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Lidar Waveform-Based Analysis of Depth Images
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Abstract— This paper presents a new Bayesian model and
algorithm used for depth and reflectivity profiling using full
waveforms from the time-correlated single-photon counting mea-
surement in the limit of very low photon counts. The proposed
model represents each Lidar waveform as a combination of
a known impulse response, weighted by the target reflectivity,
and an unknown constant background, corrupted by Poisson
noise. Prior knowledge about the problem is embedded through
prior distributions that account for the different parameter
constraints and their spatial correlation among the image pixels.
In particular, a gamma Markov random field (MRF) is used
to model the joint distribution of the target reflectivity, and a
second MRF is used to model the distribution of the target
depth, which are both expected to exhibit significant spatial
correlations. An adaptive Markov chain Monte Carlo algorithm
is then proposed to perform Bayesian inference. This algorithm
is equipped with a stochastic optimization adaptation mechanism
that automatically adjusts the parameters of the MRFs by
maximum marginal likelihood estimation. Finally, the benefits
of the proposed methodology are demonstrated through a series
of experiments using real data.

Index Terms— Remote sensing, full waveform Lidar, Poisson
statistics, Bayesian estimation, Markov chain Monte Carlo.

I. INTRODUCTION

RECONSTRUCTION of 3-dimensional scenes using time-
of-flight light detection and ranging (Lidar) systems

is a challenging problem encountered in many applications,
including automotive [1]–[4], environment sciences [5], [6],
architectural engineering and defence [7], [8]. This problem
consists of illuminating the scene with a train of laser pulses
and analyzing the distribution of the photons reflected from the
targets to infer the range, as well as reflectivity information
about the scene. Using scanning systems, an histogram of time
delays between the emitted pulses and the detected photon
arrivals is usually recorded for each pixel, associated with a
different region of the scene. The recorded photon histograms
are classically decomposed into a series of peaks whose
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positions can be used to infer the distance of the object(s)
present in each region of the scene and whose amplitudes
provide information about the reflectivity of the objects.

In this paper, we consider applications where the flux of
detected photons is small and for which classical methods
usually provide unsatisfactory results in terms of range and
reflectivity estimation. This is typically the case when the
acquisition time or the laser source power are small relative
to the range of the target(s) [9].

Recently, Kirmani et al. [10], investigated a new method
for reconstructing 3-dimensional scenes under low photon flux
conditions by registering the time of arrival of the first photon
in each pixel. Based on an appropriate statistical model relating
the time of arrival to the target distance and reflectivity, they
proposed different processing steps, to handle ambient noise
(background photons) and the spatial regularity of the scene to
obtain estimated target distances and reflectivities. In contrast
with the method proposed in [10], we consider a scanning
system whose acquisition time per pixel is fixed, thus leading
to a deterministic and user-defined overall acquisition duration.
Consequently, the number of detected photons can be larger
than one for some pixels, whereas some pixels may be empty,
i.e., contain no detected photons.

In this work, we assume that the targets of interest are
opaque, i.e., are composed of a single surface per pixel
and that at least a surface is present in each scanned pixel.
Generalization to more complex objects will be discussed
in the conclusion of this paper. As in [10], we consider
the presence of two kinds of detector events: the “useful”
photons originating from the illumination laser and scattered
back from the target; and those background detector events
originating from ambient light and the “dark” events resulting
from detector noise. The proposed method aims to estimate
the respective contributions of the actual target and the back-
ground in the photon timing histograms. More precisely, it also
allows the estimation of the distance and reflectivity of the
surface associated with each pixel, together with the average
background levels, within a single estimation procedure.

Adopting a Bayesian framework as in [11] and [12], we
assign prior distributions to the unknown model parameters to
include available information (such as parameter constraints)
within the estimation procedure. In particular, Markov random
fields (MRFs) are introduced to model spatial correlations
for the target distances and reflectivities. The joint posterior
distribution of the unknown parameter vector is then derived,
based on the Poisson statistical properties of the observed data.
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Since classical Bayesian estimators cannot be easily
computed from this joint posterior, a Markov chain Monte
Carlo (MCMC) method is used to generate samples according
to this posterior. More precisely, we construct an efficient
stochastic gradient MCMC (SGMCMC) algorithm [13] that
simultaneously estimates the background levels and the target
distances and reflectivity, along with the MRFs parameters.

The main contributions of this work are
1) We develop new Bayesian reflectivity and depth models

taking into account spatial correlations through Markov-
ian dependencies. These flexible models are embedded
within the observation model for full waveform Lidar-
based low photon count imaging

2) An adaptive Markov chain Monte Carlo algorithm is
then proposed to compute the Bayesian estimates of
interest and perform Bayesian inference. This algorithm
is equipped with a stochastic optimization adaptation
mechanism that automatically adjusts the parameters
of the Markov random fields by maximum marginal
likelihood estimation, thus removing the need to set the
regularization parameters by cross-validation.

The benefits of the proposed flexible model for recon-
structing a real 3D object are illustrated through experiments
conducted using real single-photon data for scenarios where
the number of detected photons is very low. Specifically, we
demonstrate the ability of the proposed algorithm to handle
empty pixels as well as background levels.

The remainder of this paper in organized as follows.
Section II recalls the classical statistical model used for
depth imaging using time-of-flight scanning sensors, based
on TCSPC. Section III presents the proposed Bayesian model
for low photon count depth imaging, which takes into accounts
in the inherent spatial correlations between pixels. The esti-
mation of the Bayesian model parameters using adaptive
MCMC methods is discussed in Section IV. Simulation results
conducted using an actual time-of-flight scanning sensor are
presented and discussed in Section V. Finally, conclusions and
potential future work are reported in Section VI.

II. PROBLEM FORMULATION

Consider a set of Nrow × Ncol observed Lidar wave-
forms yi, j = [yi, j,1, . . . , yi, j,T ]T , (i, j) ∈ {1, . . . , Nrow} ×
{1, . . . , Ncol} where T is the number of temporal (corre-
sponding to range) bins. These waveforms are associated with
Nrow × Ncol regions (or pixels) of the scene, which is assumed
to be regularly sampled. To be precise, yi, j,t is the photon
count within the t th bin of the pixel or location (i, j). Let ti, j

be the characteristic time of flight associated with an object
surface at a given range from the sensor (estimating ti, j or
the associated range are equivalent). According to [11], each
photon count yi, j,t is assumed to be drawn from the following
Poisson distribution

yi, j,t ∼ P (
ri, j g0

(
t − ti, j

) + bi, j
)

(1)

where g0(·) > 0 is the photon impulse response , ri, j denotes
the reflectivity of the target and bi, j stands for the background
and dark photon level, which is constant in all bins of

a given pixel. The photon impulse response g0(·) is assumed to
be known and estimated during the imaging system calibration.

Due to physical considerations, the target reflectivity is
assumed to satisfy the following positivity constraints

ri, j ≥ 0, ∀i, j. (2)

Similarly, the average background level in pixel satisfies
bi, j ≥ 0,∀i, j . The problem addressed in this paper con-
sists of estimating the depth/range (i.e., ti, j ) of the targets,
their reflectivity ri, j and the background levels bi, j from the
observed data gathered in the Nrow × Ncol × T array Y. The
next section studies the proposed Bayesian model to estimate
the unknown parameters in (1) while ensuring the positivity
constraints mentioned above.

III. BAYESIAN MODEL

The unknown parameter vector associated with (1) contains
the surfaces reflectivity R, the range of the target T and the
background levels B (satisfying positivity constraints), where
[R]i, j = ri, j , [T]i, j = ti, j and [B]i, j = bi, j . This section
summarizes the likelihood and the parameter priors associated
with these parameters.

A. Likelihood

Assuming the Poisson noise realizations in all bins and for
all wavelengths are independent, Eq. (1) leads to

P(Y|R, B, T) =
∏

i, j

T∏

t=1

λ
yi, j,t
i, j,t

yi, j,t ! exp−λi, j,t (3)

where λi, j,t = ri, j g0(t − ti, j ) + bi, j .

B. Prior for the Target Ranges

To account for the spatial correlations between the tar-
get distances in neighboring pixels, we propose to use a
Markov random field as a prior distribution for ti, j given its
neighbors TV(i, j ), i.e., f (ti, j |T\i, j ) = f (ti, j |TV(i, j )), where
V(i, j) is the neighborhood of the pixel (i, j) and T\i, j =
{ti ′, j ′ }(i ′, j ′) �=(i, j ). More precisely, this paper focuses on the
following discrete MRF

f (T|c) = 1

G(c)
exp [−cφ(T)] , ∀ti, j ∈ {1, . . . , T }, (4)

where c ≤ 0 is a parameter tuning the amount of correlation
between pixels, G(c) is a normalization (or partition) constant
and where φ(·) is an arbitrary cost function modeling the
correlation between neighbors. In this work we propose to
use the following cost function

φ(T) =
∑

i, j

∑

(i ′, j ′)∈V(i, j )

|ti, j − ti ′, j ′ |, (5)

which corresponds to a total-variation (TV) regulariza-
tion [14], [15] promoting piecewise constant depth image.
Moreover, the higher the value of c, the more correlated
the neighboring pixels. Several neighborhood structures can
be employed to define V(i, j). Fig. 1 shows two examples
of neighborhood structures. Here, the eight pixel structure
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Fig. 1. 4-pixel (left) and 8-pixel (right) neighborhood structures. The pixel
considered appears as a black circle whereas its neighbors are depicted in
white.

(or 2-order neighborhood) will be considered in the rest of
the paper for the depth parameters, as it provides in practice
smoother depth images.

Accounting for the spatial correlation between depth values
in neighbouring pixels makes particularly sense when the
spacing between adjacent pixels/locations is small compared
to the size of observed object(s). Increasing the spacing
between pixels (i.e., reducing the spatial resolution of the
scene sampling) generally reduces the correlation between
neighbouring pixels but this case can be handled by (4) by
allowing the regularization parameter c to tend to 0 (i.e, depths
a priori independently and uniformly distributed). In this work,
we proposed to use a TV regularization which will allow
some sharp depth transitions, as it occurs when observing
distinct objects having significantly different ranges (as in
Section V). However, if the actual depth profile is expected
to exhibit only smooth variations (e.g., observation of a
single object with regular surface), different cost functions
(e.g., quadratic functions) might lead to more accurate esti-
mated depth profiles. However, since the depths are assumed
to take a finite number of values, changing the cost function
would not significantly change the estimation procedure pre-
sented in Section IV.

C. Prior for the Target Reflectivity

In the absence of background, i.e., if bi, j = 0, gamma
distributions are conjugate priors for each reflectivity para-
meter ri, j . Consequently, it seems natural to consider gamma
priors for the reflectivity. As will be shown later, gamma priors
are still conjugate distributions when bi, j > 0. We propose to
assign ri, j the following gamma prior

ri, j ∼ G
(

α0,
αi, j

α0

)
(6)

where αi, j > 0 is a local parameter related to the prior
mean and mode of ri, j and α0 > 0 is a global parameter
which controls the shape of the distribution tails and thus
the prior deviation of ri, j from αi, j . Hierarchical Bayesian
models generally allow the construction of elaborate prior
models in which parameters can be related through the intro-
duction of additional parameters which generally belong to
higher levels in the Bayesian hierarchical model. Here we
specify (6) to reflect the prior belief that reflectivity exhibit

Fig. 2. Proposed 1st order GMRF neighborhood structure ∀(i, j) ∈ VR.
We set ri, j = 0.1, ∀(i, j) /∈ VR .

spatial correlations. In particular, due to the spatial organiza-
tion of images, we expect the values of ri, j to vary smoothly
from one pixel to another. In order to model this behaviour,
we specify αi, j such that the resulting prior for R is a hidden
gamma-MRF (GMRF) [16].

More precisely, we introduce an (Nrow + 1) × (Ncol + 1)
auxiliary matrix � with elements γi, j ∈ R

+ and define a
bipartite conditional independence graph between R and �

such that each ri, j is connected to four neighbor elements
of � and vice-versa. This 1st order neighbourhood structure
is depicted in Fig. 2, where we notice that any given ri, j

and ri+1, j are 2nd order neighbors via γi+1, j and γi+1, j+1.
Following the general GMRF model proposed in [16] and
specified here by the neighbouring structure depicted in Fig. 2,
we assign a GMRF prior for (R,�), and obtain the following
joint prior for (R,�)

f (R,�|α0) = 1

G(α0)

∏

(i, j )∈VR

r (α0−1)
i, j

×
∏

(i ′, j ′)∈V�

(
γi ′, j ′

)−(α0+1)

×
∏

((i, j ),(i ′, j ′))∈E
exp

(−α0ri, j

4γi ′, j ′

)
, (7)

where VR = {1, . . . , Nrow} × {1, . . . , Ncol}, V� =
{1, . . . , Nrow + 1} × {1, . . . , Ncol + 1}, and the edge set E
consists of pairs

(
(i, j), (i ′, j ′)

)
representing the connection

between ri, j and γi ′, j ′ . It can be seen from (7) that

ri, j |�, α0 ∼ G
(

α0,
αi, j (�)

α0

)
(8a)

γi, j |R, α0 ∼ IG (
α0, α0βi, j (R)

)
(8b)
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where

αi, j (�) = 4
(
γ −1

i, j + γ −1
i−1, j + γ −1

i, j−1 + γ −1
i−1, j−1

)−1

βi, j (R) = (
ri, j + ri+1, j + ri, j+1 + ri+1, j+1

)
/4.

In addition to their flexibility, the one of the main motivations
for considering GMRFs here is the fact that they ease the
sampling strategy and thus the inference process using the
conjugacy of (8a) and (1) (see Eq. (18)), while introducing
spatial dependencies between the reflectivity coefficients.

Notice that we denote explicitly the dependence on the
value of α0, which here acts as a regularization parameter that
controls the amount of spatial smoothness enforced by the
GMRF. Following an empirical Bayesian approach, the value
of α0 remains unspecified and will be adjusted automatically
(together with the depth parameter c) during the inference
procedure by maximum marginal likelihood estimation.

Finally, it is worth mentioning that this reflectivity model
has similarities with the depth model (4) in the sense that
spatial correlation is used to regularize the parameter esti-
mation problem. However, the depth model (4) follows a
segmentation approach in which the target depths are assumed
(and constrained) to take values in a finite set. This leads to
a piecewise constant depth representation which is usually
sufficient for most applications, due to the depth resolution
of the recent Lidar-based imaging systems.

The reflectivity model proposed in this paper provides a
spatially smooth representation of the reflectivities that is pos-
sibly more realistic than a piece-wise constant representation
(that would result from a TV-based reflectivity regularization),
as it does not enforce the reflectivities to take a finite number
of possible values.

D. Prior for the Background Levels

In a similar fashion to the reflectivities, when ri, j = 0,
gamma distributions are conjugate priors for bi, j and the
following Gamma priors

bi, j ∼ G (η, ν) (9)

are assigned to bi, j , where η > 0 and ν > 0 are fixed
hyperparameters. In order to reflect the lack of prior knowl-
edge about the background levels, (η, ν) is arbitrarily set to
obtain a weakly informative prior ((η, ν) = (1, 10) in all
results presented in this paper). However, (η, ν) can be easily
adapted if additional information, e.g., observation conditions,
is available. It could also be estimated as in [17], however the
choice (η, ν) = (1, 10) made here has a limited impact on the
estimation performance.

Assuming prior independence between the average back-
ground levels of the different pixels, we obtain

f (B|η, ν) =
∏

i, j

f (bi, j |η, ν). (10)

E. Joint Posterior Distribution

We can now specify the joint posterior distribution for
T, B, R and � given the observed waveforms Y and the

Fig. 3. Graphical model for the proposed Bayesian model (fixed quantities
appear in boxes).

value of the spatial regularization parameters c and α0 (recall
that their value will be determined by maximum marginal
likelihood estimation during the inference procedure). Using
Bayes’ theorem, and assuming prior independence between T,
(�, R) and B, the joint posterior distribution associated with
the proposed Bayesian model is given by

f (T, B, R,�|Y, α3, η, ν)

∝ f (Y|R, B, T) f (B|η, ν) f (T|c) f (R,�|α0). (11)

For illustration, Fig. 3 depicts the directed acyclic
graph (DAG) summarising the structure proposed Bayesian
model (recall that R,� have a bi-partite neighbourhood
structure, which is illustrated in the graphical model of Fig. 2).

IV. BAYESIAN INFERENCE

A. Bayesian Estimators

The Bayesian model defined in Section III specifies the joint
posterior density for the unknown parameters T, B, R and �

given the observed data Y and the parameters c and α0. This
posterior distribution models our complete knowledge about
the unknowns given the observed data and the prior infor-
mation available. In this section we define suitable Bayesian
estimators to summarize this knowledge and perform depth
imaging. More precisely, we propose to use the following
two Bayesian estimators: 1) the minimum mean square error
estimator (MMSE) of the reflectivity matrix

R̂MMSE = E
[
R|Y, ĉ, α̂0

]
, (12)

where the expectation is taken with respect to the marginal
posterior density f (R|Y, c, α0) (by marginalizing T, B and �

this density takes into account their uncertainty); 2) the max-
imum a posteriori (MAP) estimator of target ranges

T̂MAP = argmax
T

f (T|Y, ĉ, α̂0), (13)

which is particularly adapted to estimate discrete parameters.
Notice that in (12) and (13), we have set c = ĉ and α0 = α̂0,
which denotes the maximum marginal likelihood estimator of
the MRF regularisation parameters c and α0 given the observed
data Y, i.e.,

(ĉ, α̂0) = argmax
c∈R+,α0∈R+

f (Y|c, α0), (14)

This approach for specifying (c, α0) is taken from the empiri-
cal Bayes framework in which parameters with unknown val-
ues are replaced by point estimates computed from observed
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data (as opposed to being fixed a priori or integrated out
of the model by marginalization). As explained in [13], this
strategy has several important advantages for MRF parame-
ters with intractable conditional distributions such as (c, α0).
In particular, it allows for the automatic adjustment of the
value of (c, α0) for each image (thus producing significantly
better estimation results than using a single fixed value of
(c, α0) for all data sets), and has a computational cost that is
several times lower than that of competing approaches, such as
including (c, α0) in the model and subsequently marginalising
them during the inference procedure [18].

B. Bayesian Algorithm

Computing the estimators (12) and (13) is challenging
because it involves calculating expectations with respect to
posterior marginal densities, which in turn require evaluat-
ing the full posterior (11) and integrating it over a very
high-dimensional space. Computing (ĉ, α̂0) is also difficult
because it involves solving an intractable optimisation prob-
lem, (because it is not possible to evaluate the marginal
likelihood f (Y|c, α0) or its gradient ∇ f (Y|c, α0)). Here we
adopt the approach proposed in [13] for the estimation of a
Potts model hyperparameter and design a stochastic optimi-
sation and simulation algorithm to compute (12) and (13)
simultaneously. That is, we construct a stochastic gradient
Markov chain Monte Carlo (SGMCMC) algorithm that simul-
taneously estimates (ĉ, α̂0) and generates a chain of NMC

samples {R(n), T(n), B(n),�(n)}NMC
n=1 asymptotically distributed

according to the marginal density f (T, B, R,�|Y, ĉ, α̂0) (this
algorithm is summarised in Algo. 1 below). Once the samples
have been generated, the estimators (12) and (13) are approx-
imated by Monte Carlo integration [19, Ch. 10], i.e.,

R̂M M S E j = 1

NMC − Nbi

NMC∑

n=Nbi+1

R(n), (15)

and

(
t̂i, j

)
MAPj = argmax

k∈1,...,T

NMC∑

n=Nbi+1

δ
(

t(n)
i, j − k

)
(16)

where the samples from the first Nbi iterations (corresponding
to the transient regime or burn-in period) are discarded and
where δ(·) denotes the Kronecker delta function. The main
steps of this algorithm are detailed in below.

1) Sampling the Target Ranges: It can be seen from (11)
that

f (ti, j = t|Y, T\i, j , B, R,�, c, α0, η, ν)

∝ f (yi, j |ti, j = t, ri, j , bi, j ) f (ti, j = t|TV(i, j )). (17)

Consequently, sampling the target ranges can be achieved
by sampling sequentially each depth from its conditional
distribution, i.e., by drawing randomly from {1, . . . , T } with
known probabilities. In our experiments we used a Gibbs
sampler implemented using a colouring scheme such that
many depths can be updated in parallel (9 steps required when
considering a 2-order neighborhood structure).

2) Sampling the Reflectivity Coefficients: Similarly,
from (11) we obtain

f (R|Y, T, B,�, c, α0, η, ν) =
∏

i, j

f (ri, j |yi, j , ti, j , bi, j ,�, α0)

(18)

i.e., the elements of R are a posteriori independent
(conditioned on the other parameters) and can thus be updated
simultaneously. Moreover,

f (ri, j |yi, j , ti, j , bi, j ,�, α0)

∝ rα0−1
i, j exp

− α0ri, j
αi, j (�)

T∏

t=1

λ
yi, j,t
i, j,t exp−λi, j,t , (19)

with λi, j,t = ri, j g0(t − ti, j )+bi, j . By noticing that
∏T

t=1 λ
yi, j,t
i, j,t

is a polynomial function of ri, j , whose degree is
∑T

t=1 yi, j,t

(since g0(t − ti, j ) > 0,∀t), it turns out that (19) can be
expressed as a finite mixture of gamma distributions whose
weights and parameters are known (see Appendix for the
derivation of (19)). Sampling ri, j from its conditional distrib-
ution finally reduces to randomly selecting one of components
of the mixture and then sampling from the corresponding
gamma distribution. Note that the auxiliary variables in � do
not appear in the likelihood (3) and that sampling � from its
conditional distribution reduces to sampling from (8b).

3) Sampling the Background: Similarly analysis applies
when sampling the background levels. Precisely,

f (B|Y, T, R,�, c, α0, η, ν) =
∏

i, j

f (bi, j |yi, j , ti, j , ri, j , η, ν)

(20)

i.e., the elements of B are a posteriori independent
(conditioned on the other parameters) and can thus be updated
simultaneously. Moreover,

f (bi, j |yi, j , ti, j , ri, j , η, ν) ∝ bη−1
i, j exp− bi, j

ν

T∏

t=1

λ
yi, j,t
i, j,t exp−λi, j,t ,

(21)

which can also be expressed as a finite mixture of gamma
distributions.

4) Updating the MRF Regularization Parameters c and α0:
If marginal likelihood f (Y|c, α0) was tractable we could
update (c, α0) from one MCMC iteration to the next by using
a classic gradient descent step

α
(n+1)
0 = α

(n)
0 + ξn

∂

∂α0
log f (Y|c(n), α

(n)
0 ),

c(n+1) = c(n) + ξn
∂

∂c
log f (Y|c(n), α

(n)
0 ) (22)

with ξn = n−3/4, such that α
(n)
0 (resp. c(n)) converges to

α̂0 (resp. ĉ) as n → ∞. However, this gradient has two
levels of intractability, one due to the marginalization of
(T, B, R,�) and another one due to the intractable normaliz-
ing constant of the gamma MRF. We address this difficulty by
following the approach proposed in [13]; that is, by replacing

∇ log f (Y|c(n)α
(n)
0 ) with estimators computed with the sam-

ples generated by the MCMC algorithm at iteration n, and
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Algorithm 1 Proposed MCMC Algorithm

two sets of auxiliary variables. More precisely, we generate
(R′,�′) ∼ K1(R,�|R(n),�(n), α

(n−1)
0 ) with an MCMC kernel

K1 with target density (7) (in our experiments we used a Gibbs
sampler implemented using a colouring scheme such that all
the elements of R′ and �′ are generated in parallel). We also
generate T′ ∼ K2(T|T(n), c(n−1)) with an MCMC kernel K2

with target density (4). The updated value α
(n)
0 (resp. c(n)) is

then projected onto an interval [0, An] (resp. [0, Cn], see (10:)
and (11:) in Algo 1) to guarantee the positivity constraints
c, α0 ∈ R

+ and the stability of the stochastic optimization
algorithm (we have used At = Cn = 20).

It is worth mentioning that if it was possible to simulate
the auxiliary variables (R′,�′) (resp. T′) exactly from (7)
(resp. (4)), then the estimator of ∇ log f (Y|c(n), α

(n)
0 ) used in

Algo. 1 would be unbiased and as a result (c(n), α
(t)
0 ) would

converge exactly to (ĉ, α̂0). However, exact simulation from
(7) and (4) is not computationally feasible and therefore we
resort to the MCMC kernels K1 and K2 and obtain a biased
estimator of ∇ log f (Y|c(n), α

(n)
0 ) that drives c(n), α

(n)
0 to a

neighbourhood of (ĉ, α̂0) [13]. We have found that comput-
ing this biased estimator is significantly less expensive than
alternative approaches, (e.g., using an approximate Bayesian
computation algorithm as in [18]), and that it leads to very
accurate depth and reflectivity results.

V. SIMULATION RESULTS

A. Data Acquisition

We propose comparing the performance of the proposed
method to reconstruct a depth image of a life-sized polystyrene
head located at a distance of 40m from a time-of-flight
scanning sensor, based on TCSPC. The transceiver system and

Fig. 4. Photograph showing the polystyrene head used for the experiments
described here and calibration targets, including the Spectralon panel (top
right corner).

data acquisition hardware used for this work is broadly similar
to that described in [9] and [20]–[22], which was previously
developed at Heriot-Watt University. For the measurements
reported in this section, the optical path of the transceiver
was configured to operate with a fiber-coupled illumination
wavelength of 841nm, and a silicon single-photon avalanche
diode (SPAD) detector. The overall system had a jitter of
95ps full width at half-maximum (FWHM). The measurements
have been performed outdoors, on the Edinburgh Campus of
Heriot-Watt University, in November 2014 under dry clear
skies and with atmospheric conditions remaining relatively
constant for the duration of the measurement. The key mea-
surement parameters are summarized below:

• Target stand-off distance: ≈ 40m
• Target scene: polystyrene head (≈ 170 × 285 × 250mm

in W × H × D when viewed from the front) mounted on
a breadboard. Backplane: MDF board (see Fig. 4)

• Laser system: Supercontinuum laser source and
tunable filter (NKT Photonics) fiber-coupled to the
custom-designed transceiver unit

• Laser repetition Rate: 19.5MHz
• Illumination power at target: ≈ 240μW average optical

power
• Illumination beam diameter at target: ≈ 1mm
• Acquisition mode: 142 × 142 pixels scan centered on the

head, covering an area of 285 × 285mm at the scene
• Per-pixel acquisition time: 30 ms
• Total scan time: ≈ 10 minutes
• Histogram bin width: 16ps
• Histogram length: 586 bins (after gating)

Although the acquisition time per pixel is 30ms, the data
format of timed events allows the construction of photon
timing histograms associated with shorter acquisition times,
after measurement, as the system records the time of arrival
of each detected photon. Here, we evaluate our algorithms for
acquisition times of 30ms, 6ms, 3ms, 600μs, 300μs and 60μs
per pixel.
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Fig. 5. Intrumental response obtained using spectralon panel placed at 40m
from laser source/detector and for an acquisition time of 60s (jitter ≈ 95ps
FWHM).

TABLE I

AVERAGE NUMBER OF DETECTED PHOTONS PER PIXEL AND PROPORTION

OF EMPTY PIXELS AS A FUNCTION OF THE ACQUISITION TIME

The instrumental impulse response g0(·) is estimated from
preliminary experiments by analysing the distribution of
photons reflected onto a Spectralon panel (a commercially
available Lambertian scatterer), placed at 40m from laser
source/detector. A long acquisition time (60s) is considered
here to reduce the impact of the photon count variability and a
pre-processing step is used to remove the constant background
in the measured response. The resulting instrumental impulse
response is depicted in Fig. 5.

Table I provides details regarding the amount of detected
photons when varying the acquisition time. The second row
of I shows the average number of detected photons per pixel,
ranging from about 0.85 photons for a 60μs acquisition time
to about 420 for a 30ms acquisition time. As expected, the
number of detected photons increases linearly with exposure.
The bottom row shows that almost 49% of the pixels do not
contain any detected photons for a 60μs acquisition time and
that this proportion decreases when increasing the acquisition
time.

B. Estimation Performance

The proposed method is first compared to the method
classically used for depth imaging [9] and which is divided
into two steps. The first step consists of estimating ti, j using
cross-correlation between g0(·) and the photon histogram yi, j .
The object depth is estimated using

t̂i, j,corr = argmax
τ∈Z

T∑

t=1

yi, j,t g0(t − τ ). (23)

Once the estimated time target distance t̂i, j,corr has been
computed, the target reflectivity is estimated using maximum
likelihood (ML) estimation (assuming that bn = 0) as

r̂i, j,M L =
∑T

t=1 yi, j,t
∑T

t=1 g0
(
(t − t̂i, j,corr

) . (24)

When the background level is relatively low compared to
the maximum value of ri, j g0

(
(t − ti, j

)
, the ML reflectivity

estimates (conditioned on the previously estimated depths)
provide satisfactory results and are thus consider as the com-
parative method in the remainder of this paper. Moreover,
we also compared the proposed method to denoising methods
applied to the standard depth and reflectivity images. Precisely,
due to the potential presence of empty pixels, a nearest neigh-
bor interpolation has been applied the depth and reflectivity
images estimated by the standard method. We then applied
two different denoising techniques. The first method consists
of applying a median filter whose size has been chosen by
cross-validation (5×5 here). The second method is the Block-
Matching and 3D filtering (BM3D) algorithm [23] whose noise
variance parameter has also been fixed from preliminary runs.
The proposed algorithm has been applied with NMC = 1000
iterations, including Nbi = 200 burn-in iterations.

Fig. 6 (top) compares the estimated depth maps obtained by
the proposed and competing methods. These results show that
for large acquisition times, the four methods provide similar
results. However, when the acquisition time decreases, the
cross-correlation method starts to fail in identifying the target
ranges, especially in pixels where no photon is detected in a
pixel, indicating that the other methods seem more robust to
the absence of signal in some pixels. The median and BM3D
filters seem to better identify the edges of the head than the
proposed method, however the generally provide less accurate
estimated depths in the center of the head, where more subtle
depth variations occur.

Fig. 6 (bottom) compares the estimated reflectivity maps
obtained by the four methods. These results show that the
proposed and the standard methods provide similar results for
the longest acquisition times and the two additional filters
tend to oversmooth the reflectivity images. The proposed
method seems more robust than the other methods to the
lack/absence of detected photons, especially those including
filters. In particular, for the 60μs acquisition time, few photons
are detected in the pixels around the head and the proposed
algorithm provides a more reliable reflectivity image due
to consideration of spatial correlations, in contrast to the
standard method which process the pixels independently. Note
that for each experiment, the Spectralon response g0(·) is
scaled to account for the acquisition time (e.g., amplitude
divided by ten between the 30ms and 3ms experiments). Note
also that for some pixels, the reflectivities estimated by the
four methods can exceed 1. This point will be discussed
further in the conclusions. For completeness, Fig. 7 compares
the depth/reflectivity estimation results obtained by the four
methods for an acquisition time of 300μs.

In addition to the depth and reflectivity maps, the proposed
method also estimates the average background level in each
pixel, depicted in Fig. 8. This figure shows that for the longer
acquisition times, higher backgrounds are estimated at the
boundary between the head and the backplane, which can be
explained by the presence of two peaks in the histograms of
detected photons. Due to the laser beam size, some photons
are scattered from the head whereas others are scattered
from the backplane and thus arrive later onto the detector.
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Fig. 6. Top rows: depth maps for different per-pixel acquisition times, estimated by the proposed Bayesian algorithm and competing methods. Distances
shown are in centimeters and the reference distance is the distance of the backplane. Black pixels correspond to pixels where no photon are detected and for
which the cross-correlation method cannot identify the target distance. Bottom rows: reflectivity maps for different per-pixel acquisition times, estimated by
the proposed Bayesian algorithm and the competing methods.

When the number of detected photons decreases, the ampli-
tudes of the two peaks decrease, which makes the detection
of multiple peaks more difficult.

The performance of the methods are quantitatively evaluated
using the distance and reflectivity mean squared errors (MSEs)
defined by

M SE(di, j ) =
∥∥
∥d̂i, j − di, j

∥∥
∥

2

2
(25)

where ‖· · · ‖2 denotes the 
2-norm, d̂i, j is the estimated value
of di, j = 3 × 108ti, j /2 and

M SE(ri, j ) = ∥
∥r̂i, j − ri, j

∥
∥2

2 (26)

where r̂i, j is the estimated value of ri, j . Note that
{di, j } and {ri, j } are unknown for the data set considered.
Consequently we replace these values by those estimated by
the standard method for the longest acquisition time (30ms).
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Fig. 7. Depth/reflectivity reconstruction of the target, estimated by the
proposed Bayesian algorithm (top left) and standard method (top right)
method, and the standard method followed by median filtering (bottom left)
or BM3D (bottom right), for a 300μs acquisition time. The colours represent
the target reflectivity (dark blue for low reflectivity coefficients).

Fig. 8. Background level maps
({log(bi, j )}i, j

)
for different acquisition time,

estimated by the proposed Bayesian algorithm.

Figs. 9 and 10 depict the cumulative density functions (cdfs)
of the distance and reflectivity MSEs, defined by

Fd (τ ) = 1

Nrow Ncol

∑

i, j

1(0,τ )

(
M SE(di, j )

)
(27)

Fr (τ ) = 1

Nrow Ncol

∑

i, j

1(0,τ )

(
M SE(ri, j )

)
(28)

Fig. 9. Distance RMSE cdfs provided by the standard (dashed blue lines),
standard+median filter (black circles), standard+BM3D (black crosses) and
the proposed (red lines) methods for the target located at 40m.

where 1(0,τ ) (·) denotes the indicator function defined on
(0, τ ). Figs. 9 and 10 show that the proposed method is more
robust than the other methods when reducing the acquisition
time and provide more consistent results in terms of depth
and reflectivity estimation, except for the depth estimation
with an acquisition time of 60μs due to the strong smoothness
penalization around the boundaries of the head. These figures
also highlight the ability of the proposed method to process
pixels for which no photons are detected, as the cdfs are upper-
bounded by the proportion of pixels that can be processed by
each method.

Finally, Table II compares the computational costs of the
four methods to process the whole image (142 × 142 pixels,
T = 586), for the different acquisition durations. Due to
the use of the MCMC method, the proposed method is
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Fig. 10. Reflectivity RMSE cdfs provided by the standard (dashed blue lines),
standard+median filter (black circles), standard+BM3D (black crosses) and
the proposed (red lines) methods for the target located at 40m.

significantly more computationally demanding than the stan-
dard methods. However, this cost must be balanced by the
performance improvement in terms of depth and reflectivity
estimation, when the number of detected photons is low. When
the flux of detected photons is large enough, the consideration
of spatial correlations has a limited impact on the estimation
performance, as long as the background levels are low com-
pared to the amplitudes of the peaks associated with actual
targets. It is interesting to note the computational cost of the
Bayesian increases with the acquisition time, in contrast to the
standard method. This is mainly due to the MCMC steps used
to update the reflectivity coefficients and the background levels
which require the computation of polynomial coefficients
whose number depends on the number of detected photons

TABLE II

PROCESSING TIME (IN MINUTES)

in each pixels (see Appendix). Note however that due the
conditional independence between the reflectivity parameter,
they can be updated in a parallel manner. The same observation
holds for B and �. Similarly, the depth parameters can be
updated using checkerboard pixel clustering.

VI. CONCLUSION

In this paper, we proposed a new Bayesian model for
Lidar-based low photon count imaging of single-layered tar-
gets. In the Bayesian framework, prior distributions were
assigned to the unknown target depths and reflectivity to
account for the intrinsic correlations between neighboring
pixels. An adaptive Markov chain Monte Carlo method was
then developed to estimate the model unknown parameters,
including the spatial regularization parameters, thus relieving
practitioners from setting these parameters by cross-validation.
The model and method were validated using real Lidar data
and the results showed the benefits of the proposed approach
compared to the classical method used when the number of
detected photons is low.

In the paper, we assumed that the beam associated with a
given pixel is incident on a single surface. This assumption
is reasonable for small beam sizes, compared to the target
distance and when the scene is composed of locally continuous
surfaces. When the beam encounters multiple surfaces, one
peak will be considered as principal surface, depending on its
amplitude and on the Lidar returns in the neighboring pixels.
The remaining peaks will be considered as part of the back-
ground noise. Considering returns from multiple surfaces is an
interesting problem already addressed in [5], [11], and [12]
for applications where the number of detected photons are
significantly higher. It would be interesting to extend this work
for the low-photon imaging problem.

Since the model considered in this paper assumed the
presence of a target in each pixel, the proposed method will
tend to process empty pixels (i.e., containing no photon) using
the neighboring pixels, which might be inaccurate for non-
locally continuous surfaces (such as wire fence). Accounting
for the absence of target in some pixels is currently under
investigation.

In the results presented in Section V, some of the estimated
reflectivity coefficients were significantly greater than one,
even for long acquisition time and even when scaling the
instrumental response. Thus, it can be difficult to directly
link the estimated reflectivities to the actual target reflectivity
values as these estimation errors do not seem to be only due
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to estimation errors when extracting the instrumental impulse
response. Thus constraining the reflectivity coefficients to be
less than one might not be sufficient to provide accurate
reflectivity estimates. As studied in [24]–[26], atmospheric
perturbations can have a significant impact on the distribution
of the detected photons, specially for long-range targets.
Although such scintillation effects will have a small impact on
the depth estimation, accounting for them will be necessary
in future work to improve the reflectivity estimation. Finally,
extension of the imaging processing approach outlined to dif-
ferent sparse photon imaging scenarios, for example imaging
using the effects of entangled photon pairs [27] is also worthy
of future investigation.

APPENDIX

ON THE CONDITIONAL DISTRIBUTION OF THE

REFLECTIVITY COEFFICIENTS

The conditional distribution f (ri, j |yi, j , ti, j , bi, j ,�, α0) can
be expressed (up to a multiplicative constant) as

f (ri, j |yi, j , ti, j , bi, j ,�, α0)

∝ rα0−1
i, j exp

− α0ri, j
αi, j (�) exp− ∑T

t=1 λi, j,t

T∏

t=1

λ
yi, j,t
i, j,t , (29)

where
∑T

t=1 λi, j,t = ui, j + ri, j vi, j ,

ui, j =
T∑

t=1

bi, j

vi, j =
T∑

t=1

g0(t − ti, j ),

and

P(ri, j ) =
T∏

t=1

λ
yi, j,t
i, j,t =

T∏

t=1

(
ri, j g0(t − ti, j ) + bi, j

)yi, j,t (30)

is a polynomial function of ri, j . Since g0(t − ti, j ) > 0,∀t ,
−bi, j /g0(t − ti, j ) is a root of P(ri, j ) if yi, j,t > 0. Moreover,
this root is of multiplicity yi, j,t and the polynomial order is
thus Oi, j = ∑T

t=1 yi, j,t . Let

P(ri, j ) =
Oi, j∑

k=0

εkrk
i, j , (31)

be the polynomial expansion of P(ri, j ), whose coeffi-
cients {εk} can be obtained from the polynomial roots. From
Eq. (29), we obtain

f (ri, j |yi, j , ti, j , bi, j ,�, α0)

∝
Oi, j∑

k=0

εkrα0+k−1
i, j exp

−ri, j

(
α0

αi, j (�) +vi, j

)

. (32)

which can be expressed as the following mixture of Oi, j + 1
gamma distributions f (ri, j |yi, j , ti, j , bi, j ,�, α0)

=
Oi, j∑

k=0

wkG
(

ri, j ; α0 + k,

(
α0

αi, j (�)
+ vi, j

)−1
)

, (33)

with

wk ∝ εk
� (α0 + k)

(
α0

αi, j (�) + vi, j

)α0+k
, ∀k, (34)

where �(·) denotes the Gamma function and
∑Oi, j

k=0 wk = 1.
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