matrices, which are easier to

handle; moreover, different valid matrices might be represented by the same minimized

matrix, which reduces the search space. By lifting the subsumption from edges to

matrices, we can prune the search space even more, as explained next.
3We are simplifying a technicality here, since composition is actually preserved only in a weaker

sense. To obtain formally correct statements, replace “minimization” with “representative”, where the
notion of representative (cf. [3]) generalizes that of minimization. For simplicity, we do not introduce
representatives here.

6.4. Advanced language inclusion checking 263

6.4.4.2 Subsumption of matrices

Also matrices can be compared with each other, by lifting the subsumption preorder.

Definition 6.4.10 (Subsumption of matrices). For two matrices µ0 and µ1 in M , let

µ0 � µ1 iff, for any edge e in µ0, there exists an edge e′ in µ1 s.t. e v e′.

It can be shown that subsumption is monotone w.r.t. jumping composition and test, in

the following sense [3].

Lemma 6.4.11. For minimized matrices µ0 � µ′0 and µ1 � µ′1,

M1) Monotonicity of test: jtest(µ0, µ1) ≤ jtest(µ′0, µ
′
1).

M2) Monotonicity of composition: µ0 ◦ µ1 � µ′0 ◦ µ′1.

Whenever two comparable matrices µ0 � µ1 are generated, we discard the larger

one µ1, since no counter-example is lost; this is sound since subsumption preserves

counter-examples both in the present and in the future:

• In the present: By condition M1), if a pair (µ′0, µ
′
1) fails the test, then every pair

(µ0, µ1) s.t. µ0 � µ′0 and µ1 � µ′1 fails the test as well.

• In the future: By condition M2), subsumption is preserved under composition,

therefore also “future generations” will preserve counter-examples.

We obtain an optimized generate&test algorithm, combining minimization and sub-

sumption: Generate all �-minimal elements in Mm by jumping multiplication and

minimization from 1-letter minimized matrices, and test all pairs of generated matrices

against the jumping test; whenever two comparable matrices µ0 � µ1 are discovered,

discard µ1. Minimization and subsumption contribute greatly to the practicality of the

algorithm; see the results in [3]. A website is available containing the source code of

the implementation and all the experimental results [1].

6.4.5 Further work

In the previous section, we have shown how the Ramsey-based approach to language

inclusion checking can benefit from a subsumption relation based on direct and back-

ward simulation. An important open question is whether the generalized simulation

relations studied in this thesis can be used to define an even coarser subsumption for the

Ramsey-based approach (and for other approaches as well). From a practical point of

view, jumping simulations (cf. Chapter 4) are a particularly suitable candidate, since

they can be efficiently computed.

264 Chapter 6. Conclusions

6.5 Conclusions

In this thesis, we have studied several generalized simulation-like relations, for both

nondeterministic and alternating Büchi automata, and we have investigated their prop-

erties, as suggested by the simulation desiderata. In particular, we have focused on

quotienting, and we have argued that the equivalences induced by our generalized

simulations can be used to reduce the size of automata. The reduction in size always

improves on previously known notions, and, in most cases, the reduction factor can be

arbitrarily larger. Finally, we have indicated that simulation preorders can be used to

substantially improve advanced language inclusion checking algorithms for NBAs.

Bibliography

[1] http://www.languageinclusion.org 263

[2] Abdulla, P., Chen, Y.F., Clemente, L., Holik, L., Hong, C.D., Mayr, R., Vo-

jnar, T.: Simulation Subsumption in Ramsey-Based Büchi Automata Univer-

sality and Inclusion Testing. In: Touili, T., Cook, B., Jackson, P. (eds.) Com-

puter Aided Verification. LNCS, vol. 6174, pp. 132–147. Springer Berlin /

Heidelberg, Berlin, Heidelberg (2010), http://dx.doi.org/10.1007/

978-3-642-14295-6_14 13, 254, 255, 257, 258, 261

[3] Abdulla, P., Chen, Y.F., Clemente, L., Holik, L., Hong, C.D., Mayr, R., Vojnar, T.:

Advanced Ramsey-based Buechi Automata Inclusion Testing. In: International

Conference on Concurrency Theory (Sep 2011) 13, 252, 254, 255, 256, 261,

262, 263

[4] Abdulla, P., Chen, Y.F., Holik, L., Vojnar, T.: Mediating for Reduction. In:

Foundations of Software Technology and Theoretical Computer Science. pp.

1–12. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2009) 74, 109, 110,

248

[5] Abdulla, P.A., Chen, Y.F., Holik, L., Mayr, R., Vojnar, T.: When Simula-

tion Meets Antichains. In: Tools and Algorithms for the Construction and

Analysis of Systems. Paphos, Cyprus (2010), http://hal.inria.fr/

inria-00460294/en/ 5, 252

[6] Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive systems: Modelling,

Specification and Verification. Cambridge University Press (Jul 2007) 4

[7] Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating Refinement

Relations. In: International Conference on Concurrency Theory. Lecture Notes

in Computer Science, vol. 1466, pp. 163–178. Springer-Verlag (1998) 249

265

http://www.languageinclusion.org
http://dx.doi.org/10.1007/978-3-642-14295-6_14
http://dx.doi.org/10.1007/978-3-642-14295-6_14
http://hal.inria.fr/inria-00460294/en/
http://hal.inria.fr/inria-00460294/en/

266 Bibliography

[8] Apt, K., Graedel, E. (eds.): Lectures in Game Theory for Computer Scientists.

Cambridge University Press (2011) 251

[9] Arnold, A., Dicky, A., Nivat, M.: A note about minimal non-deterministic

automata. Bulletin EATCS 47, 166–169 (Jun 1992) 6

[10] Aziz, A., Singhal, V., Swamy, G.M., Brayton, R.K.: Minimizing Interacting

Finite State Machines. Tech. Rep. UCB/ERL M93/68, UoC, Berkeley (1993) 9,

31

[11] Ben Amram, A.M., Lee, C.S.: Program termination analysis in polynomial time.

ACM Trans. Program. Lang. Syst. 29 (Jan 2007), http://dx.doi.org/10.

1145/1180475.1180480 255, 261

[12] von Bomhard, T.: Minimization of Tree Automata. Master’s thesis, Universität

des Saarlandes (2008) 10

[13] Bouajjani, A., Habermehl, P., Holik, L., Touili, T., Vojnar, T.: Antichain-

Based Universality and Inclusion Testing over Nondeterministic Finite Tree

Automata. In: Implementation and Applications of Automata. pp. 57–67. CIAA

’08, Springer-Verlag, Berlin, Heidelberg (2008), http://dx.doi.org/10.

1007/978-3-540-70844-5_7 5, 253

[14] Breuers, S., Löding, C., Olschewski, J.: Improved Ramsey-based Buechi Com-

plementation. In: Foundations of Software Science and Computation Structures.

FOSSACS’12 (2012) 255

[15] Brihaye, T., Bruyère, V., Doyen, L., Ducobu, M., Raskin, J.F.: Antichain-Based

QBF Solving. In: Bultan, T., Hsiung, P.A. (eds.) Automated Technology for

Verification and Analysis. Lecture Notes in Computer Science, vol. 6996, pp.

183–197. Springer (2011) 253

[16] Büchi, J.R.: Weak Second-Order Arithmetic and Finite Automata. Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik 6(1-6), 66–92 (1960),

http://dx.doi.org/10.1002/malq.19600060105 4

[17] Büchi, J.R.: Using Determinancy of Games to Eliminate Quantifiers. In: Karpin-

ski, M. (ed.) Fundamentals of Computation Theory. Lecture Notes in Computer

Science, vol. 56, pp. 367–378. Springer (Sep 1977) 26

http://dx.doi.org/10.1145/1180475.1180480
http://dx.doi.org/10.1145/1180475.1180480
http://dx.doi.org/10.1007/978-3-540-70844-5_7
http://dx.doi.org/10.1007/978-3-540-70844-5_7
http://dx.doi.org/10.1002/malq.19600060105

Bibliography 267

[18] Büchi, J.R.: On a Decision Method in Restricted Second-Order Arithmetic. In:

International Congress on Logic, Methodology, and Philosophy of Science. pp.

1–11. Stanford University Press (1962) 253, 254, 256

[19] Bustan, D., Grumberg, O.: Simulation-based minimization. ACM Trans. Com-

put. Logic 4(2), 181–206 (Apr 2003), http://dx.doi.org/10.1145/

635499.635502 24, 31, 32, 107

[20] Bustan, D., Grumberg, O.: Applicability of fair simulation. Informatio and Com-

putation 194, 1–18 (Oct 2004), http://portal.acm.org/citation.

cfm?id=1036108 9

[21] Carrez, C.: On the Minimalization of Non-deterministic Automaton. Tech. rep.,

Laboratoire de Calcul de la Faculté des Sciences de l’Université de Lille (1970)

6

[22] Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1),

114–133 (Jan 1981), http://dx.doi.org/10.1145/322234.322243

10

[23] Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Algorithms for Omega-

Regular Games with Imperfect Information. In: Ésik, Z. (ed.) Computer Science

Logic. Lecture Notes in Computer Science, vol. 4207, pp. 287–302. Springer

(2006) 251

[24] Chlebus, B.S.: Domino-tiling games. Journal of Computer and System Sciences

32, 374–392 (Jun 1986), http://portal.acm.org/citation.cfm?

id=9118.9125 232, 233

[25] Cipra, B.: How Number Theory Got the Best of the Pentium Chip. Science 267,

175+ (Jan 1995) 3

[26] Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons

Using Branching Time Temporal Logic. In: Logic of Programs: Workshop,

Yorktown Heights, NY, May 1981. Springer (1981) 4

[27] Clarke, E.M., Wing, J.M., Alur, R., Cleaveland, R., Dill, D., Emerson, A.,

Garland, S., German, S., Guttag, J., Hall, A., Henzinger, T., Holzmann, G.,

Jones, C., Kurshan, R., Leveson, N., McMillan, K., Moore, J., Peled, D.,

http://dx.doi.org/10.1145/635499.635502
http://dx.doi.org/10.1145/635499.635502
http://portal.acm.org/citation.cfm?id=1036108
http://portal.acm.org/citation.cfm?id=1036108
http://dx.doi.org/10.1145/322234.322243
http://portal.acm.org/citation.cfm?id=9118.9125
http://portal.acm.org/citation.cfm?id=9118.9125

268 Bibliography

Pnueli, A., Rushby, J., Shankar, N., Sifakis, J., Sistla, P., Steffen, B., Wolper,

P., Woodcock, J., Zave, P.: Formal methods: state of the art and future di-

rections. ACM Computing Surveys 28(4), 626–643 (1996), citeseer.ist.

psu.edu/clarke96formal.html 4

[28] Clemente, L.: Büchi Automata Can Have Smaller Quotients. In: Aceto, L.,

Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming, Lecture

Notes in Computer Science, vol. 6756, chap. 20, pp. 258–270. Springer Berlin

/ Heidelberg, Berlin, Heidelberg (2011), http://arxiv.org/pdf/1102.

3285 36, 73, 101

[29] Clemente, L., Mayr, R.: Multipebble Simulations for Alternating Automata

- (Extended Abstract). In: International Conference on Concurrency Theory.

LNCS, vol. 6269, pp. 297–312. Springer-Verlag (2010), http://dx.doi.

org/10.1007/978-3-642-15375-4_21 xi, 119, 121, 134, 159, 160,

174, 175, 176, 224

[30] Coe, T.: Inside the Pentium FDIV bug. Dr. Dobbs Journal (Apr 1996) 3

[31] Dax, C., Hofmann, M., Lange, M.: A Proof System for the Linear Time mu-

Calculus. In: Foundations of Software Technology and Theoretical Computer

Science (2006) 254, 255, 257

[32] De Wulf, M., Doyen, L., Maquet, N., Raskin, J.F.: Antichains: alternative algo-

rithms for LTL satisfiability and model-checking. In: Tools and algorithms for

the construction and analysis of systems. pp. 63–77. TACAS’08, Springer-Verlag,

Berlin, Heidelberg (2008), http://dl.acm.org/citation.cfm?id=

1792734.1792743 253

[33] De Wulf, M., Doyen, L., Maquet, N., Raskin, J.F.: ALASKA: Antichains for

Logic, Automata and Symbolic Kripke Structures Analysis. In: Automated

Technology for Verification and Analysis. pp. 240–245 (2008) 253

[34] Dill, D.L., Hu, A.J., Wont-Toi, H.: Checking for Language Inclusion Using Sim-

ulation Preorders. In: Computer Aided Verification. LNCS, vol. 575. Springer-

Verlag (1991), http://dx.doi.org/10.1007/3-540-55179-4_25

9, 26, 29

citeseer.ist.psu.edu/clarke96formal.html
citeseer.ist.psu.edu/clarke96formal.html
http://arxiv.org/pdf/1102.3285
http://arxiv.org/pdf/1102.3285
http://dx.doi.org/10.1007/978-3-642-15375-4_21
http://dx.doi.org/10.1007/978-3-642-15375-4_21
http://dl.acm.org/citation.cfm?id=1792734.1792743
http://dl.acm.org/citation.cfm?id=1792734.1792743
http://dx.doi.org/10.1007/3-540-55179-4_25

Bibliography 269

[35] Doyen, L., Raskin, J.F.: Improved algorithms for the automata-based approach to

model-checking. In: Tools and Algorithms for the Construction and Analysis of

Systems. pp. 451–465. TACAS’07, Springer-Verlag, Berlin, Heidelberg (2007),

http://portal.acm.org/citation.cfm?id=1763552 5, 252, 253

[36] Doyen, L., Raskin, J.F.: Antichains for the Automata-Based Approach to Model-

Checking. Logical Methods in Computer Science 5(1) (2009) 5, 252, 253

[37] Doyen, L., Raskin, J.F.: Antichain Algorithms for Finite Automata. In: Tools

and Algorithms for the Construction and Analysis of Systems. pp. 2–22 (2010)

5, 251

[38] Edelman, A.: The mathematics of the Pentium division bug. SIAM Review 39,

54–67 (1997) 3

[39] Ehlers, R.: Minimising Deterministic Buechi Automata Precisely Using SAT

Solving. In: Strichman, O., Szeider, S. (eds.) Theory and Applications of Satis-

fiability Testing (SAT 2010). LNCS, vol. 6175, pp. 326–332. Springer-Verlag

(2010) 6

[40] Ehlers, R., Finkbeiner, B.: On the Virtue of Patience: Minimizing Buechi

Automata. In: 17th International SPIN Workshop on Model Checking of Software

(SPIN 2010). pp. 129–145. No. 6349 in LNCS, Springer Verlag (2010) 6

[41] Emerson, E.A., Jutla, C.S.: Tree automata, Mu-Calculus and determinacy. In:

Foundations of Computer Science. pp. 368–377. SFCS ’91, IEEE Computer

Society, Washington, DC, USA (1991), http://dx.doi.org/10.1109/

SFCS.1991.185392 222

[42] Etessami, K.: A Hierarchy of Polynomial-Time Computable Simulations for Au-

tomata. In: International Conference on Concurrency Theory. LNCS, vol. 2421,

pp. 131–144. Springer-Verlag (2002), http://dx.doi.org/10.1007/

3-540-45694-5_10 10, 11, 13, 36, 38, 39, 40, 41, 53, 121, 123, 130,

137, 158, 211, 223

[43] Etessami, K., Wilke, T., Schuller, R.: Fair Simulation Relations, Parity Games,

and State Space Reduction for Buechi Automata. In: Orejas, F., Spirakis, P., van

Leeuwen, J. (eds.) Automata, Languages and Programming, Lecture Notes in

Computer Science, vol. 2076, pp. 694–707. Springer Berlin / Heidelberg (2001),

http://portal.acm.org/citation.cfm?id=1763552
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1007/3-540-45694-5_10
http://dx.doi.org/10.1007/3-540-45694-5_10

270 Bibliography

http://dx.doi.org/10.1007/3-540-48224-5_57 8, 9, 11, 27, 29,

31, 49, 56

[44] Etessami, K., Wilke, T., Schuller, R.A.: Fair Simulation Relations, Parity

Games, and State Space Reduction for Büchi Automata. SIAM J. Comput.

34(5), 1159–1175 (2005), http://epubs.siam.org/sam-bin/dbq/

article/42067 9, 94, 116, 121, 129

[45] Fagin, R., Stockmeyer, L., Vardi, M.Y.: On monadic NP vs. monadic co-NP.

Information and Computation pp. 78–92 (Jul 1995), http://dx.doi.org/

10.1109/SCT.1993.336544 8

[46] Filiot, E., Jin, N., Raskin, J.F.: An Antichain Algorithm for LTL Realiz-

ability. In: Computer Aided Verification. pp. 263–277. CAV ’09, Springer-

Verlag, Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/

978-3-642-02658-4_22 253

[47] Filiot, E., Jin, N., Raskin, J.F.: Antichains and compositional algorithms for

LTL synthesis. Formal Methods in System Design 39, 261–296 (2011), http:

//dx.doi.org/10.1007/s10703-011-0115-3 253

[48] Finkelstein, A., Dowell, J.: A comedy of errors: the London Ambulance Service

case study. In: Software Specification and Design. pp. 2–4 (Mar 1996), http:

//dx.doi.org/10.1109/IWSSD.1996.501141 2

[49] Flum, J., Grädel, E., Wilke, T.: Logic and automata: History and perspectives.

Amsterdam University Press (2008) 256

[50] Fogarty, S.: Buechi Containment and Size-Change Termination. Master’s thesis,

Rice University (2008) 255

[51] Fogarty, S., Vardi, M.: Büchi Complementation and Size-Change Termination. In:

Kowalewski, S., Philippou, A. (eds.) Tools and Algorithms for the Construction

and Analysis of Systems, Lecture Notes in Computer Science, vol. 5505, pp. 16–

30. Springer Berlin / Heidelberg (2009), http://dx.doi.org/10.1007/

978-3-642-00768-2_2 5, 254, 255, 257, 258, 261

[52] Fogarty, S., Vardi, M.Y.: Efficient Büchi Universality Checking. In: Tools and

Algorithms for the Construction and Analysis of Systems. pp. 205–220 (2010)

254, 255, 258, 261

http://dx.doi.org/10.1007/3-540-48224-5_57
http://epubs.siam.org/sam-bin/dbq/article/42067
http://epubs.siam.org/sam-bin/dbq/article/42067
http://dx.doi.org/10.1109/SCT.1993.336544
http://dx.doi.org/10.1109/SCT.1993.336544
http://dx.doi.org/10.1007/978-3-642-02658-4_22
http://dx.doi.org/10.1007/978-3-642-02658-4_22
http://dx.doi.org/10.1007/s10703-011-0115-3
http://dx.doi.org/10.1007/s10703-011-0115-3
http://dx.doi.org/10.1109/IWSSD.1996.501141
http://dx.doi.org/10.1109/IWSSD.1996.501141
http://dx.doi.org/10.1007/978-3-642-00768-2_2
http://dx.doi.org/10.1007/978-3-642-00768-2_2

Bibliography 271

[53] Friedmann, O., Lange, M.: Ramsey-Based Analysis of Parity Automata. In:

Tools and Algorithms for the Construction and Analysis of Systems (2012) 255

[54] Fritz, C.: Constructing Buechi automata from linear temporal logic using simula-

tion relations for alternating Buechi automata. In: Implementation and application

of automata. pp. 35–48. CIAA’03, Springer-Verlag, Berlin, Heidelberg (2003),

http://portal.acm.org/citation.cfm?id=1760237 125, 127,

249, 253

[55] Fritz, C., Wilke, T.: Simulation Relations for Alternating Büchi Automata. Theor.

Comput. Sci. 338(1-3), 275–314 (2005), http://dx.doi.org/10.1016/

j.tcs.2005.01.016 10, 11, 13, 31, 32, 33, 95, 96, 120, 121, 123, 126, 127,

129, 130, 143, 159, 178, 183, 195, 196, 197, 207, 208, 209, 213, 216, 217

[56] Ganty, P., Maquet, N., Raskin, J.F.: Fixed point guided abstraction refinement

for alternating automata. Theor. Comput. Sci. 411, 3444–3459 (Aug 2010),

http://dx.doi.org/10.1016/j.tcs.2010.05.037 253

[57] Gleick, J.: A bug and a crash - sometimes a bug is more than a nuisance. New

York Times Magazine (Dec 1996), http://www.around.com/ariane.

html 3

[58] Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:

A Guide to Current Research, Lecture Notes in Computer Science, vol. 2500.

Springer (2002) 5, 116

[59] Gramlich, G., Schnitger, G.: Minimizing NFA’s and Regular Expressions. Journal

of Computer and System Sciences 73(6), 908–923 (2007), http://dx.doi.

org/10.1016/j.jcss.2006.11.002 6

[60] Greenfield, A.: Everyware - The dawning age of ubiquitous computing. New

Riders (Mar 2006) 2

[61] Gurevich, Y., Harrington, L.: Trees, Automata, and Games. In: Symposium on

the Theory of Computing. pp. 60–65. ACM, New York, NY, USA (1982) 21

[62] Gurumurthy, S., Bloem, R., Somenzi, F.: Fair Simulation Minimiza-

tion. In: Computer Aided Verification. LNCS, vol. 2404, pp. 610–624.

Springer-Verlag (2002), http://portal.acm.org/citation.cfm?

id=647771.734423 30

http://portal.acm.org/citation.cfm?id=1760237
http://dx.doi.org/10.1016/j.tcs.2005.01.016
http://dx.doi.org/10.1016/j.tcs.2005.01.016
http://dx.doi.org/10.1016/j.tcs.2010.05.037
http://www.around.com/ariane.html
http://www.around.com/ariane.html
http://dx.doi.org/10.1016/j.jcss.2006.11.002
http://dx.doi.org/10.1016/j.jcss.2006.11.002
http://portal.acm.org/citation.cfm?id=647771.734423
http://portal.acm.org/citation.cfm?id=647771.734423

272 Bibliography

[63] Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On complementing

nondeterministic büchi automata. In: Correct Hardware Design and Verification

Methods. Lecture Notes in Computer Science, vol. 2860, pp. 96–110 (2003) 124

[64] Halfhill, T.R.: The truth behind the Pentium bug. BYTE 20(3), 163–164 (1995)

3

[65] Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge

University Press (2009) 3

[66] Henzinger, T.A., Kupferman, O., Rajamani, S.K.: Fair Simulation. Information

and Computation 173, 64–81 (2002), http://dx.doi.org/10.1006/

inco.2001.3085 9, 26, 29

[67] Henzinger, T.A., Rajamani, S.K.: Fair Bisimulation. In: Tools and Algo-

rithms for the Construction and Analysis of Systems. LNCS, vol. 1785, pp.

299–314. Springer-Verlag (2000), http://portal.acm.org/citation.

cfm?id=646484.691752 9, 30

[68] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley (1979) 251

[69] Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.

Tech. rep., Stanford University, Stanford, CA, USA (1971), http://portal.

acm.org/citation.cfm?id=891883 6

[70] Jean-Pierre, Pecuchet: On the complementation of Buechi automata. Theoretical

Computer Science 47(0), 95–98 (1986), http://www.sciencedirect.

com/science/article/pii/0304397586901362 254

[71] Jiang, T., Ravikumar, B.: Minimal NFA Problems are Hard. In: Albert, J.,

Monien, B., Artalejo, M. (eds.) International Colloquium on Automata, Lan-

guages and Programming, Lecture Notes in Computer Science, vol. 510, pp.

629–640. Springer Berlin / Heidelberg (1991), http://dx.doi.org/10.

1007/3-540-54233-7_169 6

[72] Joel, Spencer: Threshold spectra via the Ehrenfeucht game. Discrete Applied

Mathematics 30(2-3), 235–252 (1991), http://www.sciencedirect.

com/science/article/pii/0166218X91900482 8

http://dx.doi.org/10.1006/inco.2001.3085
http://dx.doi.org/10.1006/inco.2001.3085
http://portal.acm.org/citation.cfm?id=646484.691752
http://portal.acm.org/citation.cfm?id=646484.691752
http://portal.acm.org/citation.cfm?id=891883
http://portal.acm.org/citation.cfm?id=891883
http://www.sciencedirect.com/science/article/pii/0304397586901362
http://www.sciencedirect.com/science/article/pii/0304397586901362
http://dx.doi.org/10.1007/3-540-54233-7_169
http://dx.doi.org/10.1007/3-540-54233-7_169
http://www.sciencedirect.com/science/article/pii/0166218X91900482
http://www.sciencedirect.com/science/article/pii/0166218X91900482

Bibliography 273

[73] Juvekar, S., Piterman, N.: Minimizing Generalized Buechi Automata. In: Com-

puter Aided Verification. LNCS, vol. 4414, pp. 45–58. Springer-Verlag (2006),

http://dx.doi.org/10.1007/11817963_7 10, 118

[74] Kameda, T., Weiner, P.: On the State Minimization of Nondeterministic Finite

Automata. IEEE Trans. Comput. 19, 617–627 (Jul 1970), http://dx.doi.

org/10.1109/T-C.1970.222994 6

[75] King, V., Kupferman, O., Vardi, M.Y.: On the Complexity of Parity Word

Automata. In: Foundations of Software Science and Computation Structures.

pp. 276–286. FoSSaCS ’01, Springer-Verlag, London, UK (2001), http://

portal.acm.org/citation.cfm?id=704696 228

[76] Klarlund, N.: Progress measures and finite arguments for infinite computations.

Ph.D. thesis, Cornell University (1990) 252

[77] Klarlund, N.: Progress measures for complementation of omega-automata with

applications to temporal logic. In: Foundations of computer science. pp. 358–

367. SFCS ’91, IEEE Computer Society, Washington, DC, USA (1991), http:

//dx.doi.org/10.1109/SFCS.1991.185391 252

[78] Knuth, D.E.: Two notes on notation. Am. Math. Monthly 99(5), 403–422 (May

1992), http://arxiv.org/abs/math/9205211 16

[79] Kupferman, O., Vardi, M.: Safraless decision procedures. In: Foundations of

Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on. pp.

531 – 540 (oct 2005) 124

[80] Kupferman, O., Vardi, M.: Verification of Fair Transition Systems.

In: Computer Aided Verification, LNCS, vol. 1102, pp. 372–382.

Springer-Verlag (1996), http://citeseer.ist.psu.edu/viewdoc/

summary?doi=10.1.1.29.9654 23, 55, 56

[81] Kupferman, O., Vardi, M.: Weak Alternating Automata Are Not That Weak.

ACM Trans. Comput. Logic 2, 408–429 (Jul 2001), http://dx.doi.org/

10.1145/377978.377993 57, 59, 63, 124, 252

[82] Lange, M.: Size-change termination and satisfiability for linear-time temporal

logics. In: Frontiers of combining systems. pp. 28–39. FroCoS’11, Springer-

http://dx.doi.org/10.1007/11817963_7
http://dx.doi.org/10.1109/T-C.1970.222994
http://dx.doi.org/10.1109/T-C.1970.222994
http://portal.acm.org/citation.cfm?id=704696
http://portal.acm.org/citation.cfm?id=704696
http://dx.doi.org/10.1109/SFCS.1991.185391
http://dx.doi.org/10.1109/SFCS.1991.185391
http://arxiv.org/abs/math/9205211
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9654
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9654
http://dx.doi.org/10.1145/377978.377993
http://dx.doi.org/10.1145/377978.377993

274 Bibliography

Verlag, Berlin, Heidelberg (2011), http://dl.acm.org/citation.

cfm?id=2050784.2050788 255

[83] Lee, C.S., Jones, N.D., Ben Amram, A.M.: The size-change principle for program

termination. SIGPLAN Not. 36, 81–92 (Jan 2001), http://dx.doi.org/

10.1145/373243.360210 254, 255, 257

[84] Leveson, N.G., Turner, C.S.: An Investigation of the Therac-25 Accidents.

Computer (IEEE) 26(7), 18–41 (Jul 1993) 2

[85] Löding, C.: Efficient minimization of deterministic weak omega-automata. Infor-

mation Processing Letters 79, 105–109 (2001) 6

[86] Lynch, N.A., Vaandrager, F.W.: Forward and Backward Simulations. Part I:

Untimed Systems. Information and Computation 121(2), 214–233 (1995), http:

//dx.doi.org/10.1006/inco.1995.1134 21, 39

[87] Manna, Z., Pnueli, A.: A hierarchy of temporal properties (invited paper,

1989). In: Principles of Distributed Computing. pp. 377–410. PODC ’90, ACM,

New York, NY, USA (1990), http://doi.acm.org/10.1145/93385.

93442 221

[88] Martin, D.: Borel Determinacy. Ann. Math. 102, 363–371 (1975) 19, 22

[89] Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions

with squaring requires exponential space. In: Switching and Automata Theory.

pp. 125–129. IEEE Computer Society, Washington, DC, USA (1972), http:

//portal.acm.org/citation.cfm?id=1438639 233

[90] Michel, M.: Complementation is more difficult with automata on infinite words

252

[91] Milner, R.: An algebraic definition of simulation between programs. In: In-

ternational joint conference on artificial intelligence. pp. 481–489. IJCAI’71,

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1971), http:

//portal.acm.org/citation.cfm?id=1622926 8

[92] Miyano, S., Hayashi, T.: Alternating Finite Automata on omega-Words. Theoret-

ical Computer Science 32, 321–330 (1984) 121, 124, 177, 178, 179

http://dl.acm.org/citation.cfm?id=2050784.2050788
http://dl.acm.org/citation.cfm?id=2050784.2050788
http://dx.doi.org/10.1145/373243.360210
http://dx.doi.org/10.1145/373243.360210
http://dx.doi.org/10.1006/inco.1995.1134
http://dx.doi.org/10.1006/inco.1995.1134
http://doi.acm.org/10.1145/93385.93442
http://doi.acm.org/10.1145/93385.93442
http://portal.acm.org/citation.cfm?id=1438639
http://portal.acm.org/citation.cfm?id=1438639
http://portal.acm.org/citation.cfm?id=1622926
http://portal.acm.org/citation.cfm?id=1622926

Bibliography 275

[93] Nicely, T.R.: Enumeration to 101̂4 of the twin primes and Brun’s constant.

Virginia Journal of Science 46, 195–204 (1996) 3

[94] Nori, S.: How many engineers does it take to change a lightbulb?

http://www.boiledbeans.net/2009/04/20/

how-many-engineers-does-it-take-to-change-a-lightbulb/

(Apr 2009) 3

[95] Perrin, D., Pin, J.E.: Infinite Words - Automata, Semigroups, Logic and Games,

Pure and Applied Mathematics, vol. 141. Elsevier (2004) 256, 259

[96] Pnueli, A.: The temporal logic of programs. In: Foundations of Computer

Science. SFCS ’77, vol. 0, pp. 46–57. IEEE Computer Society, Washington, DC,

USA (Oct 1977), http://dx.doi.org/10.1109/SFCS.1977.32 3

[97] Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in

CAESAR. In: International Symposium on Programming. pp. 337–350 (1981) 4

[98] Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J.

Res. Dev. 3, 114–125 (Apr 1959), http://dx.doi.org/10.1147/rd.

32.0114 4, 251

[99] Raimi, R.S.: Environment Modeling and Efficient State Reachability Checking.

Ph.D. thesis, The University of Texas at Austin (1999) 9, 28, 251

[100] Raimi, R., Hojati, R., Namjoshi, K.S.: Environment modeling and language

universality. ACM Trans. Des. Autom. Electron. Syst. 5, 705–725 (Jul 2000),

http://doi.acm.org/10.1145/348019.348572 251

[101] Ramsey, F.P.: On a Problem of Formal Logic. Proceedings of the Lon-

don Mathematical Society s2-30(1), 264–286 (1930), http://plms.

oxfordjournals.org/content/s2-30/1/264.short 254

[102] Raskin, J.F., Chatterjee, K., Doyen, L., Henzinger, T.A.: Algorithms for Omega-

Regular Games with Imperfect Information. Logical Methods in Computer Sci-

ence 3(3), 1–23 (2007) 251

[103] Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Model checking

software. pp. 149–167. SPIN’07, Springer-Verlag, Berlin, Heidelberg (2007),

http://portal.acm.org/citation.cfm?id=1770548 5

http://www.boiledbeans.net/2009/04/20/how-many-engineers-does-it-take-to-change-a-lightbulb/
http://www.boiledbeans.net/2009/04/20/how-many-engineers-does-it-take-to-change-a-lightbulb/
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1147/rd.32.0114
http://dx.doi.org/10.1147/rd.32.0114
http://doi.acm.org/10.1145/348019.348572
http://plms.oxfordjournals.org/content/s2-30/1/264.short
http://plms.oxfordjournals.org/content/s2-30/1/264.short
http://portal.acm.org/citation.cfm?id=1770548

276 Bibliography

[104] Safra, S.: On the complexity of omega-automata. In: Foundations

of Computer Science. vol. 0, pp. 319–327. IEEE Computer Society,

Los Alamitos, CA, USA (1988), http://dx.doi.org/http://doi.

ieeecomputersociety.org/10.1109/SFCS.1988.21948 220

[105] Savitch, W.J.: Relationships between nondeterministic and deterministic

tape complexities. Journal of Computer and System Sciences 4(2), 177–

192 (1970), http://www.sciencedirect.com/science/article/

pii/S002200007080006X 228

[106] Schewe, S.: Buechi Complementation Made Tight. In: Albers, S., Marion,

J.Y. (eds.) Theoretical Aspects of Computer Science. Leibniz International

Proceedings in Informatics (LIPIcs), vol. 3, pp. 661–672. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2009), http://drops.

dagstuhl.de/opus/volltexte/2009/1854 124, 251

[107] Schewe, S.: Beyond Hyper-Minimisation—Minimising DBAs and DPAs is

NP-Complete. In: Lodaya, K., Mahajan, M. (eds.) Foundations of Software

Technology and Theoretical Computer Science. LIPIcs, vol. 8, pp. 400–411.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2010),

http://drops.dagstuhl.de/opus/volltexte/2010/2881 6

[108] Sebastiani, R., Tonetta, S.: More Deterministic vs. Smaller Büchi Automata for

Efficient LTL Model Checking. In: Geist, D., Tronci, E. (eds.) Correct Hardware

Design and Verification Methods, Lecture Notes in Computer Science, vol. 2860,

pp. 126–140. Springer Berlin / Heidelberg (2003), http://dx.doi.org/

10.1007/978-3-540-39724-3_12 6

[109] Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for

Bu¨chi automata with applications to temporal logic. Theor. Com-

put. Sci. 49, 217–237 (Jan 1987), http://dx.doi.org/10.1016/

0304-3975(87)90008-9 254

[110] Somenzi, F., Bloem, R.: Efficient Buechi Automata from LTL Formulae. In:

International Conference on Concurrency Theory, LNCS, vol. 1855, pp. 248–263.

Springer-Verlag (2000), http://dx.doi.org/10.1007/10722167_21

10, 28, 29, 31

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/SFCS.1988.21948
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/SFCS.1988.21948
http://www.sciencedirect.com/science/article/pii/S002200007080006X
http://www.sciencedirect.com/science/article/pii/S002200007080006X
http://drops.dagstuhl.de/opus/volltexte/2009/1854
http://drops.dagstuhl.de/opus/volltexte/2009/1854
http://drops.dagstuhl.de/opus/volltexte/2010/2881
http://dx.doi.org/10.1007/978-3-540-39724-3_12
http://dx.doi.org/10.1007/978-3-540-39724-3_12
http://dx.doi.org/10.1016/0304-3975(87)90008-9
http://dx.doi.org/10.1016/0304-3975(87)90008-9
http://dx.doi.org/10.1007/10722167_21

Bibliography 277

[111] Stockmeyer, L.J., Meyer, A.R.: Word Problems Requiring Exponential Time

(Preliminary Report). In: Symposium on the Theory of Computing. pp. 1–9.

STOC ’73, ACM, New York, NY, USA (1973), http://dx.doi.org/10.

1145/800125.804029 5, 37

[112] Tozawa, A., Hagiya, M.: XML schema containment checking based on semi-

implicit techniques. In: Implementation and application of automata. pp. 213–

225. CIAA’03, Springer-Verlag, Berlin, Heidelberg (2003), http://dl.acm.

org/citation.cfm?id=1760230.1760252 251

[113] Tsai, M.H., Fogarty, S., Vardi, M.Y., Tsay, Y.K.: State of Buechi Complemen-

tation (Full Version). In: Proceedings of the 15th international conference on

Implementation and application of automata. pp. 261–271. CIAA’10, Springer-

Verlag, Berlin, Heidelberg (Jun 2010) 124

[114] Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program

verification. In: Logic in Computer Science. pp. 332–344 (Jun 1986) 4, 5

[115] Vardi, M.: Alternating Automata and Program Verification. In: Computer Science

Today, LNCS, vol. 1000, pp. 471–485. Springer-Verlag (1995), http://dx.

doi.org/10.1007/BFb0015261 55, 124, 125, 126

[116] Vardi, M.Y.: Branching vs. linear time: Final showdown. In: Tools and Algo-

rithms for the Construction and Analysis of Systems. Lecture Notes in Computer

Science, vol. 2031, pp. 1–22 (2001) 4

[117] Vardi, M.Y.: The Buechi complementation saga. In: Theoretical aspects of com-

puter science. pp. 12–22. STACS’07, Springer-Verlag, Berlin, Heidelberg (2007),

http://portal.acm.org/citation.cfm?id=1763427 124, 251

[118] Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.

115(1), 1–37 (Nov 1994), http://dx.doi.org/10.1006/inco.1994.

1092 5

[119] Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and

Computation 115(1), 1–37 (Nov 1994), http://dx.doi.org/10.1006/

inco.1994.1092 228

[120] Wang, H.: Proving theorems by pattern recognition II. Bell System Tech. Journal

40, 1–42 (1961) 232

http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1145/800125.804029
http://dl.acm.org/citation.cfm?id=1760230.1760252
http://dl.acm.org/citation.cfm?id=1760230.1760252
http://dx.doi.org/10.1007/BFb0015261
http://dx.doi.org/10.1007/BFb0015261
http://portal.acm.org/citation.cfm?id=1763427
http://dx.doi.org/10.1006/inco.1994.1092
http://dx.doi.org/10.1006/inco.1994.1092
http://dx.doi.org/10.1006/inco.1994.1092
http://dx.doi.org/10.1006/inco.1994.1092

278 Bibliography

[121] Wolfe, A.: Intel fixes A Pentium FPU glitch. Electronic Engineering Times (Nov

1994) 3

[122] Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: A

New Algorithm for Checking Universality of Finite Automata. In: Ball,

T., Jones, R.B. (eds.) Computer Aided Verification. LNCS, vol. 4144, pp.

17–30. Springer (2006), http://dblp.uni-trier.de/db/conf/cav/

cav2006.html#WulfDHR06 5, 251, 252

http://dblp.uni-trier.de/db/conf/cav/cav2006.html#WulfDHR06
http://dblp.uni-trier.de/db/conf/cav/cav2006.html#WulfDHR06

Index

ABA, see alternating Büchi automaton
alternating Büchi automaton, 19
automata minimization, 5
automata theory, 4

coherent sequences, 84
containment, 40

fixed-word simulation, 43
complexity, 52
multipebble, 54

collapse, 56
formal methods, 2

games, 16
GFQ, see Good for Quotienting
Good for Quotienting, 22

jumping simulation, 72
computing, 111
hierarchies, 94
jumping-safety preservation, 88
non-decreasingness, 77
reflexivity, 87
vs. mediated preorder, 104

jumping transition, path, containment, and
language, 71

jumping-safe preorder, 72
preservation, 88

language
containment, 20
inclusion, 20

Ramsey-based approach, 240

mediated preorder, 104
model-checking, 3
multipath, 18
multipebble simulation

complexity, 214
computing, 208

fixed-word, 54
for ABAs, 121
for NBAs, 35
hierarchy, 127
uniform games, 136

NBA, see nondeterministic Büchi automa-
ton

nondeterministic Büchi automaton, 18

quotient
existential, 22
Good for Quotienting, 22
max, 31
minimax, 186
naı̈ve, 21
semielective, 197
universal, 22

Ramsey-based inclusion checking, 240

simulation
desiderata, 8
fixed-word, 43
for Büchi automata, 9
jumping, 72
multipebble, 35
multipebble fixed-word, 54

simulation preorder, 7
desiderata, 8
for ABAs, 118
for NBAs, 22
quotienting with, 28
simplifying transitions with, 29

subset constructions
fair subset construction, 175
Miyano-Hayashi construction, 168

subsumption methods, 237

undordered cartesian product, 14
uniform simulation games, 136

279

280 INDEX

	PhD coversheet April 2012
	thesis.pdf
	Abstract
	Declaration
	List of Figures
	List of Tables
	List of Examples
	Introduction
	Overview
	Formal methods
	Model-checking
	Automata theory
	Simulation preorders
	Contributions and thesis structure

	Background
	Overview
	Basic notation
	Games
	Automata
	Simulation preorders
	Simulation-based automata simplification

	Fixed-word simulations
	Overview
	Multipebble simulations
	Containment preorders
	Fixed-word simulations
	Fixed-word multipebble delayed simulation
	Fixed-words and ranks

	Jumping simulations
	Overview
	Preliminaries
	Jumping simulation transformers
	Language containment and inclusion
	Reflexivity and jumping-safety
	Proxy simulation hierarchies
	Proxy simulations vs Mediated preorder
	Computing jumping simulations

	Multipebble simulations for ABAs
	Applications of alternating automata
	Simulations for alternating Büchi automata
	Multipebble simulations for alternating Büchi automata
	Basic properties of multipebble simulations
	Uniform simulation games
	Transitivity
	Multipebble simulations and subset-like constructions
	Quotienting
	Computing multipebble simulations
	Complexity of multipebble simulations

	Conclusions
	Overview
	Applications
	Recapitulation and further work
	Advanced language inclusion checking
	Conclusions

	Bibliography
	Index

