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Abstract. In the development of the optimal braking force distribution strategy 

for a dual-motor-drive electric vehicle (DMDEV) with a series cooperative 

braking system, three key factors were taken into consideration, i.e. the 

regenerative force distribution coefficient between the front and the rear motor 

(β), the energy recovery coefficient at the wheels (α3), and the front-and-rear-

axle braking force distribution coefficient (λ). First, the overall power loss model 

of the two surface-mounted permanent magnetic synchronous motors 

(SMPMSMs) was created based on the d-q axis equivalent circuit model. The 

optimal relationship of β and the overall efficiency of the dual-motor system 
were confirmed, where the latter was quite different from that obtained from the 

traditional look-up table method for the motors’ efficiency. Then, four 

dimensionless evaluation coefficients were used to evaluate braking stability, 

regenerative energy transfer efficiency, and energy recovery at the wheels. 

Finally, based on several typical braking operations, the comprehensive effects 

of the four coefficients on braking stability and energy recovery were revealed. 

An optimal braking force distribution strategy balancing braking stability and 

energy recovery is suggested for a DMDEV with a series cooperative braking 

system. 

Keywords: braking stability; braking force distribution strategy; dual-motor-drive 

electric vehicle; energy recovery; overall power loss of dual-motor system. 

1 Introduction 

Great efforts have been made to develop motor-drive train systems for electric 

vehicles to relieve the stresses caused by the fossil energy crisis and 
environmental pollution [1,2]. A distributed power train configuration with 

independently driving motors on the front and rear axle offers great flexibility 

and potential for optimization of vehicle performance [3,4]. Based on this 
configuration, several improvements have been achieved of vehicular driving 

characteristics, dynamic performance and failsafe control [5-8].  

However, on braking force distribution, which has an important influence on 

vehicle braking performance and energy recovery [9,10], no systematic studies 
have been conducted yet. Generally speaking, researches have sufficiently 
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considered vehicle safety, improvement of breaking reliability, breaking safety, 

and adaptability to different road conditions of breaking energy recovery 

systems [11] but ignored the perspective of energy recovery [12]. Optimal 

braking force distribution methods can satisfy both braking stability and energy 
recovery [13], while efficiency of breaking energy recovery can be improved 

greatly based on the safe principle [14], but it should be noted that the optimal 

distribution models based on the traditional look-up table method [15-18] 
actually ignore the effect of the non-work motor on braking performance, 

especially for permanent magnet synchronous motors (PMSM), as they still 

exhibit friction and iron losses [19,20]. Consequently, the look-up table method 

may lead to an incorrect torque distribution strategy, i.e. the partial-motor-
operate mode takes precedence over the entire-motor strategy under low driving 

or severe braking conditions [21-23]. 

More importantly, for DMDEVs, apart from the optimal regenerative force 
distribution between the front and rear motors, two other factors are also crucial 

for developing a braking force distribution strategy. One is the braking force 

distribution coefficient between the front and rear axle related to braking 
stability [24,25], the other is the energy recovery of the wheels influencing 

energy recovery [26]. However, currently, the comprehensive effect of the three 

key factors on braking stability and energy recovery is still unconfirmed. 

Especially for DMDEVs with two SMPMSMs, there is no braking force 
distribution strategy that can balance braking stability and energy recovery. 

This paper therefore presents a systemic study on the key factors of braking 

force distribution strategies for a DMDEV based on a series cooperative braking 
system [27] using new research methods. The proposed breaking force strategy 

confirms the key factors for breaking stability and energy recovery. The 

interaction mechanism of these key factors was explored and the influence of 

different braking feedback strategies on vehicle braking stability and energy 
recovery was quantitatively analyzed. First, the overall power loss model of the 

dual-motor system was established based on the mechanisms of the copper and 

iron loss in the SMPMSMs instead of the traditional look-up table method, and 
the optimal force distribution relationship between the front and rear 

regenerative system was derived; then, four dimensionless evaluation 

coefficients (Cλ, Cα3, Cβ and fit) are proposed and their effect on braking 
stability and energy recovery are revealed; finally, an optimal regenerative 

braking force strategy, which balances breaking stability and energy recovery 

for the DMDEV with series cooperative braking system, is proposed.  
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2 Overview of DMDEV and Test Platform  

2.1 Configuration of DMDEV       

In the configuration of the DMDEV shown in Figure 1, the vehicle control unit 

(VCU) is the control center of the DMDEV. Based on the sampling signals, i.e. 

vehicle velocity (V) from the vehicle speed sensor, brake torque demand (Tbd) 

from the deceleration pedal (DP), and state of charge (SOC) from the battery 
management system (BMS), the VCU generates control commands for the rear 

motor control unit (MCU1), the front motor control unit (MCU2), and the 

hydraulic brake controller (HBC) to achieve braking torque control. Moreover, 
for the DMDEV proposed in this study, two one-speed gearboxes are equipped 

to achieve torque transmission. The total reduction ratios of the front and rear 

transmission system are both 5:1. 

 

Figure 1 Configuration of the DMDEV. 

3 Effect of β on Overall Efficiency of Dual-Motor System 

3.1 Braking Energy Flow of DMDEV 

During the braking process of the DMDEV, only a small proportion of the 

vehicular kinetic energy is utilized to overcome the air and rolling resistance, 
while most of it is translated into thermal and electric energy through the 

cooperative braking system. For the braking energy flow of the DMDEV shown 

in Figure 2, reducing the energy loss in the energy transfer process from wheels 
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to battery is the key to improving energy recovery efficiency, which consists of 

efficiency optimization of the front and rear transmission systems (ηTf and ηTr) 

and the dual-motor system (ηmf and ηmr). 

As the front and rear transmission and differential systems (FTD and RTD) in 
the DMDEV are identical, ηTf  can be taken as equal to ηTr; both are equivalent 

to a constant in this study. The energy recovered into the battery can be 

expressed as follows: 

  3
1

re Tf b mf mr t
E E           (1) 

where α3 is the proportion of the vehicular kinetic energy recovered at the 

wheels, ηb is the charging efficiency of the battery system, Et is the kinetic 

energy of the dual-motor-drive electric vehicle, β is the regenerative energy 

distribution coefficient, which is the ratio between the regenerative energy 
distributed to the front wheels and the total regenerative energy. Under a given 

braking operation, β can be expressed as follows: 
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where Tebf and Tebr are the regenerative braking torques at front and rear wheel, 

t0 and t1 are the times when the braking operation happens and finishes, r 

represents the wheel radius, Vi is the vehicle velocity at sampling point i, k is the 
number of sampling points during the braking process. Moreover, if k is large 

enough, β can be simplified as shown in Eq. (3), which means that β can also be 

regarded as the ratio between the regenerative braking torque at the front wheels 
and the total regenerative braking torque. 
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Based on the above analysis, different β values mean variation of Tebf and Tebr 

under a given braking operation, which thus affects ηmf and ηmr. Therefore, Eq. 
(1) can be simplified as follows: 

  3re Tf b t
E G E     (4) 

where G(β) is the overall efficiency of the dual-motor system, which can be 

expressed as follows: 



Key Factors of the Braking Force Distribution Strategy for a DMDEV 183 
 

 

       

     

1 2

_

_ _

1

sys out

sys out tl loss

G f f

P

P P

      




 (5) 

where Psys_out is the output power of the dual-motor system, Ptl_loss represents the 

overall power loss of the dual-motor system, which has a direct influence on 

G(β). Therefore, how to minimize Ptl_loss is the key to improving G(β) under 
given braking operations. 

 

Figure 2 Braking energy flow of the DMDEV. 

3.2 Derivation of Dual-motor Power Loss 

The power loss of a PMSM consists of friction loss (Pm), which is mainly 

proportional to motor speed; stray loss (Ps), which is relatively small; copper 

loss (Pcu), which is produced by the electrical current in the stator; and iron loss 
(Piron), which consists of hysteresis and eddy current loss as a result of the 

changing magnetization in the motor.  

Of the four categories of power loss in a PMSM, Pcu and Piron are closely related 
to the current in the motor stator. Furthermore, as field-oriented control is used 

for the two SMPMSMs in this study, variation of β will have an impact on Pcu 

and Piron as a result of the changing Tebf and Tebr. In other words, G(β) is a 

function of the copper and iron loss (See Eq. (6)): 

    _ _
= ,

cu tl iron tl
G f P P  (6) 
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where Pcu_tl is the overall copper loss of the SMPMSMs, Piron_tl is the total iron 

loss of the motors. 

To establish the power loss model of the PMSM, d-q axis equivalent circuit 

mode was adopted [28,29]. Based on the equivalent circuit model, the copper 
loss and the iron loss in the PMSM can be expressed in Eq. (7) as follows: 

 
   
 

22

2 2

cu s dc dt qc qt

iron c dc qc

P R i i i i

P R i i

      

 
 (7) 

where idc and idt are the d-axis stator currents divided into iron loss current and 

torque current, iqc and iqt represent the iron loss current and the torque current 

from the q-axis stator current. Rs is the armature resistance of the stator, and Rc 
is the equivalent resistance of the iron loss. 

1) First, when the SMPMSM operates in the base speed area, to achieve the 

maximum torque per ampere control, id is set to 0. Given the above analysis, Pcu 
and Piron are obtained in Eqs. (8) & (9) as follows: 

 

2
2

1
d fd m eb

cu s

c f c

VfVf L T
P R

rR P rR





   
          

 (8) 

 

2 2
2 2 2

2

d d m eb m eb

iron f

c c f f

V f Vf L T L T
P

r R rR P P


 

     
                  

 (9) 

where fd is the total gear ratio of the FTD or the RTD system, r is the wheel 

radius, Teb is the electromagnetic torque, P is the number of pole pairs, Lm is the 

mutual inductance, ψf is flux linkage. 

To simplify the derivation process, set 
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. The total copper loss of the dual-motor system can be 

obtained in Eq. (10) as follows: 
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where the subscripts f and r mean the front and rear SMPMSM, respectively.  
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The performance parameters of the front and rear power train system are the 

same as those mentioned above in Section 2, Pf = Pr, ψff = ψfr and fdf = fdr. 

Moreover, since it is the motor speed rather than the motor torque that has a 

significant effect on Rc
27

, as shown in Figure 3, Rcf can be considered equal to 

Rcr under a given braking severity. In summary, the overall copper loss of the 

two motors under a given braking operation can be simplified in Eq. (11) as 

follows: 

 
  22

_

1 ebeb
cu tl s s

a Ta T
P R c R c

b b

    
        

 (11) 

Using the same methods, the total iron loss of the two motors under a given 

braking operation can be derived from Eq. (12) as follows: 
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Based on the above analysis, under a given braking operation, the overall power 

loss of the two SMPMSMs in the base speed area is confirmed in Eq. (13) as 

follows: 

 _ _tl cu tl iron tl mf mr sf srP P P P P P P        (13) 

where Pmf and Pmr are the friction losses of the front and rear SMPMSM, which 

are mainly influenced by the motor speed instead of the motor torque [30]. 

Under any given condition, a change in β has little influence on both. 

Consequently, the friction loss is ignored during the derivation of the optimal β. 

Psf and Psr are the stray losses of the front and rear motor. As they are not only 

quite small compared with other losses in the SMPMSM but also difficult to 

calculate accurately [31], they are not dealt with in the dual-motor-loss model.  

2) Secondly, when the SMPMSM operates in the flux-weakening domain, to 

achieve flux-weakening control, id is expressed in Eq. (14) as follow: 
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where Umax is the maximum phase voltage.  
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Referring to the modeling method of Pcu_tl and Piron_tl in the base speed area, the 

total copper and iron loss of the two motors in flux-weakening domain can be 

obtained in Eqs. (15) & (16) as follows: 
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g

L Vf
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3.3 Optimal β Aimed at Least Overall Power Loss       

In the base speed area of the SMPMSM, under a given braking operation, to 

find the optimal β aimed at the least overall power loss, the first- and second- 

order partial derivatives of β in Eq. (14) are obtained as shown in Eqs. (17) and 

(18): 
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Based on the first-order partial derivative of β shown in Eq. (18), an extreme 

value of Ptl can be obtained when β is 0.5. Furthermore, the characteristic of the 

second-order partial derivative (

2

2

tlP




  

> 0) reveals that the relationship of Ptl 

and β is concave nearby β = 0.5, which indicates that the minimum Ptl can be 

obtained if β is set to 0.5. In other words, the dual-motor system is capable of 
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achieving the maximum overall efficiency when β is 0.5 during the regenerative 

braking process. 

4 Multi-Factor Evaluation Model for Braking Force 

Distribution Strategy of DMDEV 

Apart from the optimal β derived above, λ (the braking force distribution 

coefficient between front and rear axle) and α3, which affect braking stability 

and braking economy respectively, are also crucial for developing a multi-

objective braking force distribution strategy. 

4.1 Constraints of Braking Stability       

As for braking stability, the ideal relationship between the front and rear 

braking force at the wheels can be expressed in Eq. (19)  as follows: 
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As shown in Figure 3, hg is the height of the vehicular mass center, Lf and Lr 

represent the lengths between the automotive centroid and the center line of the 

front and rear axle, respectively, Fuf and Fur are the braking forces at the front 

and the rear wheels, while G is the no-load weight of the DMDEV. 

 

Figure 3 Forces acting on DMDEV braking on a level road. 

Moreover, in order to avoid rear wheel lock preceding front wheel during the 

braking process, which may result in instability of the vehicle, the braking 

forces at the front and the rear wheels have to meet ECE regulations [32]. 
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Specifically, for a roadway with road adhesion coefficient between 0.2 and 0.8, 

the constrained boundaries of the braking forces at the front and the rear wheels 

are expressed in the following Eq. (20): 
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In addition, when the breaking severity (Z) changes within the range between 

0.3 and 0.5, the braking forces at the front and rear wheels also need to meet the 

other boundary conditions, as shown in the following Eq. (21): 
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4.2 Evaluation Parameters for Braking Stability and Energy 

Recovery       

To establish a multi-factor evaluation model for the braking force distribution 

strategy of a DMDEV, in this study, four dimensionless evaluation coefficients 

(Cλ, Cβ , Cα3 and fit) are proposed. 

Firstly, Cλ is the relationship between the ideal λI and the actual λa as shown in 

Eq. (22), which is used to evaluate the braking stability. Better braking stability 

can be achieved if Cλ is closer to 1 under a given braking severity.  
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In addition, as shown in Eq. (23), the effect of the non-work SMPMSM on λa is 

taken into consideration in this study, where friction and iron losses still exist 

and both of them actually act as mechanical braking force (Fdmr), as shown in 

Figure 3. 
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where dmrF  is the average value of Fdmr, which is the function of motor speed 

during the braking process, as shown in Figure 3; Feb and Fmb are the 

regenerative and mechanical braking forces; while the subscripts f and r 

represent the front and rear motor. 

Secondly, Cβ is proposed to evaluate the transfer efficiency of the dual-motor 

system, which is the ratio between the actual overall efficiency of the dual-

motor system and the optimal overall efficiency under a given braking intensity 

(See Eq. (24)). 
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where the subscript Tebact is the actual output torque of the dual-motor system; 

Tebmax is the maximum regenerative torque that can be provided by the dual-

motor system under a given braking severity;  G   is the mean value of the 

overall efficiency, which is a function of motor speed.  

Furthermore, to evaluate the energy recovered at the front and the rear wheels, 

as shown in Figure 2, which has an impact on the total energy recovery, Cα3 is 

proposed as in the following Eq. (25): 
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where Ff and Fa are the resistances caused by tire rolling and wind drag, which 

are relatively small compared to the braking force. Under a given brake pedal 

degree, both Feb and Fmb can be viewed as stationary during the braking process. 

In summary, the factor of Cα3 can be simplified in EQ. (26) as follows: 
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Finally, given the above analysis, a multi-factor evaluation model ( fit ) for the 

braking force distribution strategy of the DMDEV is proposed in Eq. (27) as 

follows: 

   1 2 3 3
fit i W C W C W C      (27) 

where W1, W2 and W3 are weight coefficients, and i represents the braking 

strategy point. 

5 Effect of Multiple Factors on the Braking Performance of the 

DMDEV 

5.1 Design of Experiments       

As shown in Figure 1, V, Tbd (Z) and SOC, which characterize the braking 

operation, are the reference signals for the regenerative braking control. Since it 
is unpractical to analyze the effect of multiple factors on braking performance 

for every possible braking operation based on a test method, four typical 

braking severities were chosen (Z = 0.1, Z = 0.23, Z = 0.4 and Z = 0.65) to study 
the deceleration processes of the DMDEV, as shown in Figure 4.  

Designs for three levels of factor V (20 km/h, 40 km/h and V = 60 km/h) were 

adopted to characterize urban driving conditions, where a reasonable 

regenerative braking force distribution strategy plays an important role in the 
improvement of vehicle economy. 

Table 1 Design of braking operations. 

V 

/km.h
-1

 

Z 

0.1 0.23 0.4 0.65 

20 Case 1 Case 2 Case 3 Case 4 

40 Case 5 Case 6 Case 7 Case 8 

60 Case 9 Case 10 Case 11 Case 12 

In addition, as the SOC signal is mainly utilized to restrict regenerative braking 
force under high levels (SOC > 85%, generally), a single-level SOC (SOC = 

40%) was designed. Given the above analysis, under the level of SOC = 40%, a 

test graph with 2 multilevel factors (3 levels for V and 4 levels for Z) was 

designed, as shown in Table 1. For each case in Table 1, test points (colored 
blue in Figure 4) were designed to study the effect of the various braking force 

distribution strategies on energy recovery and braking stability. A2_1 and A2_2 

are the supplements for A2; their coordinates represent the regenerative forces. 
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Figure 4 Test points for each designed case. 

5.2 Discussions of Test Results 

5.2.1 Case 5 

When ignoring the effect of β on dual-motor transfer efficiency, strategy point 

A3 in Figure 4 is the preferred braking force distribution for energy recovery 

based on the traditional look-up-table method. However, actually, as shown in 

Table 2, in comparison with other points on line A1-A3, when considering factor 
Cβ, the worst energy recovery and comprehensive index are obtained at point 

A3, which indicates that the effect of the non-work SMPMSM needs to be taken 

into account when designing a braking force distribution strategy for the dual- 
or multi-motor drive train EV.  

Table 2 Results of regenerative braking performance for case 5. 

Strategy 

points 

Evaluation parameters 

Cβ Cα3 Cλ fit 

A1 0.9964 1 1 2.9964 

A2 0.9679 1 0.4203 2.3882 
A2_1 0.9720 0.4 0.4203 1.7923 

A2_2 0.9657 0.8889 0.4203 2.2749 

A3 0.9107 0.9521 0.0982 1.961 
A3-1 0.9107 0.9521 0.0982 1.961 
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Table 3 Results of regenerative braking performance for case 6. 

Strategy 

points 

Evaluation parameters 

Cβ Cα3 Cλ Cf 

E1 0.9923 1 1 2.9923 
E2 0.9962 0.8518 0.4680 2.3138 

E3_1 0.9232 0.6353 0.0486 1.5943 

Table 4 Results of regenerative braking performance for case 7. 

Strategy 

points 

Evaluation parameters 

Cβ Cα3 Cλ Cf 

X1 0.9992 0.7236 0.8362 2.559 
X2 0.9980 0.6848 1 2.6828 

X3 0.9292 0.3750 0.1402 1.4444 

Table 5 Results of regenerative braking performance for case 8. 

Strategy 

points 

Evaluation parameters 

Cβ Cα3 Cλ Cf 

Y1 0.9992 0.41 1 2.4092 
Y2 0.9932 0.3594 0.5278 1.8804 
Y3 0.9266 0.2309 0.0078 1.1653 

Moreover, as shown in Table 2, for braking operations with low brake strength, 
the optimal distribution strategy that can balance braking stability and energy 

recovery is strategy point A1, where the optimal Cf is obtained. In addition, at 

strategy points A2, A2_2 and A2_1, Cα3 gets smaller due to the increase in the 
proportion of mechanical braking force. Furthermore, at strategy point A2_1, 

although β is 0.5 (Ted = -18 N.m, Tebf = Tebr = -9 N.m), Cβ is still worse than 

point A1 (β = 0.6238, Ted = -45 N.m) due to the smaller overall efficiency of the 

dual-motor system when regenerative braking torque is small. 

5.2.2 Case 6 

For braking in this case, at distribution point E3, the front regenerative braking 
system outputs the maximum allowed braking force. Based on the test results 

shown in Table 3, strategy point E1 is the optimal distribution strategy for this 

braking condition, where the optimal Cf is obtained, and both braking stability 

and energy recovery can be satisfied. Moreover, due to the increase in the 
proportion of mechanical braking force, Cα3 gets smaller from points E1 to E3. 

5.2.3 Case 7 

In this case, as shown in Table 4, since better Cα3 can be achieved owing to the 

larger regenerative braking force provided by the rear regenerative braking 

system, strategy point X1 is superior to X2 from the perspective of energy 
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recovery. However, another thing should be noted: distribution point X2 is still 

preferred to X1 because of the optimal multi-factor evaluation index for this 

strategy point, which indicates that strategy point X2 can better meet both 

braking stability and energy recovery.  

5.2.4 Case 8 

As shown in Table 5, the braking characteristics of the designed strategy points 

in Case 8 are similar to the results of Case 6. First of all, for distribution points 
Y1, Y2 and Y3, the braking energy that is distributed to the regenerative braking 

system (Cα3) decreases as a result of the increase of the mechanical braking 

force. Secondly, the optimal Cf is obtained at strategy point Y1. In addition, for 
braking cases with relatively high braking strengths, mainly due to the 

significant reduction of Cα3, the braking energy that can be recovered into the 

battery system is quite small. 

5.2.5 Cases 5 and 6 

By comparing strategy point A1 with E1, it can be confirmed that, with the 

enlargement of Z, the losses caused by wind drag and rolling resistance decrease 
and thus the proportion of the vehicle kinetic energy recovered at the wheels 

(α3) increases, as shown in Table 6. On the other hand, as shown in Table 2 and 

3, the difference of energy recovered into the battery at strategy point A1 and E1 
is relatively small as a result of the deterioration of the dual-motor operating 

efficiency (  G  ) and the battery charging efficiency ( b ), as shown in Table 

5. Comparison between A1 and E1 indicates that β is a key factor that influences 
energy recovery under low braking strengths. 

Table 6 Results of regenerative braking performance. 

Strategy 

points 

Performance parameters 

α3  G   b  

A1 0.8023 0.8200 0.7926 

E1 0.9142 0.7634 0.7575 

X2 0.5794 0.7746 0.6699 

Y1 0.3060 0.7725 0.6084 

 

5.2.6 Cases 6, 7 and 8 

With the increase of braking severity (from 0.205 to 0.65), taking the 

distribution points E1, X2, and Y1, for example, limited by the maximum 
allowed regenerative force, greater mechanical braking force is required to meet 

vehicle braking severity. Consequently, braking energy that is distributed to a 
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regenerative system reduces significantly. As shown in Table 6, the α3 at 

strategy points X2 and Y1 are reduced by 39.95% and 60.61% compared with 

the one at point E1, which reveals that α3 is a key factor that influences energy 

recovery with the increase of braking severity. 

5.2.7 All Cases Studied in this Paper 

Figure 5 presents the multi-factor fitness values for the designed braking 

operations. Generally, for a given braking severity, the velocity factor has little 
influence on the multi-factor fitness value (Cf). More importantly, for the 

DMDEV with series cooperative braking system studied in this paper, both 

braking stability and energy recovery can be achieved if the braking force 
distribution strategy follows the rules described below: 

1. Firstly, from the perspective of λ, braking force distribution between the 

front and rear axle should adhere to the ideal curve of λI shown in Figure 4. 
2. Based on the constraint proposed above, at the second level of β and α3, 

firstly, regenerative braking force is preferred; secondly, the hydraulic 

braking system participates in cooperative braking only when the 

regenerative braking force is insufficient to meet the given braking severity. 

3. However, for the cases with high braking intensities (Z � 0.7), when the 

braking energy that can be recovered into the battery is quite small, only the 
hydraulic braking system participates in vehicle braking to ensure braking 

safety. 

 

Figure 5 Multi-objective fitness value for each test point. 

Figure 6 shows the dual-motor test platform that was developed to test the 

efficiency of the dual-motor system. Figure 7 presents the braking processes for 

distribution strategy points A1 and A3. The former is the optimal regenerative 
braking force distribution strategy proposed in this paper, while the latter is the 

traditional braking force distribution strategy without considering the effect of 

the non-work SMPMSM on braking performance. The average transfer 
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efficiency of the dual-motor system based on the optimal strategy proposed 

above was improved by 6.128% compared with the traditional one. 

 

Figure 6 Dual-motor test platform. 

5.3 Braking Energy Recovery Design Scheme Simulation 

In order to verify the characteristics and rules of regenerative braking and 

energy feedback of different braking feedback schemes, the hardware-in-loop 

(HIL) platform as shown in Figure 8 was used to verify the proposed scheme. 
The HIL simulation platform was used to simulate the operating conditions of 

the dual motor electric vehicle to the maximum extent and shorten the period of 

strategy verification and development. Figure 9 presents the characteristics of 
the regenerative braking force and the braking energy recovery for various 

brake recovery strategies. 

5.4 Discussions of the Simulation Results 

Analysis of the experimental results shows that, under the influence of the 

braking stability factors, the energy feedback effect of Scheme 1 was the worst; 

the regenerative brake force distributed by the rear shaft motor was at its 
minimum. Compared with the first design, Scheme 2 performed better and 

Scheme 3 performed optimally. The main reason is that in Scheme 2, the 

regenerative braking force distributed by the front axle motor is significantly 

increased, while the rear axle regenerative braking system is not involved in the 
whole vehicle braking, so the energy feedback effect is moderate. Scheme 3 

realizes dual motor four-wheel regenerative braking mode, which 

simultaneously ensures braking stability and energy recovery efficiency. 
Accordingly, Scheme 3 is the optimal braking recovery mode for the DMDEV. 

This conclusion validates the previous analysis. 
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(a) The traditional braking force distribution A   (b) The optimal braking force distribution A1 

Figure 7 Curves of the optimal and traditional braking force distribution for 

Case 4. 

 

Figure 8 Hardware-in-loop simulation platform. 
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Figure 9 Effect of regenerative brake strategy on regenerative brake force 

distribution and energy recovery (based on a series parallel brake system). 

Due to the influence of motor transmission energy loss and battery charging 
loss, the three regenerative braking feedback schemes above have the largest 

energy feedback at the wheels, followed by the motor energy feedback, while 

the battery energy feedback is minimal. Therefore, on the premise of meeting 
the braking stability constraint for DMDEV, the key factors to improve the 

braking efficiency of the whole vehicle are increasing the regenerative energy 

recovery at the wheels and enhancing the energy transfer efficiency of wheels to 

the battery. This study verified the qualitative and quantitative analysis results 
presented in our previous paper. 

6 Conclusions and Future Scope 

In this paper, braking force distribution strategies for a front-and-rear-

SMPMSM-drive EV with a series braking system were investigated. Based on 

the loss mechanisms of SMPMSM, a new method was put forward to derive the 

optimal β aimed at improvement of energy transfer efficiency. Four evaluation 



198 Binbin Sun, et al. 

  

indexes (Cλ, Cβ, Cα3, Cf) were proposed to evaluate braking stability, energy 

transfer efficiency, energy recovery and braking force distribution strategy 

standard. The effects of the three key factors (λ, β and α3) on braking stability 

and energy recovery were confirmed. More specifically, the obtained 
conclusions are as follows: 

1. If the regenerative braking force distribution between two SMPMSMs is at 

low braking power conditions and the non-work motor loss is considered, 
the transfer efficiency of the dual-motor-brake-mode precedes the single-

motor-brake-mode. 

2. β is the key factor affecting energy recovery at low braking intensity (Cα3 = 

1). With the increase of braking intensity, the proportion of mechanical 
braking force increases and the effect of α3 on energy recovery increases.  

3. A reasonable braking force distribution strategy of a dual-SMPMSM-drive 

EV should consider breaking stability and braking energy recovery 
efficiency. Therefore, firstly, the braking force between the axles should 

adhere to the ideal curve of λI; secondly, a regenerative braking force is 

preferred; finally, the hydraulic braking system takes part in the cooperative 
brake only when the regenerative braking force is insufficient. 

4. At high braking intensities (Z � 0.7), the braking recovery energy is very 

small. Only the hydraulic brake system is involved in braking to ensure 
safety. 

In addition, deeper research is required to analyze the effect of Cβ on energy 

transfer efficiency in a DMDEV with dual induction motors (IMs) or a 
configuration with IM and PMSM. Furthermore, the optimal braking force 

distribution strategy for dual-SMPMSM-drive EV with parallel cooperative 

braking system is still unknown. 
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