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ABSTRACT

Schneider, Bradley A. Ph.D., Department of Computer Science and Engineering, Wright State
University, 2022. Building an Understanding of Human Activities in First Person Video using
Fuzzy Inference.

Activities of Daily Living (ADL’s) are the activities that people perform every day in

their home as part of their typical routine. The in-home, automated monitoring of ADL’s

has broad utility for intelligent systems that enable independent living for the elderly and

mentally or physically disabled individuals. With rising interest in electronic health (e-

Health) and mobile health (m-Health) technology, opportunities abound for the integration

of activity monitoring systems into these newer forms of healthcare.

In this dissertation we propose a novel system for describing ’s based on video collected

from a wearable camera. Most in-home activities are naturally defined by interaction with

objects. We leverage these object-centric activity definitions to develop a set of rules for a

Fuzzy Inference System (FIS) that uses video features and the identification of objects to

identify and classify activities. Further, we demonstrate that the use of FIS enhances the

reliability of the system and provides enhanced explainability and interpretability of results

over popular machine-learning classifiers due to the linguistic nature of fuzzy systems.
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Introduction

1.1 Need for In-Home Monitoring

The number of people aged 65 and older in the United States is expected to reach 89 million

by 2050, double the number of United States citizens in the same age group in 2011 [49].

As the elderly population continues to grow, so will the need to provide in-home care for

the elderly. Elder care has traditionally been lacking qualified, certified practitioners and

clinicians, and the demand for in-home health aides is very likely to exceed recruitment

rates over this period of growth [85]. This will result in a growing deficit of qualified

healthcare workers for in-home care, which will require the development of new models of

healthcare delivery.

One response to this deficit of personnel is to leverage e-Health technology to pro-

vide in-home healthcare. In a 2005 report, the World Health Organization (WHO) de-

fined e-Health as the “cost-effective and secure use of information and communications

technologies in support of health and health-related fields, including health-care services,

health surveillance, health literature, and health education, knowledge and research” and

resolved to encourage long-term strategic plans to develop e-Health resources, noting that

advances in technology have raised expectations for healthcare [1]. Since then, WHO has

also formalized the idea of mobile-health, or m-Health, which is similar to e-Health but

uses mobile technology. This includes in-home installation of sensors or imaging devices

used to monitor patients with chronic illnesses [112]. A recent survey of m-Health tech-
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nology found that m-Health has been found as an effective way to monitor elderly patients

suffering from dementia and cognitive disorders including screening for cognitive decline

and promoting healthy habits in terms of physical activity [105].

The need for in-home monitoring extends beyond caring for the elderly to monitor-

ing individuals of any age who require assistance living independently due to a mental

or physical disability or injury. In addition to the use of in-home monitoring for clinical

purposes, it may be an important aspect of ubiquitous smart home systems. As more and

more electronic devices are becoming internet-of-things (IoT)-enabled, including televi-

sions, kitchen appliances, and security systems, the demand is growing for systems that

automatically understand and react to users and their actions.

1.2 Activities of Daily Living

Activities of Daily Living (ADL’s) are defined as activities routinely performed in daily

life, often for basic hygiene and personal care as well as food preparation, housekeeping,

and other aspects of independent living. These activities have been studied since at least the

1960s [53] as an assessment for the ability to perform physical self-maintenance, especially

among the elderly. Several scales of assessment have been proposed, each with the common

purpose of evaluating the cognitive and physical capabilities of the subject [53, 20, 22]. In

the clinical setting, it has been shown that the ability to independently perform ADLs is

an indicator of the onset and progression of conditions such as Dementia and Alzheimer’s

disease [33].

The manual assessment of human activities is dependent on the ability for the subject

to be observed, necessitating the use of either in-home visits by a clinician or visits by the

subject to clinical laboratories. This can be challenging when considering the expense of

home visits and the limited ability of elderly to travel and coordinate appointments. The

use of technology through eHealth and mHealth applications to monitor and observe ADLs
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in a home environment can greatly reduce the impact to both the subject and clinician by

providing an unobtrusive, automated method of gathering activity data.

A challenge to implementing automated activity detection and recognition systems is

the need for a formalized model defining each activity under observation. The ability to

recognize activities as they occur comes very naturally for humans, but it is much more

difficult to define for a machine. Human activities are defined in overlapping temporal

and semantic spaces. That is, one higher-level activity may include the performance of

several lower-level activities at the same time. Thus the definition of these activities may

be subjective to the observer.

For example, a subject may perform the high-level activity of preparing breakfast,

which involves many actions and movements in a sequence over a significant period of

time. Within the action of preparing breakfast, the subject may have accomplished the

lower-level activity of making toast, and within that activity the subject may have accom-

plished the lower-level activity of inserting bread into the toaster. The chain of activities

may continue decomposing all the way down to the activity of picking up a bag of bread.

Figure 1.1 illustrates several possible activities involved with this scenario and places them

on a scale of increasing complexity. Understanding the same or overlapping activities at all

of these levels is crucial to a fully functioning activity monitoring system.

1.3 Research Goals

Research Question 1: Can wearable sensors be used to unobtrusively monitor activities of

subjects in a semi-structured environment? A desired outcome of this work is to provide

evidence that a system based on wearable sensors may be used in the home (i.e. not in a

clinical setting or laboratory) to provide continuous monitoring of activities of daily living.

The outputs of the system provide data on activities and patterns of activities to inform

clinicians on possible changes in the health and wellness of the user. Data collected at
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Figure 1.1: Example of activities with varying spatio-temporal complexity which may oc-
cur during the larger activity of preparing breakfast.

clinical laboratories is temporally sparse and involves scripted movements, bringing into

question the validity of the data for assessing the subject’s ability to perform the actions in

a natural environment; by contrast, the data collected by in-home monitoring will show a

more complete look into the subjects’ abilities to perform activities on a day-to-day basis.

Early work was focused on detecting and measuring gait in controlled and semi-controlled

environments [92, 94]. While results were achieved with uninterrupted gait sequences of

several meters, it was clear that long uninterrupted gait sequences are uncommon in many

daily activities, which include starts and stops and navigation around household objects.

For this reason, the ultimate focus of this work is on object interactions rather than gait, as

object interactions provide a much richer context for activities that are being performed.

Research Question 2: Can features extracted from first person videos recorded in sub-

jects’ homes be used to categorize different interactions with objects? The use of object

interactions to determine activities has been popular in recent automated activity recogni-

tion and classification systems [80, 98, 73, 110, 42]. Many in-home ADL’s are at least

partially defined by interactions with certain objects. For example, knowing that a subject
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is interacting with a remote control should reveal that the subject is interacting with a tele-

vision or other electronic device. The search space of candidate activities can be greatly

culled by knowing which objects are involved. A desired outcome of this work is to ex-

ploit a combination of video and object features to characterize different interactions with

objects. Building on an initial set of features from previous work with gait, an initial base-

line set of features was identified for categorizing object interactions. In addition to the

location of objects, this set of features was heavily dependent on optical flow features to

identify changes in object location and color features to identify changes in the appearance

of objects. Additional experiments are needed to extend and refine this set of features and

the resulting Fuzzy Inference System (FIS) that was developed, but the initial work proved

the feasibility of using first person video features to categorize object interactions.

Research Question 3: Can the activity identification system a) accurately describe

activities and b) handle uncertainty in the results better than current state-of-the-art meth-

ods? While much recent work has been done on using deep learning and neural networks

to identify human activities in video sequences (such as run, walk, sit down, throw, turn

on faucet, open refrigerator, etc.) [2, 79, 56], there are two major drawbacks to the current

deep learning trend:

1. The networks must be trained to recognize a very specific set of actions. To date,

most work involving neural networks has been against small sets of precisely defined

and scripted activities, limiting practical applications.

2. Since deep learning requires no features to be identified/extracted, the use of these

technologies in isolation provides no ability to explain the outcome – only to iden-

tify it. That is, when the network fails to provide the correct answer, there is no

explainability of the result or the misidentified activity.

We propose the use of fuzzy logic to address these limitations. Many activities are very

similar in their basic movements and absolute identification may become difficult as the set
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of activities grows. If an unknown activity occurs, fuzzy outputs may still provide some

insight into the activity or similar activities. This is an advantage over machine learning

approaches which will simply fail to identify the behavior. The simplicity of a fuzzy system

can be seen in different lights; our goal is to show that the simpler fuzzy model is capable of

providing a rich description of activities. In the course of attempting to identify an activity,

the fuzzy system will produce interpretable fuzzy variables (as opposed to unexplainable

deep learning features) which describe actions in the scene - for example, a specific object

in the scene is being interacted with and the subject is manipulating the shape of the object.

While the overall activity might be unidentified, a good amount of information may still be

taken away from the fuzzy system.

1.4 Thesis Statement

This dissertation proposes to bridge the gap between in-home activity monitoring lever-

aging an object recognition framework and using a fuzzy linguistic framework to handle

uncertainty in complex movements between humans and objects in an in-home unstruc-

tured setting.
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Related Work

This chapter contains a summary of the existing body of work related to the objective of

describing activities occurring in first person video. The related work varies based on sev-

eral factors - the types of activities detected, the sensors used to detect the activities, and

the computational intelligence methods used to convert sensor data into activity informa-

tion. The chapter is organized into sections based on these factors. Each section provides

an overview of the variation seen within the related work with respect to the given factor.

2.1 Activities Being Detected by Vision Sensors

A number of activities have been found in related work on detecting and classifying ac-

tivities using vision sensors. These related works were grouped into three categories, and

discussion of the types of activities follows below:

1. Anomaly Detection,

2. Full-body Activities, and

3. Partial-body Activities.
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2.1.1 Anomaly Detection

A subset of related work focuses on the detection of anomalous activities. Each of these

systems used full-body views of subjects from third-person vision sensors combined with

computational intelligence to observe an environment and determine when either an un-

expected activity occurred, or when an activity occurred in an unexpected way. Systems

detecting such anomalies focus on actions that do not fit expectations based on previous

observations, but do not often focus on describing precisely what these anomalous actions

are - just that they are unexpected.

In [16], a vision sensor monitored a pedestrian area and used motion history images

to identify activities that were determined to be anomalies, such as vehicles entering the

space, by means of clustering. This method approximated the spatio-temporal distribution

of activities that occurred frequently and detected activities that did not fit that distribution.

Another outdoor environment - a loading dock - was monitored for anomalous activities in

[43]. Activities were represented as n-grams of events and a distance metric based on these

n-grams determined the dissimilarity between activities. Anomalous activities that were

discovered included a truck leaving the dock with its door open and an unusual number of

people unloading a truck.

Anomalous activity detection was also found in indoor environments. Fuzzy mem-

bership functions were used to captured several parameters of indoor human activities (lo-

cation, time, perceived area of subject) from an omni-directional vision sensor and output

a fuzzy determination of how ”normal” each activity was [95]. [116] presented a similar

experimental setup with an indoor omni-directional vision sensor seeking to detect anoma-

lous activities, but used Gaussian models of time and space to determine whether an activity

was normal.
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2.1.2 Full-body Activities

While detecting anomalies is useful for some applications, detecting the occurrence of a

specific pre-defined activity is important for many applications. In the following reviewed

studies, various vision sensors recorded subjects’ full bodies to detect specific activities

using a variety of computational intelligence. These works have the goal of detecting a

specific set of activities and differentiating the occurrence from other activities. These re-

lated works are able in the best case to exploit full third-person views of the subjects which

provide a maximal amount of input information about both the subject and surrounding

environment.

One such study described a system designed to detect a single activity (or a single type

of activity) - falls [12]. This work focused on applications in elderly living facilities , where

timely detection of falls is critical. It compared the use of three different vision sensors in

the same facility and was shown to be capable of detecting three fall-related activities -

being upright, sitting, and being on the floor.

Another two related works were focused on using full body video sequences to detect

activities in a medical setting. These environments, such as a trauma unit or patient room,

may be very busy with doctors and nurses, and activities may be happening frequently or

simultaneously. Because of this, both of the reviewed studies required systems capable of

monitoring several subjects at the same time to identify activities [23, 17]. The systems

were focused on outputting activity information for a set of multiple actors in the scene,

providing a summary or log of activities that may assist in the coordination of medical

actions such as performing chest compressions, intubation, or checking pulse.

Many related studies which used full-body views from vision sensors were focused

on detecting indoor activities of daily living. While the specific sets of activities varied

somewhat from study to study, each of these were deployed in home-like environments and

detected daily activities such as sitting on a sofa [37], eating dinner [115], or reading a

book [34]. The sets of activities are pre-defined in each case (i.e. the system is trained to
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recognize a specific limited set of activities), and the works all make use of scripted training

and test datasets.

2.1.3 Partial-body Activities

A third class of related work focused on detecting activities using vision sensors with vis-

ibility of only part of the subjects’ bodies. These limited views often complicate activity

detection since the entire posture of the subject is not able to be known by the system.

However, the trade-off usually comes with improved usability, portability, or some other

convenience to the user. For example, applications using wearable hardware are better able

to integrate into all aspects of the user’s daily routine.

A fall detection system based on a wearable camera was described in [63]. This work

differed from [12] in that it used only a partial view of the subject’s body, since the camera

was worn on the torso. This system was capable of detecting a set of three activities similar

to the full-body fall detection work, including sitting down, lying down, and falling.

Several studies applied partial-body views from a vision sensor to detect speaking

activities. These studies were concerned with identifying speakers in multi-user or noisy

environments, citing use-cases such as human-robot interaction [117, 57] and video calling

[90]. Though the recognition of the audio is important in each of these cases, the vision

sensor provides valuable information for detecting the beginning and continuation of a

speech activity, based on the movement of the subjects’ mouths. In these studies, the

detection of activities would not necessarily benefit from knowing the full-body posture of

subjects, and the closely focused view of the face was preferred for the enhanced details.

Similarly, studies were discovered which used partial-body views to detect activities

while driving. These studies had a similar goal of detecting drivers’ actions while the car

was in motion. These activities only require knowledge of the upper body posture. One

study sought to build an understanding of actions that occur as the driver completes maneu-

vers such as turning or approaching an intersection [67]. The other study was concerned
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with detecting both driving activities (steering, operating the shift level) and non-driving

activities (eating, using cell phone) [119].

As expected, many reviewed papers described systems which used partial-body views

from a vision sensor to detect activities of daily living. In these cases, the vision sensor

was attached to the subject, either a human or a robot, and computational intelligence was

applied to make a determination of the current activity being performed [56, 113]. Due

to the positioning of the vision sensors, these studies have only a partial-body view of the

subject. Unlike the studies detecting daily activities from full-body views, the partial-body

view does not provide the visual information to determine the subject’s complete posture.

These studies choose instead to exploit the information of specific objects [80, 113, 69, 74]

or other people within view [56] to detect the occurrence of an activity.

2.1.4 Discussion

Our results reveal a considerable degree of diversity in the types of activities to which ac-

tivity detection via vision sensors and computational intelligence has been applied. Over-

all, the most common type of detected activities were indoor activities of daily living

[70, 113, 115, 71, 34, 84, 37, 63, 77, 56, 69, 74]. However, we also found results focused

on detecting activities in medical settings [23, 17], in vehicles [119, 67], in the workplace

[43], and interactions with robots [117]. A conclusion may be drawn that the vision and

computational tools discussed have broad utility to intelligent systems which must under-

stand the actions of users, regardless of the particular domain, setting, or application of that

knowledge.

A drawback to the diversity of the activity domains in our results is that it remains

difficult to draw direct comparisons between methods which have seen success. A vision-

based system which performs well inside of a home may not perform well when deployed

to detect activities in an outdoor work environment. Even within the same activity domain,

we did not see a standard dataset emerging to provide a common baseline. In most of
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the studies, a new dataset was created, and little information was provided on how these

datasets were captured. Further, datasets are typically gathered specifically for the evalua-

tion of the system rather than from a truly operational deployment of the system.

2.2 Types of Vision Sensors

Our analysis revealed that several types of vision sensors have been used for activity detec-

tion. These sensors generally fell into the following four categories:

1. traditional fixed RGB vision sensors,

2. fixed RGB-depth vision sensors,

3. wearable RGB vision sensors, and

4. wearable RGB-D vision sensors

In some cases, several different devices were used either in concert or separately to

provide the best results. The following subsections discuss the use of each of these types

of hardware.

2.2.1 Fixed RGB Vision Sensors

Traditional RGB cameras come in a variety of styles, configurations, and sizes, and have

been a frequent choice for vision-based activity recognition applications. The vast majority

of related work incoporated one [117, 90, 16, 113, 95, 116, 71, 34, 84, 57, 23, 119] or more

[70, 17, 67, 43] fixed (i.e. non-mobile) RGB vision sensors. In each of these studies,

the vision sensors were statically deployed in the environment within which the recognized

activity is taking place, providing a third-person view of the subject(s). Within the category

of stationary RGB cameras we see variation amongst the types and number of devices used,

depending on the specific challenge being addressed.
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One challenge that researchers face when using fixed (stationary) RGB vision sensors

is a limited view of the environment, either due to a limited view angle or due to occlusion

by objects. However, some researchers have been able to alleviate this issue. For example,

some studies used multiple cameras simultaneously to provide a more complete view of the

monitored environment. In [70], a camera network was used to provide a comprehensive

view of several seating stations within one room. The system mimics a home environment

where activities such as dining, studying, and reading may be expected to occur in distinct

locations. Individual camera nodes may provide sub-decisions, but communication be-

tween all nodes leads to a final result. Other studies that used multiple cameras examined

differing use cases. For example, in [43] multiple cameras were deployed with partially

overlapping viewpoints in order to provide complete coverage of activities that transpired

in a loading dock. This allowed detection of multiple activities occurring in parallel at a

given time. Multiple cameras were also used in [67] to provide detailed images of the face

and hands of a subject driving a vehicle to analyze the coordination of the head and hands

while maneuvering the vehicle. The cameras were positioned to optimally capture the rel-

evant areas of the subject while excluding irrelevant details such as the dashboard or the

passenger section of the car.

Our investigation also showed that researchers have found it possible to achieve an

enhanced perspective without the use of multiple cameras. Two related studies incorpo-

rated omni-directional vision systems into the design of their activity recognition systems

[95, 116]. These cameras map a complete 360 degree view onto a typical two-dimensional

intensity image, providing full monitoring of an area with a single hardware device, typi-

cally mounted overhead in the center of the space. Though this results in a distorted image

due to the 360-degree perspective, the image may still be processed and human postures

are still reliably discernable [95]. A similar single-camera experimental setup is shown

in [116] to effectively monitor an entire panoramic view of a room. The omni-directional

vision device is capable of monitoring activities occurring in a seating area and four areas
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of entry or exit to other rooms.

A challenge in detecting activities with fixed RGB vision sensors is the lack of depth

information from the scene. That is, only two dimensions of data are recorded, leaving out

potentially valuable information about the movement and positioning of objects. However,

traditional RGB cameras (which do not directly record depth information) can recover ap-

proximate depth information when used in pairs as a stereo camera. A depth dimension may

be constructed by comparing the perspective of each camera given the predetermined dis-

tance between them. Two of the studies included in our review take this approach [57, 17].

In [17], depth information from a stereo camera is exploited to detect the background in

each frame and subsequently remove it, leaving only foreground objects for consideration

in activity recognition. Depth information from stereo cameras has also been used to de-

termine distances between multiple subjects in the same area [57]. The precision afforded

by the depth information allows for improved facial tracking and differentiation between

subjects in closer proximity to one another, improving the overall ability to differentiate the

active speaker.

2.2.2 Fixed RGB-Depth Vision Sensors

As previously discussed, traditional RGB vision sensors record only a two-dimensional

mapping of the three-dimensional environment. This is an important limitation because it

is not possible to reconstruct the third dimension with high accuracy without the use of a

standard vision system that integrates multiple vision sensors to provide different perspec-

tives of the same area (i.e. a stereoscopic camera).

An alternative approach to providing depth information from a stereoscopic RGB vi-

sion sensor system is to use an RGB-Depth vision sensor. These sensors incorporate a

traditional RGB camera, an infrared (IR) camera, and an IR projector. The IR projector

projects a pattern of IR light onto the scene which is recorded by the IR camera to deter-

mine depth. The depth measures are combined as an extra channel of information with the
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image captured by the RGB camera. Several studies within our sample used RGB-D vision

sensors [12, 115, 5, 120, 37, 77].

The systems described in [77, 115] detect activities based on sets of joint features

describing the flexion, extension, rotation, or position of a variety of human joints. The

additional depth information from the vision sensor is required in this case to provide the

necessary inputs to the recognition algorithms. [37] describes a similar approach where

digitized three-dimensional skeletal and joint models are extracted from the depth images

captured by the sensor and then used to detect activities based on a statistical Markov

model. A multi-modal sensing system built a human motion model in [5]. An RGB-D

vision sensor is paired with wearable measurement devices (IMU, gyroscope, accelerom-

eter) to observe motions, and determine situations in which each device is better-suited to

capture the data.

We also found that depth information may benefit systems that need to distinguish be-

tween multiple subjects. An RGB-D vision sensor was used in [120] to provide biometric

identification of users based on bone lengths. The authors acknowledged that while previ-

ous work indicates that fingerprints or iris scans are more reliable means of identification,

the model built by an RGB-D sensor is much more user-friendly and allows passive user

identification from a distance, which may be important in a dynamic multi-user environ-

ment such as a workplace.

In addition to the extra dimension of positional input data, another convenience pro-

vided by the use of an RGB-D vision sensor is improved performance in poor lighting

conditions. While RGB vision sensors may have difficulty properly adjusting exposure and

maintaining a clear image in bright or low light, the IR projectors and cameras in RGB-D

vision sensors provide a consistent result in most lighting conditions since they are not sus-

ceptible to changes in visible light and have an integrated source of IR light to illuminate

the scene. [12] demonstrates this and gives a comparison of human silhouette extractions

using a webcam with an IR filter and an RGB-D vision sensor in an eldercare facility. The

15



RGB-D sensor is shown to be effective, though the depth information begins to degrade as

the subject moves farther from the vision sensor (due to natural scattering of IR light from

the projector over this distance).

2.2.3 Wearable RGB Vision Sensors

A drawback to all of the RGB and RGB-D vision sensors discussed to this point is that

they are not portable. They only record data within a fixed environment, which may not

be sufficient for all use cases. For example in an indoor environment, if the person moved

away from the room in which the sensor was placed, the system would fail to raise an

alarm if the person fell down. Since many rooms may pose a high risk of falls (bedrooms,

bathrooms, staircases, kitchens), providing full coverage is difficult. For this reason, many

related works use wearable sensors to enable systems to detect and recognize activities

wherever the user travels.

Many examples can be found which incorporate wearable vision sensors [83, 63, 56,

14, 69, 110, 30, 98, 42]. In all of these, the vision sensors were placed on the subject to

provide a first person view of the activity being performed. In many cases, this meant that

features describing the posture and joints of the subject were no longer available because

they were out of view. However, the first person view provides an opportunity to identify

objects that the wearer interacted with [80, 83, 69, 30], people with which the wearer

interacted [56], areas of visual focus of the subject [98, 68], and estimated motion of the

subject based on camera motion [63].

In [83], a system was built to identify the action of picking an object off of a shelf in a

store. The action event was detected via non-vision (inertial) sensors, but the identification

of the specific object was accomplished by a wearable camera worn on the user’s wrist.

This illustrates how wearable vision sensors may be used to narrow the focus of the input

data by intentionally choosing the placement of the camera on the subject.

In other cases, the wearable vision sensor can provide information about specific hand
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gestures instead of objects with which the subject is interacting. This is demonstrated in

[14], where a vision sensor embedded in a pair of glasses provided a view of the subject’s

hands. Hand gestures were recognized and the gesture was applied to the object in the

center of the subject’s gaze. The glasses and hand gestures presented a natural means of

interacting with the system which would not be achievable with a stationary vision sensor.

A final use case we found for wearable vision sensors was to describe the motion of

the subject wearing the device. When mounted in a fixed position on the body, movement

recorded by the sensor across temporal image sequences may be attributed to motion in that

part of the body, supplying information about both the environment in front of the subject

as well as the posture of the subject without the subject being directly in the field of view.

In one study, an RGB sensor was worn on the subject’s trunk and the movement of the

camera was used to estimate the movement of the torso, enabling the detection of sitting

and lying down without any part of the torso in view [63]. This is a good example of how

wearable sensors may be used to capture derivative information from the scene, in addition

to information of objects or subjects that are directly within the view of the sensor.

2.2.4 Wearable RGB-D Vision Sensors

Very few studies are found which employed wearable RGB-D vision sensors for the pur-

pose of activity recognition. The approach described in on study was based on knowledge

of object interactions, and a robot (rather than a human) was equipped with the wearable

RGB-D vision sensor [56]. The purpose of the study was for the robot subject to become

aware of the activity it was performing by using knowledge of nearby objects. The wearable

sensor was used to detect the objects interacting with the robot’s hands, and that data was

fused with position and joint features provided from the robot’s operating system, taking

advantage of the availability of both object and posture data.
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2.2.5 Secondary Sensors

In our survey of related work, secondary non-vision sensing devices were soemtimes used

to enhance the data captured by the vision sensor [117, 83, 90, 113, 5, 71, 120, 57, 56].

Multiple studies used a microphone to assist in voice activity detection along with the vi-

sion sensors [117, 90, 57]. The vision sensor was important to these studies for identifying

the speaker in the observed space, and the microphones were used to provide auditory data

which can provide extra confidence in the number of voices occurring at a given time.

Other reviewed studies made use of smart watch devices to provide wrist motion features

as input to computational intelligence methods [83, 120]. In [113], radio frequency iden-

tification (RFID) tags were applied to objects and the RFID device was used to correlate

vision sequences with proximity to objects in the environment. [71] combined an ear-worn

accelerometer with a vision sensor and extracted non-overlapping discriminatory features

from each device to detect activities. Similarly, [5] paired a vision sensor with an IMU

device. The IMU device provided finer details of the motion the subject performed, al-

lowing the activity detection to be fine-tuned based on the speed of the movement. These

studies demonstrate situations in which multiple sensing devices and/or different sensing

modalities may combine to provide a richer dataset for activity detection.

2.2.6 Discussion

In our survey of related work, we found a variety of vision sensors, including both fixed and

wearable RGB and RGB-D sensors. We found that there were significant variations on the

use and implementation of each of these, including special cases such as omni-directional

or stereoscopic sensors. Our results indicate that each of these pieces of hardware are

capable of providing positive results in activity detection when used with computational

intelligence, though the choice of hardware requires careful consideration of the objectives

of the system.
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We note that the choice of vision sensor is largely dependent on two factors - 1) the

scene in which activities will take place and 2) the types of activities that need to be de-

tected. Wearable sensors are frequently chosen when the scene is not a fixed location (i.e.

the activity may occur in any location in which the user is present) [14] or when objects

within the user’s perspective are more important than the overall posture or positioning of

limbs and joints [14, 56, 83]. When choosing between RGB and RGB-D sensors, RGB-

D sensors are a common choice when differentiation of activities seemingly necessitates

precise three-dimensional data [77, 37] or when lighting conditions may affect the perfor-

mance of visible-light-based RGB sensors [12].

2.3 Computational Intelligence Methods

Our analysis of related work indicated that a wide variety of computational intelligence

methods have been used with vision sensors for the purpose of activity detection. We

categorized studies by algorithm and found the use of both supervised and unsupervised

methods. In general, supervised methods are a frequent choice when the desired output

from the system is an explicit activity label from a set of predefined activities. Applications

which need only to detect the abnormality of an activity often turn to unsupervised intel-

ligence methods since these methods do not require the manual annotation of truth data,

which can be time consuming. We review both methods in relation to the use of vision

sensors and activity detection below.

2.3.1 Stochastic Modeling

Many of the reviewed studies employed some variant of a stochastic process model [84,

37, 57, 23]. The activity detection capability of a multiple vision sensor network described

in [84] was demonstrated by a Markov model showing regions of activity across multiple
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rooms with transition probabilities determined by a collected dataset. In another case,

a large composite Hidden Markov Model (HMM) comprising smaller HMMs was built

in [37]. The smaller HMMs individually specified the states within just a single activity

and contained transitions back to a common initial and final state. The larger HMM was

composed by allowing transitions between the common initial state, which represented

transition between the smaller individual activities. The HMMs were trained on features

representing the skeletal structure of the observed subject. In a different application of

the Markov property, a Markov logic network (MLN) was employed in [23]. The MLN

was driven by an activity grammar that described steps within an activity, and formed

relationships between predicates and objects (e.g. “stethoscope approaches patient”). A

Langevin process model, rather than a Markov model, was used in [57]. This work fused

visual and audio data to determine speaking activities and identify speakers in a multi-user

environment.

2.3.2 Fuzzy Logic and Clustering

Activity detection methods based on fuzzy logic were also used in several of the reviewed

studies [12, 95, 115, 5]. Fuzzy methods introduce degrees of truth, rather than binary

decisions. Fuzzy C-Means clustering was used in [115] to turn training posture feature

vectors from an RGB-D vision sensor into fuzzy rules to support classification via type 2

fuzzy logic. An extension of Fuzzy C-Means clustering, Gustafson-Kessel clustering, was

used to cluster silhouette and image moment features to recognize activities using RGB-D

sensors [12].

In addition to fuzzy clustering, we also found other applications of fuzzy logic. Inputs

from an omni-directional vision sensor were recorded in terms of fuzzy variables in [95].

The use of fuzzy variables improved the performance of the activity detection around the

discretizing borders when compared with previous work using Bayesian methods [46].
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2.3.3 Bayesian Methods

Our survey also included studies that used Bayesian methods to detect activities [70, 117,

113]. [70], which employed a network of several vision sensor nodes, proposed a greedy

structure learning algorithm based on the Bayesian Information Criteria (BIC). Each sensor

node built a Bayesian network to learn activities for which the node was a candidate for

detecting. Candidate nodes contributed data to the network to make a final determination

of an activity. The distributed approach allowed sub-decisions to be made at the node level,

which positively impacted the fault tolerance of the network.

A Dynamic Bayesian Network (DBN) was used in [113] to automatically acquire

models of activities and objects that are involved with them. The DBN was formed from

internet-based knowledge repositories, object information, visual frames, and RFID inputs.

Learning was done in an unsupervised manner so that data did not need to be labeled

(except for the purpose of testing).

A third study used a Bayesian network to perform voice activity detection from a

combination of RGB video and audio data [117]. The inputs included the log-likelihood of

silence in audio data calculated by a speech decoder, a feature based on the height and width

of the lips as captured by the vision sensor, and the confidence that a face was detected in

the visual data. Probabilities for the Bayesian network were obtained from a Gaussian

Mixture Model (GMM) trained in advance on a separate set of training data.

2.3.4 Gaussian Mixture Models (GMM)

Gaussian modeling, another probabilistic method, was also used in the examined studies

[71, 34, 116]. In [71, 34], GMMs were used to perform fusion of data from multiple sensors

for the detection of activities. The models were based on data provided by a vision sensor

and an ear-worn accelerometer. Vision sensors provided features such as bounding box

aspect ratio and eigenvectors of silhouettes, and average optical flow within the blob, while
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the wearable device provided information on the tilt and movement of the head. [116]

used Gaussian distributions to build spatial and temporal models of activities. Using the

combination of these models, activities were determined to be either normal or abnormal.

Recorded activity information was then used to update the models.

2.3.5 Neural Networks

Deep learning and neural networks were used for activity detection in multiple of the re-

viewed studies [56, 90, 41, 61, 54, 110]. Multiple types of Recurrent Neural Network

(RNN) structures were used in [56]. These structures were shown to be well-suited to

performing classification based on sequential video frames. Convolutional layers of the

networks operated on pre-processed visual frames which were later combined with joint

features as input to a Long Short-Term Memory (LSTM) layer. The LSTM layer deter-

mined when a tracked hidden state should be updated, contributing to the strong perfor-

mance of the system against the temporal video data. Similar positive results were shown

against temporal data in [90], where audio data was input to deep learning detectors after

visual sensor data was used to detect speaking activities. Speaking activity was visually

detected by analyzing motion near the mouth.

2.3.6 Other Methods

The previously discussed methods account for a majority of the computational intelligence

methods found in the examined studies. However, a variety of other methods were also used

to detect activities using vision sensors. A simple decision tree was used in [83] to detect

the single activity of picking an item from a shelf. In another study, the K-means clustering

algorithm was used to cluster unlabeled skeletal features into differentiable activities [77].

A more complex density-based clustering algorithm was used in [16] to detect rare

activities using binary space-time descriptors. Two of our included studies used a Random
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Forest classifier to detect driving activities [119, 67]. These were the only studies in our

results to use this method.

2.3.7 Discussion

We found that numerous computational intelligence methods have been used with vision

sensors to detect activities. As with the choice of vision sensor, this may be driven by

the set of activities that need to be detected. In applications requiring only a measure of

normality for an activity (e.g. normal vs. abnormal) rather than a specific classification of

the activity in a given set, clustering methods are shown to be robust [16]. In applications

where activities of daily living are detected, we see several distinct methods including

Bayesian methods [113, 70], Stochastic modeling [84, 37], and Gaussian Mixture Models

[34, 71]. The differences in the experimental setup of these similar studies present a difficult

comparison of methods against each other.

A commonly cited factor in the success of computational intelligence methods in clas-

sifying an activity into a predefined set of possible activities is the ability for the method to

take into account the various states within an activity. Activities typically have both spatial

and temporal components, and our results indicate strong performance with methods that

can either consider time-aggregated data, have a memory of previous outcomes, or in some

way indicate change of pose or environment over time. Examples of this are seen in neural

network and deep learning methods [90, 56], stochastic modeling methods [84, 37, 23, 57],

and Bayesian methods [113].

Comparing computational intelligence methods and the results associated with each

was complicated by the lack of consistency in reporting results. Several of the reviewed

studies failed to report an accuracy metric or the details of the datasets that were used.
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2.4 Key Takeaways

The survey of related work reveals trends in the hardware, computational methods, and

experimental approaches used to detect, classify, and describe human activities. There are a

wide variety of methods applied in different combinations to accomplish very distinct tasks,

and the field appears to suffer from inconsistency in experimental methods and reporting

of results. However, there are clear common limitations that are identified:

1. The use of black-box methods such as convolutional neural networks limits the gen-

eralizability of the related works. Many reviewed publications describe systems built

for very specific purposes and environments, but do not classify a set of activities that

is encompassing of instrumental daily activities.

2. Most of the surveyed methods offer very little in the way of interpretability of the

learned input features. As a result, classification of activities is either completely

correct or completely incorrect; an unrecognized activity is given no additional con-

text or description by these systems. If input features are able to be interpreted, then

some context may be discerned about the activity even in the event of an incorrect

classification.

3. Related works acknowledge that complex activities are often defined as the compo-

sition of smaller activities in sequence, but do not address the detection of activities

at these various levels.
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Methods

This chapter describes the theory and concepts behind methods that are used throughout the

experiments that follow in later sections. Our final proposed system of classifying actions

is implemented using a Fuzzy Inference System that takes input from a variety of feature

extraction techniques described below.

3.1 Fuzzy Inference Systems

Fuzzy Inference Systems (FIS) are a type of decision making system that accepts a set of

inputs, processes them according to a set of rules, and produces an output decision. Unlike

other types of classifiers or decision making systems, FIS uniquely model the ’fuzziness’

of truth values that are encountered in real-world applications. A huge advantage this pro-

vides over current state-of-the-art techniques, such as machine learning and deep learning,

is the ability to clearly apply intuition and interpretation of the problem domain to the per-

formance of the system. While other machine learning techniques adapt inputs to a feature

space that is not clearly interpretable or meaningful outside the system, the FIS is built

around a set of rules and linguistic labels that retain meaning. For this reason, our solution

is implemented as a FIS.

The two common types of FIS are Mamdani [64] and Sugeno [99]. In this work, we

discuss Mamdani-style inference.

The variables in a fuzzy system are called fuzzy variables (as opposed to crisp values
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found in systems employing traditional binary logic), and take on levels of truth rather

than precise numeric values. The levels of truth are defined linguistically. For example,

in a fuzzy system, a temperature variable may be defined to take values in the set [‘cold’,

‘cool’, ‘warm’, ‘hot’]. For any given crisp value, the corresponding fuzzy value is a set of

membership levels in each of the terms in the set. Following the example of temperature,

a crisp value of 8 degrees Celsius may correspond to the fuzzy temperature value that has

membership levels {cold : 0.4, cool : 0.75, warm : 0, hot : 0}. Membership values are

not required to sum to any given value (though they each typically exist in the range [0, 1]),

and the power of fuzzy systems comes from ability to have membership in multiple terms,

which is not possible in Boolean systems.

3.1.1 Fuzzification and Defuzzification

In order to determine membership levels of fuzzy variables, membership functions exist

for each linguistic term in the set to define a mapping of crisp values to amounts of mem-

bership in the fuzzy terms. Figure 3.1a illustrates membership functions for the example

temperature variable. It is often the case that membership functions overlap - if they did not,

then values will only have membership in one term, which is essentially the same case as

Boolean logic. The overlapping regions provide membership in multiple fuzzy terms. This

is a critical distinction for fuzzy systems and allows a variable to express some uncertainty.

Membership functions can take any form or shape, but are commonly triangular or

trapezoidal. More complex functions, such as Gaussian curves are also common candi-

dates, especially when the problem domain is based on probability or statistics [6]. Much

like the choice of activation functions in a neural network depends on the specific problem

domain, the choice of membership functions may be driven by the domain to which the FIS

is being applied.

Before a FIS can operate on input data, it must transform crisp input values into the
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(a) Example membership functions for the fuzzy
variable temperature

(b) Fuzzification of the crisp value 10 degrees to
a fuzzy temperature value

(c) Defuzzification of a fuzzy temperature value
to 22 degrees.

Figure 3.1: Illustration of membership functions, fuzzification, and defuzzification process.
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fuzzy value space, i.e. map the values into the membership functions. The process of trans-

forming crisp numeric values to the fuzzy values is referred to as fuzzification. Similarly,

the output of the FIS must be transformed back to crisp values for most applications. This

reverse process, transforming a fuzzy value back to a crisp value, is called defuzzification.

Each of these processes are illustrated in 3.1b and 3.1c.

Fuzzification is performed by evaluating each membership function for a variable on

the crisp input. The resulting output of the membership function indicates the crisp value’s

level of membership in that particular variable. The crisp value is represented by the set

of membership levels from all membership functions in the set, as shown in the earlier

example.

Defuzzification requires the combination of multiple membership levels to be reduced

to a single crisp value. There are many methods for accomplishing this, and the selection

of defuzzification method greatly impacts the results produced by the system. Common de-

fuzzification methods include maximum membership, centroid, and bisector of area. The

maximum membership method simply discards all but the highest membership term, and

returns a scalar falling in that membership function (most commonly, mean-max member-

ship is used to return the mean value of the range of the membership function). This means

that for a given fuzzy variable, the same scalar will be returned in every case where that

membership term is the maximum, regardless of what the membership level was. More

complicated methods are based on the area under each membership function. For exam-

ple, the centroid method returns the geometric centroid of the shape formed by the area

under all of the membership functions, as illustrated in 3.1c. Similarly, the bisector of area

method considers this shape and returns the point that bisects the area. These techniques are

capable of returning a continuous range of crisp values, unlike the maximum membership

method.

28



3.1.2 Fuzzy Rules

In this work, we use only Mamdani-type inference in which all variables are expressed as

fuzzy sets. Rules in a Mamdani-style inference system are expressed in the form “IF X

is xi and Y is yj THEN Z is zk”, where X , Y , and Z are each fuzzy variables and xi, yj ,

and zk are terms belonging to the fuzzy sets. An example in a fuzzy system controlling a

thermostat might be “IF outsideTemp is cold and indoorTemp is low THEN heatSetting is

high.” Rules may be conjunctive or disjunctive and may contain any number of operands

in the rule.

During the evaluation of a rule, the level of membership of the input terms are con-

sidered to determine the strength of membership of the output. The Fuzzy ‘and’ operator

results in the minimum level of membership strength between the operand terms being

passed to the output. By contrast, the fuzzy ‘or’ operator results in the maximum level of

membership strength between the two operands being passed to the output.

To illustrate the evaluation of rules, consider the previous example “IF outsideTemp

is cold and indoorTemp is low THEN heatSetting is high.” Let outsideTemp[′cold′] =

.35 and let indoorTemp[′low′] = .1. The rule is evaluated as heatSetting[′high′] =

min(.35, .1) = .1. The final output of the fuzzy system depends on the evaluation of the

rest of the rules in the system and the defuzzification method used.

3.2 Genetic Algorithms

Genetic algorithms (GA) define a process for evolving high-quality solutions to a problem

by mimicking the biological processes of natural selection and mutation [47]. This process

is often applied to large optimization problems as a means to approximate an optimal so-

lution. Genetic algorithms begin with a set of sub-optimal solutions (the population) and

iterate through generations of offspring, evaluating generated child solutions against a fit-

ness metric. By allowing the most fit solutions to combine and replicate at each generation,
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the final population will represent higher-quality solutions than the initial population.

The structure of fuzzy systems, whose performance is dictated by a number of mem-

bership function parameters and rule sets, makes them natural candidates for optimization

by a GA. There is much support in related literature for applying genetic algorithms to

fuzzy systems [96, 50, 102].

3.2.1 Chromosome Encoding

Candidate solutions in a genetic algorithm must be expressed as a set of properties (chro-

mosomes) to facilitate the reproductive process. The method of encoding properties of

a solution into chromosomes is highly dependent on the particular problem to which the

GA is being applied. Popular choices include value encoding (e.g. binary, hexadecimal,

real-valued) which directly encodes values in an equation or system into different genes on

the chromosome, permutation encoding which encodes the ordering of properties into the

chromosome, or tree encoding which encodes tree or graph properties of a solution with a

complex or graph-like structure (e.g. when using a GA to write an algorithm based on a

graph of operations) [52].

Since membership functions within a fuzzy system are easily expressed as sets of real

values (e.g. for a triangular membership function, a triplet of real values (x1, x2, x3) define

the function), the genes within the chromosomes representing fuzzy systems typically use

simple value encoding. This allows the GA to evolve the solutions by altering the structure

of membership functions within the system. Fuzzy systems are commonly initialized with

rules based on intuition applied to the problem domain, but the mapping of crisp input val-

ues to fuzzy terms (i.e. the boundary of membership functions) is not always immediately

clear. The GA approach provides support for finding appropriate boundaries for the terms.

Additionally, GA optimization may find unnecessary terms by evolving a higher-quality

solution in which one membership function completely envelopes another. In this case,

the GA is capable of optimizing the structure of the system in addition to fine-tuning the
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membership parameters.

3.2.2 Reproduction of Individuals

The primary operations by which subsequent generations of a population are created by a

GA are crossover and mutation. These genetic operations mimic biological reproduction

and accomplish two goals: 1) the preservation of good features in the population (i.e. fea-

tures which contribute high fitness), and 2) the introduction of random mutations (i.e. new

features) into the population.

Crossover is the process of selecting genes from each parent to build a chromosome

for a child. Since only one parent may contribute a given gene, the method of mixing these

genes can greatly impact the performance of the GA. Single-point crossover is performed

by choosing a random point along the chromosome and including all genes from the first

parent before the crossover point, and all genes from the second parent after the crossover

point [47]. This process generalizes to k-point crossover, where any number of points may

be selected to alternate between genes from each parent. For real-valued gene encoding,

different forms of blend crossover, where child genes are determined by some operation

incorporating both parent values (such as averaging), may be used instead [35]. However,

the success of blend crossover depends on the level of correlation between output variables

in the fitness function. Additional techniques may be required in non-separable cases [103,

19].

The crossover operation alone investigates solutions in new regions of the solution

space. However, to fully mimic evolutionary processes and introduce some amount vari-

ability into the population, GA optimization also implements the mutation operation. Af-

ter crossover is performed, mutation introduces new genetic information with some pre-

determined probability. Mutations help to ensure that the population of individuals does

not become entirely homogeneous and converge in a sub-optimal solution space [47]. The

implementation of mutation is dependent on the chromosomal structure. Real-valued genes
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may mutate by increasing or decreasing in value within some allowable range of the origi-

nal value. Binary-encoded genes may mutate by simply flipping a bit in the target gene.

3.2.3 Evaluating Fitness

In each generation of the GA, the population is evaluated against a fitness metric to de-

termine the most fit solutions. The fitness function represents the problem the GA is at-

tempting to optimize. Fitness functions typically include accuracy, precision, recall, and/or

cross-entropy, as would be expected in the training of any classifier. After evaluating each

individual, the fitness may be used to inform which individuals are dropped from the pop-

ulation and how likely each individual is to reproduce. Techniques like roulette-wheel se-

lection or tournament selection are popular choices that reward fit individuals with a higher

probability of mating [121]

3.3 Optical Flow

Several of the input features to our proposed fuzzy system are derived through optical flow.

Optical flow is a category of algorithms that take two frames of video as input and provide

an estimate of the motion vector for pixels in the frames, allowing for the approximation of

the movement of objects in the video. For our activity recognition system, which is built

on the theory that objects are a key indication of activities being performed, the movement

of objects in the view of the actor is a key piece of information.

The motion estimation can be computed for every pixel in the input (dense) or for

a specific subset of pixels which have been identified as being important (sparse). The

motion estimates for pixels are computed by considering the linear displacement of cor-

responding pixels in the two frames as shown in Figure 3.2. The optical flow algorithm

provides an estimation of the vector < dx, dy >.
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Figure 3.2: The pixel specified in the first frame at time t, I(x, y, t), translated by (dx, dy)
units and is located at I(x+ dx, y + dy, t+ dt) in the next frame at time t+ dt.

To compute optical flow, it is necessary to assume that pixels in the image I(t) have

equal intensity in the image I(t + dt) for small values of dt. This is valid in practice

because a small dt represents a time difference where the appearance of the object and

lighting conditions are unlikely to change drastically. Based on this, we can set the equation

for each pixel in the two images as equal (known as the constant intensity assumption):

I(x, y, t) = I(x+ dx, y+ dy, t+ dt). This equation can be solved for the resulting motion

vector using polynomial expansion, Taylor series approximation, and a variety of other

methods [36, 48, 62].

3.4 Convolutional Neural Networks

In order for our proposed system to build an understanding of which objects are being in-

teracted with, we rely partially on information about the actor’s hands in relation to objects

around them. We assert that most activities occur as interactions with objects in an envi-

ronment, and hand position is a strong indicator (from a first person perspective) of which

objects are being interacted with. To this end, our system uses a convolutional neural net-

work to determine hand location as input data to our FIS.

Neural networks are a set of machine learning techniques inspired by the structure of
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the human brain, where input data results in the stimulation of neurons, which in turn leads

to information being passed on in a network of other neurons, which eventually lead to an

intelligent output. Neural networks are composed of a variable number and type of layers of

neurons (nodes) which are activated when the input they receive exceeds a threshold value.

The activated neurons pass data through the layers of the network, performing various

operations at each layer, until the output layer is reached. The weight given to each layer

or neuron in determining the output is learned by the network through a training process.

Neural networks can be used to classify and cluster data very efficiently, as they are very

good at approximating complex functions.

Convolutional neural networks (CNN) are a special class of neural networks that con-

tain convolutional and pooling layers. They are designed to learn spatial relationships of

features in an input, which has lead to their popularity in applications such as computer

vision and natural language processing [65].

Unlike more traditional neural networks, where features are extracted from data prior

to feeding inputs to the network, CNN’s expect raw data and produce the features within the

network. Features are extracted through convolution operations, which involve computing

a kernel function as it slides over a provided input. The kernels functions are learned

parameters of the CNN, and each kernel theoretically serves to extract a different type of

feature. While the user of a CNN does not specify the features and kernels, visualizing the

trained kernels on images often reveals that features learn to extract similar information to

traditional features, such as color, edge, and texture descriptors.

In addition to convolution layers, pooling layers are used within the network to reduce

the dimension of features extracted in later layers. Pooling is an operation that condenses

information within a neighborhood of each data point, through operations like averaging

or taking the maximum value. The result is that convolutional layers deeper in the network

have lower dimensionality, and therefore represent more abstract features about the input

than earlier layers [118]. This allows CNN architectures to perform robust detections on
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data that may require knowledge of features that have varying spatial or temporal correla-

tions by extracting features at multiple resolutions.

3.4.1 MobileNet

In the field of CNN’s, there are several commonly used and notable architectures, includ-

ing AlexNet [51], ResNet [45], and VGGNets [97] among others [55]. These models

have gained popularity for solving different challenges within CNN’s, such as optimiz-

ing network size or speed, efficiency of training, or overall performance in specific types of

tasks. The hand detection network included in our proposed solution uses the MobileNetV2

[89] architecture. This network is specifically designed for low-resource applications, such

as mobile or edge computing while retaining accuracy competitive with larger networks.

While our stated goals for this work do not include performance optimizations, the Mo-

bileNetV2 model provides a convenient and accessible solution for an activity recognition

system that may someday have such constraints.

Our MobileNetV2 model uses a version of the Single Shot Detector (SSD) [60],

specifically the Feature Pyramid Network (FPN) [58]. While traditional object detection

models approach detection by proposing bounding boxes, then resampling features for each

box, and finally applying a classifier to each box, the SSD method eliminates bounding box

proposal and the feature resampling steps by producing predictions of different scales using

features maps of different scales, computing the information in a single pass through the

network. The accuracy of SSD is shown to be more accurate than previous state-of-the-art

while being much faster.
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Experiments and Results

This chapter describes the experimental methods and results achieved in the process of

resolving the research questions posed earlier.

4.1 Gait Speed Comparison from Wearable Camera and

Accelerometer Vest in Structured and Semi-Structured

Environments

To address our first research question (Can wearable sensors be used to unobtrusively

monitor activities of subjects in a semi-structured environment?), we limited the scope

of activities to a single activity - gait. By considering only a single activity, much of the

complexity of the problem was eliminated, instead focusing on determining the ability of

various sensors to describe the parameters of the activity in semi-structured environments,

i.e. home-like, controlled, indoor setting without the visual noise of environmental motion

found in public settings. While the focus was on a single activity and the primary concern

was validating the use of wearable sensors - in particular, vision-based sensors - for activity

recognition, this work still presented potential for meaningful outcomes due to the strong

correlations of gait quality to a number of medical concerns. This work was described in

[94]. A modified version is provided below in this section.
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4.1.1 Overview

Gait analysis is an area of research that has seen an increasing focus due to its applicability

to a wide range of age-related health issues which may impact the growing elderly popula-

tion [78]. For example, Beauchet et. al found evidence that dementia can be predicted by

poor gait performance [15]. Similarly, Valkanova and Ebmeier show that evidence strongly

supports a relationship between gait and impairment of cognitive functions in patients with

mild cognitive impairment and Alzheimer’s disease [104]. These findings illustrate the

potential of using gait analysis in detecting symptoms of age-related illnesses.

While many objectively quantifiable gait parameters could be used for effective de-

cision support and automated monitoring, the simple measure of gait speed has shown to

be an accurate predictor of mobility, health, and even mortality [3, 106, 38]. Gait speed is

thus a critical parameter for evaluating the utility of candidate gait analysis systems. There-

fore, the goal of this study was to determine the feasibility of using our wearable system,

comprising an affordable and non-invasive wearable camera and computer-vision based

processing methods, to classify the gait speed of healthy individuals. Samples of gait were

collected at three self-determined over-ground walking speeds (slow, medium, fast). Since

accelerometer-based methods have been successfully used to quantify gait, we deployed

an accelerometer near the subject’s right hip for the purpose of providing a direct point of

comparison for our system to a more widely-used device. We also compared the capabili-

ties of both devices to a research-grade optical motion capture system which represents the

“gold standard” for gait analysis. The comparison to both another previously studied wear-

able system and a high-precision standard provides validation for using our single-camera

system for gait analysis tasks.

Expensive laboratory-based gait analysis systems can provide extremely robust quan-

tification of human gait and locomotion. For example, highly precise three-dimensional

motion capture systems have recently been used to study detailed gait features across age

groups in healthy individuals [27] as well as individuals with Parkinson’s disease [29] and
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Alzheimer’s disease [87]. While these systems can often provide an in-depth description of

gait, they are not feasible for the use-case of continuous monitoring due to their size, com-

plexity, and cost. Continuous monitoring of patients in their natural environments during

everyday activity provides a more constant and natural sampling of gait activity, enabling

the detection of changes in performance over time. Additionally, user-friendly and lower

cost pervasive health monitoring systems reduce the burden on patients to make trips to a

physician’s office, which may be especially cumbersome for the elderly.

Recent work focused on providing convenient, in-home solutions for activity recogni-

tion, eliminating the need for a laboratory setup. Video-based methods may offer inexpen-

sive solutions with performance similar to more sophisticated motion capture systems or

floor sensors [107], but suffer from obstructed line-of-sight within the home environment.

Audio-based systems have also been used to analyze gait in indoor environments [40, 7].

While both audio- and video-based systems have shown promise, their use is limited to a

specific preconfigured location. To overcome these issues, gait analysis is also being per-

formed with wearable devices, such as smart watches [100], shoe-based wearable sensors

[66], and wearable accelerometers [39, 44, 32, 28]. By instrumenting the subject instead

of the environment, the systems become portable and problems such as line-of-sight ob-

struction can be avoided. While these solutions provide promising results for gait analysis,

they tend to be either still too complicated for in-home use (e.g., due to the number of com-

ponents), or incapable of matching the level of precision and capturing gait performance

as comprehensively as laboratory-grade motion analysis systems. Thus, there are trade-

offs between accuracy and cost for laboratory-grade motion analysis systems and in-home

wearable systems for gait analysis.

Our system used a single head-worn camera to collect first person video. Using com-

puter vision techniques, we were able to extract optical flow output from the video that

mimics the ability of a low-resolution accelerometer to register movement parameters [92].

A benefit of a vision-based sensor such as this is that the video data can provide addi-
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tional context to the in-home monitoring scenario. For instance, if an unexpected event

occurs with respect to gait speed, the monitoring system could notify additional automated

or manual review processes to analyze the specific related video segment and determine

whether the event was a clinically significant event, such as a fall, or simply an abrupt

stop. It may also be possible to analyze the coarse direction of the subject’s visual attention

while walking and to identify objects that are being interacted with - a key capability that

is exploited in the FIS described later in this document - or other factors that may impact

gait performance. Methods based entirely on accelerometer or pressure sensors are unable

to explain variations or interruptions that are seen in daily gait activities and would not

be able to inform further analysis processes. While vision-based in-home monitoring sys-

tems may raise privacy concerns by recording subjects and others in their home, automated

methods of processing the video upon recording would eliminate the need to store the raw

video, mitigating the privacy risk. The storage or transmission of computed motion-based

features removes all identifying information as these features are essentially equivalent to

those recorded by inertial sensors, which do not raise the same concerns.

Our previous work based on the use of a wearable camera (and accelerometer for

comparison as a well-established device) involved collecting data from subjects on a tread-

mill [91]. However, limiting the data collection to occur on a treadmill was an artificial

constraint, especially for the in-home use-case being described. In this experiment, we

remove the limitation and also investigate the impact of changing this aspect of the experi-

mental design to incorporate semi-structured, natural, over-the-ground gait sequences from

nineteen participants.

4.1.2 Data Collection

Accelerometer, motion capture, and first person video data were collected from nineteen

participants as they walked over ground six times, covering a distance of four meters, in a
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Figure 4.1: The motion capture laboratory in which data was collected from participants

Figure 4.2: Placement of Sensors on Subject and Alignment of Axes Between Sensors

large motion capture laboratory. The space was free from any physical obstructions such as

furniture or walls (Figure 4.1). The participants were healthy college students ranging from

18 - 21 years old. Ten of the participants were male and the remaining nine were female.

Participants were instructed to walk at three self-determined speeds: slow, medium, and

fast. Categorical speeds were used for multiple reasons. First, as participants were walking

over the ground, and not on a treadmill, it would have been difficult to adequately control

gait speed. Second, the time series data from inertial sensors and the processed video

features indicated the frequency of each subject’s gait, which directly correlates to gait

speed. Estimating the continuous gait speed requires knowledge of the exact stride length
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of a subject. Categorical gait speed was thus more appropriate as slow, medium, and fast

gaits naturally correspond to an increasing step frequency regardless of stride length or

distance covered.

Each subject wore two commercial devices during data collection (see Figure 4.2).

The Pivothead SMART Architect Edition glasses [81] were used to record video of the

activity in high-defintion resolution (1920 x 1080) at 30 frames per second. The device is a

pair of eyeglasses with a camera located in the center of the glasses, above the nasal bridge,

aimed directly forward. The glasses are nearly indistinguishable in shape and weight from

a normal pair of glasses, providing a comfortable and natural sensor that is easily integrated

into daily routine with no encumbrance or health risks to the wearer. The Hexoskin smart

shirt [21, 13] was also worn, providing tri-axial accelerometer readings at 64 Hz (data

from the remaining sensors in the Hexoskin shirt were not analyzed for this study). The

accelerometer was located near the right hip on the torso of the subject inside a pocket of the

shirt. Gait data were also recorded with a 20-camera Motion Analysis Corporation Kestrel

motion-capture system at a sampling rate of 120 Hz, and motion data were processed using

Cortex v. 6.2 software (Motion Analysis Corp., Santa Cruz, CA). Each participant was

instrumented with motion capture markers according to the Cleveland Clinic marker set.

This model includes markers tracking the position of the feet, legs, trunk, arms, and head.

While the position of each marker was recorded, our analysis focused on the head marker

(for comparison to the head-worn glasses results) and estimates of whole-body center of

mass derived from the global marker set using a whole-body mass model calculated from

Zatsiorsky-Seluyanov’s body segment inertia parameters [31]. Each of the three systems

independently and simultaneously recorded the gait sequences that were performed.

The Pivothead glasses were purchased for $300 USD and the Hexoskin vest and device

may be purchased together for $499 USD, making them easily available to consumers.

While the exact price of the motion capture system is not immediately available and will

vary based on configuration, the cost of the 20-camera system is roughly $100,000 USD. A
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Figure 4.3: Mean Plots with Standard Error Bars for Recorded Features By Gait Speed

minimal set of four lower-precision cameras could be obtained for less than $10,000 USD.

Even considering the lower-cost motion capture option, the consumer-grade devices have

the advantage of being easy to use, while the motion capture system requires an expert

user, calibration of the system, and extensive instrumentation of the subject. While the

motion capture system presents an excellent means for collecting our high-precision truth

data, the cost and complexity dictate that the motion capture system will only be feasible

in a controlled clinical laboratory, and not for continuous, in-home monitoring. While we

did not investigate real-time processing, the computational requirements for data from the

single camera and inertial sensor would also be much lower than the 20-camera system.

4.1.3 Signal Processing

The intent of incorporating the glasses-style camera into the experiment was to use the

collected video to describe the subject’s head motion in two dimensions (the frontal and

vertical planes) throughout the gait sequence. Since the camera faced directly forward from

the participant, the frontal and vertical axes in physical space (relative to the participant)

correspond to the x- and y-axes of the recorded video. While the camera device collected

less data and operated at a lower sampling rate and spatial resolution than a highly accurate

3-D motion capture system, the device was extremely portable, affordable, and simple to

operate. However, the lower-fidelity visual data produced by the camera required careful
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processing in order to extrapolate information about the movement of the subject who is

not in the view of the camera. The Lucas-Kanade optical flow technique was applied to

the collected video samples in order to estimate participant motion from the videos [62].

This method produced a displacement vector for a series of significant keypoints within a

given video frame. An average vector was computed from all keypoint vectors per frame,

resulting in a single two-dimensional vector which represented the overall displacement

of the participant in each frame of video. This approach was previously validated against

other possible computer vision techniques and was found to provide the most accurate

representation of the actual displacement between frames [92].

The two-dimensional (frontal, vertical) components of the optical flow displacement

vectors were considered over time to generate two separate sets of time series data. Three-

axis time series data were also collected from the body-worn accelerometer, and head and

center of mass data (each in three dimensions) from the motion-capture system were also

analyzed. The time series data were manually separated into segments collected during

each of the six trial walks performed by each participant. The collected data were manually

segmented into six trial walks by examining the video and audio, and then recording the

start and stop times of each gait segment within the video. None of the systems directly

provided a determination of when a gait sequence occurred, though it would be feasible to

automate this detection based on the collected features and the video data. For this initial

work, such a system was not developed as the focus remained on considering only the data

recorded during known gait activities. Motion-capture data were filtered in Cortex using a

4th-order low-pass Butterworth filter with a cut-off frequency of 6 Hz, which is the default

setting for the low-pass filter in Cortex. Cut-off frequencies in motor control research

generally range from 6 to 10 Hz, depending on the behavior being observed. Given that the

observed behavior was walking, 6 Hz was much higher than the frequencies of interest and

only filtered out sensor noise.

Because the wearable devices were commercial devices which operated independently
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of each other, it was not possible to guarantee perfect synchronization of the data collection

across devices. This precluded any direct comparison of the raw time series data from each

of the sensing devices, since errors in synchronization of the collected data would nega-

tively impact any calculations. However, it is not necessary to directly compare the time

series data - gait speed alone has been shown in clinical applications to be a predictor of

cognitive disorders such as dementia [18]. To overcome the limitation on direct compari-

son between the time series data from each device, we moved data out of the time domain

and instead derived frequency-based features in the following manner.

A periodogram calculation was applied over the entirety of each walk segment for

each channel of data being considered. As shown in [92], the periodogram transformation

can be used to identify main frequencies that occur in each time series. We identified for

each time series the frequency with the highest amplitude from the computed periodogram

to serve as our gait metric. While the periodogram provides an analysis of constant gait

speed in [92] and a successful indication of gait speed in temporally short gait sequences

collected for this study, longer gait sequences containing changes in gait speed may be

better analyzed with methods that consider time locality, such as a spectrogram. For this

study we have assumed that gait speed was constant in each gait segment.

4.1.4 Statistical Analysis

The goal of this work was to determine the feasibility of classifying gait samples categori-

cally by their speed with a specific interest in the performance of the video-based wearable

system. We determined whether the collected video-based features were impacted by gait

speed in a manner similar to the features from more traditional gait analysis devices. We

used analysis of variance (ANOVA) to determine whether our gait metric was significantly

impacted by gait speed. Separate ANOVAs were conducted for each plane of motion for

each gait measurement system. Data were screened for outliers (± 2.5 standard devia-

tions from the median) prior to analysis; 6 trials were identified as outliers, all for the
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motion capture system in the sagittal plane and likely resulted from obstruction of one or

more markers from the motion capture cameras’ view. Violations of the sphericity assump-

tion were resolved by correcting the degrees of freedom of the statistical test using the

Greenhouse-Geisser method.

4.1.5 Results

ANOVA on the frequency-based gait metric derived from the eyeglass camera data re-

vealed no significant differences across gait speed conditions in the vertical plane (p = .55,

η2p = .04). However, in the frontal plane, there was a significant effect of gait speed,

F (1.49, 22.39) = 36.0, p < .001, η2p = .71.Pairwise post-hoc comparisons revealed sig-

nificant differences among all three speed conditions (fast vs. medium: Cohen’s d = 1.96;

fast vs. slow: d = 1.76; medium vs. slow: d = 0.75; all p < .05). This indicated that using

the frontal plane data (u for the glasses), the sensor was able to distinguish between gait

speeds across the three categories.

As was the case with the camera data, the accelerometer data did not discriminate gait

speed conditions in the vertical plane (p = .26, η2p = .09). There was a significant effect of

gait speed in the frontal plane, F (1.6, 23.98) = 11.43, p < .001, η2p = .43. Post-hoc tests

again identified significant differences among all three speed conditions (fast vs. medium:

d = 0.69; fast vs. slow: d = 0.99; medium vs. slow: d = 0.68; all p < .05).

For the motion capture system, we first considered data from the head marker. A

significant effect of gait speed condition was observed in the vertical plane, F (1.41, 21.1) =

160.2, p < .001, η2p = .91. All three speed conditions were found to differ significantly

according to post-hoc tests (fast vs. medium: d = 2.78; fast vs. slow: d = 3.51; medium

vs. slow: d = 2.65; all p < .001). A significant effect was also observed in the frontal

plane, F (1.25, 18.79) = 66.97, p < .001, η2p = .82. All three speed conditions were found

to differ significantly according to post-hoc tests(fast vs. medium: d = 0.78; fast vs. slow:

d = 3.11; medium vs. slow: d = 2.81; all p < .01).
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For the center of mass displacements calculated from the motion capture data, ANOVA

revealed significant effects of gait speed in each plane of motion. In the vertical plane

[F (1.37, 20.04) = 175, p < .001, η2p = .92], post-hoc tests revealed significant differences

among all conditions (fast vs. medium: d = 3.17; fast vs. slow: d = 3.64; medium vs.

slow: d = 2.69; all p < .001). Likewise, for the frontal plane [F (1.19, 17.88) = 68.52,

p < .001, η2p = .82], all pair-wise post-hoc comparisons were significant (fast vs. medium:

d = 1.06; fast vs. slow: d = 2.3; medium vs. slow: d = 3.81; all p < .05).

4.1.6 Conclusion

In this particular experiment, we evaluated the performance of a gait analysis system which

used only a wearable camera to collect two-dimensional, first person video. Optical flow

and frequency domain analysis were used to generate a dataset from video, and this dataset

was then compared to data collected with a wearable tri-axial accelerometer and a 20-

camera motion capture system. This was a crucial step to validate the use of a single-

camera wearable system against the vest device and the gold standard motion capture

system. While both of the latter devices (the accelerometer and motion capture systems)

have seen more use in the domain of wearable gait analysis than the wearable camera, the

camera-based system has several advantages including cost, simplicity, and the ability to

analyze the visual scene to provide context for the gait analysis data. Although the motion-

capture system provided superior discrimination of gait speed in all planes of motion, as

expected, the eyeglass-based camera system nonetheless discriminated gait speed signifi-

cantly and outperformed the vest-based accelerometer system. This suggests considerable

promise for its use in unobtrusive activity monitoring in a semi-structured environment.

The results of this experiment demonstrated the ability to detect a clinically significant

factor of gait performance using only a wearable camera. Additionally, the experimental

setup validated that such a device did not interfere or alter the method of performing the

activity. This was an essential outcome for positively concluding that the wearable vision-
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based device is both convenient and useful for detecting activities in an unstructured, in-

home environment.

4.2 Describing Object-centric Activities using Fuzzy Meth-

ods

To address our remaining research questions, (RQ 2: Can features extracted from first

person videos recorded in subjects’ homes be used to categorize different interactions with

objects?), and RQ 3: Can the activity identification system a) accurately describe activities

and b) handle uncertainty in the results better than current state-of-the-art methods?, we

extended the limited scope of a single activity from the previous experiment and brought

forward the use of a wearable camera and some of the input features from the first person

video. After validating the wearable device (Section 4.1), the remaining experimentation

focused on identifying the occurrence of activities based on the users’ interactions with

objects.

4.2.1 Overview

Recognizing and understanding human activities occurring in video is an important en-

abling technology to a variety of computationally intelligent systems. The spectrum of all

possible human activities is extremely broad, with great variance in both the temporal and

spatial aspects of activities. There are also visual challenges to consider - a limited first

person perspective means objects or the person performing activities may not be visible,

activities may involve a number of objects that are challenging to detect based on their

size or variation in appearance, and a moving camera may contribute noise such as blur-

ring or over/under-exposure. Visual challenges aside, these activities can be placed on a

scale of increasing complexity, with simple (or atomic) actions occurring on the low end
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of the scale, i.e. activities occurring for a short period of time or with a limited number of

movements, and highly complex or composite activities occurring on the high end of the

scale, i.e. activities which contain other simpler activities as sub-components occurring in

some order over a longer period of time. Identifying the exact point in time when an atomic

activity (e.g. picking up a spoon) turns into a complex activity (e.g. making a cup of cof-

fee) with any amount of objective precision is nearly impossible. This dilemma illustrates

an inherent amount of fuzziness in the domain of activity recognition. That is, an activity

may be described in multiple ways, at multiple levels of specificity, with each overlapping

description retaining full accuracy.

In this experiment, we sought to address the challenge of handling the natural fuzzi-

ness in activity recognition that arises from the overlapping boundaries between activities

and their definitions. We used fuzzy logic to discover object-based activities in first person

video of daily activities in kitchen environments. Using a variety of extracted features and

object annotations from the video, the system was able to describe a diverse set of activities

and provide information on the nature of activities without requiring extensive training. We

sought to describe activities more completely and reliably than current uninterpretable or

black box methods. Such a system can be used to detect activities more effectively in an

in-home setting with applications such as aging in place for older adults, or other rehabili-

tation applications. A description of a preliminary version of this system was provided in

[93].

Traditional work in the field of first person activity recognition is often focused on

exploiting information about objects in the scene in order to classify activities being per-

formed [74, 69, 80, 98, 110]. The use of object-based activity models has shown promise,

since many of the activities that people perform in their homes on a daily basis are largely

based on the use of some object. However, visual noise, such as occlusion of the objects,

negatively affects the object recognition accuracy, and thus greatly dampens the accuracy

of the activity recognition framework as it relies heavily on the identification of objects the
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human is interacting with. Related works have shown that this noise can be reasonably

handled with current object recognition techniques. Deep learning and convolutional net-

works can be very robust in classifying objects which are partially occluded or may have

changing appearance based on the state of the object or the angle of the view. [80] takes

advantage of visual differences in the appearance of objects over time to determine whether

an interaction is occurring.

Many of the more recent works in this field of study have abandoned traditional video

features in favor of deep learning techniques to identify activities occurring in first per-

son video. [54] features a recurrent convolutional neural network (R-CNN) trained on

RGB images, optical flow, and gaze annotations. Similarly, [88] describes the use of CNN

features in a pooled time series representation in combination with a non-linear SVM to

identify activities. [82] applies the Hilbert-Huang transform to CNN features and uses an

SVM classifier to classify activities. CNN-based techniques are favored for their ability

to discover useful features in images and video, but the networks require extensive train-

ing. Due to the amount of training required, the set of activities classified by each of these

CNN-based systems tends to be fixed and small relative to the complete set of daily human

activities.

While the deep learning techniques may perform well for a small set of actions when

trained against extensive annotated datasets, the requirement of massive amounts of labeled

data is a huge limitation in the utility of such methods for activity detection and recogni-

tion. Given the multitude of activities that may occur on a daily basis, it is not simple to

build a training dataset for a system that recognizes a complete set of these activities. Ad-

ditionally, when these deep learning methods fail to recognize an activity, there is often no

meaningful output - the deep learning techniques operate as a “black box” and the correla-

tion between features and the output of the system is not usually well understood outside

of that box. Consequently, the identification of an activity has a binary outcome, and when

the classification is incorrect, the system provides little or no useful information.
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We seek to remove these limitations through our use of fuzzy logic. In building a

FIS to classify activities, extra work must be done to extract and understand video features

and their correlation to activities recognized by the system, but the understanding of these

features and parameters provides insight into the type of activity being performed even if

the actual name of the activity is unknown. That is, a fuzzy system can provide a result

which indicates aspects of the occurring activity without the need to positively identify

the activity, incorporating uncertainty that is extremely useful for reliable performance in

dynamic environments [8]. For many purposes of activity detection, including in-home

monitoring of elderly [11, 9] and medical patients, human-machine interaction, or life-

logging, the fuzzy information may be informative where artificial intelligence techniques

produce no useful information.

We took inspiration from existing methods and extracted both motion- and object-

based features from a set of first person videos. Following is a description of a fuzzy

inference system that uses these features to classify activities occurring in these videos. To

our knowledge, the application of fuzzy methods to egocentric activity classification within

this context is a novel approach.

Our goal was to create a fuzzy inference system that classifies a set of activities being

performed by the subject of first person videos. We acknowledge that the recognition of

an activity is not always a binary decision given the relationships between various atomic

and complex activities. For example, multiple atomic activities may occur simultaneously

as part of a more complex activity. For this reason, we demonstrate a fuzzy system of

activity recognition which provides a depiction of multiple aspects of the activities being

performed. A simple diagram of the system is provided in Figure 4.4.
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Figure 4.4: Illustration of our system. Features such as optical flow motion vectors and
color histograms are extracted from video frames and passed to the fuzzy inference system,
which calculates fuzzy membership in three outputs based on a series of rules within the
system.

4.2.2 Dataset

In previous experiments, the target environment for activity detection was either structured

or semi-structured. This control of environmental variation lessened the number of fac-

tors which impacted the results, but was not realistic for a system that is capable of daily,

in-home use, which is a key piece of research question 2. For this experiment, the envi-

ronmental control was completed lifted to include video that was recorded in a true home

environment. To avoid the complication of collected a custom dataset for our work, we

surveyed existing datasets to find one that provided appropriate videos and labeled truth.

For this work, we used the EPIC-KITCHENS 2018 dataset [30]. This dataset con-

tains unscripted first person videos of subjects performing daily activities such as cooking,

washing dishes, and cleaning in their kitchens. The dataset provides annotations of objects
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Figure 4.5: A sequence of still frames at 15 frame intervals from a sample activity annotated
in the first three frames as ”take plate” and in the latter three frames as ”wash plate”.
The change in activity label is an indication of the uncertainty inherent in activities, their
definitions, and their spatiotemporal boundaries as they are performed.

of interest, as well as annotation of the action involving the objects. The action annotations

provided with the dataset comprise over 100 different verbs and highlight the amount of

variability found in daily in-home actions in just a single room. The dataset is unscripted,

which was an important feature to ensure that the data truly represents the intended use-

case for our research questions. Figure 4.5 shows a series of still images from a sample

activity to show the perspective of the dataset.

While the intent of the proposed FIS system is to describe a potentially unconstrained

set of daily activities, it would not have been feasible to simply build the FIS to output a

single classification out of hundreds of activities. The FIS was instead built to output fuzzy
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descriptive features of the activities, classifying them into multiple categories of intent.

While this meant that the FIS was not producing a specific activity label, this classification

method provides insight into what is actually happening in the activity, which can provide

description of even activities that the system was not trained on, alleviating the limitation

that many classifiers have with only performing on a specific set of activities.

The output of the FIS focuses on three types of object-actions: interaction, modifica-

tion, and relocation. Modification intent was defined as an action that intends to change

the appearance or structure of an object. Relocation intent was defined as an action which

intended to move an object in space. Other interactions which did not seek to perform

modification or relocation were simply labeled ’interaction’. A categorization of main in-

tent was determined for each annotated truth action in the dataset and appended to the

annotations. While our expectation was that actions will have some membership in more

than one output category, each action was given a single label for the most likely intent.

For example, the action ‘pick up’ provided in the original annotations received an intent

label of ‘relocation’, the ‘cut’ action was labeled as modification, and the ‘wash’ action

was labeled as ‘interaction’. The additional intent labels were determined per action class

and not per individual instance of the action, i.e. a given verb was considered to always

have the same intent.

4.2.3 Features

As previously mentioned, building an FIS to analyze actions in video required manual

feature selection and extraction. We build our fuzzy inference system around a set of

features that are extracted from the three-channel first person videos described in the prior

section. The recognition of activities via the fuzzy rules in our system is predicated largely

on the identification of objects in the video. The presence and motion of individual objects

in the scene and their relation to the subject are critical inputs to the fuzzy inference system.

The set of input features was built intuitively from this observation.
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Table 4.1 lists each of the video features which are used as inputs to the fuzzy inference

system.

Object Features

The fuzzy system was provided with a rectangular bounding box for each object in the

scene. The bounding box for each candidate object was read from the dataset annotations,

i.e. no object detection was implemented for this work. The annotations include bounding

boxes at all times when objects involved in actions as well as some cases when they are not

in use. The bounding box information was used to isolate the object for calculating several

of the object-descriptive features discussed below.

Centrality The one feature which is computed directly from the bounding box is the cen-

trality metric. An analysis of action locations in a subset of the training data revealed that

the distribution of actions tends toward the center of the camera’s perspective. This result is

expected, since the center of the video represents the center of a subject’s field of view, and

thus a likely location for the initiation of an action. Figure 4.6 illustrates the distribution of

actions in this training data. The starting positions of all objects involved in activities in our

training data were plotted to verify the assumption that the center of the video represents

the main area of the subjects’ attention and that this is were activities tend to occur. As

shown, few activities occur in the corners of the field of view. Centrality of each object

is computed by the two-dimensional distance from the center of the video, (vx, vy) to the

center of the bounding box (bx, by), subtracted from 1 to achieve high centrality when the

distance is low and low centrality when the distance is high:

centrality = 1−
√
(vx − bx)2 + (vy − by)2 (4.1)
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Table 4.1: Video Features

Feature Description

Object bounding box the location of a rectangular bounding
box around each identified object in the
video

Object label the name of each identified object

Frame optical flow the mean, 2-dimensional optical flow vec-
tor in the video frame computed between
frames t0 and t1

Object optical flow the mean, 2-dimensional optical flow vec-
tor in the video frame computed between
frames t0 and t1 within the bounding box
of an object

Color histogram difference the distance metric of the color histogram
within the bounding box of an object in
frames t0 and t1

Hand intersection the ratio of pixels within the bounding
box of an object that are identified as be-
longing to a hand

Keypoint similarity a ratio of matching keypoints to all key-
points detected on an object over a time
step

Object centrality a measure of how near the object is to the
center of the visual window.
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Figure 4.6: Illustration of the distribution of action locations within the training data.

Object Appearance The change in appearance of an object over time is another logical

feature that may inform whether the object is being interacted with, and whether the object

is being modified or manipulated in some way. Previous work has been done on exploiting

the change in appearance of objects to indicate the occurrence of activities [80]. Two types

of features were implemented to provide insight into different types of change to the object.

Change in color is one of the simplest ways to perceive changes in an image. Fea-

tures derived from the distribution of colors within a region of an image have long been

used in literature to provide a measure of object similarity for use in object comparison and

tracking applications [101, 24, 108, 122]. While more complex methods are required for

complex tasks such as tracking objects, our system implemented a color histogram differ-

ence feature. This feature was useful for approximating the amount of change in an object’s

appearance over a time period. The color values were split into eight bins in each channel

of the image to build the histogram, and the histogram was computed for all pixels within

the object bounding box for two different frames. The final difference feature provided to

the FIS was given by applying the intersection distance metric between the two histograms.

While color information is a simple indicator of change in object appearance over
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time, it is frequently the case that an object may be modified in a way that does not change

the color of the object. In these situations, the color histogram feature alone was unable

to inform the FIS on whether the object had been modified. To improve the robustness of

the overall indication of object change, keypoint-based features were also introduced to the

FIS. Keypoint detectors are responsible for choosing points within an image that are most

meaningful to the image. Most often keypoint detectors identify points like corners, edges,

or other complex shapes or textures that are integral to the appearance of the image. These

keypoints can be compared across images to perform object recognition [76, 75].

In the case of our FIS, the keypoints were detected within an object bounding box

and matched between two different frames, and the ratio of matching keypoints is used as

a keypoint similarity metric. Two algorithms were implemented for keypoint detection -

CenSurE [4] and ORB [86]. While the information provided by each of these keypoint

detectors is similar and likely redundant in some cases, each detector performs differently

in different scenarios so both were provided as inputs to the system.

Motion Features

In addition to features describing aspects of the objects like their location and appearance,

our FIS also required knowledge knowledge of motion within the input videos.

Optical Flow The motion features referred to above were implemented using optical

flow. There are two pieces of information being provided by optical flow - the motion

within the object bounding box, and the motion within the entire video frame.

Since the first person video is recorded by a mobile, body-worn camera, there is ex-

pected to be overall motion in the video which is a consequence of the movement of the

camera itself. We equate overall motion in the video with the movement of the camera,

which equates to motion of the subject wearing the camera. While the movement of the

subject is not directly used to inform the activity classification process (i.e. no mapping of
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the environment or the subject within the environment was considered), it was necessary to

consider it in order to discern the motion of the objects in the scene relative to this global

motion factor.

Since the camera motion was additive to the motion of the objects, the fuzzy system

considered an object to be moving with the scene only if the perceived motion of the object

did not match the global motion of the scene. This implied that the object had some motion

relative to its surroundings (presumably through interaction with the object by the subject).

Both optical flow features were calculated using the dense Farneback method [36] since

computation time was not a priority. The dense optical flow calculation is far less time

efficient than sparse implementations, but performs more reliably in cases where high-

quality keypoints are limited. Furthermore, due to the limitation of bounding boxes to

rectangular shape, the boxes were not always tightly fit to the object in all cases. Using

sparse optical flow risked the situation where the perimeter of the bounding box may have

picked up keypoints from a separate object, and the motion of that other object may have

skewed the resulting motion estimation. It was not possible to guarantee that a majority of

the keypoints belonged to the object of interest. Using dense flow helped the true object

motion to reduce the contribution of such noise since a majority of pixels in the box should

belong to the object of interest.

Hand Detection

The object motion and appearance features were useful for indicating information about the

result of interactions on objects, i.e. how they move or change, but it is intuitively possible

for an object that is not involved in an activity to move or change appearance. The centrality

measure mitigated the risk of misclassification, but is just one metric supporting such a

decision. To further avoid the false detection of activities, a final feature was introduced to

compute the overlap between objects in the scene and a subject’s hands. While hands are

not always visible in the given experimental setup, many object-centric activities involve
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contact between the hand and the object.

The major hurdle in computing contact between hands and objects was detecting the

hands in the frame. For this, we used machine learning to implement a hand detection

network. Two initial attempts were made using a pre-trained, open-source hand-detection

network trained on the EgoHands Dataset [10]. The first attempt used the model provided

by the authors of [10]. This model was built to classify a provided region of an image

as either hands or background. The selection of windows is critical with this method,

since hands can only be detected in proposed windows. A window proposal method was

also identified in [10]. Resulting detections were much too sparse for use in our FIS as

a vast majority of interactions were being missed. Attempting to slide windows over the

entirety of each frame, which was computationally inefficient but guaranteed all windows

containing hands were proposed, revealed that the detector was not sensitive enough for

identifying hands.

To eliminate the need to propose windows for the hand classifier, a second attempt

was made which used a Region-based CNN (RCNN). RCNN’s are capable of receiving

the entire image as input and outputting a set of object bounding boxes and classification

scores per bounding box. The RCNN was an open-source implementation which was also

pre-trained on the EgoHands dataset. This solution proved equally limited and produced

too few hand detections to be useful, leading to the conclusion that the data in the EgoHands

dataset was not similar enough to the EPIC KITCHENS dataset.

The final, working hand detection solution was produced using an implementation

of the MobileNetV2 single shot detection network [89]. Transfer learning was used to

gain efficiency in the training process. The network was initialized with a version of the

model included in the Tensorflow Model Zoo which was trained for object detection on the

Microsoft Common Objects in Context (COCO) 2017 dataset [59]. This initial network

was capable of classifying over 90 object types, and modified to classify only a single label

- hands. To ease the data demands for the training process, the model was trained on the
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Figure 4.7: Loss curves for the final training of the hand detection model on images from
the EPIC KITCHENS dataset.

same EgoHands dataset that the prior two models were trained on. Because the network

had previously been trained for object detection, the network reached high accuracy within

a few hours of training. Because the earlier models had difficulty detecting hands in the

EPIC KITCHENS dataset (even after successfully training on EgoHands), our final model

was then also trained on a set of 660 manually annotated images of hands from the EPIC

KITCHENS videos. As shown in the loss plots for the final training run (Figure 4.7),

the model trained very quickly on this final dataset despite being a very lightweight and

computationally efficient model.
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4.2.4 Fuzzy Inference System

In this section we detail the structure of the proposed FIS. Each of the previously discussed

input features was created to support an intuitive set of fuzzy rules which were used to

produce the final outcome of membership levels in the three action categories of interaction,

modification, and relocation.

Fuzzy Membership Functions

The input layer of the proposed FIS comprised a set of fuzzy definitions for each of the

input features. Tables 4.2 and 4.3 summarize the sets created for the fuzzy input and output

features. The two types of the motion vectors were reduced into two features - one describ-

ing the difference in the amount of motion between the object and the global frame, and

one describing the difference in the direction of motion between the object and the global

frame. Each of the other features discussed above was directly represented by a single input

variable.

We were able to capture the uncertainty in the feature space using the linguistic vari-

ables in the fuzzy model. For example, to compensate for the level of noise expected in

the optical flow calculations, a “low” membership term was used to represent a lack of sig-

nificant motion, or motion within an amount of error that a direction could not confidently

be determined. The number of terms belonging to each input set was initially determined

through manual experimentation and knowledge of the feature extraction methods. Analy-

sis of the genetic evolution of the FIS was used to eliminate terms which were not useful

or to expand terms which appeared to provide improved results.

Triangular membership functions were used for all membership functions within the

system in order to keep the definition of the functions as simple as possible, which sim-

plified the encoding of the system for the genetic algorithm discussed later. Trapezoidal

functions were tested with no apparent improvement in the results.
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Table 4.2: Input Variables to the Fuzzy Inference System

Input Linguistic Variable Terms
Motion Magnitude Differ-
ence (MAG)

{low (LO), medium (MD), high (HI)}

Motion Direction Differ-
ence (DIR)

{low (LO), medium (MD), high (HI)}

Color Histogram (CH) {very low (VLO), low (LO), medium (M), high (HI),
very high (VHI)}

Hand Intersection (HINT) {low (LO), high (HI)}
CenSurE Keypoint (CKP) { low (LO), medium (M), high (HI)}
ORB Keypoint (ORB) { low (LO), medium (M), high (HI)}
Object Centrality (OC) { low (LO), medium (M), high (HI)}

Table 4.3: Output Variables for the Fuzzy Inference System

Output Linguistic Vari-
able

Terms

Object Interaction (INT) {unlikely (UN), somewhat likely (SL), very likely
(VL) }

Object Modification
(MOD)

{unlikely (UN), somewhat likely (SL), very likely
(VL) }

Object Relocation (REL) {unlikely (UN), somewhat likely (SL), very likely
(VL) }

62



Table 4.4: Rules for the Output “Interaction” (HINT=hand intersection, OC=object cen-
trality, INT=interaction)

Inputs Outputs
HINT OC INT

LO −→ UN
LO −→ UN
MD −→ SL

HI −→ VL
HI −→ VL

Fuzzy Rules

The rules in the fuzzy system control the way in which the inputs are transformed to the

outputs. The set of rules used in the system are built intuitively from knowledge of the

inputs and how they are expected to change with different activity types. Following is a

discussion of the rules in the system grouped by which output action class they relate to.

Interaction The level of interaction occurring in a candidate object-action pair was de-

termined by two of the inputs to the system - object centrality, which represents an ap-

proximation of the amount of attention being paid to the object by the subject, and hand

interaction, which represents an approximation of the amount of hand contact the subject

has with the object. The rules affected by these input values are represented in Table 4.4.

Modification The membership level of the modification output class was determined by

the color- and keypoint-based features. The larger the amount of detected change in either

feature, the larger the confidence that the action was a modification action. Additionally,

the membership of the action in the ‘interaction’ class is considered for the modification

class, i.e. if the object was not being interacted with, there should be low confidence that

the subject is modifying the object. Note in this case that for the keypoint-based features,

the terms ‘low’, ‘medium’, and ‘high’ refer to the level of matching, where low matching
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Table 4.5: Rules for the Output “Modification” (INT=interaction, CH=color histogram,
CKP=CenSurE keypoint similarity, ORB=ORB keypoint similarity, MOD=modification)

Inputs Outputs
INT CH CKP ORB MOD
LO −→ UN

VLO −→ UN
LO −→ UN

HI −→ UN
HI −→ UN

M −→ SL
M −→ SL

M −→ SL
HI −→ VL

VHI −→ VL
LO −→ VL

LO −→ VL

would provide stronger support for a change having occurred to the object. The rules

affecting the modification output are show in Table 4.5.

Relocation The motion features naturally formed the basis for the output membership

level in the relocation class. Similarly to the modification rules, the level of interaction

informs the level of relocation, since it is assumed that a relocation cannot occur without

an interaction. The rules affecting the relocation output are show in Table 4.6. For rules

with multiple inputs on the same line are created using the conjunctive operator AND.

The relocation rules are simply based on a difference between the magnitude and di-

rection of both the object and global frame motion vectors. The magnitude difference is the

absolute difference between the magnitudes of the vectors, and the direction difference is

computed as the angle between the two vectors using the inverse cosine of the dot product.

64



Table 4.6: Rules for the Output “Relocation” (MAG=difference in motion magnitude,
DIR=difference in motion direction, INT=interaction, REL=relocation)

Inputs Outputs
INT MAG DIR REL
LO −→ UN

LO LO −→ UN
MD −→ SL

MD −→ SL
HI −→ VL

HI −→ VL

Fine Tuning with Genetic Algorithm

While the inputs, outputs, membership functions, and rules described thus far were built

on intuition and experimentation within the problem domain of activity classification, there

still remained possibility for optimizing the performance of the system. The optimization

was performed by using a genetic algorithm to evolve the membership functions for each

variable in the system.

While the FIS derives power from interpretability and explainability of the results,

tuning the membership functions with a GA does not remove these benefits. It is difficult

to intuitively determine, for example, where the lower or upper bounds of a membership

function should reside for a ‘low’ movement term. Clearly the relation of ‘low’ to ‘high’ is

intuitive, but the number of pixels of motion per frame that should represent ‘low’ amounts

of motion is unclear. The GA provides a method of extracting sensible values for each

membership function while optimizing the performance of the system.

Genetic Representation In order to evolve the FIS using a GA, a genetic/chromoso-

mal representation of the functions defined within the system was required. Since the

triangular membership function for each term was defined by a set of three values repre-

senting the lower, middle, and upper extents of the triangle, a real-valued triplet encoding

was used to encode each function. The entire gene, then, was represented as a collec-
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tion (dictionary) of real-valued triplets. An excerpt of one such genetic representation

is provided in Listing 4.1. This is represented in short form as a nested list of values:

{[−3.915,−3.00, 2.424], [−2.353,−0.132, 2.024], [−2.799, 3.477, 3.794], ...}

Listing 4.1: Example JSON for Genetic Representation

{

‘‘ frame movement x’’: {

‘‘ left ’ ’ : [−3.915, −3.000, 2.424],

‘‘ low’’ : [−2.353, −0.132, 2.024],

‘‘ right ’ ’ : [−2.799, 3.477, 3.794]

},

‘‘obj movement x’’: {

‘‘ left ’ ’ : [−3.820, −3.729, 3.868],

‘‘ low’’ : [−3.655, 0.786, 2.917],

‘‘ right ’ ’ : [1.096, 3.00, 4.258]

},

...

}

For the process of evolving a high-accuracy solution, the population was initialized

with 20 randomized individuals. Each individual was tested against a set of actions from

the EPIC KITCHENS dataset to evaluate fitness. In an attempt to retain negative prediction

value, annotations of objects with no action were also included in this training set since

many objects in the scene may be part of no action.

Roulette wheel selection was used to select parents for new generations, meaning that

each parent had a chance of selection proportional to their fitness relative to the fitness of
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the other individuals. Single-point crossover was used in the mating process, and mutation

occurred with a probability of p = 0.20. When selected for mutation, a value in the system

was allowed to randomly move within α = 1.2 times the distance to it’s neighbors. Since

α > 1, it was possible for a term to surpass it’s neighbor. This was allowed in order

to not constrain the evolutionary process. As an implementation detail, care had to be

taken to keep the system well-formed, e.g. that the lower bound on a triangular function

did not become greater than an upper bound. Following all mutations, the values in each

triplet were re-sorted to ensure that the lower, middle, and upper values were appropriately

ordered. In this way, a mutated lower value was able to become the middle value of a

triangle if it happened to mutate past the original middle value, and so on.

Several fitness functions were experimented with during the training process. As is the

case with any classification problem, the accuracy of the system must be weighed against

the impact of different types of errors. Training for high accuracy often led to a bias in

positive or negative results for a particular category, but the F1 score provided an appropri-

ate balance between accuracy, precision, and recall and was ultimately used as the fitness

metric during training.

4.2.5 Results

This section provides details on the results of the methods used to classify activities us-

ing the FIS, including the custom built hand detector, the tuning of the FIS with genetic

algorithms, and finally the overall results of classifying activities with the FIS.

Hand Detection

A key factor in the overall output of the FIS is the hand detector accuracy. Using the model

and training methods described earlier, hand detection reached a mean average precision

(mAP) of 0.995 at 50% intersection over union (IOU), and a mAP of 0.990 at 75% IOU

67



Figure 4.8: Example first person video frames of the hand detection model. Hands were
detected in these images with a confidence ranging between 0.96 to 1.0, highlighting the
robustness of the model to different orientations and poses of hands in the view.

when trained on the samples from the EPIC KITCHENS dataset. Figure 4.8 illustrates

samples of hand detections obtained from the final dataset.

Prior to training on the EPIC KITCHENS data, the model was trained on the Ego-

Hands dataset to a mAP of 0.970 at 50% IOU and mAP of 0.864 at 75% IOU. While

further training would have likely increased the mAP metric, prior experimentation had re-

vealed that the EgoHands dataset samples were not completely representative of the types

of data in the final target dataset, so training was stopped at this level of accuracy. Figure

4.9 provides an illustration of the types of images in the EogHands dataset, which contains

both first- and third-person hands playing tabletop games. The background of the hands

tend to be more uniform than in our dataset, which was likely the cause of poor detections

using models trained only on EgoHands.
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Figure 4.9: Example hand detection result from the EgoHands dataset prior to training on
EPIC KITCHENS data. The hands do not move from the vicinity of the table, leading to
poor detection in datasets with more variation in background.

Genetic Algorithm Tuning

As mentioned above, the FIS was fine-tuned using a genetic algorithm. Membership func-

tions within the system were evolved to find a final solution that optimized the F1 score.

While the rules of the system were intuitive by design, the shape of the membership func-

tions was not always so, especially for features such as color histogram difference and

keypoint similarity ratios. While the relative values and that came from these features are

intuitive (i.e. higher score indicated higher change in appearance), it was not immediately

clear which values might constitute a ‘low’, ‘medium’, or ‘high’ value for the feature. The

GA method of tuning the system mitigated the risk of choosing poor values.

For the tuning, a random population of 20 individuals was initialized. While the initial

population was random, care was taken to structure the membership functions in a sensible

way, such that the entire universe of values for each feature was covered by at least one

membership function. A training dataset of 3,560 actions was sampled from a seven videos

in the EPIC KITCHENS dataset. The set of actions was used to evaluate the fitness (F1

score) of each individual in the population. Due to the randomization of the individuals,

initial results varied slightly, but in the final training run, the best randomly initialized indi-

vidual began at an overall F1 of 0.235 and overall accuracy of 0.531. By the end of training,
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Figure 4.10: Progression of the GA in optimizing the fitness metric (f1-score) over gener-
ations of the GA.

the population achieved an overall F1 score of 0.642 and an overall accuracy of 0.782 on the

training set. Running multiple rounds of GA showed that the results consistently converged

near this solution.

Figure 4.10 illustrates the results over each iteration of training. The training results

follow the expected curve of early increases in performance which diminish over time as

the system reaches an optimized output. Training was halted after several rounds with no

progression on the fitness measure.

Discussion The GA was an extremely useful tool for optimizing the performance of the

FIS. While it was only used in this work to optimize the membership functions, the training

results were also useful for performing feature selection and pruning. For example, the GA

training was used to determine whether both keypoint features were necessary, or if one
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consistently outperformed the other. Both were kept because the solutions evolved with

both features achieved better results. Figure 4.11 shows that the GA evolved very similar

functions for these inputs, indicating that they are providing similar information to the sys-

tem. However, a closer look at the data revealed that despite producing similar information,

each method of keypoint extraction tended to perform well in different situations, so both

features were necessary to keep consistent results through this redundancy.

Initially, the FIS was structured to take four motion-based inputs - object movement

in two dimensions and global frame movement in two dimensions. The fuzzy rules were

structured to detect a difference in these inputs, i.e. if object movement in the vertical

axis is ‘down’ and global frame movement in the vertical axis is ‘up’, then the object must

be moving relative to its environment so relocation is likely. Earlier versions of the FIS

included several terms for each direction of movement for both object and global frame

motion, i.e. ‘very left’ and ‘left’, ‘slightly left’, but many of these were dropped from the

system when their membership functions were absorbed into their neighboring functions.

Similarly, Figure 4.11 illustrates how ‘low’ histogram difference was nearly absorbed by

‘very low’. This result likely meant that the terms could be combined.

After further use of the GA to fine-tune the FIS, it was apparent that preserving the

information in each dimension for each input motion feature was confusing the results of

the system. In many cases, the system evolved very different ideas of motion with respect

to the object and global frame. This is likely due to error in the measurements causing

conflicts in the training data. To eliminate this issue, the difference in both magnitude and

direction of the two motion vectors was used instead. This allowed the system to train a

two membership functions (one for each feature) instead of four (two for each dimension

of each feature, giving much better results. Pre-processing the motion estimates into the

appropriate inputs was a trivial amount of overhead.

Further improvement may have been possible by encoding the structure of the rules

and evolving the entire structure of the system rather than just the parameters within it
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Figure 4.11: Final membership functions output from evolution of the FIS using a GA.

[111]. However, for the proposed system with a small number of features, it was decided

that the intuition in the manually formed rules was more beneficial than rules evolved by a

GA which may lack explainability.

Fuzzy Action Classification

After tuning both the feature extraction methods and the FIS parameters, we evaluated the

final performance of the FIS in classifying activities into the three action intent classes:

72



‘interact’, ‘modify’, and ‘relocate’.

We evaluated our work against a set of 17 videos from the EPIC KITCHENS dataset.

The selected videos contained 7,186 object-action annotations. Of these actions, 2396

were annotated as ‘interact’, 1612 were annotated as ‘modify’, and 1385 were annotated

as ‘relocate’. The remaining 1793 were labeled as no action (objects that were annotated

but not being interacted with). Table 4.7 summarizes the final metrics overall and for each

class of activity. Overall, the system reached an accuracy of 74%, which appears to be

competitive with state of the art approaches. It is difficult to draw direct comparisons on

accuracy since we are taking a different approach in describing various aspects of actions

rather than producing a single definitive activity label, but the best performing deep learning

technique on the same dataset reached an accuracy of 35.8% [109], highlighting the need

for a change in perspective to produce useful information across the entire dataset rather

than simply mislabeling a large majority of actions.

From Table 4.7, we observe that the fuzzy system produces the highest precision,

recall, and f1 metrics for actions in the ‘interact’ class. This can be attributed to the robust

hand detector and the centrality metric being both accurate and positively predictive of

interaction with objects. However, because objects do pass through the center of view and

may appear to contact hands from a two-dimensional perspective, the FIS tended to err on

the side of producing false positives for this class.

On the flip side, our fuzzy system produced the highest specificity metric for the ‘relo-

cate’ class, indicating a strong negative predictive value. The system is identifying a much

lower rate of false positives for this class, but this comes at the expense of identifying fewer

true positives as well since the classifier errs toward negative results for this class; it also

has the lowest precision, recall, and f1 scores. This indicates that there is a need for higher

precision in the inputs pertaining to the rules for this class.
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Error Analysis

A manual analysis of the samples annotated as relocation action reveals two related but

distinct sources of error, both stemming from the use of the bounding boxes provided with

the dataset.

Annotation Error The bounding boxes provided with the dataset are only updated every

30 frames of video. Figure 4.13a illustrates this issue with the bounding box annotation.

The low frequency of updates to the bounding box lead to poor results when the object

moves out of the area before the bounding box is updated. This is illustrated by the green

highlighted portion of the object. The impact on the system is that the object optical flow

estimation is no longer strongly correlated to the object it is intended to describe; taking

the motion estimate within the box is estimating motion of either the background or other

objects (in the case of this example, the subject’s hand).

Bounding Box Error A second type of error stemming from the use of annotated object

bounding boxes is that they are limited to rectangular shapes. This is comparable to the

output of many deep learning object detection techniques, such as RCNN’s. However, this

also leads to noise in the motion features by guaranteeing that some background motion

is included in the object motion estimate unless the object is perfectly rectangular. The

loose fit of bounding boxes for particularly eccentric objects, i.e. objects with a large ratio

of one dimension to another, is easily seen in Figure 4.13b. The bounding boxes for both

the spatula and faucet include substantial amounts of other objects and background despite

being well-aligned to the objects they describe (unlike the example in Figure 4.13a). Pixel-

level segmentation of the objects, such as that which could be obtained from a mask R-

CNN, would eliminate the issue of loose fitting bounding boxes by segmenting only the

pixels belonging to the intended object from its surroundings.

A generalized object detection model was implemented to investigate the possibility
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Figure 4.12: Video frame from the EPIC Kitchens dataset overlaid with results from a
Mask R-CNN pretrained on the MS COCO dataset. Multiple objects have been segmented
with more precision than a rectangular bounding box.

of providing pixel-level masks of objects to 1) avoid the errors in the annotated rectangular

boxes and 2) implement a system that is capable of functioning in an environment. Mask

RCNN’s are a common choice for this task (instance segmentation) and have been shown

to perform well in detecting and classifying diverse sets of objects[26, 25, 72]. The object

detection method was implemented using the Detectron2 library and used a pre-trained

FPN model trained on the MS COCO dataset [114].

Figure 4.12 shows a sample of the results from the object detection method. Several

objects have been segmented with high accuracy including the spatula, fork, dish soap,

hand soap, and the colander in the sink. The countertop was also detected, albeit with

rather poor segmentation results. Compared to the rectangular annotations provided with

the dataset, such segmentation results provide a more accurate set of input features for the

FIS since very few surrounding pixels will be included in the feature extraction phase.

While the object detection seems to solve issues arising from the use of annotated

bounding boxes, there are additional aspects of the technique that require solving, which
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Table 4.7: Results of activity classification on first person video

Activity Class accuracy precision recall specificity f1
interact 0.767 0.766 0.991 0.909 0.864
modify 0.651 0.268 0.319 0.748 0.291
relocate 0.775 0.242 0.078 0.942 0.118
overall 0.740 0.702 0.598 0.779 0.646

(a) Video frame with object exceeding the rectan-
gular bounding box (the portion of the spatula out-
side of the bounding box is highlighted in green)

(b) Video frame with loose rectangular bounding
boxes around a spatula and faucet

Figure 4.13: Example first person video frame of subject washing spatula with overlaid
bounding boxes, action, and object labels

is the reason that further investigation was not prioritized. The runtime of Mask R-CNN

models tends to be very slow. While performance optimization was not a concern in our

work, the method requires a lot of computing (GPU) resources and would ideally be opti-

mized to achieve greater than 2-3 frames per second. More consequential to our work was

the need to implement object tracking in order to use this method. The human-provided

annotations include an identifier for each object through multiple frames so our system is

aware that an instance of an object in one frame is the same instance of the same object in a

later frame. The object detection model does not correlate objects between frames, which

is essential for computing any features that occur over time, e.g. optical flow.

During the analysis of our results, we also observed subjectivity in the human-generated

action annotations provided with the dataset. The annotation of actions on a per-frame ba-
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sis is very difficult since there is rarely a definitive start and end to an activity at such high

temporal resolution. We observed inconsistencies in the application of action labels stem-

ming from the imprecision of natural language. For example, opening a faucet and opening

a refrigerator are very different types of actions and motions from the subject. While the

verb for each of these actions is the same linguistically, they are clearly not the same action.

The variance seen between these results via the membership in our fuzzy outputs captures

the difference much more precisely than the verb label. Taking a sample of 9 ’open tap’

actions and 21 ’open refrigerator’ actions, we computed the average membership in inter-

action, relocation, and modification as [0.544, -0.471, -0.750] for ’open tap’ and [0.607,

-0.703, -0.965] for ’open refrigerator’, respectively. Variance within these samples in each

output term is below 0.01 for each class, so these represent separable clusters of outputs.

While the results of both are a positive identification of an interaction, there are clear ten-

dencies that differentiate the two actions, likely stemming from the difference in size of

the objects and the type of motion involved from the perspective of the first-person cam-

era. With this knowledge, we have identified a possible application of fuzzy methods in

the refining of annotated truth. By detecting outliers or multi-modal distributions of output

memberships within the same original verb class (e.g. ’open’), different applications of the

same word can be realized.
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Conclusions

Through the experiments and results presented in Chapter 4, we have reached positive

conclusions to our research questions. To address our first research question, we presented

a validation study of a wearable camera being used in a clinical field by measuring gait

parameters consistent with much more complex, expensive sensors representing the current

standard. Broadening the scope to general human activities for the remaining research

questions, we then presented work which demonstrated the viability of our technique using

first person video features and fuzzy inference (along with several other feature extraction

methods using machine learning and traditional algorithms) to provide data describing the

activities that were occurring in the video. Additionally, we identified potential uses of the

FIS for refining human annotations and detecting possible linguistic sources of ambiguity.

5.1 Contributions

In addition to answering the research questions outlined at the outset of our work, we made

several other intermediate contributions along the way. These include:

• Validation of the wearable vision sensor for use in fields related to activity detection

and the measurement of activity parameters,

• A fuzzy inference system which described human activities in first person video with

74% accuracy,
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• A lightweight yet accurate hand detection network implemented using MobileNetv2,

• An annotation review tool which allows for review of annotations, actions, and object

bounding boxes for the EPIC Kitchens dataset (which would also be generalizable

to arbitrary datasets containing similar information). The tool was implemented as

a web application with the back-end deployed on a cloud-based, containerized web

hosting solution and the user interface served via a traditional web server.

5.2 Future Work

While the conclusions drawn from our experiments provide satisfactory outcomes for our

research questions, there is opportunity to further expand the work in several directions.

First, the system may be able to describe more specific activities, moving toward the more

complex end of the activity scale (Figure 1.1). Possible solutions to explore are adding

more outputs to the FIS, or using the FIS outputs as features to another classifier that

produces information on the more complex activities, e.g. by clustering activities via the

FIS output membership levels and/or considering the outputs as time series data. Another

extension to our work could be to fully implement object detection using a deep network,

fully eliminating the use of annotated inputs.
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