584 research outputs found

    Sensor Node Failure Detection Using Round Trip Path in WSNs

    Get PDF
    Now a days, applications of wireless sensor networks (WSNs) has been increased due to its vast potential to connect the physical world to the practical world. Also, advancement in microelectronic fabrication technology reduced the cost of manufacturing convenient wireless sensor nodes and now it becomes a trend to deploy the large numbers of wireless sensors in WSNs so that to increase the quality of service (QoS). The QoS of such WSNs is mainly affected by the faulty or malfunctioning sensor nodes. Probability of sensor node failure increases if number of sensor node increases in the network. For maintaining the better QoS under failure conditions such faulty sensor node should be detected and it should be removed. In this proposed method, faulty sensor node is detected by calculating the round trip delay (RTD) time of round trip paths and comparing them with threshold value. This proposed method is tested with three sensors Nodes designed using microcontroller, sensor and ZigBee. The main server section which will display the failure sensor node is also designed using microcontroller and ZigBee

    RESH: A Secure Authentication Algorithm Based on Regeneration Encoding Self-Healing Technology in WSN

    Get PDF
    In the real application environment of wireless sensor networks (WSNs), the uncertain factor of data storage makes the authentication information be easily forged and destroyed by illegal attackers. As a result, it is hard for secure managers to conduct forensics on transmitted information in WSN. This work considers the regeneration encoding self-healing and secret sharing techniques and proposes an effective scheme to authenticate data in WSN. The data is encoded by regeneration codes and then distributed to other redundant nodes in the form of fragments. When the network is attacked, the scheme has the ability against tampering attack or collusion attack. Furthermore, the damaged fragments can be restored as well. Parts of fragments, encoded by regeneration code, are required for secure authentication of the original distributed data. Experimental results show that the proposed scheme reduces hardware communication overhead by five percent in comparison. Additionally, the performance of local recovery achieves ninety percent

    Ensuring Cyber-Security in Smart Railway Surveillance with SHIELD

    Get PDF
    Modern railways feature increasingly complex embedded computing systems for surveillance, that are moving towards fully wireless smart-sensors. Those systems are aimed at monitoring system status from a physical-security viewpoint, in order to detect intrusions and other environmental anomalies. However, the same systems used for physical-security surveillance are vulnerable to cyber-security threats, since they feature distributed hardware and software architectures often interconnected by ‘open networks’, like wireless channels and the Internet. In this paper, we show how the integrated approach to Security, Privacy and Dependability (SPD) in embedded systems provided by the SHIELD framework (developed within the EU funded pSHIELD and nSHIELD research projects) can be applied to railway surveillance systems in order to measure and improve their SPD level. SHIELD implements a layered architecture (node, network, middleware and overlay) and orchestrates SPD mechanisms based on ontology models, appropriate metrics and composability. The results of prototypical application to a real-world demonstrator show the effectiveness of SHIELD and justify its practical applicability in industrial settings

    Autonomic Wireless Sensor Networks: A Systematic Literature Review

    Get PDF
    Autonomic computing (AC) is a promising approach to meet basic requirements in the design of wireless sensor networks (WSNs), and its principles can be applied to efficiently manage nodes operation and optimize network resources. Middleware for WSNs supports the implementation and basic operation of such networks. In this systematic literature review (SLR) we aim to provide an overview of existing WSN middleware systems that address autonomic properties. The main goal is to identify which development approaches of AC are used for designing WSN middleware system, which allow the self-management of WSN. Another goal is finding out which interactions and behavior can be automated in WSN components. We drew the following main conclusions from the SLR results: (i) the selected studies address WSN concerns according to the self-* properties of AC, namely, self-configuration, self-healing, self-optimization, and self-protection; (ii) the selected studies use different approaches for managing the dynamic behavior of middleware systems for WSN, such as policy-based reasoning, context-based reasoning, feedback control loops, mobile agents, model transformations, and code generation. Finally, we identified a lack of comprehensive system architecture designs that support the autonomy of sensor networking

    A user centred design evaluation of the potential benefits of advanced wireless sensor networks for fire-in-tunnel emergency response

    Get PDF
    This study aimed to assess, from an end-user perspective, the potential role of reconfigurable wireless networks in responding to a fire-in-tunnel incident. The study was based on a multi-media, scenario-based simulation of an incident, and assessment of the benefits and drawbacks of the new technology by subject matter experts in relation to their operational goals, with particular emphasis on support for situation awareness. Advanced wireless networks were shown to have considerable potential for improving the effectiveness, efficiency and confidence of emergency responders at various phases in a fire-in-tunnel incident, due to access to more accurate, complete and reliable information. A key requirement was to ensure that new technologies provided the right information, not just more information, at the point of need

    Fault Discrimination in Wireless Sensor Networks

    Get PDF
    In current times, one of the promising and interesting areas of research is Wireless Sensor Networks. A Wireless Sensor Network consists of spatially distributed sensors to monitor environmental and physical conditions such as temperature, sound, pressure etc. It is built of nodes where each node is connected to one or more sensors. They are used for Medical applications, Security monitoring, Structural monitoring and Traffic monitoring etc. The number of sensor nodes in a Wireless Sensor Network can vary in the range of hundreds to thousands. In this project work we propose a distributed algorithm for detection of faults in a Wireless Sensor Network and to classify the faulty nodes. In our algorithm the sensor nodes are classified as being Fault Free, Transiently Faulty or Intermittently Faulty considering the energy differences from its neighbors in different rounds of the algorithm run. We have shown the simulation results in the form of the output messages from the nodes depicting their health and also compared the results in form of graphs for different average node degrees and different number of rounds of our algorithm run

    A self-healing framework for WSNs : detection and recovery of faulty sensor nodes and unreliable wireless links

    Get PDF
    Proponemos un marco conceptual para acoplar técnicas de auto-organización y técnicas de autocuración. A este marco se le llama de auto-curación y es capaz de hacer frente a enlaces inalámbricos inestables y nodos defectuosos. Dividimos el marco en dos componentes principales: la auto-organización y auto-curación. En el componente de auto-organización, nosotros construimos una topología de árbol que determine las rutas hacia el sumidero. En el componente de auto-curación, la topología del árbol se adapta a ambos tipos de fallas siguiendo tres pasos: recopilación de información, detección de fallas, y la recuperación de fallos. En el paso de recopilación de información, los nodos determinan el estado actual de la red mediante la recopilación de información de la capa MAC. En el paso de detección de fallas, los nodos analizan la información recopilada y detectan nodos/enlaces defectuosos. En el paso de recuperación de fallos, los nodos recuperan la topología del árbol mediante la sustitución de componentes defectuosos con redundantes (es decir, componentes de respaldo). Este marco permite una red con resiliencia que se recupera sin agotar los recursos de la red.We propose a conceptual framework for putting together self-organizing and self-healing techniques. This framework is called the self-healing framework and it is capable of coping with unstable wireless links and faulty nodes. We divide the framework into two major components: selforganization and self-healing. In the self-organization component, we build a tree topology that determines routing paths towards the sink. In the self-healing component, the tree topology copes with both types of failures by following three steps: information collection, fault detection, and fault recovery. In the information collection step, the nodes determine the current status of the network by gathering information from the MAC layer. In the fault detection step, the nodes analyze the collected information and detect faulty nodes/links. In the fault recovery step, the nodes recover the tree topology by replacing the faulty components with redundant ones (i.e., backup components). This framework allows a resilient network that recovers itself without depleting the network resources.Doctor en IngenieríaDoctorad

    Applications of Wireless Sensor Networks in the Oil, Gas and Resources Industries

    Get PDF
    The paper provides a study on the use of Wireless Sensor Networks (WSNs) in refineries, petrochemicals, underwater development facilities, and oil and gas platforms. The work focuses on networks that monitor the production process, to either prevent or detect health and safety issues or to enhance production. WSN applications offer great opportunities for production optimization where the use of wired counterparts may prove to be prohibitive. They can be used to remotely monitor pipelines, natural gas leaks, corrosion, H2S, equipment condition, and real-time reservoir status. Data gathered by such devices enables new insights into plant operation and innovative solutions that aids the oil, gas and resources industries in improving platform safety, optimizing operations, preventing problems, tolerating errors, and reducing operating costs. In this paper, we survey a number of WSN applications in oil, gas and resources industry operations
    corecore