Improved efficiency with adaptive front and rear axle independently driven powertrain and disconnect functionality

Abstract

Front and rear axle independently driven (FRID) powertrains are becoming a popular solution for electric vehicles (EVs) due to torque distribution capability which can enhance powertrain energy efficiency. Typically, permanent magnet synchronous machines (PMSMs) are used for FRID powertrains due to their high torque, and power density. However, the drive-cycle efficiency of FRID powertrains with PMSMs is typically reduced in comparison to single motor drives. This is due to the unwanted no-load losses of PMSMs in the field weakening region. To overcome this drawback of PMSM FRIDs, this paper proposes an adaptive front- and rear-axle independently driven (AFRID) powertrain, utilizing two dog clutches, so that the powertrain can be operated in different modes (rear, front, and all-wheel drive) by adaptively connecting and disconnecting the front and/or rear electric drive unit (EDU). A rule-based mode selection strategy is developed to utilize the flexibility of different powertrain operating modes of the powertrain for maximizing the energy efficiency of the EDU. The simulation results show that the suggested AFRID powertrain, in comparison to a common FRID powertrain, can improve the WLTC drive-cycle consumption from 22.17 kWhh to 20.50 kWhh per 100 km. Based on the route and road-load information, the energy-saving potential of the AFRID powertrain can be further improved to 20.37 kWhh per 100 km by a suggested predictive mode selection strategy, achieving an optimal mode selection

    Similar works