
i

Fault Discrimination

in Wireless Sensor Networks

Nishikanta Sahu

Anurag Das

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India

Fault Discrimination

in Wireless Sensor Networks

Thesis submitted in

May 2013

to the department of

Computer Science and Engineering

of

National Institute of Technology Rourkela

in partial fulfillment of the requirements

for the degree of

Bachelor of Technology

in

Computer Science and Engineering

by

Nishikanta Sahu
[Roll: 109CS0091]

Anurag Das
[Roll: 109CS0136]

with the supervision of

Prof. Manmath Narayan Sahoo

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

May 11, 2013

Certificate

This is to certify that the work in the thesis entitled Fault Discrimination

in Wireless Sensor Networks by Nishikanta Sahu and Anurag Das is

a record of an original work carried out under my supervision and guidance in

partial fulfillment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering. Neither this thesis nor any part

of it has been submitted for any degree or academic award elsewhere.

Prof.Manmath Narayan Sahoo
Assistant Professor
Department of Computer Science and Engineering
NIT Rourkela

iv

Acknowledgment

Dreams never turn to reality unless a lot of effort and hard work is put into

it and no effort bears fruit in the absence of support and guidance. It takes a lot

of effort to work our way through this goal and having someone to guide us and

help us is always a blessing. We would like to take this opportunity to thank a

few who were closely involved in completion and execution of this Project.

At the outset, we thank the Almighty God for making our endeavor a success.

We would like to express our sincere thanks to the Administration of National

Institute of Technology, Rourkela for providing excellent infrastructure and other

facilities, which enabled us to sharpen our skills.

We express our sincere gratitude to our supervisor Prof. Manmath Narayan

Sahoo for his constant support and valuable suggestions without which the suc-

cessful completion of this project would not have been possible. We are highly

indebted to him for making us learn both research and writing skills.

Further we are also thankful to all the faculty members and staff of Department

of Computer Science and Engineering, National Institute of Technology, Rourkela

for their constant help and support during the entire project work.

Last but not the least we would like to thank our family members for their

constant motivation and our classmates who in one way or another have helped

us in the successful completion of this work.

Nishikanta Sahu

Anurag Das

Abstract

In current times, one of the promising and interesting areas of research is Wireless

Sensor Networks. A Wireless Sensor Network consists of spatially distributed

sensors to monitor environmental and physical conditions such as temperature,

sound, pressure etc. It is built of nodes where each node is connected to one

or more sensors. They are used for Medical applications, Security monitoring,

Structural monitoring and Traffic monitoring etc. The number of sensor nodes in

a Wireless Sensor Network can vary in the range of hundreds to thousands. In

this project work we propose a distributed algorithm for detection of faults in a

Wireless Sensor Network and to classify the faulty nodes. In our algorithm the

sensor nodes are classified as being Fault Free, Transiently Faulty, or Intermittently

Faulty, considering the energy differences from its neighbors in different rounds of

the algorithm run. We have shown the simulation results in the form of the output

messages from the nodes depicting their health and also compared the results in

form of graphs for different average node degrees and different number of rounds

of our algorithm run.

Contents

List of Figures viii

1 Introduction 1

1.1 Wireless Sensor Network . 2

1.2 Structure of a WSN . 2

1.2.1 Peer-to-Peer Topology . 3

1.2.2 Mesh Topology . 3

1.2.3 Star Topology . 3

1.2.4 Tree Topology . 4

1.3 Basic architecture of a WSN Node 5

1.3.1 RAM(Random Access Memory) 5

1.3.2 ROM(Read Only Memory) 5

1.3.3 Transmitters . 5

1.3.4 Power Supply . 6

1.4 Applications of a WSN . 7

1.4.1 Monitoring of Environment 7

1.4.2 Monitoring of Security . 7

1.4.3 Used in Hospitals . 7

1.4.4 Used in Tracking Inventory 8

1.4.5 Used in the field of Agriculture 9

1.5 Faults . 9

1.5.1 Types of Faults . 9

1.5.2 Causes of Faults . 10

2 Literature Review 11

2.1 Centralized Approach . 12

2.2 Distributed Approach . 14

3 Motivation 20

3.1 Issues in the existing algorithms . 21

4 Proposed Mechanism 22

4.1 Network Model . 23

4.2 Communication Model . 23

4.3 Energy Consumption Model . 23

vi

vii

4.4 Fault Model . 24

4.5 Definitions . 25

4.6 The System . 26

4.7 Proposed Algorithm . 28

4.8 Analytical Study of the Algorithm 29

4.8.1 Proof of Correctness . 29

4.8.2 Proof of Completeness . 32

5 Simulations and Results 33

5.1 The Setup . 34

5.2 Simulation Snapshot . 35

5.3 Outputs . 36

5.4 Results and Analysis . 38

6 Conclusions and Future Works 40

6.1 Conclusions . 41

6.2 Future Works . 41

Bibliography 42

List of Figures

1.1 Structure of Node . 2

1.2 Peer-to-Peer . 3

1.3 Mesh Topology . 3

1.4 Star Topology . 4

1.5 Tree Topology . 4

1.6 RAM . 5

1.7 ROM . 5

1.8 Transmitters . 6

1.9 Power Supply . 6

1.10 Monitoring Environment . 7

1.11 Monitoring Security . 8

1.12 Applied in Hospital . 8

1.13 Tracking Inventory . 9

1.14 Applied in Agriculture . 9

2.1 Fault Detection Mechanism . 17

2.2 Fault Recovery . 18

4.1 System Graph . 26

5.1 Simulation Network . 34

5.2 Omnet Output Window . 35

5.3 Output of Existing Algorithm for 25 nodes 36

5.4 Output of Existing Algorithm for 100 nodes 36

5.5 Output of Proposed Algorithm for 25 nodes 37

5.6 Output of Proposed algorithm for 100 nodes 37

5.7 Number of Faulty Nodes Vs Number of Rounds (Average Node
Degree 5) . 38

5.8 Number of Faulty Nodes Vs Number of Rounds (Average Node
Degree 10) . 39

5.9 Number of Faulty Nodes Vs Number of Rounds (Average Node
Degree 15) . 39

viii

List of Abbreviations
WSN: Wireless Sensor Network

RAM: Random Access Memory

ROM: Read Only Memory

P2P: Peer-to-Peer

OS: Operating System

I/O: Input and Output

ADC: Analog to Digital Converter

CMOS: Complementary Metal — Oxide — Semiconductor

FF: Fault Free

TF: Transiently Faulty

IF: Intermittently Faulty

–

Chapter 1

Introduction

1

2

1.1 Wireless Sensor Network

A wireless Sensor Network (hence forward referred to as WSN) is a collection

of nodes deployed mostly in the range of hundreds to thousands connected to the

same network. Each node has its own processing capability, memory, power source

and sensors. It is described in detail in following sections. The nodes are designed

in such a manner that they can communicate and organize themselves through

the network. The nodes have a wide range of cost depending on the need. The

concept of WSN is getting popular day by day. WSN is mostly used to monitor

environment and physical conditions.

1.2 Structure of a WSN

The nodes in a WSN are connected in a Mesh Topology , Peer to Peer, Tree and

Star. The size of a node is as small as a coin as depicted in the following figure.

Figure 1.1: Structure of Node

The wireless sensor nodes do not communicate with a central node rather

with its surrounding local nodes. There are many constraints associated with

the designing of a node. The nodes have embedded processors which have to

implement complex networking protocols with just a memory of some kilobytes.

As the size of the device is smaller and so is the power source. The nodes include

both hardware and an operating system such as TinyOS (an operating system

for WSN). The most advanced hardware platform used now-a-days is single chip

CMOS device. This WSN node consists of a microcontroller, transmitter, ADC,

I/O ports, and memory.

3

1.2.1 Peer-to-Peer Topology

In this type of topology the nodes do not have any centralized controller rather

communicate with each other that is its peers. Each node behaves as a client and

server to its neighboring nodes.

Figure 1.2: Peer-to-Peer

1.2.2 Mesh Topology

In this type of topology the nodes can communicate with each other. The data to

be sent to the desired destination from the source travels from one node to another

by hopping. It is quite expensive to deploy this type of topology.

Figure 1.3: Mesh Topology

1.2.3 Star Topology

This type of topology has a centralized approach when it comes to nodes commu-

nicating with each other. Every message from a node must pass through a central

hub or server before it reaches the destination. The central node acts as the server

while others act as the clients.

4

Figure 1.4: Star Topology

1.2.4 Tree Topology

The Tree topology can be considered as a hybrid of star and peer-to-peer topology.

The central node acts as a root.

Figure 1.5: Tree Topology

5

1.3 Basic architecture of a WSN Node

1.3.1 RAM(Random Access Memory)

The RAM in a sensor node is used to store the current readings sensed. The data

may be hampered in case of power supply disruption.

Figure 1.6: RAM

1.3.2 ROM(Read Only Memory)

The ROM is used to store the programs used in implementing the WSN.

Figure 1.7: ROM

1.3.3 Transmitters

The transmitters are used in half-duplex mode for both receiving and sending

operations. It has 4 states

• IDLE

• SLEEP

• RECEIVE

• TRANSMIT

6

Figure 1.8: Transmitters

1.3.4 Power Supply

The basic requirement the power supply must provide maximum power in mini-

mum size. As the batteries cannot be charged in an usual way, energy has to be

obtained from other sources like photo voltaic cells, temperature gradient etc.

Figure 1.9: Power Supply

7

1.4 Applications of a WSN

1.4.1 Monitoring of Environment

A WSN is deployed to collect information in an environment. These are deployed

for over a period ranging from months to years to analyze any trend in the weather

and other aspects.

Figure 1.10: Monitoring Environment

1.4.2 Monitoring of Security

A WSN can be deployed in an area for military surveillance. The sensors are used

to detect any unusual activity in the deployed region. If any such activity is sensed

then it gets reported to the centre for taking any required action.

1.4.3 Used in Hospitals

The WSN can be used to monitor the health conditions of patients remotely there

by reducing the use of more man power.

8

Figure 1.11: Monitoring Security

Figure 1.12: Applied in Hospital

1.4.4 Used in Tracking Inventory

WSNs can be used to track items in a store house or factory to prevent the loss

of items. It is also used in tracking of parcels.

9

Figure 1.13: Tracking Inventory

1.4.5 Used in the field of Agriculture

WSNs can be deployed to monitor irrigation activities and fertilization of fields.

Figure 1.14: Applied in Agriculture

1.5 Faults

What are Faults??

Faults are a kind of a situation which leads to errors

1.5.1 Types of Faults

Based on persistence, faults are categorized into the following types:

Transient Fault: The transient faults occur very less frequently or rarely and gets

removed without any intervention. These are mostly caused due to noise.

Intermittent Fault: The Intermittent Faults occur more frequently compared to

transient faults. The nodes which are faulty sometimes behaves fault free and

vice-versa.

10

Permanent Faults: The permanent fault is permanent for a node. The intermit-

tently faulty node gradually becomes a permanent faulty node in due course of

time.

1.5.2 Causes of Faults

Due to the fragile nature of sensor nodes and also because of the depletion of their

limited power source, faults may occur. Due to harsh environments where nodes

are being deployed, the nodes may receive and transmit incorrect sensor readings.

In the WSNs the links are also prone to faults. Also when nodes are embedded

or mobile nodes can sometimes go out of range of communication. Faults are also

caused due to multi-hop communication as it takes several hops to deliver the data

to sink. Failure of single intermediate node may lead to a total erroneous data.

Congestion which occurs due to large number of nodes transmitting the same time

may also lead to packet loss.

Chapter 2

Literature Review

11

12

The rise in growth of WSN in applications in various wireless environmental

monitoring applications has forced to focus on the quality of the service. The

main task now is to design better fault management approaches. The existing

approaches have been divided into 3 phases. The decreasing cost of the electronic

devices has been an important factor for its increase use in deployment to extract

useful information from harsh environment. But there are some limitations on the

hardware and software pertaining to the small size of the nodes like energy supply,

memory, processing capabilities etc. In usual cases the nodes have irreplaceable

power source with limited energy. The energy level gradually decreases over days

leading to faults.

The nodes are also prone to faults because of the harsh environments in which

they are deployed. This leads to situations like the node behaving arbitrarily or

the node becomes inactive for some time. There are various existing approaches

to manage faults in forms of architectures [1–3], protocols , detection algorithm[4–

7] and detection decision fusion algorithm[8–13]. These fault management ap-

proaches have been divided into three phases such as Fault detection, fault diag-

nosis and fault recovery. Fault Detection has been divided into 2 approaches.

2.1 Centralized Approach

In a WSN the centralized approach is an usual solution to find the faulty nodes. A

central node based on geographically or logically (it can be a base station [14–16],

central controller, sink[17]) does the job of finding the faulty node and monitoring

the nodes that misbehave or give arbitrary outputs. The assumptions is that the

central node has unlimited amount of resources like power so that it can execute

a wide range of fault management maintenance. It also assumes that the network

lifetime can be extended if the complex management work and message passing is

given to the central node. Active detection model is used by the central manager

to the receive the states of the sensor nodes as well as the network. It is done

by sending requests to the nodes at regular intervals and detects faulty nodes.

Sympathy[17] is message flooding approach to collect event data states of the

sensor nodes. Sympathy nodes in order to minimize the number of communication

messages nodes must send and save energy. The sympathy node can transmit

events after selection to the sympathy sink.

13

In another approach [16] the network topology information is appended into

the routing update messages of the node. In this way the base station can con-

struct the entire network topology. After the network topology is formed, the

base station can now easily know the faulty nodes by using divide and conquer

approach. But this model assumes that the base station can send messages di-

rectly to any node and each node has an unique identifiatcion number. In another

approach[15] the base station uses marked packets. These marked packets conatin

information about source and destination nodes. It uses the responses of the nodes

to identify and locate the faulty nodes due to excessive packet drops or compro-

mised data detection. In WinMS[3] approach the central manager prevents failure

by comparing the current and historical states of the sensor nodes with the total

network topology. It is a centralized approach.

The centralized approach in identifying the faulty nodes in a sensor network is

efficient and accurate to some extent. But due to the resource constraints it is not

easy to collect the node information at regular intervals. Due to the centralized

approach there is transmission of packets to a single central node which leads to

high volume of message traffic and energy depletes quickly. It happens not only

to the central node but also to the nodes close to it. It is inefficient and expensive

in case of large WSNs. The multi hops communication of this approach increases

the response delay from the base station to the faults in a network.

14

2.2 Distributed Approach

It is a localized approach evenly distributing fault management in a WSN. A node

makes some decisions before communicating with the central node. Information

is delivered to central nodes when required in case of fault detection. Similar

developments are self-detection and self-correction of faults in a node[18, 19] failure

detection by neighboring nodes[4–7, 19] , WATCHDOG[20], Clustering[1, 21]

A self detection model was proposed by S Harte et al.[18] to observe the

malfunctioning of the physical components of the sensor node. In the self-detection

of node[22], the node just observes status of its sensors by comparing with pre-

defined fault models.

In neighbor coordnination approach, neighbors coordinate with the neighbors

to find any fault before communicating with the central node. This approach

helps in reducing the network communication messages hence saves energy. In an

decentralized approach[19] the sensor node can execute a localized fault detection

algorithm. The nodes can also ask for diagnostic information from the neighbor-

ing nodes as well. Min et al[6] proposed an algorithm that can detect faults by

comparing the sensor nodes with neighboring nodes and the nodes are suspicious

if there is huge difference in the reading. It can be implemented on large size

networks but the number of faulty nodes must be less. In another approach [4, 5]

the accuracy of failure detection is addressed by 2 phases called clustering and

distributed detection.

Clustering[23] is an important technique in WSNs. In an approach proposed

by Ann T .Tai et al., [1]failure detection of nodes is done using clustering to

achieve scalability , completeness, and accuracy. The entire network is divided

into clusters and the fault management is divided among them. The cluster head

detects the faults. When a failure is detected this information is propagated to

all the clusters. In another approach proposed by Ruiz et al[21] fault detection is

supported by MANNA[2]. Here the agents are executed in the cluster heads which

has more resources than the usual nodes. Every node checks its energy value and

sends the information to the agent during any state change. This information is

used by manager to build a network energy model to detect potential failures in

the network.

15

In another approach using clustering [24], the clusters are formed without any

overlapping. Each node declares itself to be a cluster head. Clusters are formed but

with the condition that every sensor should belong to a cluster without crossing the

limit. All the nodes keeps on sending its sensed temperature value to its neighbors.

Consider two nodes Si and Sj. The temperature sensed by Si is compared with

another node Sj . This comparison is done for two time instants ti and ti+1. The

status element Cij is recorded for any deviation from the threshold value. Cij

can hold two values, 1 or 0. The status of the node such as Likely Good(LG) or

Likely Fulty(LF) is calculated. It is calculated by comparing the value of C with

its neighboring sensors. Then it is determined whether a node is good(GD) or

Faulty (FT). The GD node is used to detect the faultiness of other nodes. If all

the nodes are FT then the algorithm is stopped. This algorithm is repeated for

every cluster. Every cluster head maintains the status of the nodes in the cluster

along with the all the nodes in the network.

Distributed detection is a process where each node takes a decision on faults

in a sensor network.

The major challenge in this approach is to obtain a better balance between

fault detection accuracy and energy usage in the network. The metrics on which

the fault detection techniques depend are:

• Precision

• Detection

• Communication cost

• The maximum limit of number of faulty nodes

Clouqueurs work[13], confirms that all the fusion nodes(manager nodes) in the

network possess the same information about the network before deciding, as the

faulty nodes may provide inconsistent data. Wang et al [15], adopts data aggrega-

tion and redundant data lessening methods of cluster to reduce the transmission

power loss and achieve less computational time and memory at the fusion nodes.

In Self-Detection also called as Passive Detection, the sensor nodes monitor

their residual energy at regular intervals to identify a potential failure. In this

model the cause of sudden death of a WSN node is depletion of the battery.

16

When the battery loses its energy below a threshold, it is considered to be dead

. The node in such a situation is called as a failing node. In such a situation

the failing node sends a message informing to its cell manager that it is going

to sleep mode due to depletion of its battery below the threshold[21]. This is an

approach localized to the node itself and doesnt use much in-network communi-

cation thereby reducing the consumption of energy. The response delay of the

management system towards the potential faulty sensor nodes is also reduced [23].

Active Detection is another efficient approach. The cell members are asked

by their respective cell managers to reply to it with their updates. This method

continues at regular intervals called as in-cell update cycle. The cell members

sends a message which consists of its node id, location, and energy. Failing to the

receipt of this update message from a node, the cell manager sends a message to

that corresponding node to send its status[25]. If that node doesnt reply within

a stipulated time then the cell manager declares the node to b a faulty and then

informs all the cell members. The cell manager also uses Self-Detection approach

to monitor the residual energy at regular intervals.

A node is classified as a low energy node and is about to sleep if its residual

energy decreases to less than or equal to 20%. If a node has residual energy more

than 50% then it is a potential candidate for a cell manager. But if a case arises

when the cell manager has its energy below 20%, it informs its status to the cell

members and the group manager as well so as to find a new cell manager. Every

cell manager sends its status to the group manager at regular intervals which is also

termed as out-cell update cycle. This out-cell update cycle unlike in-cell update

cycle is less frequent. If the group manager does not get any update from the same

cell manager consecutively second time then it informs to the cell members [25]

that the respective cell manager is dead and faulty. The group manager performs

in a similar manner. If the base station doesnt receive any acknowledgement from

the group member it declares it to be faulty and dead. It then informs to the cell

managers in that group.

The fault diagnosis stage aims at detecting the causes of a fault occurring in

the network. The accuracy and correctness of fault detection is studied thoroughly

in[2, 6, 10, 13]. Most of the fault diagnosis techniques such as in [8, 18]concentrate

on hardware component malfunctioning, assuming that softwares are fault toler-

ant. Farinaz et al[18] assume two fault models, one for sensors producing binary

outputs and the other for sensors producing analog or contiguous output. Thomas

17

Figure 2.1: Fault Detection Mechanism

et al[13], assumed faulty nodes are always due to bitter environmental conditions.

Ming Ding et al.[7], model the events by real numbers such as the sensor readings

which can be specified by fault tolerance requirements for various sensor applica-

tions.

The fault recovery stage aims at restructuring and reconfiguring of the faulty

network such as the faulty nodes do no more hamper to the network performance.

The most simple and straight forward approach followed in WSN is isolation of

faulty nodes. In Marti et al[4], when a node detects a faulty neighbour then it

discards it and chooses a new one for routing. Staddon et al[17] proposed two

method to resume network paths from the faulty nodes that gets detected in each

routing update epoch. Some of the proactive method includes WinMs[14], where

the central maneger identifies a network region of weak health by comparing it

with current network state. Koushanfar et al[18] suggested a heterogeneous back

up scheme where they assumed that the application programs or the operating

system can adapt to match the available hardware. This design throws an insight

towards the future where a node functionality needs to be updated because of

occurance of a fault.

In another approach, the dead nodes can be made to work again or these gaps

can be filled in by using mobile nodes. For a cell manager getting dead, it can

appoint a secondary cell manager before-hand to act as its back up. If the cell

manager fails then a message is passed to all the cell members and the secondary

cell manager as well. The secondary cell manager now behaves as a cell manager

18

and the previous cell manager acts as a normal node in its low energy state. The

new cell manager now receives updates from all the cell members and it also iden-

tifies a new secondary cell manager [21]. Consider the example given below. The

cell member 1 is the acting cell manager now. The cell member 3 is chosen as

the secondary cell manager. The energy of the member 1 starts depleting and it

reduces to below 20%. The cell manager 1 sends a message to all the cell members

invoking the fault recovery method. Now the cell member 3 acts as the cell man-

ager now. If the secondary node has its energy depleted as well then all the cell

members exchange messages between them. The node with residual energy more

than 50% is chosen as the new cell manager.

Figure 2.2: Fault Recovery

The approach we have focused on is a probabilistic approach to diagnose inter-

mittent faults in a Wireless Sensor Network[26]. The algorithm proposed in this

19

paper is a distributed one run by each node. Each node compares the energy value

of its neighbors and maintains a vector according to the energy difference. At the

end of each round the vector is analyzed to judge if the node was faulty or fault

free for that round and another vector b is maintained to record the finding of each

round. At the end of rounds a node determines if it is intermittently faulty or not

by verifying it vector b. Though this approach successfully detects intermittent

faults but it does not classify the faults further and behaves harsh with the nodes

which are faulty for only a few instance of time.

Chapter 3

Motivation

20

21

Discrimination of transient from intermittent or permanent faults is crucial

as a sensor node with transient fault does not necessarily imply that the sensor

node should be isolated. Although the unstable environment might warrant a

temporary shutdown. We were motivated for classification of faulty nodes as dis-

crimination between transient and intermittent faults solves many key problems.

It leads to effective bandwidth utilization. By isolating intermittent faults, the

traffic generated by the intermittently faulty nodes is restricted. Then it helps

in effective energy utilization. The depletion of sensor node battery energy in

forwarding the erroneous data generated by intermittent faults can be avoided.

It also helps in better network coverage and connectivity. Isolation of fault-free

nodes with transient faults will reduce the available sensor nodes in the network

thus impacting network coverage and connectivity.

3.1 Issues in the existing algorithms

The existing algorithms that we have studied detects nodes as intermittently faulty

nodes or fault free nodes in the Wireless Sensor Network. Labeling nodes as

intermittently faulty that shows fault for only some instances is very harsh on

them. They work and may use to work as fault free for a long period of time

henceforth. So in our algorithm we detect faults in each round and classify the

faulty nodes into transiently faulty and intermittently faulty according to the

frequency of their occurrences.

An intermittently faulty node is one that malfunctions for some instances

and otherwise shows correct sensor readings and results. These malfunctioning

instances are very irregular and do not show any pattern. So the nodes have to

be isolated from the network for its proper functioning.

A transiently faulty node is one that malfunctions only for a very few instances

of its healthy lifetime and hence do not cause a serious threat to the working of

the network. In the worst case, it may cause a temporary shutdown of the system.

So these nodes need not be isolated from the system and only the readings during

which time they were found faulty need to be discarded during the observation.

Chapter 4

Proposed Mechanism

22

23

4.1 Network Model

It is assumed that in the Wireless Sensor Network, the sensor nodes are randomly

deployed in the area under surveillance. The area is very dense and all the sensors

have a common range of transmission. And the sensor nodes located in this range

of transmission of a particular node are called its neighbors. There might be a

fault occurring in any of the sensor nodes at a particular instant of time. That

node at that instance goes out of service.

As we are carrying out a kind of voting among the sensors such that even if

a single neighbor predicts it to be fault free then the node is labeled fault free

for that instance of time. So we assume that each node at least has 2 neighbors.

Since the area under surveillance is very dense so this condition can be obtained

very easily.

4.2 Communication Model

In the proposed system, communication is between only the neighbor sensor nodes.

A sensor node is considered as neighbor of another sensor node if it lies within the

transmission range of the first said sensor node. So the set of nodes that a sensor

node n can communicate is given as

E(s)={ ni such that ni lies within the transmission range on n}

We have assumed a full duplex mode of communication. So the communication

is bidirectional between nodes. So if there is a communication link between ni and

nj then there is also a communication link between node nj and ni

lni,nj
⇔ lnj ,ni

4.3 Energy Consumption Model

Energy is consumed in a node for reading data from the environment, processing

it, transmitting it to its neighbors and receiving data and control signals etc. The

energy consumption in our proposed algorithm follows the equation:

P = P0c(x/d0) (4.1)

24

where,

P= Power used,

P0 = Power used to transmit a data packet to a distance d0,

x = Distance travelled by the packet and

c = Network constant

4.4 Fault Model

We assume that fault can occur at any level of the sensor network such as hardware,

physical layer, middleware and system software. In this project we have focused on

hardware level faults only and have assumed that all the application and system

softwares are tolerant to faults.

The hardware components of the sensor nodes are categorized into two groups.

The first group consists of the following components:

• Computation Engine

• Storage Subsystem

• Power Supply Infrastructure

The second group consists of the following components:

• Sensors

• Actuators

The components present in the first group are very reliable because they follow

heterogeneous BISR fault tolerant schemes. But the second group is more prone

to malfunctioning. Since targeted level of fault tolerance will be provided by the

first group[27], only the second group of faults are considered that includes three

types of faults:

• Calibration Systematic Error

• Random Noise Error

• Complete Malfunctioning

25

We have assumed it in the project that nodes are still capable of receiving,

sending and processing even if they are faulty

Now considering the type of faults that our algorithm detects. it detects both

hard faults and soft faults. Hard faults are considered as permanent faults that

always produce errors when they are fully exercised[28]. Soft faults are temporary

faults that only temporarily affect the system. In the proposed algorithm we have

detected transient faults which are in the category of soft faults and intermittent

faults which are categorized as hard faults.

Another categorization of faults are into static and dynamic faults. Static

faults are those which are caused due to only a single kind of malfunctioning and

are persistent. Whereas dynamic faults are caused due to combined malfunctioning

of different kinds and are dynamically introduced in the system while it is running.

Our proposed algorithm only focusses on the faults that are static in nature. No

faults are dynamically introduced in the system.

4.5 Definitions

n: Total number of sensor nodes.

S: Set of all the sensor nodes.

ni: Any particular node or we say the ith sensor node in the network.

N(ni): Set of the neighbors of node ni.

Ein: Initial energy value of each node.

Eu: Energy usage in each round of the algorithm run.

Ei: Current energy value of the ith node. Ej: Current energy value of the jth node

which is a neighbor of ith node.

∆ E: Energy difference between ith and jth node.

θe: A predefined energy threshold value.

k: The numbers of rounds of the algorithm run.

v: A vector in the node to store the votes of the neighbors.

b: A vector in the node to store the labels for each round of the algorithm run.

f: Frequency of faults. It is ratio between number of rounds in which a fault was

detected to the total number of rounds

θf : A predefined fault frequency threshold

26

A sensor node is considered as neighbor of another sensor node if it lies within

the transmission range of the first said sensor node. Each sensor node sends its

energy value to each of its neighbors in each round of the algorithm. Comparisons

are carried out between the energies of the sensor nodes. If the difference is within

a predefined threshold then the node is voted a fault free by its neighbor and if the

difference is above the predefined threshold then it is voted as a faulty node. The

votes of all the neighbors are considered in a way as if all the neighbors say the

node is faulty then only the node is labeled faulty for that round of the algorithm

run. The algorithm is run for a particular number of rounds to have faith in the

results obtained.

The results found in each round i.e the labels of the sensor nodes in each

round is considered to finally determine if the node is fault free, transiently faulty

or intermittently faulty.

4.6 The System

We have considered the System Graph S of the Wireless Sensor Network as an

undirected graph. A miniature model is shown below: The System model consists

Figure 4.1: System Graph

of vertices and edges.

Vertices:

V(s):Nodes of the Network

Edges:

E(s)={ (ni, nj) such that ni, nj ∈ V(s) and there is a communication path between

ni and nj}

27

Testing Graph:

We have considered the testing graph T as

V(Ts) = V(s)

E(Ts) = {(ni, nj) such that ni, ni ∈ V(s) and the node ni compares the estimated

and observed remaining energy value of node nj and vice-versa }
For each edge (ni,nj) ∈ E(Ts)

Label=0: If the comparison outcome of observed & estimated remaining energy

value of nodes ni and nj is within threshold.

Label=1: If the comparison outcome is above threshold.

28

4.7 Proposed Algorithm

Data: Energy Value of each node for each round of Algorithm run

Number of rounds k

Result: Health of Each Node

Ei = Ein;

while rounds ≤ k do

Ei = Ei - Eu ;

while each sensor node is visited do

while energy value of each neighbor is received do

if (Ei − Ej) ≤ θe then

Set V[i][j] = 0;

else

Set V[i][j] = 1;

end

end

if at least one of the elements of v[i] is 0 then

Set b[i][k] = 0;

else

Set b[i][k] = 1;

end

end

end

Calculate the Fault Frequency f;

if f=0 then
Print: Fault Free

else

if f ≤ θf then
Print: Transiently Faulty

else
Print: Intermittently Faulty

end

end
Algorithm 1: Proposed Fault Classification Algorithm

29

4.8 Analytical Study of the Algorithm

Here we present an analytical study of our proposed algorithm. We verify our

algorithm for its correctness and completeness.

4.8.1 Proof of Correctness

A correctness proof is a formal mathematical argument that an algorithm meets

its specification, which means that it always produces the correct output for any

permitted input.

We write down below, informal arguments giving an outline of the proof.

First we consider a Fault Free node np:

Step 1

Ep = Ein;

Step 2:

After each round of the algorithm run the energy will become:

Ep= Ep − Eu

Step 3:

In each round Ep will be compared with the energy of all the neighbors of np.

Its energy value is found to be within the threshold when compared with the

energies of the maximum neighbors.

Step 4:

The vector V[p] is majorly assigned 0s.

Step 5:

The vector b[p][k] is assigned 0 as the majority of elements in V[p] are 0.

Step 6:

At the end of all the rounds of the algorithm the vector b[p] entirely consist of 0s

Step 7:

The fault frequency f is calculated to be 0 as all the elements in b[p] is 0.

Step 8:

Since f=0 so Fault Free is printed. Since np is detected as “Fault Free”, the

algorithm is correct in detecting a fault free node.

30

Now we consider a Transiently Faulty node nq:

Step 1:

Eq = Ein;

Step 2:

After each round of the algorithm run the energy will become:

Eq = Eq − Eu

Step 3: In each round Eq will be compared with the energy of all the neighbors

of nq. Its energy value is found to be within the threshold when compared with

the energies of the maximum neighbors at instance x and out of threshold when

compared with the energies of all its neighbors at instance y.

Step 4:

The vector V[q] is majorly assigned 0s in instance x but all the elements of V[q]

are assigned 1 in instance y.

Step 5:

The vector b[q][k] is assigned 0 in instance x and 1 in instance y.

Step 6:

At the end of all the rounds of the algorithm the vector b[q] majorly consists of

0s when the instance was x but also contains some 1s when the instance was y

Step 7:

The fault frequency f is calculated considering the elements in b[q].

Step 8:

Since it is found f ≤ θf so Transiently Faulty is printed.

Since nq is detected as “Transiently Faulty”, the algorithm is correct in detecting

a transiently faulty node.

31

Now we consider an Intermittently Faulty node nr:

Step 1:

Er = Ein;

Step 2:

After each round of the algorithm run the energy will become:

Er = Er − Eu

Step 3:

In each round Er will be compared with the energy of all the neighbors of nr. Its

energy value is found to be within the threshold when compared with the energies

of the maximum neighbors at instance x and out of threshold when compared with

the energies of all its neighbors at instance y.

Step 4:

The vector V[r] is majorly assigned 0s in instance x but all the elements of V[r]

are assigned 1 in instance y.

Step 5:

The vector b[r][k] is assigned 0 in instance x and 1 in instance y.

Step 6:

At the end of all the rounds of the algorithm the vector b[r] consists of 0s when

the instance was x but majorly contains 1s when the instance was y

Step 7:

The fault frequency f is calculated considering the elements in b[r].

Step 8:

Since it is found f > θf so Intermittently Faulty is printed. Since nr is detected

as “Intermittently Faulty”, the algorithm is correct in detecting an intermittently

faulty node.

So we found that the algorithm correctly finds all types of faults that we have

considered in the project. So the correctness of the algorithm is proved.

32

4.8.2 Proof of Completeness

A completeness proof is a formal mathematical argument that an algorithm covers

all the valid input values and produces output for them, which means that it always

produces some output for any permitted input.

We write down below, informal arguments giving an outline of the proof.

Any node ni that is considered, its b vector is analyzed. Its frequency of

faults f is calculated. Now depending upon the calculated f, it is assigned to

one of the class Fault Free abbreviated as ff, Transiently Faulty abbreviated as

tf and Intermittently Faulty abbreviated as if. No node is left unassigned a class

or assigned to multiple classes as we have considered hard lined and mutually

exclusive conditions.

So we have:

Nff +Ntf +Nif = N

Sff ∪ Stf ∪ Sif = Sn

Sff ∩ Stf = φ

Stf ∩ Sif = φ

Sff ∩ Sif = φ

Where S is the set of nodes.

So from the above the completeness of the proposed algorithm is proved.

Chapter 5

Simulations and Results

33

34

5.1 The Setup

The simulation set up used is Intel Dual Core Processor with 2.10GHz Clock speed

and Memory of 4 GB. The algorithm was simulated in OMNeT++ Version 4.2.2

Network simulator.

The Wireless Sensor Network used in the simulation is shown below:

Figure 5.1: Simulation Network

35

5.2 Simulation Snapshot

The Simulation output trace from the OMNeT++ simulator is as shown below:

Figure 5.2: Omnet Output Window

36

5.3 Outputs

Figure 5.3: Output of Existing Algorithm for 25 nodes

Figure 5.4: Output of Existing Algorithm for 100 nodes

37

Figure 5.5: Output of Proposed Algorithm for 25 nodes

Figure 5.6: Output of Proposed algorithm for 100 nodes

38

5.4 Results and Analysis

We compared the number of fault free, transiently faulty and intermittently faulty

nodes found with the number of rounds of the algorithm run and found the follow-

ing results depicted in the graph for different node degrees i.e the average number

of neighbors each node has.

Figure 5.7: Number of Faulty Nodes Vs Number of Rounds (Average Node
Degree 5)

It is observed from the output of our proposed algorithm that as the number of

rounds of the algorithm run increases, more number of faulty nodes are detected.

So the number of rounds of the algorithm run has to be considerable to have faith

in the results of the algorithm. The output for simulation with increased node

degree is shown below.

39

Figure 5.8: Number of Faulty Nodes Vs Number of Rounds (Average Node
Degree 10)

Figure 5.9: Number of Faulty Nodes Vs Number of Rounds (Average Node
Degree 15)

It is also observed from the output of our proposed algorithm that as we

increase the node degree that is the average number of neighbors of a node, the

number of faulty nodes detected decrease as we are using a type of polling where

even if any neighbor says the node is fault free then the node is judged to be fault

free for that particular round. So we should not keep the average node degree very

high for proper results.

Chapter 6

Conclusions and Future Works

40

41

6.1 Conclusions

We proposed a distributed algorithm for detection of faults in a Wireless Sensor

Network and the classification of the faulty nodes. In our algorithm the sensor

node classifies itself as being fault free, transiently faulty, or intermittently faulty

considering the energy differences from its neighbors. We have shown the simu-

lation results in the form of the output messages from the nodes depicting their

health and also compared the results in form of graphs for different average node

degrees and different number of rounds of our algorithm run. By the simulation

results and comparisons we conclude that as the number of rounds in the algo-

rithm increases, number of faults detected increases. Also we conclude that by

increasing the node degree or we can say the average number of neighbors the

number of faults detected decreases. So these two factors affect the accuracy of

our algorithm.

6.2 Future Works

In future we intend to optimize the algorithm by focusing upon the energy dissi-

pated by the sensor nodes of the Wireless Sensor Network. We will include the

energy dissipation models used in different applications and carry out the simula-

tions. We also intend to carry out the simulations in a Wireless Sensor network

having more number of sensor nodes and a greater node degree.

Bibliography

[1] Ann T. Tai, Kam S. Tso, and William H. Sanders. Diversity-inspired cluster-

ing for self-healing manets: Motivation, protocol, and performability evalua-

tion. in Proceedings of the International Conference on Dependable Systems

and Networks, pages 547–556, 2010.

[2] Winnie Louis Lee, Amitava Datta, and Rachel Cardell-Oliver. Flexitp: A

flexible-schedule-based tdma protocol for fault-tolerant and energy-efficient

wireless sensor networks. IEEE Trans. Parallel Distrib. Syst., 19(6):851–864,

2008.

[3] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J. D. Tygar.

Proceedings of the 7th annual international conference on Mobile computing

and networking.

[4] Chih fan Hsin and Mingyan Liu. Self-monitoring of wireless sensor networks.

Computer Communications, 29(4):462–476, 2006.

[5] Kai Xing Min Ding, Dechang Chen and Xiuzhen Cheng. Localized fault-

tolerant event boundary detection in sensor networks. INFOCOM, 1.

[6] Shubha Kher Jinran Chen and Arun Somani. Distributed fault detection of

wireless sensor networks. Proceedings of the 2006 workshop on Dependability

issues in wireless ad hoc networks and sensor networks, pages 65–72, 2006.

[7] Ming Dong Xuanwen Luo and Yinlun Huang. On distributed fault-tolerant

detection in wireless sensor networks. IEEE Trans. Computers, 55(1):58–70,

2006.

[8] Ming Dong Xuanwen Luo and Yinlun Huang. Optimal fault-tolerance event

detection in wireless sensor networks. IEEE Transactions on Computers.

42

Bibliography 43

[9] Ruixin Niu, Pramod K. Varshney, and Qi Cheng. Distributed detection in a

large wireless sensor network. Eurasip Journal on Wireless Communications

and Networking, 7(4):380–394, 2006.

[10] Ruixin Niu, Pramod K. Varshney, Michael Moore, and Dale Klamer. Decision

fusion in a wireless sensor network with a large number of sensors. In Fusion,

pages 21–27, 2004.

[11] Kewal K.Saluja Thomas Clouqueur and Parameswaran Ramanathan. Fault

tolerance in collaborative sensor networks for target detection. IEEE Trans-

actions on Computers, 53(3):320–333, 2004.

[12] Pramod K.Varshney Po-Ning Chen Tsang-Yi Wang, Yunghsiang S.Han. IEEE

Journal on Selected Areas in Communications.

[13] Rohan Bhindwale Sapon Tanachaiwiwat, Pinalkumar Dave and Ahmed

Helmy. Secure locations: routing on trust and isolating compromised sen-

sors in location-aware sensor networks. SenSys, pages 324–325, 2003.

[14] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating routing

misbehavior in mobile ad hoc networks. 6th International Conference on

Mobile Computing and Networking, pages 255–265, 2000.

[15] Dirk Balfanz Jessica Staddon and Glenn Durfee. Efficient tracing of failed

nodes in sensor networks. WSNA, pages 122–130, 2002.

[16] Nithya Ramanathan, Kevin K. Chang, Rahul Kapur, Lewis Girod, Eddie

Kohler, and Deborah Estrin. Sympathy for the sensor network debugger.

SenSys, pages 255–267, 2005.

[17] M. Potkonjak F Koushanfar and A Sangiovanni Vincentell. Fault tolerance

techniques for wireless ad hoc sensor networks. Proceedings of IEEE, Sensors,

2002., 2:1491–1496, 2002.

[18] C. Hartung A. Sheth and R. Han. A decentralized fault diagnosis system for

wireless sensor networks. IEEE International Conference on Mobile Adhoc

and Sensor Systems Conference, 2005, pages 3 pp.–194, 2005.

[19] Leonardo B Oliveira Wong Hao Chi José Marcos S Nogueira Antonio A.

F. Loureiro Linnyer Beatrys Ruiz, Isabela G Siqueira. Fault management in

Bibliography 44

event-driven wireless sensor networks. Proceedings of the 7th ACM interna-

tional symposium on Modeling, analysis and simulation of wireless and mobile

systems, pages 149–156, 2004.

[20] Mihaela Cardei and Jie Wu. Energy-efficient coverage problems in wireless ad-

hoc sensor networks. IN ACM WORKSHOP ON WIRELESS SECURITY,

29(4), February 2006.

[21] H. Mokhtar M. Yu and M. Merabti. A survey on fault management in wireless

sensor network. 8th Annual PostGraduate Symposium on The Convergence

of Telecommunications, Networking and Broadcasting, 2007.

[22] A. Rahman S. Harte and K.M. Razeeb. Fault tolerance in sensor networks

using self-diagnosing sensor nodes. The IEE International Workshop on (Ref.

No. 2005/11059) Intelligent Environments, 2005., pages 7–12, 2005. ISSN

0537-9989.

[23] K.Lai S. Marti, T. J. Giuli and M. Baker. Mitigating routing misbehavior in

mobile ad hoc networks. Proceedings of the 6th annual international confer-

ence on Mobile computing and networking, pages 255–265, 2000.

[24] Neelam Banerjee and P.M.Khilar. Distributed intermittent fault diagnosis in

wireless sensor networks using clustering. 2010 First International Conference

on Integrated Intelligent Computing, pages 264–269, 2010.

[25] M. Potkonjak F. Koushanfar and A. Sangiovanni-Vincentelli. Fault tolerance

techniques in wireless ad-hoc sensor networks. UC Berkeley technical reports,

2002.

[26] Pabitra Mohan Khilar and S.Mahapatra. Intermittent fault diagnosis in wire-

less sensor networks. 10th International Conference on Information Technol-

ogy, pages 145–147, 2007.

[27] M. Potkonjak F. Koushanfar and A. Sangiovanni-Vincentelli. Fault tolerance

techniques in wireless sensor networks. Handbook of Sensor Networks, 2004.

[28] A. Dahbura M. Barborak and M. Malek. Wireless sensor network-

management system, an adaptive policy-based management for wireless sen-

sor networks. ACM Computing Surveys, 25(2), 2010.

	List of Figures
	1 Introduction
	1.1 Wireless Sensor Network
	1.2 Structure of a WSN
	1.2.1 Peer-to-Peer Topology
	1.2.2 Mesh Topology
	1.2.3 Star Topology
	1.2.4 Tree Topology

	1.3 Basic architecture of a WSN Node
	1.3.1 RAM(Random Access Memory)
	1.3.2 ROM(Read Only Memory)
	1.3.3 Transmitters
	1.3.4 Power Supply

	1.4 Applications of a WSN
	1.4.1 Monitoring of Environment
	1.4.2 Monitoring of Security
	1.4.3 Used in Hospitals
	1.4.4 Used in Tracking Inventory
	1.4.5 Used in the field of Agriculture

	1.5 Faults
	1.5.1 Types of Faults
	1.5.2 Causes of Faults

	2 Literature Review
	2.1 Centralized Approach
	2.2 Distributed Approach

	3 Motivation
	3.1 Issues in the existing algorithms

	4 Proposed Mechanism
	4.1 Network Model
	4.2 Communication Model
	4.3 Energy Consumption Model
	4.4 Fault Model
	4.5 Definitions
	4.6 The System
	4.7 Proposed Algorithm
	4.8 Analytical Study of the Algorithm
	4.8.1 Proof of Correctness
	4.8.2 Proof of Completeness

	5 Simulations and Results
	5.1 The Setup
	5.2 Simulation Snapshot
	5.3 Outputs
	5.4 Results and Analysis

	6 Conclusions and Future Works
	6.1 Conclusions
	6.2 Future Works

	Bibliography

