210 research outputs found

    Stereo facial image clustering using double spectral analysis

    Get PDF

    Multimodal Stereoscopic Movie Summarization Conforming to Narrative Characteristics

    Get PDF
    Video summarization is a timely and rapidly developing research field with broad commercial interest, due to the increasing availability of massive video data. Relevant algorithms face the challenge of needing to achieve a careful balance between summary compactness, enjoyability, and content coverage. The specific case of stereoscopic 3D theatrical films has become more important over the past years, but not received corresponding research attention. In this paper, a multi-stage, multimodal summarization process for such stereoscopic movies is proposed, that is able to extract a short, representative video skim conforming to narrative characteristics from a 3D film. At the initial stage, a novel, low-level video frame description method is introduced (frame moments descriptor) that compactly captures informative image statistics from luminance, color, optical flow, and stereoscopic disparity video data, both in a global and in a local scale. Thus, scene texture, illumination, motion, and geometry properties may succinctly be contained within a single frame feature descriptor, which can subsequently be employed as a building block in any key-frame extraction scheme, e.g., for intra-shot frame clustering. The computed key-frames are then used to construct a movie summary in the form of a video skim, which is post-processed in a manner that also considers the audio modality. The next stage of the proposed summarization pipeline essentially performs shot pruning, controlled by a user-provided shot retention parameter, that removes segments from the skim based on the narrative prominence of movie characters in both the visual and the audio modalities. This novel process (multimodal shot pruning) is algebraically modeled as a multimodal matrix column subset selection problem, which is solved using an evolutionary computing approach. Subsequently, disorienting editing effects induced by summarization are dealt with, through manipulation of the video skim. At the last step, the skim is suitably post-processed in order to reduce stereoscopic video defects that may cause visual fatigue

    Movie shot selection preserving narrative properties

    Get PDF

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF

    Robust density modelling using the student's t-distribution for human action recognition

    Full text link
    The extraction of human features from videos is often inaccurate and prone to outliers. Such outliers can severely affect density modelling when the Gaussian distribution is used as the model since it is highly sensitive to outliers. The Gaussian distribution is also often used as base component of graphical models for recognising human actions in the videos (hidden Markov model and others) and the presence of outliers can significantly affect the recognition accuracy. In contrast, the Student's t-distribution is more robust to outliers and can be exploited to improve the recognition rate in the presence of abnormal data. In this paper, we present an HMM which uses mixtures of t-distributions as observation probabilities and show how experiments over two well-known datasets (Weizmann, MuHAVi) reported a remarkable improvement in classification accuracy. © 2011 IEEE

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Socio-Cognitive and Affective Computing

    Get PDF
    Social cognition focuses on how people process, store, and apply information about other people and social situations. It focuses on the role that cognitive processes play in social interactions. On the other hand, the term cognitive computing is generally used to refer to new hardware and/or software that mimics the functioning of the human brain and helps to improve human decision-making. In this sense, it is a type of computing with the goal of discovering more accurate models of how the human brain/mind senses, reasons, and responds to stimuli. Socio-Cognitive Computing should be understood as a set of theoretical interdisciplinary frameworks, methodologies, methods and hardware/software tools to model how the human brain mediates social interactions. In addition, Affective Computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects, a fundamental aspect of socio-cognitive neuroscience. It is an interdisciplinary field spanning computer science, electrical engineering, psychology, and cognitive science. Physiological Computing is a category of technology in which electrophysiological data recorded directly from human activity are used to interface with a computing device. This technology becomes even more relevant when computing can be integrated pervasively in everyday life environments. Thus, Socio-Cognitive and Affective Computing systems should be able to adapt their behavior according to the Physiological Computing paradigm. This book integrates proposals from researchers who use signals from the brain and/or body to infer people's intentions and psychological state in smart computing systems. The design of this kind of systems combines knowledge and methods of ubiquitous and pervasive computing, as well as physiological data measurement and processing, with those of socio-cognitive and affective computing

    Building an Understanding of Human Activities in First Person Video using Fuzzy Inference

    Get PDF
    Activities of Daily Living (ADL’s) are the activities that people perform every day in their home as part of their typical routine. The in-home, automated monitoring of ADL’s has broad utility for intelligent systems that enable independent living for the elderly and mentally or physically disabled individuals. With rising interest in electronic health (e-Health) and mobile health (m-Health) technology, opportunities abound for the integration of activity monitoring systems into these newer forms of healthcare. In this dissertation we propose a novel system for describing ’s based on video collected from a wearable camera. Most in-home activities are naturally defined by interaction with objects. We leverage these object-centric activity definitions to develop a set of rules for a Fuzzy Inference System (FIS) that uses video features and the identification of objects to identify and classify activities. Further, we demonstrate that the use of FIS enhances the reliability of the system and provides enhanced explainability and interpretability of results over popular machine-learning classifiers due to the linguistic nature of fuzzy systems

    Using cilia mutants to study left-right asymmetry in zebrafish

    Get PDF
    A thesis submitted in fulfillment of the requirements for the degree of the Masters in Molecular Genetics and BiomedicineIn vertebrates, internal organs are positioned asymmetrically across the left-right (L-R) body axis. Events determining L-R asymmetry occur during embryogenesis, and are regulated by the coordinated action of genetic mechanisms. Embryonic motile cilia are essential in this process by generating a directional fluid flow inside the zebrafish organ of asymmetry, called Kupffer’s vesicle ﴾KV). A correct L-R formation is highly dependent on signaling pathways downstream of such flow, however detailed characterization of how its dynamics modulates these mechanisms is still lacking. In this project, fluid flow measurements were achieved by a non-invasive method, in four genetic backgrounds: Wild-type (WT), deltaD-/- mutants, Dnah7 morphants (MO) and control-MO embryos. Knockdown of Dnah7, a heavy chain inner axonemal dynein, renders cilia completely immotile and depletes the KV directional fluid flow, which we characterize here for the first time. By following the development of each embryo, we show that flow dynamics in the KV is already asymmetric and provides a very good prediction of organ laterality. Through novel experiments, we characterized a new population of motile cilia, an immotile population, a range of cilia beat frequencies and lengths, KV volumes and cilia numbers in live embryos. These data were crucial to perform fluid dynamics simulations, which suggested that the flow in embryos with 30 or more cilia reliably produces left situs; with fewer cilia, left situs is sometimes compromised through disruption of the dorsal anterior clustering of motile cilia. A rough estimate based upon the 30 cilium threshold and statistics of cilium number predicts 90% and 60% left situs in WT and deltaD-/- respectively, as observed experimentally. Cilia number and clustering are therefore critical to normal situs via robust asymmetric flow. Thus, our results support a model in which asymmetric flow forces registered in the KV pattern organ laterality in each embryo
    • …
    corecore