
456 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 4, DECEMBER 2016

Robust Bayesian Target Detection Algorithm for
Depth Imaging From Sparse Single-Photon Data

Yoann Altmann, Member, IEEE, Ximing Ren, Aongus McCarthy, Member, IEEE, Gerald S. Buller,
and Steve McLaughlin, Fellow, IEEE

Abstract—This paper presents a new Bayesian model and asso-
ciated algorithm for depth and intensity profiling using full wave-
forms from time-correlated single-photon counting measurements
in the limit of very low photon counts (i.e., typically less than 20
photons per pixel). The model represents each Lidar waveform
as an unknown constant background level, which is combined in
the presence of a target, to a known impulse response weighted
by the target intensity and finally corrupted by Poisson noise. The
joint target detection and depth imaging problem is expressed as a
pixelwise model selection and estimation problem, which is solved
using Bayesian inference. Prior knowledge about the problem is
embedded in a hierarchical model that describes the dependence
structure between the model parameters while accounting for their
constraints. In particular, Markov random fields (MRFs) are used
to model the joint distribution of the background levels and of
the target presence labels, which are both expected to exhibit sig-
nificant spatial correlations. An adaptive Markov chain Monte
Carlo algorithm including reversible-jump updates is then pro-
posed to compute the Bayesian estimates of interest. This algorithm
is equipped with a stochastic optimization adaptation mechanism
that automatically adjusts the parameters of the MRFs by max-
imum marginal likelihood estimation. Finally, the benefits of the
proposed methodology are demonstrated through a series of ex-
periments using real data.

Index Terms—Bayesian estimation, full waveform Lidar, poisson
statistics, remote sensing, reversible jump Markov chain monte
carlo, target detection.

I. INTRODUCTION

T IME-OF-FLIGHT laser detection and ranging (Lidar)
based imaging systems are used to reconstruct 3-dimensi-

onal scenes in many applications, including automotive [1]–[4],
environmental sciences [5], [6], architectural engineering and
defence [7], [8] applications. This challenging problem con-
sists of illuminating the scene with a train of laser pulses and
analysing the distribution of the photons received by the detector
to infer the presence of objects as well as their range, and ra-
diative properties (e.g., reflectivity, observation conditions,...).
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Using scanning systems, a histogram of time delays between
the emitted pulses and the detected photon arrivals is usually
recorded for each pixel, associated with a different region of the
scene. Conventionally, in the presence of objects, the recorded
photon histograms are decomposed into a series of peaks whose
positions can be used to infer the distance of the objects present
in each region of the scene and whose amplitudes provide in-
formation about the intensity of the objects.

In this paper, we investigate the target detection problem
which consists of inferring the regions or pixels of the scene
where objects are present. Moreover, we propose an algorithm
for applications where the flux of detected photons is small and
for which classical depth imaging methods [9] usually provide
unsatisfactory results in terms of range and intensity estima-
tion. This is typically the case for free-space depth profiling
on targets at very long distances based on the time-correlated
single-photon counting (TCSPC) technique [9], which negoti-
ates the trade-offs between range/intensity estimation quality,
data acquisition time and output laser power. In addition, this
might be extended for sparse single-photon depth imaging in
turbid media, e.g., underwater depth imaging [10]. In contrast
with the method proposed in [11], we consider scene observa-
tion using a scanning system whose acquisition time per pixel
is fixed, thus leading to a deterministic and user-defined overall
acquisition duration. As in [12], the number of detected photons
can thus vary across the image pixels and some pixels can be
empty (i.e., no detected photons).

In this work, we assume that the targets potentially present in
the scene of interest are opaque, i.e., are composed of a single
surface per pixel. As in [11], [12], we consider the potential
presence of two kinds of detector events: the photons originat-
ing from the illumination laser and scattered back from the tar-
get (if present); and the background detector events originating
from ambient light and the ”dark” events resulting from detec-
tor noise. The proposed method aims to estimate the respective
contributions of the actual target (if any) and the background in
the photon timing histograms.

Following a classical Bayesian approach, as in [12]–[14],
we express the target detection and identification problem as a
pixel-wise model selection and estimation problem. More pre-
cisely, two observation models, conditioned on the presence or
absence of a target (modelled by binary labels) are considered
for each pixel. We then assign prior distributions to each of
the unknown parameters in each model to include available in-
formation within the estimation procedure. The probabilities
of target presence (or equivalently the binary labels associ-
ated with the presence/absence of target) are also assigned prior
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distributions accounting for spatial organization of the objects
in the scene.

Classical Bayesian estimators associated with the joint pos-
terior cannot be easily computed due to the complexity of the
model, in particular because the number of underlying param-
eters (number of targets) is unknown and potentially large. To
tackle this problem, a Reversible-Jump Markov chain Monte
Carlo (RJ-MCMC) [15], [16] method is used to generate sam-
ples according to this posterior by allowing moves between
different parameter spaces. More precisely, we construct an ef-
ficient stochastic gradient MCMC (SGMCMC) algorithm [17]
that simultaneously estimates the background levels and the
target distances and intensity, along with the MRFs parameters.

The main contributions of this work are threefold:
1) We develop a new Bayesian algorithm for joint target de-

tection and identification, which takes spatial correlations
affecting the background levels and the target locations
into account through Markovian dependencies. To the best
of our knowledge, the proposed method is the first joint
target detection and identification method designed for
depth imaging using single-photon data.

2) An adaptive Markov chain Monte Carlo algorithm includ-
ing reversible-jump updates is proposed to compute the
Bayesian estimates of interest and perform Bayesian in-
ference. This algorithm included RJ-MCMC updates and
is equipped with a stochastic optimization mechanism that
adjusts automatically the parameters of the Markov ran-
dom fields by maximum marginal likelihood estimation,
thus removing the need to set the regularization parame-
ters, e.g., by cross-validation.

3) We show the benefits of the proposed flexible model for
reconstructing a real 3D object in scenarios where the
number of detected photons is very low and the back-
ground levels are significant.

The remainder of this paper in organized as follows. Section II
recalls the statistical models used for depth imaging using time-
of-flight scanning sensors, based on TCSPC. Section III presents
the new hierarchical Bayesian model which takes into account
the inherent spatial correlations between parameters of spatially
close pixels. Section IV discusses the estimation of the model
parameters including the detection labels using adaptive MCMC
methods including reversible jump updates. Simulation results
conducted using an actual time-of-flight scanning sensor are
presented and discussed in Section V. Finally, conclusions and
potential future work are reported in Section VI.

II. PROBLEM FORMULATION

Assessing the presence of targets from TCSPC measurements
in an unsupervised manner is a challenging problem as the detec-
tion performance highly depends on the nature of the potential
targets (range and reflectivity), as well as the observation condi-
tions (system performance, ambient illumination). In practice,
the target range can be restrained to a bounded interval and the
estimated reflectivity parameter can be used to assess the target
presence (i.e., via thresholding). In a similar manner to [11],
[18], it is possible to enhance the estimation performance of

depth and reflectivity parameters by processing simultaneously
several pixels/spatial locations, thus improving the subsequent
target detection. However, the nature of such sequential pro-
cesses implies sub-optimal detection performance (which de-
pends on the quality of the previous estimation steps). For this
reason, we propose a Bayesian model and method allowing the
joint target detection and depth/reflectivity estimation. In con-
trast to [11], [18], in this work we assume that the ambient
noise level, which can vary among pixels, is unknown and thus
needs to be estimated. This is typically the case for long range
measurements where the background levels can change due to
time-varying illumination conditions. In this work, the back-
ground levels are estimated from signal measured during the
detection process, and not beforehand, as may be done with a
detector array [19].

We consider a set of Nrow × Ncol observed Lidar wave-
forms/pixels yi,j = [yi,j,1 , . . . , yi,j,T ]T , (i, j) ∈ {1, . . . , Nrow}
× {1, . . . , Ncol} where T is the number of temporal (corre-
sponding to range) bins. To be precise, yi,j,t is the photon count
within the tth bin of the pixel or location (i, j). Let zi,j ∈ {0, 1}
be a binary variable associated with the presence (zi,j = 1) or
absence (zi,j = 0) of target in the pixel (i, j). In the absence of
target, yi,j,t is assumed to be drawn from the following Poisson
distribution

yi,j,t

∣
∣
(

zi,j = 0,θ0
i,j

)

∼ P (bi,j ) , (1)

where bi,j > 0 stands for the background and dark photon level,
which is assumed to be constant in all bins of a given pixel.
The model (1) for each pixel is denoted M(i,j )

0 (0 denotes the
absence of a target). Moreover θ0

i,j denotes the set of likelihood

parameters in pixel (i, j) under M(i,j )
0 , i.e., θ0

i,j = bi,j ∈ R+ .
Assume now the presence of a target in the pixel (i, j). Let ti,j

be the position of that object surface at a given range from the
sensor and ri,j its intensity. The target position is considered
as a discrete variable defined on T = {tmin , . . . , tmax}, such
that 1 ≤ tmin ≤ tmax ≤ T (in this paper we set (tmin , tmax) =
(1, T )). In that case, we obtain

yi,j,t

∣
∣
(

zi,j = 1,θ1
i,j

)

∼ P (ri,j g0 (t − ti,j ) + bi,j ) , (2)

where g0(·) > 0 is the photon impulse response, which is as-
sumed to be known (this response can be estimated during
the imaging system calibration). In a similar fashion to (1),
the model (2) for each pixel is denoted M(i,j )

1 and in a sim-
ilar fashion to the background level, the target intensity in
each pixel is non-negative, i.e., ri,j ≥ 0. In (2), θ1

i,j stands for

the set of likelihood parameters in pixel (i, j) under M(i,j )
1 ,

i.e., θ1
i,j = [ri,j , ti,j , bi,j ] ∈ R+ × T ×R+ . Note that the back-

ground levels in (1) and (2) have the same physical meaning
and are assumed to present the same statistical properties un-
der M(i,j )

0 and M(i,j )
1 . Thus, a single background level bi,j ,

independent from the observation model, is used for each pixel.
The problem addressed in this paper consists of deciding

whether a target is present (M(i,j )
0 ) or not (M(i,j )

1 ) in each
pixel and of estimating the position and intensity of the targets
present in the scene, from the observed data gathered in the
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Nrow × Ncol × T array Y. Moreover, the background levels bi,j

are also assumed to be unknown and need to be estimated.
The target detection problem considered in this paper can be

seen as a pixel-wise model selection problem where the param-
eter space associated with each model is different. To be pre-
cise, under M(i,j )

0 (resp. M(i,j )
1 ), θ

(0)
i,j ∈ Θ0 (resp. θ

(1)
i,j ∈ Θ1)

where Θ0 = R+ and Θ1 = R+ × T × Θ0 . To simplify nota-
tions, the unknown parameter vector is noted θi,j in the remain-
der of the paper when we do not specify whether it is included
in Θ0 or Θ1 . Estimating θi,j is difficult using standard op-
timization methods since the dimensionality of the parameter
vector depends on the underlying model. However, this model
selection problem can be solved efficiently in a Bayesian frame-
work by 1) performing inference for each pixel in the parameter
space {{0} × Θ0}

⋃
{{1} × Θ1}, 2) incorporating relevant ad-

ditional prior belief (through prior distributions) and 3) using
RJ-MCMC methods adapted for problems whose finite dimen-
sionality in unknown.

The next section presents a new Bayesian model for target de-
tection accounting for spatial correlations affecting parameters
of neighbouring pixels.

III. BAYESIAN MODEL FOR COLLABORATIVE TARGET

DETECTION VIA MARKOVIAN DEPENDENCIES

A. Parameter Prior Distributions

1) Priors for the Background Levels: In the absence of a
target (i.e., assuming (1)), gamma distributions are conjugate
priors for bi,j . Moreover, it has been shown in [12] that con-
sidering such priors in the presence of a target also simplifies
the sampling procedure. In contrast to the model in [12] which
assumed the background levels of the Nrow × Ncol pixels to be
a priori independent, here we specify the background levels
prior distribution to reflect the prior belief that background lev-
els exhibit spatial correlations. In particular, due to the spatial
organization of images, we expect the values of bi,j to vary
smoothly from one pixel to another (as will be illustrated in
Section V). In order to model this behaviour, we specify εi,j

such that the resulting prior for the background matrix B such
that [B]i,j = bi,j is a hidden gamma-MRF (GMRF) [20] (in a
similar fashion to the intensity model in [12]). More precisely,
we introduce an (Nrow + 1) × (Ncol + 1) auxiliary matrix Γ
with elements γi,j ∈ R+ and define a bipartite conditional in-
dependence graph between B and Γ such that each bi,j is con-
nected to four neighbour elements of Γ and vice-versa. This 1st
order neighbourhood structure is similar to that depicted in [12,
Fig. 2], where we notice that any given bi,j and bi+1,j are 2nd
order neighbours via γi+1,j and γi+1,j+1 . We specify a GMRF
prior for B,Γ [20], and obtain the following joint prior for B,Γ

f(B,Γ|ν) =
1

G(ν)

∏

(i,j )∈VB

b
(ν−1)
i,j

∏

(i′,j ′)∈VΓ

(γi ′,j ′)−(ν+1)

×
∏

((i,j ),(i′,j ′))∈E
exp

(
−νbi,j

4γi ′,j ′

)

, (3)

where VB = {1, . . . , Nrow} × {1, . . . , Ncol}, VΓ = {1, . . . ,
Nrow + 1} × {1, . . . , Ncol + 1}, and the edge set E consists of
pairs ((i, j), (i′, j′)) representing the connection between bi,j

and γi ′,j ′ . In this paper, the notation x|y reads “x conditioned
on the value of y” and f(x|y) denotes the probability distri-
bution function of x|y, i.e., its probability density function (if
x|y is a continuous variable), its probability mass function (if
x|y is discrete) or its mixed density if x|y contains discrete and
continuous random variables. It can be seen from (3) that

bi,j | (Γ, ν) ∼ G
(

ν,
εi,j (Γ)

ν

)

(4a)

γi,j | (B, ν) ∼ IG (ν, νξi,j (B)) (4b)

where G(x, y) (resp. IG(x, y)) denotes the gamma (resp.
inverse gamma) distribution with shape parameter x and scale
parameter y, and with

εi,j (Γ) = 4
(

γ−1
i,j + γ−1

i−1,j + γ−1
i,j−1 + γ−1

i−1,j−1

)−1

ξi,j (B) = (bi,j + bi+1,j + bi,j+1 + bi+1,j+1) /4.

Notice that we denote explicitly the dependence on the value
of the regularization parameter ν, which here controls the
amount of spatial smoothness enforced by the GMRF. Following
an empirical Bayesian approach, the value of ν remains unspec-
ified and will be adjusted automatically during the inference
procedure by maximum marginal likelihood estimation.

2) Priors for the Target Parameters: To reflect the absence
of prior knowledge about the target ranges given zi,j = 1, we
assign each possible target depth the following uniform prior

f(ti,j = t) =
1
T ′ , t ∈ T , where T ′ = card(T ). Note how-

ever that this prior can be adapted according to potential prior
knowledge about the expected target depth distribution.

Accounting for potential spatial dependencies for the target
intensities is more challenging as all pixels do not necessarily
contain targets. Thus, considering fixed neighbourhood struc-
tures (as for B) is not well adapted here. Consequently, we
propose the following classical hierarchical model

ri,j | (α, β) ∼ G (α, β) , ∀(i, j) (5a)

α| (α1 , α2) ∼ G (α1 , α2) (5b)

β| (β1 , β2) ∼ IG (β1 , β2) (5c)

where (α1 , α2) and (β1 , β2) are fixed parameters set to
(α1 , α2) = (1.1, 1) and (β1 , β2) = (1, 1) to reflect the fact that
the target intensities have a high probability to be in (0, 1). In-
deed, the photon impulse response g0(·) > 0 estimated during
the imaging system calibration can be scaled appropriately us-
ing reference targets and acquisition times. Although the model
(5) does not capture the spatial dependencies between the target
intensities, it translates the prior belief that the potential target
intensities share similar statistical properties (through α and β).

3) Priors for the Observation Models: Finally, in a similar
fashion to the background levels, it is often reasonable to expect
the probability of a target to be present in a pixel to be related
to the presence of targets in the neighbouring pixels (at least
when considering targets larger than the spacing between pixels
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as considered in Section V). To encode this prior belief, we
attach the Nrow × Ncol detection label matrix Z ([Z]i,j = zi,j )
the following Ising model

f(Z|c) =
1

G(c)
exp [cφ(Z)] (6)

where φ(Z) =
∑

i,j

∑

(i′,j ′)∈Vi , j
δ(zi,j − zi ′,j ′), δ(·) denotes

the Kronecker delta function, and Vi,j is the set of neigh-
bours of pixel (i, j) (in this paper we consider an 8-
neighbour structure). Moreover, c is an hyperparameter that
controls the spatial granularity of the Ising model and G(c) =
∑

Z∈(0;1)N row×N col exp[cφ(Z)]. In a similar fashion to ν, c re-
mains unspecified and will be adjusted automatically during the
inference procedure by maximum marginal likelihood estima-
tion using [17]. Due to use of the Ising model (6), we have easy
access only to the probability of a target presence in the pixel
(i, j) conditioned on the labels values in the neighbouring pixels,
i.e., pi,j = f(zi,j = 1|Z\(i,j )) where Z\(i,j ) denotes the subset
of Z whose element zi,j has been removed. Consequently, it is
important to mention here that the parameters associated with
a pixel (i, j) and those of the pixels in Vi,j will not be updated
simultaneously. However, chessboard sampling schemes can be
used to update conditionally independent sets of parameters in
parallel for a more efficient implementation.

In this Section III-A, we defined priors distributions for the
unknown model parameters. More precisely, priors promoting
spatial correlations were used for the background levels and
for the detection labels. A joint hierarchical model was pro-
posed for the reflectivity parameters and uniform priors were
used for the unknown target depth. In other words, we do not
use potential spatial correlation affecting the depth or the re-
flectivity profiles. Although such consideration could improve
the range/reflectivity estimation and possibly the detection per-
formance (which is the main purpose of the proposed method),
the model and method we propose can be applied to analyse
complex target, possibly highly spatially non-smooth in terms
shape and/or reflectivity profile. The next Section derives the
joint posterior probability associated with the detection prob-
lem considered.

B. Joint Posterior Distribution

We can now specify the joint posterior distribution for
Z,Θ = {θi,j}i,j and Φ = {Γ, α, β} given the observed wave-
forms Y and the value of the spatial regularization parameters
ν and c (recall that their value will be determined by maximum
marginal likelihood estimation during the inference procedure).
Using Bayes theorem, and the prior independence assumptions
mentioned above, the joint posterior distribution associated with
the proposed Bayesian model is given by

f(Z,Θ,Φ|Y, ν, c) ∝

⎡

⎣
∏

i,j

f(yi,j |zi,j ,θi,j )f(θi,j |Z,Φ)

⎤

⎦

× f(Z|c)f(Γ|ν)f(α)f(β), (7)

using f(Φ|ν) = f(Γ|ν)f(α)f(β). Note that for clarity the de-
pendence of all distributions on the known fixed quantities

(α1 , α2 , β1 , β2) is omitted in (7) and in the remainder of the
paper.

IV. BAYESIAN INFERENCE

A. Bayesian Estimators

The Bayesian model defined in Section III specifies the joint
posterior density for the unknown parameters Z,Θ,Γ, α and
β given the observed data Y and the parameters ν and c. This
posterior distribution models our complete knowledge about
the unknowns given the observed data and the prior information
available. In this section we define suitable Bayesian estimators
to summarize this knowledge and perform target detection. Here
we consider the following coupled Bayesian estimators that are
particularly suitable for model selection problems: the marginal
maximum a posteriori (MMAP) estimator for the target presence
labels

zM M AP
i,j = argmax

zi , j ∈{0,1}
f(zi,j |Y, ν̂, ĉ), (8)

and, conditionally on the estimated labels, 1) the minimum mean
square error estimator of the background levels

bM M SE
i,j = E

[

bi,j |zi,j = ẑM M AP
i,j ,Y, ν̂, ĉ

]

, (9)

and 2) for the pixels for which ẑM M AP
i,j = 1, the minimum mean

square error estimator of the target intensities

rM M SE
i,j = E [ri,j |zi,j = 1,Y, ν̂, ĉ] , (10)

and the marginal maximum a posteriori (MMAP) estimator of
the target positions

tM M AP
i,j = argmax

ti , j ∈T
f(ti,j |zi,j = 1,Y, ν̂, ĉ), (11)

Note that marginalising out the other unknowns (including α
and β) in (8), (9), (10) and (11) automatically takes into account
their uncertainty.

Computing (8) to (11) is challenging because it requires
having access to the univariate marginal densities of zi,j and the
joint marginal densities of (among others) (bi,j , zi,j ), which in
turn require computing the posterior (7) and integrating it over
a very high-dimensional space. Fortunately, these estimators
can be efficiently approximated with arbitrarily large accuracy
by Monte Carlo integration. This is why we propose to compute
(8) to (11) by first using an MCMC method to generate samples
asymptotically distributed according to (7), and subsequently
using these samples to approximate the required marginal
probabilities and expectations. Here we propose an RJ-MCMC
method to simulate samples from (7), as this type of MCMC
method is particularly suitable for models involving hidden
Markov random fields and parameter spaces of varying of
dimensions [21, Chap. 10,11]. It is important to mention that a
standard Gibbs sampler similar to that studied in [22] could have
been considered instead of the proposed RJ-MCMC to sample
from (7). However, such approach would lead to a prohibitively
slow exploration of the posterior, mainly due to the weakly
informative priors for the target ranges. Precisely, updating
sequentially the presence labels and the models parameters
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generally leads to low probabilities to move from M(i,j )
0 to

M(i,j )
1 at each iteration of the sampler. The output of this algo-

rithm are Markov chains of NMC samples distributed according
to the posterior distribution (7). The first Nbi samples of these
chains correspond to the so-called burn-in transient period and
should be discarded (the length of this period can be assessed
visually from the chain plots or by computing convergence
tests). The remaining NMC − Nbi of each chain are used to
approximate the Bayesian estimators (8) to (11) as in [12], [22].

Notice that in (8) to (11), we have set c = ĉ and ν = ν̂, which
denotes the maximum marginal likelihood estimator of the
MRF regularisation parameters c and ν given the observed data
Y, i.e.,

(ĉ, ν̂) = argmax
c∈R+ ,ν∈R+

f (Y|c, ν) , (12)

This approach for specifying (c, ν) is taken from the empirical
Bayes framework in which parameters with unknown values are
replaced by point estimates computed from observed data (as
opposed to being fixed a priori or integrated out of the model
by marginalization). As explained in [17], this strategy has sev-
eral important advantages for MRF parameters with intractable
conditional distributions such as c. In particular, it allows for
the automatic adjustment of the value of (c, ν) for each data set
(thus producing significantly better estimation results than using
a single fixed value of (c, ν) for all data sets), and has a compu-
tational cost that is several times lower than that of competing
approaches, such as including (c, ν) in the model (by assigning
them prior distributions) and subsequently marginalising them
during the inference procedure [23].

It is important to mention that the target detection problem
considered here and formulated as a model selection problem
can be addressed in an optimization framework, e.g., using
expectation-maximization methods [24, Chap. 9]. However, in
order to assess the relevance of the proposed Bayesian model
while minimizing potential algorithmic convergence issues, this
paper focuses on a single simulation-based algorithm. Alterna-
tive estimation strategies based on the proposed model would
deserve a detailed analysis, which is out of scope of this paper.

B. Sampling Strategy

The remainder of this section provides details about the
main steps of the proposed sampling strategy, summarised in
Algorithm 1 below.

Each sampling iteration can be decomposed into 5 main
steps (lines 4, 5, 6, (7–12) and 13 in Algorithm 1). Due to
the conjugacy between (5a) and (5c), it can be easily shown that
f(β|Y,Z,Θ, α) = f(β|Z,Θ, α) with

β| (Z,Θ, α) ∼ IG

⎛

⎝β1 + α ‖Z‖0 , β2 +
∑

zi , j =1

ri,j

⎞

⎠ (13)

where ‖Z‖0 denotes the number of non-zero elements in Z. In a
similar fashion to [25], when ‖Z‖0 = 0, i.e., the image does not
contain any target, sampling α from its conditional distribution

Algorithm 1: Collaborative Target Detection.

1: Fixed input parameters: Lidar impulse response g0(·),
(α1 , α2 , β2 , β2), number of burn-in iterations Nbi, total
number of iterations NMC

2: Initialization (t = 0)
Set Z(0) ,Θ(0) ,Γ(0) , α(0) , β(0) , ν(0) , c(0)

3: Iterations (1 ≤ t ≤ NMC)
4: Sample β(t) ∼ f(β|Z(t) ,Θ(t) , α(t)) in (13)
5: Sample α(t) ∼ f(α|Z(t) ,Θ(t) , β(t−1)) in (5b) or (14)
6: Sample Γ(t) ∼ f(Γ|B(t) , ν) in (4b)
7: for i = 1 : Nrow do
8: for j = 1 : Ncol do
9: Set ψi,j = [pi,j , ν

(t−1) , εi,j (Γ(t−1)), α(t−1) , β(t−1) ],
where pi,j is computed from (6)

10: Update (z(t)
i,j ,θ

(t)
i,j ) using Algorithm 2

11: end for
12:end for
13:Update (ν(t) , c(t)) using [17].
14:Set t = t + 1.

reduces to sampling from (5b). If ‖Z‖0 > 0,

f(α|Z,Θ, β) ∝ αα1 −1 exp
(

− α

α2

)
∏

(i,j ),zi , j =1

rα−1
i,j

Γ(α)βα

(14)
which is strictly log-concave if α1 ≥ 1. Consequently, α can
be updated using standard Metropolis-Hastings (MH) updates
or adaptive rejection sampling [26]. Here we used MH updates
using a Gaussian random walk whose variance is adjusted during
the early iterations of the sampler. By noting that Γ does not
appear in (1) nor (2), sampling from its conditional distribution
reduces to sampling from f(Γ|B, ν) in (4b).

C. RJ-MCMC Updates

To update (zi,j ,θi,j ), we construct a transition kernel which
admits

f(zi,j ,θi,j |yi,j ,ψi,j ) =

f0(zi,j ,θi,j |yi,j ,ψi,j ) + f1(zi,j ,θi,j |yi,j ,ψi,j ) (15)

as invariant distribution, where

f0(zi,j ,θi,j |yi,j ,ψi,j ) = 1{0}×Θ 0 (zi,j ,θi,j )

×
f(yi,j |zi,j = 0,θi,j )f0(θi,j |ψi,j )(1 − pi,j )

f(yi,j )
, (16)

f1(zi,j ,θi,j |yi,j ,ψi,j ) = 1{1}×Θ 1 (zi,j ,θi,j )

×
f(yi,j |zi,j = 1,θi,j )f1(θi,j |ψi,j )pi,j

f(yi,j )
, (17)

with ψi,j = [pi,j , ν, εi,j , α, β],

f0(θi,j |ψi,j ) = f(bi,j |ν, εi,j ),

f1(θi,j |ψi,j ) = f(bi,j |ν, εi,j )f(ri,j |α, β)f(ti,j = t),
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and where 1X (·) denotes the indicator function defined on X .
The proposed update scheme, summarized in Algorithm 2, can
be decomposed into four possible moves detailed in the next few
paragraphs. At each iteration, depending on the current state of
the chain, two possible moves are proposed. One move proposes
a candidate in the current parameter space while the other move
proposes a candidate in the other parameter space.

1) Fixed Dimension Moves: Let πb > 0 be the probability
of proposing a move from model M(i,j )

0 to M(i,j )
1 and πd > 0

be the probability of proposing the reverse move from model
M(i,j )

1 to M(i,j )
0 . In this work we set πb = πd = 0.5.

Move in M(i,j )
0 : If the current state of the chain is in M(i,j )

0 ,
with probability (1 − πb ), the parameter space remains the
same (i.e., zi,j = 0 remains unchanged) and θi,j is updated
according to

bi,j |
(

yi,j , zi,j = 0,ψi,j

)

∼

G
(

ν + ‖yi,j‖1 ,

(
ν

εi,j
+ T

)−1
)

, (18)

using the conjugacy of (1) and (4a).
Move in M(i,j )

1 : Similarly, if the current state of the chain at

the tth iteration is in M(i,j )
1 (i.e., θ

(t)
i,j = [r(t)

i,j , t
(t)
i,j , b

(t)
i,j ]), with

probability (1 − πd ), θi,j is updated using the following three
Gibbs sampling steps

r
(t+1)
i,j ∼ f(ri,j |yi,j , t

(t)
i,j , b

(t)
i,j , zi,j = 1,ψi,j ) (19a)

t
(t+1)
i,j ∼ f(ti,j |yi,j , r

(t+1)
i,j , b

(t)
i,j , zi,j = 1,ψi,j ) (19b)

b
(t+1)
i,j ∼ f(bi,j |yi,j , r

(t+1)
i,j , t

(t+1)
i,j , zi,j = 1,ψi,j ). (19c)

It can be shown that sampling from (19a) and (19c) can be
achieved by sampling from finite mixtures of gamma distribu-
tions and that sampling from (19b) reduces to sampling from a
discrete distribution defined on a finite support T (see [12] for
details).

2) Variable Dimension Moves: Moving from M(i,j )
0 to

M(i,j )
1 : Assume that the current state of the chain is in M(i,j )

0 ,

i.e., θi,j = θ0
i,j . Moving from M(i,j )

0 to M(i,j )
1 requires the

construction of an appropriate proposal distribution to propose
a candidate θ∗1

i,j ∈ Θ1 . Since the background level has the same

physical meaning under M(i,j )
0 and M(i,j )

1 , it makes sense to
use its current value to propose an appropriate candidate and
thus increase the acceptance probability of the move (as M(i,j )

0

and M(i,j )
1 and nested models). More precisely, the candidate is

constructed as θ∗1
i,j = [r∗, t∗,θ0

i,j ] where (r∗, t∗) ∈ (R+ × T )
is generated according to an arbitrary proposal distribution
q(r∗, t∗|θ0

i,j ,yi,j ,ψi,j ). Assuming that

q(r∗, t∗|θ0
i,j ,yi,j ,ψi,j ) > 0, ∀(r∗, t∗) ∈ R+ × T (20)

leads to the following acceptance ratio

α
[

(0,θ0
i,j ), (1,θ∗1

i,j )
]

= min
[

1, ρ
(

(0,θ0
i,j ), (1,θ∗1

i,j )
)]

(21)

Algorithm 2: Reversible Jump MCMC step.
1: Input parameters: Current model state zi,j and

parameter vector θi,j , Hyperparameters ψi,j ,
Observation vector yi,j

2: Sample u ∼ U[0,1](u) and v ∼ U[0,1](v)
3: if zi,j = 0 and u > πb then
4: Set zout

i,j = 0, sample bi,j from (18) and set θout
i,j = bi,j

5: else if zi,j = 0 and u ≤ πb then
6: Sample (r∗, t∗) from (23) and set θ

∗(1)
i,j = [r∗, t∗, bi,j ]

7: Compute acceptance ratio α[(0,θ0
i,j ), (1,θ∗1

i,j )] in (21)
8: Sample v ∼ U[0,1](v)
9: if v < α[(0,θ0

i,j ), (1,θ∗1
i,j )] then

10: Set zout
i,j = 1, θout

i,j = θ∗1
i,j

11: else
12: Set zout

i,j = 0, θout
i,j = bi,j

13: end if
14: else if zi,j = 0 and u > πb then
15: Set zout

i,j = 1
16: Sample θout

i,j from (19)
17: else
18: Set θ∗0

i,j = bi,j

19: Compute acceptance ratio α[(1,θ1
i,j ), (0,θ∗0

i,j )] in (25)
20: Sample v ∼ U[0,1](v)
21: if v < α[(1,θ1

i,j ), (0,θ∗0
i,j )] then

22: Set zout
i,j = 0, θout

i,j = θ∗0
i,j

23: else
24: Set zout

i,j = 1, θout
i,j = θi,j

25: end if
26: end if
27: Output parameters: (zout

i,j ,θout
i,j )

where

ρ
(

(0,θ0
i,j ), (1,θ∗1

i,j )
)

=

f1(1,θ∗1
i,j |yi,j ,ψi,j )πd

f0(0,θ0
i,j |yi,j ,ψi,j )q(r∗, t∗|θ0

i,j ,yi,j ,ψi,j )πb

. (22)

Although the choice of the proposal distribution (20) can be
arbitrary, it has a significant impact on the acceptance ratio (21)
and thus on the mixing properties of the sampler. In this work
we use the conditional distribution

f1(ri,j , ti,j |yi,j , zi,j = 1, bi,j ,ψi,j )

∝ f1(1,θ1
i,j |yi,j ,ψi,j ) (23)

as proposal distribution so that the candidate (conditioned on the
current value of bi,j ) lies in a region of relatively high density
in Θ1 . Although the choice of the proposal could be further im-
proved [27], this choice allows frequent moves between M(i,j )

0

and M(i,j )
1 in practice. Note that due to the high posterior cor-

relation of the variables in θ1
i,j and because T ′ = card(T ) is

generally large, using weakly informative proposals instead of
(23) would lead to prohibitively low acceptance ratios when
proposing moves from M(i,j )

0 to M(i,j )
1 . Based on [12], it can
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be shown that ∀k ∈ T ,

f1(ri,j , ti,j = k|yi,j , zi,j = 1, bi,j ,ψi,j )

= wk

‖y i , j ‖1∑

i=0

wi,kpG

(

ri,j ;α + i,

(

δk +
1
β

)−1
)

(24)

where ∀k ∈ T , wk > 0,
∑

k∈T wk , ∀(k, i), wi,k > 0,
∑‖y i , j ‖1

i=0
wi,k , and pG(·;α, β) denotes the probability density function of
the gamma distribution with shape α and scale β. Consequently,
sampling from (23) can be achieved by first sampling ti,j (us-
ing f1(ti,j = k|yi,j , zi,j = 1, bi,j ,ψi,j ) = wk by marginaliza-
tion of ri,j ) and then sampling ri,j from f1(ri,j |yi,j , zi,j = 1,
ti,j ,ψi,j ). For brevity, the derivation of the probabilities {wk}
and {wi,k} is omitted here. The interested reader is invited to
consult [12] for further details. Note that using (24) as a pro-
posal ensures (20) is satisfied and that the generated samples are
asymptotically drawn from (15) for (πb, πd) ∈ (0, 1)2 .

Moving from M(i,j )
1 to M(i,j )

0 : Finally, assume now that the

current state of the chain is in M(i,j )
1 , i.e., θi,j = θ1

i,j .The re-

verse move associated with the move fromM(i,j )
1 toM(i,j )

0 first
consists of considering as candidate θ∗0

i,j = bi,j , where bi,j is

the current value of the background level (under model M(i,j )
1 ).

This candidate (and thus the move to M(i,j )
0 ) is accepted with

probability

α
[

(1,θ1
i,j ), (0,θ∗0

i,j )
]

= min
[

1, ρ
(

(1,θ1
i,j ), (0,θ∗0

i,j )
)]

(25)

where ρ((1,θ1
i,j ), (0,θ∗0

i,j )) = 1/ρ((0,θ∗0
i,j ), (1,θ1

i,j ))

V. SIMULATION RESULTS

A. Data Acquisition

We compare the performance of the method proposed in this
paper to reconstruct a depth image of a life-sized polystyrene
head (see Fig. 1) located at a distance of 325 meters from a time-
of-flight scanning sensor, based on TCSPC. The transceiver
system and data acquisition hardware used for this work is
broadly similar to that described in [9], [12], [28]–[30], and
was previously developed at Heriot-Watt University. For the
measurements reported in this section, the optical path of the
transceiver was configured to operate with a fiber-coupled il-
lumination wavelength of 841 nm, and a silicon single-photon
avalanche diode (SPAD) detector. The overall system had a tim-
ing jitter of 60 ps full width at half-maximum (FWHM). The face
of the head was pointing towards the scanning system housed
in the roof of the lab and a flat medium density fiberboard sheet
mounted behind the head target acted as a backboard. This back-
board was used for calibration purposes (see Fig. 1) and prevents
the detection of return photons from objects placed behind the
target of interest, the head in this example. The backboard did
not obstruct direct sunlight from illuminating the target, thus
not significantly reducing the background levels. To assess the
performance of the proposed algorithm, the measured photon
histograms have been truncated in order to discard the poten-
tial peaks associated with the backplane (i.e., the backplane

Fig. 1. Photograph showing the polystyrene head used for the experiments
described here and calibration targets, including the Spectralon panel (top right
corner of the fiberboard).

has been time-gated). The measurements were performed out-
doors, on the Edinburgh Campus of Heriot-Watt University, in
April 2015 under dry clear skies at 3 different times of day.
That is, the same measurements were repeated at noon, 3 p.m.
and 8 p.m. (dusk) with atmospheric conditions remaining rela-
tively constant for the duration of each measurement. The key
measurement parameters are summarized in Table I. The ac-
quisition time per pixel in Table I is 30 ms. However, the data
format of time-tagged events allows the construction of photon
timing histograms associated with shorter acquisition times, af-
ter measurement, as the system records the time of arrival of
each detected photon. Here, we evaluate our algorithm for ac-
quisition times of 30 ms, 3 ms, 1 ms, and 300 μs per pixel, for
which the number of detected photons per pixels is low.

The instrumental impulse response g0(·) is estimated from
preliminary experiments by analysing the distribution of pho-
tons reflected onto a Spectralon panel (a commercially avail-
able Lambertian scatterer), placed at 325 m from laser
source/detector. A long acquisition time (100 s) is considered
here to reduce the impact of photon count variability and a
pre-processing step is used to remove the constant background
in the measured response. The resulting instrumental impulse
response is depicted in Fig. 2. Note that the overall shape of
this instrumental response, which is the important aspect for
depth resolution [31], results from a combination of the laser
pulse width itself and jitter from a number of sources, includ-
ing detector jitter (the main contribution in this case) and jitter
from the timing electronics (and other electronic components
and cabling).

Table II provides details regarding the number of detected
photons when varying the acquisition time. The top rows of
Table II show the average number of detected photons per pixel.
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TABLE I
MEASUREMENT KEY PARAMETERS

Target Stand-off Distance ≈ 325 m

Target Scene Polystyrene head
(≈ 170 × 285 × 250 mm
in W × H × D when
viewed from the front)
mounted on a breadboard.
Backplane: MDF board.

Laser system Supercontinuum
laser source and
tunable filter
(NKT Photonics)
fiber-coupled to the
custom-designed transceiver unit

Illum. Wavelength 841 nm

Laser Repetition Rate 19.5 MHz

Illum. Power at target ≈ 240 μW average optical power

Illum. Beam Diameter at Target ≈ 10 mm

Acquisition Mode 200 × 200 pixels scan
centred on the head,
covering an area of
285 × 285 mm at the scene
Per-pixel acquisition time: 30 ms
Total scan time: ≈ 20 minutes

Histogram bin width 2 ps

Histogram length 1500 bins (after gating)

Temporal Response of System ≈ 60 ps FWHM

Fig. 2. Instrumental response obtained using Spectralon panel placed at 325 m
from laser source/detector and for an acquisition time of 100 s (jitter ≈ 60 ps
FWHM).

As expected, the number of detected photons increases linearly
with exposure. The bottom rows show that the proportion of
empty pixels (no detected photons) increases from noon to
8 p.m. (due to the average background levels which is higher
during the day than at dusk), and that this proportion decreases
when increasing the acquisition time (higher probability of de-
tecting photons). Note that for the shortest acquisition (300 μs
per pixel), less that 6 photons per pixel are detected on average,
leading to a particularly challenging target detection problem.

B. Competing Method

The proposed method is compared to the standard method
used for depth imaging [9] and which is divided into two steps.
The first step consists of estimating ti,j using cross-correlation
(i.e., by analysing the temporal correlation) between log(g0(·))
and the photon histogram yi,j . For non-empty pixels, i.e., when

TABLE II
AVERAGE NUMBER OF DETECTED PHOTONS PER PIXEL AND PROPORTION OF

EMPTY PIXELS FOR THE DIFFERENT ACQUISITIONS

Acquisition Time

300 μs 1 ms 3 ms 30 ms
Av. photon counts noon 5.6 18.5 55.5 554.6

3 p.m. 4.1 13.7 41.0 408.9
8 p.m. 1.2 4.9 11.6 116.0

Empty pixels (% ) noon 2.79 < 0.01 0 0
3 p.m. 4.2 0.02 0 0
8 p.m. 61.8 52.2 40.4 2.2

∑T
t=1 yi,j,t > 0, the object depth is estimated using

t̂i,j,corr = argmax
τ ∈Z

T∑

t=1

yi,j,t log (g0(t − τ)) . (26)

which corresponds to log-match filtering or maximum like-
lihood (ML) estimation under background-free (bi,j = 0) as-
sumption. Once the estimated time target distance t̂i,j,corr has
been computed, the target intensity and the background level for
each pixel are either both set to 0 (for empty pixels) or estimated
using ML estimation as

(

r̂i,j,M L , b̂i,j,M L

)

= min
ri , j ≥0
bi , j ≥0

C(yi,j , t̂i,j,corr, ri,j , bi,j ) (27)

with C(yi,j , ti,j , ri,j , bi,j )

=
T∑

t=1

yi,j,t log (ri,j g0 ((t − ti,j ) + bi,j )

−
T∑

t=1

[ri,j g0 ((t − ti,j ) + bi,j ] . (28)

Note that (28) is convex with respect to (ri,j , bi,j ) with ri,j ≥
0, bi,j ≥ 0 and that (27) can be solved efficiently using con-
strained convex optimization methods (here we used an ADMM
method similar to [32]). The proposed Bayesian algorithm has
been applied with NMC = 1000 iterations, including Nbi = 300
burn-in iterations. The computational complexity of the method
mainly depends on the average number of detected photons per
pixel and the number of admissible target depth T ′. Indeed,
these values have a direct impact on the number of weights to
be computed in (24). For a Matlab R2014a implementation on a
i7-3.0 GHz desktop computer (16 GB RAM), the average com-
putational time is 12 hours per data set, ranging from 1.5 hour
(8 p.m., shortest acquisition) to 36 hours (noon, longest acqui-
sition). It is worth mentioning that other statistical tests, such
chi-square tests, could have been considered to perform the tar-
get detection, i.e., accept or reject the model (1) for each pixel.
However, due to the statistical properties of the noise in (1) and
the low background levels encountered in practice (bi,j << 1),
the distribution of the classical chi-square test statistic cannot
be accurately approximated by a chi-square distribution and the
detection results are generally worse than those obtained with
the competing method described in this section.



464 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 4, DECEMBER 2016

TABLE III
EMPIRICAL DETECTION PERFORMANCE (PROBABILITIES IN %,

BEST RESULT IN BLUE)

π0 0 π1 0 π0 1 π1 1

8 p.m. 3 ms X-corr 98.9 1.1 13.3 86.7
Prop. algo. 100 0 9.2 90.8

1 ms X-corr 99.5 0.5 14.1 85.9
Prop. algo. 100 0 13.1 86.9

0.3 ms X-corr 99.1 0.9 15.5 84.5
Prop. algo. 100 0 8.8 91.2

3 p.m. 3 ms X-corr 86.0 14.0 9.7 90.3
Prop. algo. 99.9 0.01 8.8 91.2

1 ms X-corr 60.7 39.3 15.9 84.1
Prop. algo. 99.9 0.01 13.9 86.1

0.3 ms X-corr 62.4 37.6 37.3 62.7
Prop. algo. 99.9 0.01 15.8 84.2

noon 3 ms X-corr 79.9 20.1 8.9 91.1
Prop. algo. 99.9 0.01 10.8 89.2

1 ms X-corr 57.4 42.6 16.9 83.1
Prop. algo. 99.9 0.01 18.6 81.4

0.3 ms X-corr 59.6 40.4 39.1 60.9
Prop. algo. 99.9 0.01 20.4 79.6

C. Target Detection

The detection performance of the algorithms is quantitatively
assessed by comparing their empirical specificity π00 (deciding
M(i,j )

0 when M(i,j )
0 is true) and sensitivity π11 or equivalently

their empirical probability of false alarm π10 = 1 − π00 and of
miss π01 = 1 − π11 . Although the standard method does not
provide target detection results directly, it is possible to in-
fer the target presence by thresholding the estimated intensity
images. In all the results presented here, we set the threshold
to η = 0.1, which corresponds to an estimated target intensity
10 times smaller than that of the Spectralon panel. Moreover, we
observed that this value of threshold yields a satisfactory thresh-
old between high detection performance and high false alarm
rate for the data considered. Table III compares the detection
performance of the standard and proposed methods, averaged
over all pixels, for the 3 sets of measurements (noon, 3 p.m.
and 8 p.m.) and for acquisition times of 3 ms, 1 ms and 0.3 ms
per pixel. For each data set, the results obtained by the pro-
posed method with an acquisition time of 30 ms are used as
ground truth. This table shows that the performance of the two
algorithms degrade when reducing the acquisition time. How-
ever, the proposed method (as a consequence of its joint detec-
tion and estimation ability and the different spatial regulariza-
tions) generally provides lower probabilities of false alarm and
miss as well as less significant performance degradation than
the standard method.

For completeness, Fig. 3 depicts the posterior probabilities of
target presence, i.e, f(zi,j = 1|Y, ν̂, ĉ),∀(i, j) for the observa-
tions at 8 p.m. (top), 3 p.m. (middle) and noon (bottom) and for
the different per-pixel acquisition times. This figure shows that
the proposed method is able to identify the central region (of
high probability) where the head is located and highlights re-
gions of high uncertainty, i.e. where f(zi,j = 1|Y, ν̂, ĉ) ≈ 0.5,
around the boundaries of the head where the detection is diffi-
cult due to the low reflectivity of the head is these regions. This

Fig. 3. Estimated posterior probability of target presence (f (zi,j =
1|Y , ν̂ , ĉ), ∀(i, j)) for the different observation conditions considered. Red
(resp. blue) regions correspond to high (resp. low) probabilities of presence.

Fig. 4. Estimated depths for the 325 m target observed at 8 p.m. (top), 3 p.m.
(middle) and noon (bottom) and for different per-pixel acquisition times. For
each experiment, the top (resp. bottom) row is associated with the standard
(resp. proposed) method.

figure also shows that the regions of high uncertainty gener-
ally broaden as the background levels increase (for fixed target
reflectivity) and as the acquisition time decreases.

D. Parameter Estimation

Fig. 4 compares the estimated depth maps obtained by the
standard and the proposed methods. These results show that for
large acquisition times, the two methods provide similar results.
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Fig. 5. Distance RMSE cdfs provided by the standard (blue) and the proposed
(red) methods for the target located at 325 m at observed at noon (top), 3 p.m.
(middle) and 8 p.m. (bottom).

However, when the acquisition time decreases, the two meth-
ods start to fail in identifying the target positions, especially in
pixels where no photon is detected. However, due to its better
target detection ability, the proposed method provides more re-
liable depth images as it can more accurately detect pixels not
containing a surface.

The performance of the two methods are quantitatively eval-
uated using the distance mean squared errors (MSEs) defined
by MSE(di,j ) = ‖d̂i,j − di,j‖2

2 where ‖ · · · ‖2 denotes the �2-
norm, d̂i,j is the estimated value of di,j = (3 × 108)ti,j /2. Since
the actual distances {di,j} are unknown for the data sets consid-
ered, these values have been replaced by those estimated by the
proposed method for the longest acquisition time (30 ms). Fig. 5
depict the cumulative density functions (cdfs) of the distance

MSEs, defined by Fd(τ) =
1

NrowNcol

∑

i,j 1(0,τ )(MSE(di,j ))

where 1(0,τ )(·) denotes the indicator function defined on (0, τ).
Note that for each dataset, the cdfs are upperbounded by the
sensitivity π11 of each method. This figure shows that for the
pixels containing targets, the two methods provide similar depth
estimation performance for the longer acquisition times and that
the proposed method is more robust when reducing the acqui-
sition time, thanks to its target detection ability. It is important
to recall that in contrast to [12], the proposed algorithm (as the
competing method) does not explicitly account for the spatial
correlation of the target depths, which is why the two competing
methods provide similar results for long acquisitions. Account-
ing for such correlations in future target detection and depth
imaging methods could further improve the robustness of the
method.

Fig. 6 compares the estimated intensity maps obtained by
the proposed method (for the pixels containing a target) and
after thresholding for the standard method (η = 0.1). These re-
sults show that the two methods provide similar results for the
longest acquisition times and that the proposed method is more
robust to the lack/absence of detected photons. In particular, for
acquisition times shorter than 3ms per pixel, it becomes diffi-
cult to estimate accurately the intensity of the target, whatever

Fig. 6. Estimated intensity for the 325 m target observed at 8 p.m. (top),
3 p.m. (middle) and noon (bottom) and for different per-pixel acquisition times.
For each experiment, the top (resp. bottom) row is associated with the standard
(resp. proposed) method.

the background levels. By assuming that the target intensities
share the same statistical properties (through (5)), the proposed
method provides more homogeneous intensity images in the re-
gion containing the target than the standard method, which in
turn enhance the target detection. Note that for each experiment,
the Spectralon response g0(·) is scaled to account for the acqui-
sition time (e.g., amplitude divided by ten between the 30ms
and 3ms experiments).

Finally, Fig. 7 compares the background levels estimated by
the two methods for the different measurements. The two top
rows (8 p.m.) of Fig. 7 show that for the longer acquisition
times, higher backgrounds are estimated in region of significant
depth changes, which can be primarily explained by a model
mismatch. In particular, due to the laser beam size and the ori-
entation of the target surface, the peak in the photon histogram
can become broader than that depicted in Fig. 2. The boundary
between the head chin and neck is an even more extreme case
where two peaks can be observed. Under brighter observation
conditions however (middle and bottom rows of Fig. 7), these
effects become negligible and the background images estimated
by the proposed method are in agreement with the observation
conditions. Indeed, the detected background photons correspond
mainly to photons emitted by external sources (e.g., the sun) and
reflected onto the targets. Thus, we can expect (assuming ho-
mogeneous ambient illumination) the background levels to be
higher in pixels where more reflective surfaces are present. At
3 p.m. (middle rows), it can be observed that the background
levels are generally in the head region and lower in the back-
plane region. It can be observed that the background levels are
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Fig. 7. Estimated background levels for the 325 m target observed at 8 p.m.
(top), 3 p.m. (middle) and noon (bottom) and for different per-pixel acquisition
times. For each experiment, the top (resp. bottom) row is associated with the
standard (resp. proposed) method.

particularly low in the regions where black calibration markers
have been placed (see [12, Fig. 4]). Finally, the bottom rows of
Fig. 7 clearly show higher background levels on the left-hand
side of the head, due to the more direct sun illumination at noon
and the head orientation with respect to the sun and observation
directions. Note that the regions of particularly low background
levels correspond to the four dark triangles mounted on the fiber-
board and visible in Fig. 1. Fig. 7 also illustrates the benefits
or the background model (4) used in the proposed method. Ac-
counting for the spatial correlations of the background levels to
regularize the target detection problem 1) provides more realis-
tic background images compared to the pixel-by-pixel method
and 2) enhance the target detection. Moreover, by achieving
simultaneously the target detection and identification, the pro-
posed method is more robust than the standard method whose
performance highly relies on the first depth estimation step.

VI. CONCLUSION

In this paper, we have presented a Bayesian algorithm for joint
target detection and depth imaging using sparse single-photon
data. This problem was translated into a pixel-wise model se-
lection problem and a Bayesian hierarchical model was pro-
posed to describe the expected correlations between the pixels
of the observed image through appropriate prior distributions.
To perform Bayesian inference based on the resulting posterior
distribution, we proposed a reversible-jump MCMC algorithm
which allows efficient moves between the different parameter
spaces. The experiments conducted on real Lidar data demon-
strate the ability of the proposed method to 1) detect and 2)
identify targets observed under difficult observation conditions
(high and spatially variable background levels, short acquisition
times), with a better accuracy than existing methods. An impor-
tant property of the proposed method is its capacity to adjust

automatically the different spatial regularization parameters,
thus relieving practitioners from the difficult task of setting
them by cross-validations. In contrast to [12], we have not ex-
plicitly accounted for the possible correlations affecting the in-
tensity and/or depth images. Although it is possible to apply the
algorithm studied in [12] to refine the depth/intensity images af-
ter the target detection step, e.g. in an empirical Bayes fashion, it
would be interesting to extend the model proposed in Section III
to capture additional parameter dependency within the target
detection procedure. This could be achieved by constructing a
depth and/or reflectivity prior model conditioned on the values
of the detection labels e.g., f(T|Z). It would also be interesting
the correlate the background levels and the target reflectivities.
In order to reduced the computational complexity of the target
detection, it would be interesting to investigate optimization-
based alternatives (e.g., expectation-maximization methods) to
be compared with the proposed method in terms of accuracy
(estimation performance) and robustness (convergence issues).
Finally, the model considered assumed the potential presence
of a single target per pixel, which might not be realistic for
specific applications. Although the detection of multiple targets
using sparse single-photon data is a significantly more difficult
problem, extending the model to multiple targets is subject of
further investigations that will be reported in subsequent papers.
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