857 research outputs found

    Stand-alone wearable system for ubiquitous real-time monitoring of muscle activation potentials

    Get PDF
    Wearable technology is attracting most attention in healthcare for the acquisition of physiological signals. We propose a stand-alone wearable surface ElectroMyoGraphy (sEMG) system for monitoring the muscle activity in real time. With respect to other wearable sEMG devices, the proposed system includes circuits for detecting the muscle activation potentials and it embeds the complete real-time data processing, without using any external device. The system is optimized with respect to power consumption, with a measured battery life that allows for monitoring the activity during the day. Thanks to its compactness and energy autonomy, it can be used outdoor and it provides a pathway to valuable diagnostic data sets for patients during their own day-life. Our system has performances that are comparable to state-of-art wired equipment in the detection of muscle contractions with the advantage of being wearable, compact, and ubiquitous

    Biosignal‐based human–machine interfaces for assistance and rehabilitation : a survey

    Get PDF
    As a definition, Human–Machine Interface (HMI) enables a person to interact with a device. Starting from elementary equipment, the recent development of novel techniques and unobtrusive devices for biosignals monitoring paved the way for a new class of HMIs, which take such biosignals as inputs to control various applications. The current survey aims to review the large literature of the last two decades regarding biosignal‐based HMIs for assistance and rehabilitation to outline state‐of‐the‐art and identify emerging technologies and potential future research trends. PubMed and other databases were surveyed by using specific keywords. The found studies were further screened in three levels (title, abstract, full‐text), and eventually, 144 journal papers and 37 conference papers were included. Four macrocategories were considered to classify the different biosignals used for HMI control: biopotential, muscle mechanical motion, body motion, and their combinations (hybrid systems). The HMIs were also classified according to their target application by considering six categories: prosthetic control, robotic control, virtual reality control, gesture recognition, communication, and smart environment control. An ever‐growing number of publications has been observed over the last years. Most of the studies (about 67%) pertain to the assistive field, while 20% relate to rehabilitation and 13% to assistance and rehabilitation. A moderate increase can be observed in studies focusing on robotic control, prosthetic control, and gesture recognition in the last decade. In contrast, studies on the other targets experienced only a small increase. Biopotentials are no longer the leading control signals, and the use of muscle mechanical motion signals has experienced a considerable rise, especially in prosthetic control. Hybrid technologies are promising, as they could lead to higher performances. However, they also increase HMIs’ complex-ity, so their usefulness should be carefully evaluated for the specific application

    Deep Learning for Processing Electromyographic Signals: a Taxonomy-based Survey

    Get PDF
    Deep Learning (DL) has been recently employed to build smart systems that perform incredibly well in a wide range of tasks, such as image recognition, machine translation, and self-driving cars. In several fields the considerable improvement in the computing hardware and the increasing need for big data analytics has boosted DL work. In recent years physiological signal processing has strongly benefited from deep learning. In general, there is an exponential increase in the number of studies concerning the processing of electromyographic (EMG) signals using DL methods. This phenomenon is mostly explained by the current limitation of myoelectric controlled prostheses as well as the recent release of large EMG recording datasets, e.g. Ninapro. Such a growing trend has inspired us to seek and review recent papers focusing on processing EMG signals using DL methods. Referring to the Scopus database, a systematic literature search of papers published between January 2014 and March 2019 was carried out, and sixty-five papers were chosen for review after a full text analysis. The bibliometric research revealed that the reviewed papers can be grouped in four main categories according to the final application of the EMG signal analysis: Hand Gesture Classification, Speech and Emotion Classification, Sleep Stage Classification and Other Applications. The review process also confirmed the increasing trend in terms of published papers, the number of papers published in 2018 is indeed four times the amount of papers published the year before. As expected, most of the analyzed papers (≈60 %) concern the identification of hand gestures, thus supporting our hypothesis. Finally, it is worth reporting that the convolutional neural network (CNN) is the most used topology among the several involved DL architectures, in fact, the sixty percent approximately of the reviewed articles consider a CNN

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods

    Hybrid Human-Machine Interface to Mouse Control for Severely Disabled People

    Get PDF
    This paper describes a hybrid human-machine interface, based on electro-oculogram (EOG) and electromyogram (EMG), which allows the mouse control of a personal computer using eye movement and the voluntary contraction of any facial muscle. The bioelectrical signals are sensed through adhesives electrodes, and acquired by a custom designed portable and wireless system. The mouse can be moved in any direction, vertical, horizontal and diagonal, by two EOG channels and the EMG signal is used to perform the mouse click action. Blinks are avoided by a decision algorithm and the natural reading of the screen is possible with a specially designed software. A virtual keyboard was used for the experiments with healthy people and with a severely disabled patient. The results demonstrate an intuitive and accessible control, evaluated in terms of performance, time for task execution and userÂŽs acceptance. Besides, a quantitative index to estimate the training impact was computed with good results.Fil: LĂłpez Celani, Natalia Martina. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Departamento de ElectrĂłnica y AutomĂĄtica. Gabinete de TecnologĂ­a MĂ©dica; ArgentinaFil: Orosco, Eugenio Conrado. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Instituto de AutomĂĄtica; ArgentinaFil: PĂ©rez Berenguer, MarĂ­a Elisa. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Departamento de ElectrĂłnica y AutomĂĄtica. Gabinete de TecnologĂ­a MĂ©dica; ArgentinaFil: Bajinay, Sergio. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Departamento de ElectrĂłnica y AutomĂĄtica. Gabinete de TecnologĂ­a MĂ©dica; ArgentinaFil: Zanetti, Roberto. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Departamento de ElectrĂłnica y AutomĂĄtica. Gabinete de TecnologĂ­a MĂ©dica; ArgentinaFil: Valentinuzzi, Maximo. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Departamento de ElectrĂłnica y AutomĂĄtica. Gabinete de TecnologĂ­a MĂ©dica; Argentin
    • 

    corecore