4,227 research outputs found

    Facing ADAS validation complexity with usage oriented testing

    Get PDF
    International audienceValidating Advanced Driver Assistance Systems (ADAS) is a strategic issue, since such systems are becoming increasingly widespread in the automotive field. ADAS bring extra comfort to drivers, and this has become a selling point. But these functions, while useful, must not affect the general safety of the vehicle which is the manufacturer's responsibility. A significant number of current ADAS are based on vision systems, and applications such as obstacle detection and detection of pedestrians have become essential components of functions such as automatic emergency braking. These systems that preserve and protect road users take on even more importance with the arrival of the new Euro NCAP protocols. Therefore the robustness and reliability of ADAS functions cannot be neglected and car manufacturers need to have tools to ensure that the ADAS functions running on their vehicles operate with the utmost safety. Furthermore, the complexity of these systems in conjunction with the nearly infinite number of parameter combinations related to the usage profile of functions based on image sensors push us to think about testing optimization methods and tool standards to support the design and validation phases of ADAS systems. The resources required for the validation using current methods make them actually less and less adapted to new active safety features, which induce very strong dependability requirements. Today, to test the camera-based ADAS, test vehicles are equipped with these systems and are performing long hours of driving that can last for years. These tests are used to validate the use of the function and to verify its response to the requirements described in the specifications without considering the functional safety standard ISO26262

    Lidar waveform based analysis of depth images constructed using sparse single-photon data

    Get PDF
    This paper presents a new Bayesian model and algorithm used for depth and intensity profiling using full waveforms from the time-correlated single photon counting (TCSPC) measurement in the limit of very low photon counts. The model proposed represents each Lidar waveform as a combination of a known impulse response, weighted by the target intensity, and an unknown constant background, corrupted by Poisson noise. Prior knowledge about the problem is embedded in a hierarchical model that describes the dependence structure between the model parameters and their constraints. In particular, a gamma Markov random field (MRF) is used to model the joint distribution of the target intensity, and a second MRF is used to model the distribution of the target depth, which are both expected to exhibit significant spatial correlations. An adaptive Markov chain Monte Carlo algorithm is then proposed to compute the Bayesian estimates of interest and perform Bayesian inference. This algorithm is equipped with a stochastic optimization adaptation mechanism that automatically adjusts the parameters of the MRFs by maximum marginal likelihood estimation. Finally, the benefits of the proposed methodology are demonstrated through a serie of experiments using real data

    Grasping Causality for the Explanation of Criticality for Automated Driving

    Full text link
    The verification and validation of automated driving systems at SAE levels 4 and 5 is a multi-faceted challenge for which classical statistical considerations become infeasible. For this, contemporary approaches suggest a decomposition into scenario classes combined with statistical analysis thereof regarding the emergence of criticality. Unfortunately, these associational approaches may yield spurious inferences, or worse, fail to recognize the causalities leading to critical scenarios, which are, in turn, prerequisite for the development and safeguarding of automated driving systems. As to incorporate causal knowledge within these processes, this work introduces a formalization of causal queries whose answers facilitate a causal understanding of safety-relevant influencing factors for automated driving. This formalized causal knowledge can be used to specify and implement abstract safety principles that provably reduce the criticality associated with these influencing factors. Based on Judea Pearl's causal theory, we define a causal relation as a causal structure together with a context, both related to a domain ontology, where the focus lies on modeling the effect of such influencing factors on criticality as measured by a suitable metric. As to assess modeling quality, we suggest various quantities and evaluate them on a small example. As availability and quality of data are imperative for validly estimating answers to the causal queries, we also discuss requirements on real-world and synthetic data acquisition. We thereby contribute to establishing causal considerations at the heart of the safety processes that are urgently needed as to ensure the safe operation of automated driving systems

    Sensormodelle zur Simulation der Umfelderfassung für Systeme des automatisierten Fahrens

    Get PDF
    The use of sensor models allows the simulation of environmental perception in automated driving systems, aiding in development and testing efforts. This work systematically discusses the different types of sensor models and introduces an architecture for statistics based as well as for physically motivated sensor models. Each approach is grounded in real world observations of sensor measurements and is designed for portability and the ease of further extensions.Die Nutzung von Sensormodellen für die Umfelderfassung ebnet den Weg für die simulationsgestützte Entwicklung von Systemen des automatisierten Fahrens. In dieser Arbeit wird eine Systematik für verschiedene Arten von Sensormodellen eingeführt und eine Umsetzung von statistischen sowie von physikalisch motivierten Modellen vorgestellt. Beide Ansätze basieren auf realen Sensormessdaten und zielen auf eine leichte Übertragbarkeit sowie die Möglichkeit der Erweiterung der Modelle für verschiedene Anwendungsbereiche

    Pre-Trained Driving in Localized Surroundings with Semantic Radar Information and Machine Learning

    Get PDF
    Entlang der Signalverarbeitungskette von Radar Detektionen bis zur Fahrzeugansteuerung, diskutiert diese Arbeit eine semantischen Radar Segmentierung, einen darauf aufbauenden Radar SLAM, sowie eine im Verbund realisierte autonome Parkfunktion. Die Radarsegmentierung der (statischen) Umgebung wird durch ein Radar-spezifisches neuronales Netzwerk RadarNet erreicht. Diese Segmentierung ermöglicht die Entwicklung des semantischen Radar Graph-SLAM SERALOC. Auf der Grundlage der semantischen Radar SLAM Karte wird eine beispielhafte autonome Parkfunktionalität in einem realen Versuchsträger umgesetzt. Entlang eines aufgezeichneten Referenzfades parkt die Funktion ausschließlich auf Basis der Radar Wahrnehmung mit bisher unerreichter Positioniergenauigkeit. Im ersten Schritt wird ein Datensatz von 8.2 · 10^6 punktweise semantisch gelabelten Radarpunktwolken über eine Strecke von 2507.35m generiert. Es sind keine vergleichbaren Datensätze dieser Annotationsebene und Radarspezifikation öffentlich verfügbar. Das überwachte Training der semantischen Segmentierung RadarNet erreicht 28.97% mIoU auf sechs Klassen. Außerdem wird ein automatisiertes Radar-Labeling-Framework SeRaLF vorgestellt, welches das Radarlabeling multimodal mittels Referenzkameras und LiDAR unterstützt. Für die kohärente Kartierung wird ein Radarsignal-Vorfilter auf der Grundlage einer Aktivierungskarte entworfen, welcher Rauschen und andere dynamische Mehrwegreflektionen unterdrückt. Ein speziell für Radar angepasstes Graph-SLAM-Frontend mit Radar-Odometrie Kanten zwischen Teil-Karten und semantisch separater NDT Registrierung setzt die vorgefilterten semantischen Radarscans zu einer konsistenten metrischen Karte zusammen. Die Kartierungsgenauigkeit und die Datenassoziation werden somit erhöht und der erste semantische Radar Graph-SLAM für beliebige statische Umgebungen realisiert. Integriert in ein reales Testfahrzeug, wird das Zusammenspiel der live RadarNet Segmentierung und des semantischen Radar Graph-SLAM anhand einer rein Radar-basierten autonomen Parkfunktionalität evaluiert. Im Durchschnitt über 42 autonome Parkmanöver (∅3.73 km/h) bei durchschnittlicher Manöverlänge von ∅172.75m wird ein Median absoluter Posenfehler von 0.235m und End-Posenfehler von 0.2443m erreicht, der vergleichbare Radar-Lokalisierungsergebnisse um ≈ 50% übertrifft. Die Kartengenauigkeit von veränderlichen, neukartierten Orten über eine Kartierungsdistanz von ∅165m ergibt eine ≈ 56%-ige Kartenkonsistenz bei einer Abweichung von ∅0.163m. Für das autonome Parken wurde ein gegebener Trajektorienplaner und Regleransatz verwendet

    Improving Automated Driving through Planning with Human Internal States

    Full text link
    This work examines the hypothesis that partially observable Markov decision process (POMDP) planning with human driver internal states can significantly improve both safety and efficiency in autonomous freeway driving. We evaluate this hypothesis in a simulated scenario where an autonomous car must safely perform three lane changes in rapid succession. Approximate POMDP solutions are obtained through the partially observable Monte Carlo planning with observation widening (POMCPOW) algorithm. This approach outperforms over-confident and conservative MDP baselines and matches or outperforms QMDP. Relative to the MDP baselines, POMCPOW typically cuts the rate of unsafe situations in half or increases the success rate by 50%.Comment: Preprint before submission to IEEE Transactions on Intelligent Transportation Systems. arXiv admin note: text overlap with arXiv:1702.0085

    Procedural Modeling and Physically Based Rendering for Synthetic Data Generation in Automotive Applications

    Full text link
    We present an overview and evaluation of a new, systematic approach for generation of highly realistic, annotated synthetic data for training of deep neural networks in computer vision tasks. The main contribution is a procedural world modeling approach enabling high variability coupled with physically accurate image synthesis, and is a departure from the hand-modeled virtual worlds and approximate image synthesis methods used in real-time applications. The benefits of our approach include flexible, physically accurate and scalable image synthesis, implicit wide coverage of classes and features, and complete data introspection for annotations, which all contribute to quality and cost efficiency. To evaluate our approach and the efficacy of the resulting data, we use semantic segmentation for autonomous vehicles and robotic navigation as the main application, and we train multiple deep learning architectures using synthetic data with and without fine tuning on organic (i.e. real-world) data. The evaluation shows that our approach improves the neural network's performance and that even modest implementation efforts produce state-of-the-art results.Comment: The project web page at http://vcl.itn.liu.se/publications/2017/TKWU17/ contains a version of the paper with high-resolution images as well as additional materia

    Robust Bayesian target detection algorithm for depth imaging from sparse single-photon data

    Get PDF
    This paper presents a new Bayesian model and associated algorithm for depth and intensity profiling using full waveforms from time-correlated single-photon counting (TCSPC) measurements in the limit of very low photon counts (i.e., typically less than 20 photons per pixel). The model represents each Lidar waveform as an unknown constant background level, which is combined in the presence of a target, to a known impulse response weighted by the target intensity and finally corrupted by Poisson noise. The joint target detection and depth imaging problem is expressed as a pixel-wise model selection and estimation problem which is solved using Bayesian inference. Prior knowledge about the problem is embedded in a hierarchical model that describes the dependence structure between the model parameters while accounting for their constraints. In particular, Markov random fields (MRFs) are used to model the joint distribution of the background levels and of the target presence labels, which are both expected to exhibit significant spatial correlations. An adaptive Markov chain Monte Carlo algorithm including reversible-jump updates is then proposed to compute the Bayesian estimates of interest. This algorithm is equipped with a stochastic optimization adaptation mechanism that automatically adjusts the parameters of the MRFs by maximum marginal likelihood estimation. Finally, the benefits of the proposed methodology are demonstrated through a series of experiments using real data.Comment: arXiv admin note: text overlap with arXiv:1507.0251
    corecore