6 research outputs found

    Development of Braking Force Distribution Strategy for Dual-Motor-Drive Electric Vehicle

    Get PDF
    In the development of the optimal braking force distribution strategy for a dual-motor-drive electric vehicle (DMDEV) with a series cooperative braking system, three key factors were taken into consideration, i.e. the regenerative force distribution coefficient between the front and the rear motor (β), the energy recovery coefficient at the wheels (α3), and the front-and-rear-axle braking force distribution coefficient (λ). First, the overall power loss model of the two surface-mounted permanent magnetic synchronous motors (SMPMSMs) was created based on the d-q axis equivalent circuit model. The optimal relationship of β and the overall efficiency of the dual-motor system were confirmed, where the latter was quite different from that obtained from the traditional look-up table method for the motors' efficiency. Then, four dimensionless evaluation coefficients were used to evaluate braking stability, regenerative energy transfer efficiency, and energy recovery at the wheels. Finally, based on several typical braking operations, the comprehensive effects of the four coefficients on braking stability and energy recovery were revealed. An optimal braking force distribution strategy balancing braking stability and energy recovery is suggested for a DMDEV with a series cooperative braking system

    Development of Braking Force Distribution Strategy for Dual-Motor-Drive Electric Vehicle

    Get PDF
    In the development of the optimal braking force distribution strategy for a dual-motor-drive electric vehicle (DMDEV) with a series cooperative braking system, three key factors were taken into consideration, i.e. the regenerative force distribution coefficient between the front and the rear motor (β), the energy recovery coefficient at the wheels (α3), and the front-and-rear-axle braking force distribution coefficient (λ). First, the overall power loss model of the two surface-mounted permanent magnetic synchronous motors (SMPMSMs) was created based on the d-q axis equivalent circuit model. The optimal relationship of β and the overall efficiency of the dual-motor system were confirmed, where the latter was quite different from that obtained from the traditional look-up table method for the motors\u27 efficiency. Then, four dimensionless evaluation coefficients were used to evaluate braking stability, regenerative energy transfer efficiency, and energy recovery at the wheels. Finally, based on several typical braking operations, the comprehensive effects of the four coefficients on braking stability and energy recovery were revealed. An optimal braking force distribution strategy balancing braking stability and energy recovery is suggested for a DMDEV with a series cooperative braking system

    Improved efficiency with adaptive front and rear axle independently driven powertrain and disconnect functionality

    Get PDF
    Front and rear axle independently driven (FRID) powertrains are becoming a popular solution for electric vehicles (EVs) due to torque distribution capability which can enhance powertrain energy efficiency. Typically, permanent magnet synchronous machines (PMSMs) are used for FRID powertrains due to their high torque, and power density. However, the drive-cycle efficiency of FRID powertrains with PMSMs is typically reduced in comparison to single motor drives. This is due to the unwanted no-load losses of PMSMs in the field weakening region. To overcome this drawback of PMSM FRIDs, this paper proposes an adaptive front- and rear-axle independently driven (AFRID) powertrain, utilizing two dog clutches, so that the powertrain can be operated in different modes (rear, front, and all-wheel drive) by adaptively connecting and disconnecting the front and/or rear electric drive unit (EDU). A rule-based mode selection strategy is developed to utilize the flexibility of different powertrain operating modes of the powertrain for maximizing the energy efficiency of the EDU. The simulation results show that the suggested AFRID powertrain, in comparison to a common FRID powertrain, can improve the WLTC drive-cycle consumption from 22.17 kWhh to 20.50 kWhh per 100 km. Based on the route and road-load information, the energy-saving potential of the AFRID powertrain can be further improved to 20.37 kWhh per 100 km by a suggested predictive mode selection strategy, achieving an optimal mode selection

    Modelling and design optimisation of permanent magnet machines for electric vehicle traction applications

    Get PDF

    Modelling and Design of Permanent-magnet Machines for Electric Vehicle Traction

    Get PDF
    corecore