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Abstract—Video summarization is a timely and rapidly devel-
oping research field with broad commercial interest, due to the
increasing availability of massive video data. Relevant algorithms
face the challenge of needing to achieve a careful balance between
summary compactness, enjoyability and content coverage. The
specific case of stereoscopic 3D theatrical films has become more
important over the past years, but not received corresponding
research attention. In the present work, a multi-stage, multimodal
summarization process for such stereoscopic movies is proposed,
that is able to extract a short, representative video skim conform-
ing to narrative characteristics from a 3D film. At the initial stage,
a novel, low-level video frame description method is introduced
(Frame Moments Descriptor, or FMoD), that compactly captures
informative image statistics from luminance, color, optical flow
and stereoscopic disparity video data, both in a global and
in a local scale. Thus, scene texture, illumination, motion and
geometry properties may succinctly be contained within a single
frame feature descriptor, which can subsequently be employed
as a building block in any key-frame extraction scheme, e.g., for
intra-shot frame clustering. The computed key-frames are then
used to construct a movie summary in the form of a video skim,
which is post-processed in a manner that also takes into account
the audio modality. The next stage of the proposed summarization
pipeline essentially performs shot pruning, controlled by a user-
provided shot retention parameter, that removes segments from
the skim based on the narrative prominence of movie characters
in both the visual and the audio modalities. This novel process
(Multimodal Shot Pruning, or MSP) is algebraically modelled as
a multimodal matrix Column Subset Selection Problem, which is
solved using an evolutionary computing approach. Subsequently,
disorienting editing effects induced by summarization are dealt
with, through manipulation of the video skim. At the last step, the
skim is suitably post-processed in order to reduce stereoscopic
video defects that may cause visual fatigue.

Keywords—Video Summarization, Stereoscopic Video Descrip-
tion, Column Subset Selection Problem

I. INTRODUCTION

In recent years, the emergence of massive digital video
data and their easy global availability, e.g., through popular
on-line and mobile Internet channels, has heavily impacted
Western societies and accelerated the transformation of their
culture into a visual one [1]. This has created a need for
succinct and compact presentation of visual digital media.
There are several commercial applications where large-scale
video footage, possibly available on-line, needs to be analyzed,
even on a frame-by-frame basis, demanding human interven-
tion and a great load of effort. Examples include streams

from surveillance cameras that may be capturing continuously
for many days, videos uploaded to on-line galleries that are
available to users for instant browsing, professional capture
sessions in the production stage of theatrical films or TV series,
where the action described in the script is typically filmed
using multiple cameras, or the post-production stage of such
material, where its semantic annotation and ordering may be
required.

An automated solution is partly offered by video summa-
rization, which aims at generating condensed versions of a
video stream, through the identification of its most important
and pertinent content [2]. The derived video summaries can be
subsequently exploited in various applications, like interactive
browsing and search systems, thereby offering the user the
ability to efficiently view, manage and assess video content
[3] [4] [5].

Summarization algorithms initially try to select a set of
salient video frames, such as shot key-frames that represent
the video content. They vary in type of the performed analysis
and / or video summary representation. Moreover, certain
techniques are designed to operate on generic video material,
whereas others are tailor-made for specific video genres (e.g.,
sports, news, movies etc.). Besides the video stream, other
types of information, such as external information provided by
a user, can be exploited in order to create the video summary.
Information is extracted by analysing the available modalities
(visual, audio or textual) for abstracting intuitive semantics,
such as those relevant to objects, events, as well as low-level
features from the video stream. The abstracted content that
needs to be included in the target summary can be represented
as still images (key-frames), a video skim, or by employing
graphical and textual descriptions [2]. Due to the inherently
subjective nature of the task (there is no such thing as a
globally agreed good video summary), the evaluation of a
summarization method is typically subjective and qualitative
in nature.

Stereoscopic video contains two visual channels and conveys
relative-depth information that implicitly ranks each imaged
object according to its distance from the camera during video
acquisition. Such information is available through stereoscopic
disparity, an additional image modality that can be extracted
by estimating the difference between the two visual channels
per video frame. As the availability of stereoscopic 3D video
content has increased in recent years, primarily through 3D
cinema, the exploitation of disparity-derived relative-depth
data to augment summarization performance is a promising
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research avenue.
This work presents a complete, multi-stage, multimodal

summarization pipeline for 3D movies that exploits audio, vi-
sual and stereoscopic disparity information. Initially, the novel
Frame Moments Descriptor (FMoD) is introduced, which is
a video frame descriptor developed for key-frame extraction,
using an intra-shot frame clustering approach. FMoD captures
informative image statistics from luminance, color, optical flow
or stereoscopic disparity video data, both at global and local
scale. Thus, scene texture, illumination, motion and geometry
properties may succinctly be contained within a single frame
feature descriptor. Depending on the specific problem that
needs to be addressed, the descriptor can be computed either in
a manner that retains (Frame Moments Descriptor), or discards
(Position-Invariant Frame Moments Descriptor) information
regarding intra-frame spatial positioning of scene objects.

By filtering out monochrome key-frames, which convey
no useful information, and by re-applying clustering on the
entire key-frame set, based on a user-provided frame retention
percentage parameter, redundant key-frames are discarded. The
remaining ones are temporally expanded to key-segments,
which are subsequently concatenated, in order to form a
stereoscopic video skim. The latter is then post-processed
in four ways. First, pre-existing information about temporal
speech segments is exploited, in order to expand in time any
key-segments that coincide with continuous speech instances.
Thus, the audio modality is taken under consideration, with the
goal of including in the final skim video highlights featuring
complete speech segments, as semantically meaningful movie
extracts. Subsequently, the retention percentage parameter is
again employed in a proposed Multimodal Shot Pruning (MSP)
process, which discards key-segments from the derived video
skim, based on which shot they belong to and on pre-existing
information about temporal speech (audio) and face (visual)
appearance segments. This process is algebraically modeled as
a multimodal matrix column subset selection problem, which
is solved using an evolutionary computing approach. Thus, a
shorter skim is produced in a systematic manner that considers
the narrative prominence of movie actors. Next, disorienting
editing effects found in the produced skim are tackled, by
eliminating temporal jump cuts and removing very short key-
segments. Finally, a post-processing step is applied, in order
to reduce 3D video quality defects that are an unavoidable by-
product of skim-based summarization and may cause visual
fatigue. Thus, the source of discomfort during stereoscopic
viewing of the final skim is eliminated.

The remainder of this paper is organized in the following
way. Section II describes previous work in the field of video
summarization. Section III presents in detail the proposed
novel summarization method. Section IV describes experi-
ments conducted in order to evaluate the performance of
the proposed pipeline in video summarization. In Section V
conclusions are drawn from the preceding discussion.

II. RELATED WORK

A. Video Summarization
Generic video summarization algorithms extract key-frame

sequences that are presented in temporal order [6] [7]. To

achieve this, each video frame is first described by low-level
image descriptors, such as global color-based, texture-based
or shape-based features [5]. Composite descriptors which may
additionally consider visual attention attributes have also been
employed [7]. In general, the most commonly employed video
frame descriptors are variants of joint image histograms in the
HSV color space [8] [9] [10] [11]. Moreover, dimensionality
reduction on such color histograms has been attempted, using
SVD [12] or PCA [13], in order to decrease the computational
cost of the subsequent summarization steps. In a few cases [14]
[15], local image region descriptors such as SIFT [16], CSIFT
[17] or HOG [18] have been employed for video description,
using the Bag-of-Features representation model [19].

In order to extract key-frames, the frame descriptors are
typically clustered to create video frame groups, under the
assumption that the camera focuses more on important frames
[8]. The number of clusters is either set proportionally to
the video length [9], or chosen by employing an algorithm,
like Furthest-Point-First [10]. After determining the number of
clusters, a set of frames that are closest to each cluster center
are initially selected as key-frames. Typically, a percentage
of the extracted key-frames is filtered out at a refinement
post-processing stage and the remaining ones are presented
in temporal order to produce a storyboard. This process is
improved in [20], by reducing its computational complexity
and by adding fuzzy rules based on viewer comments. In [21],
a similarity metric is described that assesses the video frame-
by-frame, in order to detect whether each video frame should
be included in the summary. Frames similar to their previous
ones are excluded, while a noise reduction technique based on
histograms is applied to exclude homogeneously colored video
frames (e.g., black frames). User-defined thresholds can be set
to manage the length of the resulting summary.

Approaches other than clustering have been proposed for
key-frame extraction. E.g., a computational geometry-based
algorithm [?] that results in key-frames equidistant to each
other in the sense of video content, or a fast method which
selects as key-frames the video frames that locally maximize
an aggregate intra-frame difference (computed using color
features) [22]. However, clustering still dominates the relevant
literature due to its simplicity, suitability to the problem and
relatively low computational requirements.

Video skims are series of short video segments that are
concatenated in the correct temporal order, in order to form a
shorter version of the original stream that contains the informa-
tive content. Summarization though skimming, instead of still
key-frame extraction, allows the inclusion of audio and motion
information that can potentially enhance the expressiveness
of the video summary [9]. A skim can be derived, in the
simplest case, by detecting the silent regions in an audio
stream and removing them, therefore significantly decreasing
the video length of a full movie [23], or by concatenating
video key-segments centered around previously extracted key-
frames. Graphical cues can be used to present an additional
level of detail to supplement other cues. For example, a
two-dimensional color-coded block map of the video stream
which distinguishes video segments corresponding to dialogue,
explosions and on-screen text, is proposed in [24], where the
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end user can manually select the annotated video segments
to be included in the summary. A textual cue representation
detecting text presence within the video frames is proposed
in [25], where the authors detect subtitles within the video
stream and check if a sequence of frames belongs to the same
dialogue scene. By retaining only the first frame that appears
in the same conversation as a key-frame, they can use the key-
frames to index the dialogue scenes.

Video content selection and video skimming can also be
used in movie post-production. Usually, long videos containing
multiple shots are temporally segmented into shots, either
manually or automatically. A user attention model is proposed
in [26], where visual, audio and textual features are extracted
by applying multimodal analysis. A saliency score is computed
for each video frame and the most salient frames are selected
to be the key-frames. Video key-segments are defined around
each key-frame and are concatenated using a fade-in / fade-
out approach, in order to form the summarized video skim.
A different approach is proposed in [27]. The video stream is
first segmented into shots. Then, face detection and tracking
[28] [29] [30] is performed on the segmented video clips.
Clustering is applied on the extracted facial images, in order
to determine which images belong to the same character. The
extracted characters are selected to form a character commu-
nity network, which forms a graph of interactions between
the movie characters. Interactions are related to specific video
segments, where an importance measure of each interaction
is calculated. Redundant interactions are excluded from the
video skim, while retaining only video segments that contain
interactions with the main characters.

The above described approaches can be applied to generic
video content, while specialized methods have also been pro-
posed for specific video genres. E.g., in surveillance videos,
motion detection is employed, in order to create summaries
that contain sets of human actions, like pedestrian walking.
Detected actions taking place at different directions and speed,
are fused in a single scene to form a short length video or
graphical cue containing as many actions as possible [31]
[32]. In another variant, image registration and spatiotemporal
motion modelling are employed in videos depicting human
actions, in order to summarize them with a single artificial
image which is representative of an entire video sequence and
expresses a still representation of the dominant motion [33].

B. Disparity Estimation and Stereoscopic Video Summariza-
tion

In stereoscopic 3D video content derived from filming with
stereo camera rigs (matched pairs of cameras), two images
of the scene are available for each video frame, taken at the
same time from slightly different positions in world space.
From every such stereo-pair, composed of a left and a right
video frame, a dense disparity map that assigns a depth-
related disparity value to each image pixel can be estimated
from detected pixel correspondences between the two channels
[34]. Two different disparity maps can be extracted from a
single stereo-pair, associated with the left/right image channel,
respectively. When using a parallel camera setup, for each

left/right-channel image point [x, y]>, in pixel coordinates, the
corresponding horizontal disparity values are dlx,y ≤ 0 and
drx,y = −dlx,y , while vertical disparities are zero. The closer
an imaged object lies to the cameras during image acquisition,
the larger is its disparity in absolute value. In contrast, objects
considered to be lying at infinity, i.e., positioned very far from
the cameras, are projected on pixels with near-zero disparity.
When viewed in the theater space during video display, such
objects appear in front of the display screen or, in the case of
objects at infinity, on the display screen itself.

Disparity estimation, or “stereo matching”, has been thor-
oughly investigated over the past three decades [34]. In the
context of this work, due to the massive amount of video
frames needed to be processed for the evaluation of the
proposed method, an implementation of the SGBM algorithm
[35], contained in the publicly available OpenCV library
[36], was employed. It provides reasonably accurate disparity
estimations in almost real-time. However, they are occasionally
noisy and suffer from “blank” pixels, at image regions no
correspondence between channels has been detected.

Despite the increased availability of 3D video content [37],
a very limited number of video summarization methods op-
erating on stereoscopic or multi-view videos have been pre-
sented, mainly using a shot clustering approach. Specifically,
an algorithm for multi-view video summarization was pro-
posed in [38], which represents the multi-view video structure
by using a spatio-temporal shot graph, clusters shots using
random walks and generates the final summary by multi-
objective optimization. A semantic content-based approach to
stereoscopic video summarization was presented in [39] [40],
which performs object segmentation separately on the color
and on the disparity channel, then fusing the produced segment
maps to extract precise object boundaries. Subsequently, object
feature vectors are constructed using multi-dimensional fuzzy
classification of segment attributes, including size, location,
color and relative-depth, thus allowing K-Means clustering of
shots based on the objects they contain. Finally, representative
shots are selected from each shot cluster and their key-frames
are extracted by minimizing a intra-shot cross-correlation
criterion. The same approach was applied in [41] [42] for
monocular videos, exploiting motion vectors instead of dis-
parity maps. In [43], stereoscopic video shots are represented
using concatenations of various low-level feature descriptors,
computed over both the color and the disparity channels, then
clustered through a Self-Organizing Map.

III. MULTIMODAL SUMMARIZATION FOR STEREOSCOPIC
MOVIES

In this Section, the various stages of the proposed movie
summarization pipeline are being presented in detail. Below,
the terms “movie” and “video”, as well as the terms “actor”
and “character” and the terms “summary” and “skim”, are used
interchangeably.

A. Statistical Stereoscopic Video Description for Key-Frame
Extraction

In the proposed approach, the stereoscopic video is assumed
to be composed of four temporally ordered sequences of F
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frames: V L, containing luminance frames, V D containing the
corresponding disparity maps, V C containing the correspond-
ing color frames (the hue channels of the HSV frame repre-
sentations), and V O containing the corresponding optical flow
maps (e.g., computed for each pair of consecutive luminance
video frames, using [44]). Each luminance frame, disparity
map, color frame or optical flow map can be considered as
a matrix VL

i ∈ RM×N , VD
i ∈ RM×N , VC

i ∈ RM×N ,
or VO

i ∈ RM×N , respectively, where i = 1, · · · , F . All
available frame sequences are assumed to have been identically
partitioned into non-overlapping shots, e.g., by employing the
information-theoretic method described in [45].

Key-frames are automatically extracted per shot, by repre-
senting each video frame through a feature vector constructed
based on the selected image modalities, e.g., luminance and
disparity information. The number K of key-frames extracted
at each shot is adaptively chosen, i.e., it lies between 2 and a
user-provided maximum Kmax, a parameter that regulates the
granularity of the produced summary. Initially, a feature vector
is extracted per frame, using a particular feature descriptor.
Subsequently, all shot frames are partitioned into K clusters.
Finally, the frames closest to the cluster centroids in the feature
space, in terms of Euclidean distance, are selected as key-
frames. These are subsequently employed to generate a video
skim, containing the selected key-frames from all shots and
a temporal video segment around each key-frame. The K-
Means++ algorithm [46] has proven to be sufficient for shot
frame clustering. Other clustering algorithms have been tested
and shown to provide similar results.

A novel feature descriptor, called hereafter Frame Moments
Descriptor (FMoD), is used for video frame description. It
preserves spatial information not available when an entire
frame is summarized by a histogram. It can be used with
any type of image modality (luminance, color / hue, disparity,
optical flow). The Frame Moments Descriptor operates by
partitioning a M × N frame (e.g., VL

i or VD
i ) in small

blocks of m × n pixels, where m < M and n < N .
In each block, two profile vectors are computed, one along
the horizontal and one along the vertical dimension, by av-
eraging pixel values across block columns / rows, respec-
tively. The result is an n-dimensional and an m-dimensional
profile vector. Each of the two vectors is summarized by
their first 4 statistical moments (mean, standard deviation,
skewness, kurtosis). The resulting 8-dimensional vector fvi =
[mH

1 ,mH
2 ,mH

3 ,mH
4 ,mV

1 ,m
V
2 ,m

V
3 ,m

V
4 , ]

T , where v is either
L (luminance), D (disparity), C (color / hue) or O (optical
flow) compactly captures the statistical properties of the block,
as shown in Figure 1. The process is successively repeated
d times, for larger values of m and n. In the last iteration,
m = M and n = N . Finally, all the 8-dimensional vectors
are concatenated into a single feature vector that describes
the entire frame. This vector set (one per frame) is used for
key-frame extraction. The FMoD vector summarizes statistical
characteristics of the pixel values (e.g., luminance), in various
image regions and in various scales.

FMoD feature extraction was implemented recursively, in
a top-down manner, with the image region that is currently
being statistically represented at each time, subsequently being

Fig. 1. Statistical summarization of an image block.

recursively partitioned into 4 quadrants. Thus, the total number
of 8-dimensional block vectors that are to be concatenated
is given by the sum of the first d terms of a geometric
progression:

1 · 40 + 1 · 41 + · · ·+ 1 · 4d−1 = (4d − 1)/3 (1)

Therefore, the final FMoD feature vector has 8 · (4d − 1)/3
dimensions. It compactly describes the video frame in a global
and in various local scales, with local information being more
spatially focused for higher values of d.

Additionally, a variant of FMoD called Position-Invariant
Frame Moments Descriptor (PI-FMoD), is proposed. It em-
ploys an additional step, in order to discard spatial information
from the frame description. This step consists in transforming
the set of all 8-dimensional block vectors that compose the
FMoD vector into a histogram, using a Bag-of-Features rep-
resentation [19]. That is, all (4d − 1)/3 block vectors of the
frame are clustered into c representative block descriptions,
where c is the codebook size parameter. Each block vector
is subsequently assigned to the nearest representative block
description vector, in terms of Euclidean distance. The number
of block vectors assigned to each of the c clusters is an entry in
a c-dimensional vector. This vector is followingly transformed
into a histogram by L1-normalization, in order to produce the
final c-dimensional frame feature vector.

By employing subjective visual inspection, PI-FMoD frame
description was empirically found to perform better than
FMoD in the context of key-frame extraction, since spatial
information is not necessarily an important factor for the
determination of representative shot frames. For instance, a
static-camera shot showing an actor walking from the left
frame border towards the right one, might be represented by
a single key-frame in a satisfactory way. However, in this
case, FMoD description would produce significantly different
feature vectors for the first and the last shot frame, leading to
the unnecessary extraction of multiple key-frames.
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50th frame 150th frame 250th frame

350th frame 450th frame 550th frame

Fig. 2. Example frames from the left color channel of the “Wall” 3D shot.

Whatever the employed descriptor, FMoD or PI-FMoD,
one feature vector is computed for the i-th video frame,
i = 1, · · · , F , per image modality, e.g., luminance, color /
hue, stereoscopic disparity or optical flow. The method used for
fusing the various frame feature vectors, e.g., the luminance-
derived one and the disparity-derived one, is simple vector
concatenation, before performing clustering. Thus, scene tex-
ture, illumination and geometry, as well as temporally local
motion, can all be taken into account, in order to construct
an informative video frame description. Given that the feature
vector dimensionality needs to be as low as possible for
reducing computational cost, color may be discarded, since it
has not been conclusively proven as an important modality for
successful summarization [15]. However, a unified, complete
frame description would include information derived from all
the four image modalities previously considered.

The exploitation of disparity information, and, therefore,
scene geometry, potentially leads to the extraction of more
representative key-frames, since employing luminance infor-
mation alone leads to different results than exploiting both
disparity and luminance. Figure 2 shows example frames from
the “Wall” 3D shot, where the camera pans horizontally from
right to left, showing first a wall close-up and subsequently a
building in long-shot view. Thus, although the shot frames can
be differentiated in terms of disparity, they are mostly homo-
geneous in luminance and color characteristics, since the wall
and the building have similar texture and reflectance properties.
Figures 3a,b show two key-frames (K = 2) extracted from
the “Wall” when disparity is ignored or is taken into account,
respectively. When employing disparity information, two se-
mantically meaningful key-frames can be found, while this is
not attained if only the luminance modality is considered.

The number of clusters K, which is equal to the number
of extracted key-frames per shot, is determined independently
for each shot, by evaluating different clusterings, one for each
possible value of K, K ∈ N, K ∈ [2, · · · ,Kmax]. Thus, K-
Means++ is performed Kmax−1 times per shot. This adaptive
approach does not induce significant computational overhead,
since the number of frames per shot is typically less than 100
and clustering is performed very rapidly. The mean silhouette
coefficient [47], one of the most simple, robust and well-
performing cluster validity indices [48] [49], can be used as

a)

b)

Fig. 3. a) Two left-channel key-frames computed using only luminance in-
formation, b) two left-channel key-frames computed by combining luminance
and disparity information.

the metric for clustering evaluation. The selected value for K
is the one corresponding to the clustering with the maximum
silhouette.

In a post-processing filtering step, monochrome key-frames
are discarded from the set of the extracted movie key-frames
(based on the variance of their hue component in the HSV
color space), which is a common practice in the relevant
literature (e.g., in [21]). Subsequently, the remaining video
key-frames from all shots are partitioned into bSpc clusters,
by reapplying once the K-Means++ algorithm, where S is the
total number of extracted key-frames and the user-provided
retention parameter p is a percentage that regulates the ag-
gressiveness of frame pruning during this filtering process. The
goal is to detect clusters of similar key-frames and remove all
frames contained within the same cluster, excluding the one
closest to the respective centroid. Thus, a filtered key-frame
set of smaller size is derived by considering the entire movie
content. This is a late-stage redundancy reduction process,
similar to ones typically found in the relevant literature (e.g.,
in [9]). The greater the value of p, the more key-frames are to
be extracted movie-wide and extended into key-segments, thus
allowing the proposed summarization method to be adapted to
user needs. FMoD, which preserves spatial information, has
been found to be a particularly effective descriptor for the
detection of multiple similar shot / reverse shot instances, e.g.,
when two persons are shown alternatingly while they converse,
in order to reduce the visual information redundancy inherent
in this common film editing technique.
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Fig. 4. Audio-assisted extension of a video key-segment.

B. Initial Video Skim Construction

The filtered key-frames are temporally extended, using
neighboring video frames, to form key-segments: assuming the
i-th video frame is a key-frame, the video segment extending
from the (i− Lseg)-th frame up to the (i+ Lseg)-th frame is
marked as a key-segment. Lseg is a user-provided parameter,
with the value Lseg = 20 having been shown to perform
well in our experiments. Thus, the initial duration of all key-
segments is D = 2Lseg + 1. Subsequently, each key-segment
is confined within the boundaries of its respective shot. Any
temporally overlapping key-segments are merged.

The produced key-segments undergo a post-processing step
that considers the audio modality: each key-segment is checked
against temporally overlapping speech segment appearances,
that are derived using speaker diarization algorithms. The latter
employ speech segmentation and speaker clustering, in order
to temporally segment a video with regard to “who spoke
when?”, generally without knowing speaker identity [50] [51].
Additional manual annotation may then be applied, in order
to assign a label to each speaker, but this is not necessary
for this step. Each speech segment consists in a continuous
speech instance found in the film. If a video key-segment
temporally overlaps with a speech segment, it is suitably being
extended to temporally coincide with the latter one. Thus, in
the finally produced video skim, no speech instance will be
abruptly interrupted and all key-segments containing human
voice will feature complete speech instances. This multimodal
post-processing stage is depicted in Figure 4. The finally
derived key-segments are then concatenated in temporal order
to form the video skim.

C. Multimodal Shot Pruning (MSP)

The next post-processing stage in the proposed summariza-
tion pipeline performs further key-segment pruning on the
initially constructed skim, based on which shot they belong
to, since segmentation of the movie into shots is assumed
given. This Multimodal Shot Pruning (MSP) process produces
a shorter skim which still contains most of the informational
content found in the initial one, by “discarding” shots in
a systematic manner that considers actor-oriented narrative
properties, such as “Who spoke when?” (speakers) and “Who
appeared when?” (faces), namely speaker and actor diarization
information. As in the case of speakers, each face appearance
consists simply of a video segment that starts and ends at
the temporal boundaries of an uninterrupted face appearance.

Such data may have been acquired through the successive
application of face detection [52], face tracking [53], face
clustering [54] and label propagation [55] algorithms.

MSP is algebraically modelled as a matrix Column Subset
Selection Problem (CSSP) [56], which is briefly discussed
here. Assuming a low-rank M ×N matrix D and a parameter
C < N , CSSP consists in selecting a subset of exactly C
columns of D, which will form a new M × C matrix C
that captures as much of the information contained in the
original matrix as possible. The goal is to construct a matrix
C ∈ RM×C such that the quantity

‖D− (CC+)D‖F (2)

is minimized. In the above, ‖·‖F is the Frobenius matrix norm
and C+ is the pseudoinverse of C. Thus, the approximation
of D by the smaller matrix C is expressed in terms of the
Frobenius norm in a projection sense: as D does not have
full rank, CC+ is not simply an identity matrix, but acts as
a projection matrix onto the span of the C columns contained
in C.

In data analysis, CSSP is an obvious choice for mathemati-
cally modelling a feature selection process as an optimization
problem. It can be optimally solved by exhaustive search
in O(NC) time [56], which clearly is a very impractical
approach. Thus, approximate algorithms with lower computa-
tional complexity have been presented in the relevant literature,
with the goal of finding a suboptimal but acceptable solution.

In [57], a metaheuristic approach based on a genetic algo-
rithm is successfully employed for the approximate solution of
the CSSP, by directly using Equation (2) as a fitness function.
The method is evaluated on several small, randomly generated
matrices and is shown to produce good results for a fixed small
value of C. In this work, the same metaheuristic approach was
adopted and adapted into the proposed pipeline, so that MSP
could be modelled and solved as a CSSP.

Specifically, two low-rank, sparse, binary matrices are con-
structed: S,F ∈ RV×S , where S is the total number of movie
shots and V is the total number of visible speakers, i.e., it
is the cardinality of the intersection of the set of all visible
faces and the set of all speakers. Typically, S >> V . Since
temporal speech segment and face appearances are assumed
given, S and F, also referred to as shot matrices hereafter, are
being filled with binary values:

Sij =

{
1, if the i-th actor speaks in the j-th shot,
0, otherwise

Fij =

{
1, if the i-th actor appears in the j-th shot,
0, otherwise.

where 1 ≤ i ≤ V, 1 ≤ j ≤ S.
Subsequently, S and F are modified in a Gaussian expansion

process, so that each speech / face appearance is “extended”
to neighbouring shots. Thus, the initially binary shot matrices
are converted to real ones, in a manner that preserves relevant
information. That is, for each Sij = 1 / Fij = 1, a discrete
approximation of a Gaussian distribution, having its peak at Sij

/ Fij , is locally assigned to the entries of the i-th row around
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Sij / Fij , respectively. The standard deviation of the selected
probability mass function is chosen so that each appearance
is extended only to the dv shots immediately preceding it and
following it. Subsequently, shot matrix values derived from
different speech / face appearances and corresponding to the
same shot matrix entry are added, thus enabling a diffusion of
neighboring speech / face appearances. dv may take any value
that is less than half the average scene duration (in shots).

This Gaussian expansion process allows a rudimentary form
of scene modeling, based on the provided shot segmentation
and actor-oriented narrative information. It was included in
order to implicitly assist the discrimination between more and
less narratively prominent actors. That is, the basis vector
sets of the initial shot matrices most likely coincide with the
standard basis, with one basis vector corresponding to each
visible speaker. However, after the Gaussian expansion, the
basis vector sets of the final shot matrices most likely include
basis vectors corresponding to the most prominent visible
speakers and basis vectors corresponding to combinations of
more and less prominent visible speakers. For instance, if the
k-th visible speaker is a supporting actor that speaks / appears
in scenes (and, therefore, in neigboring shots) only along with
a lead actor, there will be no column vector c of the shot
matrices where ci = 0, i 6= k and ck 6= 0.

After the final S and F matrices have been constructed,
they are implicated in a joint column subset selection problem
regulated by a parameter C = bS p

2c. As previously, S is the
total number of movie shots and the user-provided retention
parameter p regulates the aggressiveness of shot elimination
during this stage. By solving this problem, only key-segments
belonging to an optimal subset of shots will be selected
to appear in the final video skim, with subset optimality
expressed in terms of discarding shots which correspond to
shot matrix columns that are linear combinations of other
columns. Thus, it is more likely to retain shots where lead
actors, or combinations of supporting and lead actors, are
present, rather than supporting actors alone.

The desired solution is a set of matrix column indices with
cardinality equal to C. Since S,F ∈ RV×S , for the k-th such
index with an assigned value gk the following hold:

k ∈ N, k ∈ [1, · · · , C]. (3)

gk ∈ N, gk ∈ [1, · · · , S]. (4)

A genetic algorithm is employed to approximate an optimal
solution and, as in [57], each candidate is encoded in the form
of a sequence of column indices sorted in increasing order.
Every such chromosome is of length C. Roulette selection at
each iteration is adopted as the mating pool formation strategy.
Assuming fl is the evaluated fitness of the l-th candidate in the
current population, this method assigns a selection probability
plsel = fl/

∑N
m=1 fm to the l-th chromosome.

An order-preserving variant of 1-point crossover [57] is
utilized as the main genetic operator. Specifically, in order to
combine parent chromosomes cl and cm, a random position k
is selected as crossover point and is inspected for suitability.
k is considered to be suitable as a crossover point, if the

following condition holds:

(clk < cmk+1) ∧ (cmk < clk+1). (5)

In case Equation (5) does not hold for position k, a different
position is selected and inspected. This process continues until
either a suitable crossover point has been detected, or all
possible positions have been deemed unsuitable. In the former
case, crossover is applied and the two parent chromosomes
are replaced by their offspring. In the latter case, each of the
implicated chromosomes is passed unaltered to the population
of the next generation with probability plsel or pmsel, respec-
tively. If cl or cm is not being retained, it is replaced in the
next generation by a copy of the fittest current candidate cn

with probability pnsel. If cn is also not selected for retention,
the process continues with the second fittest of the current
candidates, and so on, until a chromosome has been selected.

An order-preserving variant of mutation [57] is employed
as the second genetic operator. Specifically, the k-th gene
of a chromosome cn, with an assigned valued of cnk , is
randomly selected and replaced by a value determined by the
neighbouring genes, according to Equation (6):

cnk =


rand(0, cnk+1), if k = 1

rand(cnk−1, c
n
k+1), if k ∈ (1, C)

rand(cnk−1, S + 1), if k = C.

(6)

where rand(a, b) uniformly selects a random integer from the
interval (a, b). Although this operator ensures a proper ordering
of the indices, it has no effect when cnk−1, cnk and cnk+1 are
successive integers.

The employed fitness function is derived from Equation
(2), which is applied to both matrices S and F. The matrix
column indices encoded in the chromosome cn which is under
evaluation, give rise to the matrices CS and CF , respectively.
The former contains a subset of the columns of S, while the
latter contains a subset of the columns of F. Thus, the fitness
function that needs to be maximized can be expressed as:

fit(cn) =
1

‖S− (CSCS+)S‖F + ‖F− (CFCF+)F‖F
.

(7)
Once the described genetic algorithm has converged to a

solution cbest, all key-segments belonging to shots not encoded
(by their corresponding column index) in cbest are removed
from the produced movie skim.

D. Elimination of Disorienting Editing Effects
As a further refinement of the proposed summarization

pipeline, an additional key-segment filtering mechanism is
applied at this stage. Any key-segments contained within the
same shot and separated by less than a second of video duration
(e.g., 25 frames in PAL videos), are merged. The purpose is
to eliminate abrupt temporal jump cuts in the produced movie
skim, i.e. disorienting editing effects that may cause discomfort
to the viewer [58]. For similar reasons, any remaining key-
segments with too short a duration are also detected and
removed, since they have also been empirically found to cause
discomfort. A threshold of one second was selected in the
context of this work.
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E. Elimination of Stereoscopic Video Defects

Given a set of stereoscopic key-segments, annoying depth
jump cuts may occur at key-segment temporal concatenation
points, due to disparity mismatches among consecutive video
frames [59]. Such mismatches indicate severe differences in
frame depth characteristics, able to cause a disturbing loss of
3D perception during stereoscopic viewing, until the human
visual system adapts and the left and right visual channels are
fused together to produce a proper 3D scene perception again.
Depth jump cuts may be absent in the original movie, due to
careful, stereography-aware video editing, but the summariza-
tion process unavoidably replaces the original shot transitions
with key-segment concatenation points, without taking depth
jump cuts into account. Thus, the produced skim may suffer
from such defects.

In the final stage of the proposed video summarization
pipeline, a previously developed depth jump cut detection
and characterization algorithm is applied on the produced
video skim and a depth continuity characterization is derived
per frame [60]. That is, a depth jump cut is either “absent”
(A), “mildly uncomfortable” (MU), “uncomfortable” (U), or
“highly uncomfortable” (HU). The employed algorithm oper-
ates by detecting rapid changes on temporal mean positive and
mean negative disparity signals, both derived from the frames
of the stereoscopic video under examination.

In case no depth jump cut is present at a key-segment con-
catenation point, no further processing is needed. Furthermore,
if a U or a HU depth jump cut is detected, a luminance fade
out / fade in process is applied to the shot cut, in order to
eliminate the source of discomfort during stereoscopic viewing
of the video skim. In case a MU depth jump cut is present,
a less drastic heuristic technique is employed and described
below, aiming at minimizing the presence of such defects in
the final video skim.

Between two consecutive key-segments Si, S(i+1) that cause
a MU depth jump cut, the last dD/4e frames of Si and the
first dD/4e frames of S(i+1) are exhaustively investigated in
pairs, in order to estimate the best possible concatenation point.
That is, the frame pair where the Euclidean distance between
two of the corresponding disparity maps VD

f and VD
t , with

VD
f ,VD

t belonging to the aforementioned relevant subsets of
key-segments Si, S(i+1), is minimal.

IV. EVALUATION

Although the evaluation of video summarization methods is
an inherently subjective process, there has been an attempt
for providing a standard relevant dataset, namely VSUMM
[9]. It is accompanied by user-annotated ground truth and
a specific evaluation metric, in order to facilitate a more
objective comparison between summarization algorithms for
research purposes. However, the dataset is simplistic in nature
and oriented towards small-scale, single-channel videos, most
of which are short, animated clips. Therefore, it was not
deemed suitable for the evaluation of the proposed approach,
which is specifically designed for stereoscopic, live-action
feature films.

In order to assess the performance of the proposed stereo-
scopic movie summarization pipeline, both an objective and
a subjective evaluation scheme were employed. They were
performed on 3 stereoscopic Hollywood movies released in
2011, hereby named “Movie1”, “Movie2” and “Movie3”.
Disparity estimation had been applied prior to the evaluation,
using the publicly available implementation of the SGBM
algorithm [35] in the OpenCV library [36].

Video skims derived with a combination of PI-FMoD /
FMoD descriptors were compared against skims derived with
image histogram descriptors, for various values of the retention
parameter p. For each value of p, multiple FMoD-derived
and histogram-derived skims were evaluated, by taking into
account different combinations of luminance, color, stereo-
scopic disparity and optical flow modalities. All histograms
were computed with 256 bins per modality, while codebook
size c was set to 40Nm for PI-FMoD, where Nm ∈ N, Nm ∈
1, 2, 3, 4 is the number of employed modalities at each case.
Moreover, d was set to 6, in the case of FMoD, and to 5,
in the case of PI-FMoD. These parameter values were found
to lead to good results without inducing unacceptably high
computational cost. Additionally, Kmax was set to 5, Lseg

was set to 20 and dv was conservatively set to 4.
The objective metric employed in our evaluation is the

mean silhouette coefficient Sil of the clustering that is per-
formed during the post-processing filtering stage. It holds that
Sil ∈ R, Sil ∈ [0, 1] and that a higher value suggests a
better clustering. Thus, the proposed video descriptor and the
commonly employed histogram descriptors are compared with
regard to their performance in clustering, instead of directly
with regard to their performance in video summarization, in
order to bypass the inherent ambiguity and the subjective
nature of the summarization problem.

The 3 scores achieved by each video skim and the cor-
responding video description method (one for each of the
3 movies) were averaged to compute the aggregate results.
In the following notation, L suggests the exploitation of the
luminance modality during the description process, C the
exploitation of the color / hue modality, D the exploitation
of the stereoscopic disparity modality, O the exploitation of
the optical flow modality, while LD, CDO, LCD, LCDO
and LDO refer to the combination of multiple descriptors
computed on the corresponding modalities.

A comparison with the second best performing global de-
scriptor (next to the simple hue histogram), according to [15],
i.e., the STIMO descriptor [10], was included. This is a 256-
bin joint HSV-space histogram, with 16 value levels in H, 4
levels in S and 4 levels in V, while the simple hue histogram
employed in [9] is similar to the Histogram-C descriptor.

The results of the objective evaluation are shown in Table
I. As it can be seen, the proposed video descriptor out-
performs the typically employed histogram-based description
method, as well as the STIMO descriptor, and the best results
are achieved when most of the available image modalities
(luminance, stereoscopic disparity, color) are exploited. The
exception is optical flow, encoding local motion patterns,
which does not seem to positively contribute to the process.
These findings imply that the richer informational content of
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TABLE I. A COMPARISON OF THE AGGREGATE MEAN SILHOUETTE
COEFFICIENTS ACROSS THE 3 STEREOSCOPIC MOVIES, FOR DIFFERENT

VIDEO DESCRIPTION METHODS AND DIFFERENT VALUES OF THE
RETENTION PARAMETER p.

Method 0.5 0.6 0.7 0.8
FMoD-L 0.22 0.22 0.20 0.16
FMoD-C 0.21 0.20 0.16 0.12

FMoD-LD 0.18 0.18 0.16 0.13
FMoD-LCD 0.23 0.23 0.21 0.16
FMoD-LDO 0.15 0.14 0.13 0.10
FMoD-CDO 0.18 0.18 0.16 0.12

FMoD-LCDO 0.19 0.18 0.16 0.13
Histogram-L 0.20 0.19 0.17 0.13
Histogram-C 0.13 0.13 0.13 0.10

Histogram-LD 0.15 0.15 0.14 0.12
Histogram-LCD 0.16 0.17 0.15 0.13
Histogram-LDO 0.16 0.16 0.15 0.12
Histogram-CDO 0.12 0.12 0.11 0.10

Histogram-LCDO 0.17 0.17 0.16 0.13
STIMO 0.17 0.17 0.15 0.12

FMoD descriptors, in comparison to histograms, facilitates the
determination of more compact and well-separated clusters in
the higher-dimensionality feature space that is formed by the
concatenation of multiple modalities. Additionally, the mean
silhouette coefficients suggest a better clustering when less
movie-wide clusters are being used (regulated by the value
of the retention parameter p), thus resulting in a shorter, and
thus arguably more enjoyable, video skim.

In order to validate these findings, the publicly available
Middlebury 2014 [61] stereoscopic image dataset, containing
33 stereoscopic image pairs and corresponding disparity maps,
was employed. The dataset was partitioned into 3, 5, 7 and
9 clusters, separately with the FMoD, the histogram and
the STIMO descriptor. K-Means++ and the modalities of
luminance, color and stereoscopic disparity in different combi-
nations were exploited. The outcomes corroborate previously
stated results and are shown in Table II.

To assess the performance of the entire proposed algorithmic
pipeline in the task of stereoscopic video summarization itself,
rather than in video frame clustering, a subjective evaluation
scheme was employed, similar to ones commonly found in
the relevant literature. 10 subjects (9 naive and 1 expert) were
asked to rate each of the final video skims, in relation to
the original movies, in two separate ways: in terms of their
informativeness and in terms of their enjoyability. These two
rates per video skim were given on a 0% - 100% scale.
All subjects, having recently watched the 3 movies, were
independently shown the skims in a consecutive manner and in
random order. As in [26], the scale was graded the following
way: poor (0% - 40%), fair (40% - 60%), good (60% - 75%),
very good (75% - 90%) and excellent (90% - 100%).

TABLE II. A COMPARISON OF THE MEAN SILHOUETTE COEFFICIENTS
IN THE MIDDLEBURY 2014 STEREOSCOPIC IMAGE DATASET, FOR

DIFFERENT VIDEO DESCRIPTION METHODS AND DIFFERENT NUMBER OF
CLUSTERS.

Method 3 5 7 9
FMoD-L 0.27 0.26 0.23 0.21
FMoD-C 0.25 0.24 0.24 0.22

FMoD-LD 0.26 0.24 0.22 0.22
FMoD-LCD 0.29 0.27 0.25 0.23
Histogram-L 0.23 0.22 0.20 0.19
Histogram-C 0.20 0.20 0.19 0.18

Histogram-LD 0.21 0.20 0.19 0.17
Histogram-LCD 0.25 0.23 0.21 0.18

STIMO 0.24 0.23 0.22 0.19

In the context of this study, informativeness refers to video
content coverage achieved by the produced skim, i.e., to
what degree the latter is representative of the original video,
retains major plot points and successfully demonstrates major
role relationships. Enjoyability refers to the aesthetics of the
produced video skim, i.e., to what degree it is composed of
semantically complete and coherent scenes, without abrupt and
unnatural changes, while simultaneously preserving exciting
movie segments and not containing unessential or redundant
shots / scenes.

Two main skims were evaluated per movie. One (referred to
as “FMoD Pipeline”) was constructed using FMoD / PI-FMoD
frame descriptors and the entire proposed pipeline, while the
other (referred to as “Histogram Pipeline”) was constructed
using histogram frame descriptors and those stages of the
described algorithmic pipeline that are commonly employed in
the relevant state-of-the-art literature. That is, intra-shot video
frame clustering to extract key-frames, movie-wide key-frame
clustering to filter out redundant key-frames, monochrome
key-frame filtering and temporal extension to key-segments
(without taking the audio modality into account). The presence
of MSP in the FMoD Pipeline implies that the corresponding
skims are shorter in duration than the ones produced by the
Histogram Pipeline, allowing us to evaluate the success of the
proposed shot pruning scheme. In both cases, p was set to 0.5,
precomputed shot cut boundaries were provided and the image
modalities used for video frame description were luminance,
stereoscopic disparity and color / hue, according to the results
of the objective evaluation.

Additionally, the stereoscopy-aware, object segmentation-
based video summarization method presented in [39] was also
implemented and evaluated on the three films. The only major
deviation from the original method in our implementation
was that raw disparity values were employed in video frame
feature vector construction instead of actual depth values,
to avoid the need for camera auto-calibration (depth map
reconstruction from disparity maps requires known camera
parameters). This approach clusters video shots based not on
low-level frame descriptions, but on their detected (through
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TABLE III. A COMPARISON OF THE MEAN INFORMATIVENESS SCORES
FOR THE THREE FEATURE FILMS USED IN THE EVALUATION PROCESS.

Method Movie1 Movie2 Movie3
FMoD Pipeline 70% 74% 72%

Histogram Pipeline 83% 82% 81%
[39] Pipeline 75% 77% 76%

TABLE IV. A COMPARISON OF THE MEAN ENJOYABILITY SCORES FOR
THE THREE FEATURE FILMS USED IN THE EVALUATION PROCESS.

Method Movie1 Movie2 Movie3
FMoD Pipeline 72% 73% 71%

Histogram Pipeline 56% 59% 57%
[39] Pipeline 62% 64% 61%

object segmentation) semantic content. Since it produces a
set of key-frames instead of a video skim, the last stages
of the Histogram Pipeline were also applied after key-frame
extraction, so that the method would arrive at a complete skim
for each movie.

The results of the subjective evaluation are shown in Ta-
bles III and IV. The FMoD Pipeline achieves significantly
better enjoyability scores, at the cost of slightly reduced
informativeness, which is to be expected since the duration
(in total number of frames) of the skims derived through
the FMoD Pipeline is roughly half that of the corresponding
Histogram Pipeline skims, as it can be seen in Table V. These
results suggest that the additional post-processing stages in the
complete proposed algorithmic pipeline successfully remove
redundant movie segments, eliminate editing defects and lead
to a skim composed of more complete and coherent scenes,
while preserving (at least to a degree) major role relations
and plot points. The [39] Pipeline, which produced skims
slightly shorter in duration than the ones derived from the
Histogram Pipeline but longer than the FMoD ones, seems
to have been graded by participating subjects according to a
similar pattern. Moreover, the heavy reliance of the method
on the degree of accuracy of the disparity maps, makes it
much more susceptible to disparity noise (which affects object
segmentation performance) than the proposed pipeline. This,
however, implies that better disparity estimation might, in
the future, make method [39] more relevant for stereoscopic
feature film summarization.

TABLE V. DURATION (IN FRAMES) OF THE VIDEO SKIMS PER MOVIE.
THE DURATION OF THE ENTIRE MOVIE IS ALSO PROVIDED.

Method Movie1 Movie2 Movie3
FMoD Skim 24644 34907 28020

Histogram Skim 54879 67771 76880
Entire Movie 150358 181763 196224

Figure 5 shows the rate of change in the number of re-
tained key-frames / key-segments, as the proposed algorith-
mic pipeline progresses, per movie. Stage 1 corresponds to

initial key-frame extraction, stage 2 to movie-wide key-frame
filtering, stage 3 to monochrome key-frame filtering, stage 4
to overlapping key-segments merge, stage 5 to MSP, stage
6 to small key-segments filtering and stage 7 to jump cut
elimination. Additionally, Figure 6 shows the rate of change
in mean key-segment duration, as the proposed algorithmic
pipeline progresses, per movie. As it can be observed, the
described method gradually expands the retained key-segments
in temporal terms, while at the same time filters out a large
number of them. Thus, a smaller set of more representative,
complete and coherent (typically, this implies larger in dura-
tion in a semantically meaningful manner) key-segments are
acquired, leading to the increased enjoyability achieved when
using the FMoD Pipeline.

Fig. 5. Reduction in the number of retained key-frames / key-segments, as
the proposed algorithmic pipeline progresses, per movie.

Fig. 6. Increase in the duration of retained key-segments, as the proposed
algorithmic pipeline progresses, per movie.

At the MSP stage of the proposed algorithmic pipeline, the
following parameters were used for all movies: the maximum
number of generations was set to 200, the population size was
set to 200, the crossover rate was set to 0.9, the mutation
rate was set to 0.005 and the elitism rate was set to 10%.
The number of detected visible speakers for Movie1 was
24, for Movie2 was 13 and for Movie3 was 20, while the
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corresponding values of C (i.e., the number of movie shots
retained after solving the CSSP) are 540 (out of 2161 total
detected shots), 511 (out of 2044 shots) and 631 (out of
2524 shots). Figures 7a,b,c show the progression of mean
and best population fitness across generations, separately for
each movie. As it can be seen, the optimization successfully
converges in all cases.

The mean required execution time per video frame across
all movies, taking into account all pipeline stages, was 857
milliseconds for the Histogram Pipeline, 1632 milliseconds
for the FMoD Pipeline and 1424 milliseconds for the [39]
Pipeline. This execution times were measured on a high-end
desktop PC, with a Core i7 CPU @ 3.5 GHz and 16 GB RAM.
There is an obvious trade-off between summarization quality
and execution speed, implying that the proposed method is
only suitable for off-line applications.

V. CONCLUSIONS

We have proposed a complete, multimodal video summa-
rization algorithmic pipeline for stereoscopic movies, that
includes novel video description, shot pruning and post-
processing methods. It takes into account visual (shot cut
boundaries, scene geometry, texture and illumination), audio
(speech instances) and semantic movie characteristics (actor
narrative prominence, derived through high-level, semantically
meaningful features, such as temporal speech segment and
face appearances). To construct the desired movie summary,
in the form of a short video skim, the proposed pipeline
employs unsupervised learning, algebraic modeling and evolu-
tionary computation techniques, while editing and stereoscopy-
related defects are detected and eliminated. The novel video
description method (FMoD and PI-FMoD) is favourably com-
pared against the typically used frame histogram descriptions
and the competing STIMO description, by employing an
objective clustering evaluation metric. The entire proposed
pipeline is favourably compared against a typical, clustering-
based state-of-the-art summarization pipeline and a competing
stereoscopy-aware method, through a standard subjective eval-
uation process, using three stereoscopic 3D Hollywood movies
released in 2011.
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