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Abstract The main objective of this study is to recognize sketching precisely
and effectively in human computer interaction. A surface electromyography
(sEMG) based sketching recognition method is proposed. We conducted an
experiment in which we recorded the sEMG signals from the forearm mus-
cles of two participants who were instructed to sketch seven basic one-stroke
shapes. Subsequently, seven features of the sEMG time domain were extracted.
After reducing data dimensionality using principal component analysis, these
features were used as input vectors to a sketching recognition model based on
Support Vector Machines (SVM). The performance of this model was com-
pared to two other recognition models based on Multilayer perceptron (MLP)
neural networks and Self Organization Feature Map (SOFM) neural networks.
The average recognition rates for the seven basic one-stroke shapes of two
participants achieved by the SVM-based and MLP-based models were both
98.5% in the test set, which were slightly superior to the performance of the
SOFM classifier. Our results demonstrate the feasibility of converting forearm
sEMG signals into sketching patterns.
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1 Introduction

It is well-known that sketching is a key mode of informal, perceptual interac-
tion that has been shown to be especially valuable for creative design tasks [1,
2,3,4]. For designers, the ability to rapidly sketch objects with uncertain types,
sizes, shapes, and positions is important to the creative process [1]. Thus, the
analysis and estimation of sketching in this area is very significant. More natu-
ral sketching recognition is helpful for the development of electronic sketching
systems [1], computer aided sketching systems [5] and sketch-based interfaces
for modeling in Computer-Aided Design (CAD) systems [6]. Despite substan-
tial progress in this area, recognizing sketching remains a difficult problem due
to the fact that sketches are informal, ambiguous and implicit [7].

Several methods have been proposed for the automatic recognition of sketch-
ing. The traditional methods are based on pen and touch medium tablets,
interactive pen displays, touch screens, tablet computers, and mouse to record
and transmit sketching messages to computers. In comparison to the tradi-
tional input methods, the surface electromyography (sEMG)-based method for
shape recognition is promising because it can provide an interaction method-
ology that directly senses and decodes human muscular activity as sketching
input rather than requiring direct manipulation of a physical implement[8].
For example, designers attempting to sketch out some ideas anywhere and
anytime may find it advantageous to be able to do so without holding a digi-
tal pen or sketching on a limited screen area. Also, a person with wrist-hand
functional disorder can get back the sketching ability.

A recent trend is toward more accessible and natural interfaces. The com-
puter vision-based method is a popular method to help recognize sketches in
the air [9]. However, computer vision-based method is vulnerable to factors
such as camera angle, background and lighting, which has negative effects on
the recognition performance [10,11]. This disadvantage of the computer-vision
based method is avoided by the sEMG-based method and it can provide an-
other method for implementing sketching in the air.

The usage of myoelectric devices employing sEMG electrodes has a long
history [12]. Previously, sEMG signals have been successfully used in several
fields such as robot [13] and wheelchair [14] controlling, medicine [15], de-
velopment of prosthesis [16,17], fatigue detection [18,19,20], force prediction
[21], etc. Researchers also have used EMG to develop a new kind of human
computer interface, known as Muscle Computer Interface (muCI) [22,12,23]
for recognition of hand gestures [24,25], body languages [26] and facial expres-
sions [11].

Especially, sEMG-based approaches have been successfully used for the
recognition of handwriting recently [22,27,28,29]. In 2003, Lansari et al. [27]
proposed a novel EMG-based classification approach for arabic handwriting. In
their study, neural networks using a potentially damped least mean squared
algorithm is used at the classification stage. In 2009, Linderman et al. [22]
implemented two fundamental approaches for decoding handwriting from the
EMGs. In the first approach, they reconstructed pen traces using the Wiener
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filter. In the second approach, they recognized handwritten characters from
the EMG patterns and displayed them as textual fonts. In 2010, Huang et al.
[28] proposed an EMG-based handwriting recognition method with dynamic
time warping algorithm, which was improved by Li et al. [29] in 2013. In 2015,
Okorokova et al. [30] implemented the Kalman filter to construct a dynamic
model for improving reconstruction of handwriting from multichannel EMG
signals, whose results show a significant improvement over the figures, previ-
ously reported by Linderman et al. [22]. The filter makes the approach suitable
for real-time operations.

However, the study on recognition of sketching from electromyography is
still in its infancy, although Chowdhury et al. [12] have proposed that the
technology of muCI can be used for the development of interactive digital
drawing tools. Perceived technical limitations [22], the paucity of models [31],
and intra-class variations and inter-class ambiguities of sketches [32] may be
the main reasons.

To date, no laboratory or field studies have been published to extract
normal sketching patterns directly from EMG signals of hand and arm. In this
study, an sEMG-based method for the recognition of seven basic one-stroke
shapes from sketching was carried out. An experiment protocol was established
to record the sEMG signals from the four forearm muscles of two participants
who were instructed to trace and cover each printed one-stroke shape on a
sketching template randomly. Subsequently, we extracted 280 time domain
indices of the sEMG signals with an analysis window. We used the principal
components after reducing dimensions with Principal Component Analysis
(PCA) as input vectors to an Support Vector Machine (SVM) classifier. In
addition, we compared the performance of the SVM-based model to those of
Multilayer Perceptron (MLP) classifier and Self Organization Feature Map
(SOFM) classifier.

2 Materials and methods

2.1 Participants

Two healthy male volunteers were selected to participate in the experiment.
During the screening visit, all volunteers had a medical examination to elim-
inate any upper limb musculoskeletal and nervous diseases, and they were
right-handed. Then, volunteers were required to sign a consent form with a de-
tailed description of the experiment and complete a background questionnaire
about personal information such as height and weight. De Luca [33] pointed
out that the amount of subcutaneous fatty tissue among different subjects
can potentially affect force-EMG signal relationship. Thus, two eligible partic-
ipants with similar height and weight were recruited (see Table 1). Before the
experiment, they promised not to do any forearm or hand strenuous exercise,
and they were briefed on the nature, purpose, methods and risk of the study.
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Table 1 Personal information of two participants

Subject 1 Subject 2

Age 26 27
Height (cm) 172 175
Weight (kg) 68 70

2.2 Tested shapes

There is no definitive set of basic sketching shapes. The most common in
diagrams are: line, curve, arc, rectangle, square, diamond, circle, ellipse, arrow
head and triangle [34]. The most common in CAD modeling tools such as
Rhinoceros (Robert McNeel Ltd., USA) are: line, curve, circle, ellipse, arc,
rectangle and polygon. Multi-stroke shapes can be sketched with an arbitrary
number of basic one-stroke shapes. For example, rectangle is comprised of
horizontal and vertical lines. In conclusion, horizontal line, vertical line, curve,
circle, horizontal ellipse, vertical ellipse and arc are seven frequently used basic
one-stroke shapes, which will be selected as the tested shapes in this study.

2.3 Sketching template design

To allow an easy, accurate and standardized measurement of the sEMG signals
of each sketching movement, a sketching template was designed. We printed
these seven one-stroke shapes into a piece of A4 paper with shallow color as
sketching template. The order of the shapes printed on the list of sketching
template paper was randomized. Subjects were required to sketch on the paper
to trace and cover each printed shape in the order of each sheet. Fig. 1 shows
one example of the sketching templates.

2.4 Apparatus

A 12-channel digital EMG system (ZJE-II, ZJE Studio Ltd., China) was used
for collecting, amplifying and transmitting the sEMG signals. It has an ampli-
fier gain of 1000, conditioned with a digital band-pass filter between 10 Hz-500
Hz with a notch filter implemented to remove the 50 Hz line interference. The
sEMG signals underwent a 14 bit analog to digital conversion at a sampling
frequency of 1000 Hz.

The single disposable Ag/AgCl strip electrodes (5 cm in length and 3.5 cm
in width), filled with conductive electrode paste (Jun Kang Medical Supplies
Ltd., China) were used to measure sEMG activities. The electrodes can be
snapped onto the EMG cable that connects it to the EMG amplifier. Before
attaching the electrode, the skin in the areas under the electrodes was shaved
and cleaned with alcohol and electrolyte gel to reduce skin impedance and
improve the electrical and mechanical contact of the electrodes.
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Fig. 1 One example of the sketching templates (Dots represent starting points, arrows
represent directions; 1, horizontal line; 2, vertical line; 3, curve; 4, circle; 5, horizontal ellipse;
6, vertical ellipse; 7, arc)

2.5 Selected muscles for research

Previous researchers [22,28] always recorded surface EMGs from hand muscles
for handwriting recognition. However, according to our experience, sketching
movements always involve forearm muscles. Thus, four forearm muscles: flexor
carpi radialis (FCR), extensor digitorum (ED), extensor carpi ulnaris (ECU),
extensor carpi radialis brevis (ECRB) were selected in this study. The locations
of the surface EMG electrodes are shown in Fig. 2.

Fig. 2 Electrode placement over the right forearm muscles. ECRB, extensor carpi radialis
brevis; ED, extensor digitorum; ECU, extensor carpi ulnaris; FCR, flexor carpi radialis. Here,
yellow represents negative electrode, blue represents positive electrode, black represents
ground electrode.
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2.6 Experimental protocol

The experiments were carried out for 10 days in August, 2015. They were
performed from 9:00 to 12:00. We prepared 100 sheets of sketching template
paper for each participant. The order of the shapes on the list of sketching
template paper was randomized, with a different random order for each sheet of
template paper. Each shape was sketched 100 times accumulatively. Therefore,
each subject sketched 700 shapes during the whole experiment. By a trial we
define a recording epoch during which a subject sketches a single one-stroke
shape. The trials were paced by the timer software of mobile phone which
played a beep sound in the beginning of each trial. The duration of each trial
was 5 s of which 1-2.5 s corresponded to each shape sketching. The sEMG
signals during extra recording time after 2.5 s were cut out from the analysis.

At the start of the task stage, electrodes were attached to the participants’
skin and connected to the sEMG system. The locations were marked on skin
with a mark pen to ensure the same locations during every session. In each
session, new electrodes were attached again on the pen marks. Next, a sheet
of sketching template paper was presented to the participant. Each repetition
of the task was initiated with the subject holding the pen with their usual
grasp pattern at a desk in front of a new sketching template. The subject was
instructed to remain in this position until the maximal relaxation point and
simultaneous visualization of the EMG signal were registered. At this point
the beginning of the task was requested through a beep sound. EMGs of 4
muscles were simultaneously recorded. Each subject was instructed to sketch
on the sketching templates to trace and cover printed shapes in order. During
the sketching procedure, the right arm was in the air instead of on the table.
By this way, participants can sketch more fluently. Meanwhile the extra noises
of sEMG signals produced by the friction between electrodes and table can
be avoided. To avoid muscle fatigue, subjects would rest for 5 minutes after
each sheet of sketching template paper and the collection of EMG signals was
stopped, but the electrodes were not removed until the subject finished 10
sheets of sketching template paper.

The design of the experiment was a sketching shape (7) × Repetition (10)
× Day (10) within-subjects design, amounting to 700 trials per participant.
Participation in the experiment took approximately 500 minutes. Fig. 3. illus-
trates the procedure.

2.7 Feature extraction

Time domain features such as Mean Absolute Value (MAV), number of Zero
Crossings (ZC), number of Slope Sign Changes (SSC) and Waveform Length
(WL), average EMG amplitude (aEMG), variance (VAR) and Root Mean
Square (RMS) were considered for pattern recognition [35,36,37,38]. These
features were extracted from 4 channels of sEMG signals during the sketching
of each shape. The MAV, ZC, SSC, WL, aEMG, VAR, RMS are computed as
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Fig. 3 A photograph of the sketching procedure

follows:

MAV =
1

N

N∑
i=1

|vi| (1)

where vi is the voltage at the ith sampling and N is the number of sampling
points.

ZC =

N∑
i=2

sgn(−vivi−1) (2)

where sgn denotes the signum function. ZC is incremented if {vi−1 > 0 and
vi < 0} or {vi−1 < 0 and vi > 0} while |vi−1 − vi| > 0.

SSC =

N∑
i=3

sgn[−(vi − vi−1)(vi−1 − vi−2)] (3)

where SSC is incremented if {vi−1 > vi−2 and vi−1 > vi} or {vi−1 < vi−2 and
vi−1 < vi} while |vi−1 − vi| > 0.

WL =
1

N − 1

N∑
i=2

|vi − vi−1| (4)

aEMG =
1

N

N∑
i=1

vi (5)

V AR =
1

N

N∑
i=1

(vi − aEMG)2 (6)

RMS =

√√√√ 1

N

N∑
i=1

v2i (7)
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We designed a Labview script to control the feature extraction of sEMG
signals. The main channel that has the highest RMS value will be used for
detecting threshold crossing, and the epoch onset of the main channel will
be designated for all channels. The main channel in this paper is the channel
collecting EMG signals from extensor digitorum (ED). In our study, the slid-
ing window for detecting threshold crossing was 20 ms (20 samples at 1000-Hz
sampling), and the stepsize is 5 ms. The width of the analysis window is 250 ms
with the stepsize of 250 ms. Rectified sEMGs from all muscles were segmented
into epochs corresponding to individual tested shapes using a threshold that
detected EMG bursts and designated the epoch onset. The threshold was set
as 0.6 RMS during each set of tested shapes [28]. Then the epoch onset is
determined when the RMS of the EMG signals crossing the threshold lasts for
300ms (57 segments of sliding window for detecting threshold crossing). Then
the EMG record was segmented into 2.5 s epochs (10 segments of analysis win-
dow) which represented the sketching of each shape. We can collect Segments
of analysis window (10) × Time domain characteristics (7) × Tested muscles
(4), amounting to 280 parameters per participant per sketching shape.

After collecting all MAV, ZC, SSC, WL, aEMG, VAR and RMS values, to
reduce data dimensionality, PCA was used to preprocess the EMG data before
the classification step. This would facilitates the classification, visualization,
communication, and storage of high-dimensional data [39]. The number of pa-
rameters was reduced from 280 to 26 and 28 principal components for subject
1 and subject 2 respectively.

2.8 Support Vector Machine (SVM) classifier

Several methods are available to classify sEMG signals. We used the SVM,
which is a type of machine learning method and a kernel-induced feature space
function is used for the mapping of objects onto target values [40]. In the SVM,
a non-linear feature mapping will allow the treatment of non-linear problems in
a linear, high-dimensional space [41,42]. The SVM uses the idea of maximum
margin classifiers for training. This decouples the capacity of the classifier
from the input space and at the same time provides good generalization [43].
The approximation function used by a basic SVM is given by the following
equation:

f(x) =

l∑
i=1

aiK(x, xi) + b (8)

where ai represents SVM parameters to be learned from data, xi represents
a input vector corresponding to a training object, and K(x, xi) represents a
kernel function. The components of the vector a and the constant b represent
the hypothesis and are optimized during training. The value of K(x, xi) is
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equal to the inner product of vectors xi and x in the respective feature space.
A Gaussian radial basis function is used as the kernel function in this study.

K(x, xi) = exp[−|x− xi|
2

2σ2
] (9)

where σ is a tuning parameter that controls the width of the kernel function.
More detailed description of SVM can be found in [40].

2.9 Multilayer Perceptron (MLP) classifier

To investigate to which degree the results depended on the specific classifier
used, we constructed a second classifier using the MLP neural networks. The
MLP neural networks are the most commonly used feedforward neural net-
works due to their fast operation, ease of implementation, and smaller training
set requirements [44,45]. The MLPs are normally trained with the backpropa-
gation algorithm. The backpropagation rule propagates the errors through the
network and allows adaptation of the hidden parameters. As one of the most
common artificial neural networks (ANNs), the MLP has been widely used
in pattern recognition models for sEMG signals [46]. A three-layer network
consisting of one input layer, one hidden layers with a Sigmoid function, and
one output layer with a Tanh function was used to set up the MLP classifier.
More detailed description of the MLP can be found in [47].

2.10 Self Organization Feature Map (SOFM) classifier

We constructed a third classifier using the SOFM neural networks. The SOFM
has been developed based on specific features of human brains cells organized
in variant areas of senses presented by arranged computational maps [48,49,
50]. The ideas of the SOFM are rooted in competitive learning networks. In
competitive nets, only the weights of the winning node get updated. Kohonen
proposed a slight modification of this principle with tremendous implications.
Instead of updating only the winning parameter, in the SOFM nets the neigh-
boring parameter weights are also updated with a smaller step size. This means
that in the learning process (topological) neighborhood relationships are cre-
ated in which the spatial locations correspond to features of the input data. In
fact one can show that the data points that are similar in the input space are
mapped to small neighborhoods in Kohonen SOFM layer. More details can be
found in [48,51,52].

Once the SOFM stabilizes, its output can be fed to a MLP to classify the
neighborhoods. Note that in so doing we have accomplished two things: first,
the input space dimensionality has been reduced and second, the neighborhood
relation will make the learning of the MLP easier and faster because input data
is structured [52].
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3 Results and discussion

3.1 Results of feature extraction

Feature extraction and recognition algorithms had to be performed on the
data from individual subjects and did not generalize to other subjects because
of inter-subject variability [22]. In our experiment, sEMG signals were col-
lected 200 times for each sketching shape (2 subjects × 100 replications of
each shape). Setting the threshold as 0.6 RMS and the Extensor digitorum
(ED) as the main channel can help detect 700 trials per participant precisely.
After these onsets were determined, the EMG record was segmented into 2.5
s epochs which represented the sketching duration of each shape. 280 param-
eters were successfully extracted per participant per sketching shape. Fig. 4
shows randomly selected electromyograms of the four channels for the sketch-
ing. The EMG signals of each 2.5 s epoch between the left and right dotted
lines depicted on Fig. 4 were used in the analysis.

The PCA was carried out in SPSS software (IBM Ltd., USA). We extracted
the principal components with the eigenvalues greater than 1, which is the
most common criteria in selecting principal components [51]. The number
of parameters was reduced from 280 to 26 and 28 principal components for
subject 1 and subject 2 respectively.

After feature dimension reduction using PCA, the dataset was randomly
divided into two subsets, a training set and a test set. The 70% of the data
from each day was used as the training set and the remainder of the data was
used as the test set. The training set contained 490 sEMG samples, whereas
the test set contained 210 samples. For our study, the linear normalization
was employed as it can transform a data range to another without distortion.
After linear normalization, all data was normalized into the closed interval [1,
1] [53].

3.2 Classification results

Three classifiers were built with the simulation software NeuroSolutions 7
(NeuroDimension Inc., Gainesville, FL, USA) on Windows 7. The accuracy
rate (AR) and AR7 were used to evaluate the performance of the classifiers.
AR7 was the mean AR of 7 sketching shapes for each subject.

Using SVM classifier, two termination criteria were set for the training
phase: the maximum number of iterations was 2000, and the minimum mean
square error (MSE) was less than 0.01. If either criterion was satisfied, the
algorithms would stop. For subject 1, the algorithm converged after 65 iter-
ations with a final MSE of 0.00996. For subject 2, the algorithm converged
after 29 iterations with a final MSE of 0.00952. The confusion matrix of the
sketching shapes based on the SVM classifier are shown in Figs. 5a, 5d, 5g and
5j.
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Fig. 4 Electromyograms of the four channels of the basic shapes, each panel illustrating a
single sketching shape taken from a single participant (Channel 1: extensor carpi radialis
brevis; Channel 2: extensor digitorum (main channel); channel 3: extensor carpi ulnaris;
channel 4: flexor carpi radialis). (a) Horizontal line, (b) vertical line, (c) curve, (d) circle,
(e) horizontal ellipse, (f) vertical ellipse, (g) arc. The left dotted lines represent the onsets
of the 2.5 s epochs, and the right dotted lines represent the end points in each panel.
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As can be seen, all seven sketching shapes could be recognized with high
accuracy. For the training set, the recognition Accuracy Rates (ARs) are all
100%. For the test set of subject 1, the ARs for horizontal line, vertical line,
curve, circle, horizontal ellipse, vertical ellipse and arc are 100%, 93.3%, 100%,
100%, 100%, 96.8% and 100%, respectively. Furthermore, systematic misiden-
tifications occurred: vertical line is mistaken for circle in 6.7% of cases, and
vertical ellipse is mistaken for circle in 3.2%. For the test set of subject 2, the
ARs for horizontal line, vertical line, curve, circle, horizontal ellipse, vertical
ellipse and arc are 100%, 100%, 100%, 94.1%, 96.8%, 100% and 97.4%, re-
spectively. Furthermore, circle is mistaken for horizontal line in 5.9% of cases,
horizontal ellipse is mistaken for arc in 3.2%, and arc is mistaken for curve in
2.6%. Although the rate of false recognitions remains to be reduced, the SVM
classifier performs very well for the training data and generalized well to the
test data: for both data set, most of the sEMG patterns of the seven sketching
shapes are correctly classified.

For comparison purposes, we used the same dataset and termination cri-
teria for the MLP classifier. The number of hidden layers was set to 1 and
the number of hidden layer nodes was set to 53 and 57 for subject 1 and sub-
ject 2 respectively. For subject 1, the algorithm converged after 388 iterations
with a final MSE of 0.0097. For subject 2, the algorithm converged after 224
iterations with a final MSE of 0.0098. The confusion matrix of the sketching
shapes based on the MLP classifier are shown in Figs. 5b, 5e, 5h and 5k.

According to Fig. 5b, for the training set of subject 1, the ARs for hor-
izontal line, vertical line, curve, circle, horizontal ellipse, vertical ellipse and
arc are 98.4%, 100%, 98.7%, 100%, 98.6%, 100% and 100%, respectively. Fur-
thermore, horizontal line is mistaken for circle in 1.6%, curve is mistaken for
arc in 1.3%, and horizontal ellipse is mistaken for vertical ellipse in 1.4%.

According to Fig. 5e, for the test set of subject 1, the ARs for horizontal
line, vertical line, curve, circle, horizontal ellipse, vertical ellipse and arc are
97.3%, 100%, 100%, 100%, 96.8%, 96.8% and 97.4%, respectively. Furthermore,
horizontal line is mistaken for circle in 2.7%, vertical ellipse is mistaken for
horizontal line in 3.2%, arc is mistaken for horizontal ellipse in 2.6%, and
horizontal ellipse is mistaken for vertical ellipse in 3.2%.

According to Fig. 5h, for the training set of subject 2, the ARs for the
seven sketching shapes are all 100%.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5 Confusion matrices of seven-class sketching recognition using three classifiers (1,
horizontal line; 2, vertical line; 3, curve; 4, circle; 5, horizontal ellipse; 6, vertical ellipse; 7,
arc)

According to Fig. 5k, for the test set of subject 2, the ARs for horizontal
line, vertical line, curve, circle, horizontal ellipse, vertical ellipse and arc are
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100%, 100%, 100%, 94.1%, 96.8%, 100% and 100%, respectively. Furthermore,
circle is mistaken for horizontal line in 5.9%, and horizontal ellipse is mistaken
for arc in 3.2%.

We also used the same training and test set for the SOFM classifier. The
properties of the SOFM classifier are shown in Table 2. The maximum epochs
of unsupervised learning and supervised learning control were set as 100 and
2000 respectively. The transformation function for the hidden layer was Sig-
moid function, and the transformation function for the output layer was Tanh
function.

Table 2 Properties of the SOFM classifier

Subjects
Number

of
inputs

Number
of

outputs

Number
of

hidden
layers

Number
of

hidden
layers’
nodes

Column
and
row
in

network

Train
algorithm

Neighborhood
shape

1 26 7 1 53 30 × 30 Momentum SquareKohonenfull
2 28 7 1 57 30 × 30 Momentum SquareKohonenfull

For subject 1, the algorithm converged after 701 iterations with a final MSE
of 0.0099. For subject 2, the algorithm converged after 1322 iterations with a
final MSE of 0.0099. The confusion matrix of the sketching shapes based on
the MLP classifier are shown in Figs. 5c, 5f, 5i and 5l.

According to Fig. 5c, for the training set of subject 1, the ARs for hor-
izontal line, vertical line, curve, circle, horizontal ellipse, vertical ellipse and
arc are 100%, 98.2%, 100%, 100%, 96%, 98% and 97.6%, respectively. Further-
more, vertical line is mistaken for horizontal line in 1.8%, horizontal ellipse is
mistaken for horizontal line in 2% and for vertical ellipse in 2%, vertical ellipse
is mistaken for circle in 2%, and arc is mistaken for horizontal line in 2.4%.

According to Fig. 5f, for the test set of subject 1, the ARs for horizontal
line, vertical line, curve, circle, horizontal ellipse, vertical ellipse and arc are
100%, 100%, 88.9%, 96.6%, 100%, 100% and 95%, respectively. Furthermore,
curve is mistaken for arc in 11.1%, circle is mistaken for horizontal line in
3.4%, and arc is mistaken for horizontal line in 2.4%.

According to Fig. 5i, for the training set of subject 2, the ARs for horizon-
tal line, vertical line, curve, circle, horizontal ellipse, vertical ellipse and arc
are 95.2%, 100%, 98.7%, 100%, 96.6%, 98.6% and 100%, respectively. Further-
more, horizontal line is mistaken for vertical line in 4.8%, curve is mistaken
for vertical line in 1.3%, horizontal ellipse is mistaken for vertical line in 1.4%
and for vertical ellipse in 2%, and vertical ellipse is mistaken for vertical line
in 1.4%.

According to Fig. 5l, for the test set of subject 2, the ARs for horizon-
tal line, vertical line, curve, circle, horizontal ellipse, vertical ellipse and arc
are 97.3%, 100%, 96.2%, 94.1%, 96.8%, 96.8% and 97.4%, respectively. Fur-
thermore, horizontal line, curve, horizontal ellipse, vertical ellipse and arc are
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mistaken for vertical line in 2.7%, 3.8%, 3.2%, 3.2% and 2.6%, respectively,
and circle is mistaken for horizontal line in 5.9%.

(a) (b)

Fig. 6 Histogram bars and error bars of AR for the two participants achieved by three
classifiers versus type of one-stroke shapes as measured with (a) the training data and (b)
the test data

The histogram bars and the error bars of AR of the 7 one-stroke shapes
are shown in Fig. 6. These histogram bars are the means of AR for the 2
participants. The error bars denote standard error (SE). According to Fig. 6a,
the average values for the SVM classifier are all 100%; the average values for
the MLP classifier from left to right are 99.2%, 100%, 99.35%, 100%, 99.3%,
100% and 100%; the average values for the SOFM classifier from left to right
are 97.6%, 99.1%, 99.35%, 100%, 96.3%, 98.3% and 98.8%. According to Fig.
6b, the average values for the SVM classifier from left to right are 100%,
96.65%, 100%, 97.05%, 98.4%, 98.4% and 98.7%; the average values for the
MLP classifier from left to right are 98.65%, 100%, 100%, 97.05%, 96.8%,
98.4% and 98.7%; the average values for the SOFM classifier from left to right
are 98.65%, 100%, 92.55%, 95.35%, 98.4%, 98.4% and 96.2%.

The averages and standard deviation (st. dev.) of AR7 achieved by three
classifiers across subjects are shown in Table 3. These averages are the means
of AR7 for the two participants. According to Table 3, we can conclude that
the SVM classifier performs slightly better than the MLP classifier, and the
SOFM classifier perform worst.

3.3 Discussion

The results of this paper have shown that sEMG signals can be used for the
recognition of sketching. In recent years, several researchers have indicated
that sEMG-based approaches are well suited for the recognition of subtle move-
ments [22,54]. However, few studies focus on the recognition of sketching like
our present study. We proposed a novel sketching recognition method based on
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Table 3 Average values of AR7 for the 2 participants

Classifiers Data set Average AR7 st. dev.

SVM
Training set 100% 0%
Test set 98.5% 0.18%

MLP
Training set 99.7% 0.43%
Test set 98.5% 0.26%

SOFM
Training set 98.5% 0.07%
Test set 97.1% 0.19%

the forearm sEMG signals. The results suggest that our SVM-based method
performs very well in recognizing the seven basic one-stroke shapes from the
forearm sEMG signals of four channels.

Setting the extensor digitorum as the main channel and using 0.6 RMS as
the threshold, all 700 sketching epochs were detected, and all 280 parameters
were extracted by the analysis window for each 2.5 s sketching epoch. After
reducing data dimensionality using PCA, the 26 or 28 principal components
of sEMG signals were used as input vectors to the SVM classifier. This novel
approach of feature extraction reveals the basis of the excellent classification
result of the SVM classifier.

The fact that brain, hand and eye actions are tightly connected in the
sketching process [55,56,5] suggests that bioelectric interfaces potentially ex-
tract normal sketching patterns directly from forearm EMG signals. Analo-
gously, the SVM classifier was able to recognize seven one-stroke shapes with
nearly perfect accuracy. The basis of this achievement is revealed by the elec-
tromyograms (Fig. 4) which show that the four tested muscles have different
sEMG amplitudes when participants sketch different basic one-stroke shapes.

The performance of the SVM classifier was slightly better than that of the
MLP classifier (Figs. 5 and 6, Table 3). However, the performance differences
between the two classifiers were so small that they, for practical purposes, can
be regarded as equivalent. Although the SOFM classifier performed worst, the
average values of AR7 for two participants were still higher than 97%, which
belongs to a high recognition rate. These findings suggest that the sEMG-
based sketching recognition method is robust to variations of the recognition
algorithm.

Although compared with the MLP classifier, the SOFM classifier adds a
competitive learning process (unsupervised learning process), which can reduce
the input space dimensionality and structure the input data, the performance
of the SOFM classifier was still worse than that of the MLP. The reason may
be that the high complexity of a classifier may have a negative effect on the
recognition accuracy rate.

For the test set, the classification performances of the three classifiers for
the seven basic one-stroke shapes are different (Figs. 5 and 6). For the SVM
classifier, vertical line and circle have the top two false recognition rates. For
the MLP classifier, circle and horizontal ellipse have the top two false recog-
nition rates. For the SOFM classifier, curve and circle have the top two false
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recognition rates. In conclusion, circle was always recognized worst for the
three classifiers. Interestingly, circle was always mistaken for horizontal line.
It can be explained that the tested muscles were not sufficient for classifying
these two sketching movements.

The recognition performance attained with our non-linear approach out-
perform that achieved by the method based on linear discriminant analysis in
[22], even though the amounts of trials, shapes and muscles we used in this
paper are different from theirs [22,30]. In their experiment, 500 trials were
collected from each participant repeating each numeric character from 0 to 9
approximately 50 times. They selected four hand muscles and four forearm
muscles in their studies. It can be observed that the nonlinear methods may
get higher accuracy than the linear ones, with fewer muscles and input vectors.

Overall, this demonstration may contribute to an efficient and natural way
to sketch freely and precisely in computer or digital devices, which can be a
viable alternative to traditional methods of sketching recognition. We envision
a computer peripheral that can be used as a muscle-computer interface [12],
such as an sEMG armband, in which electrical activity of forearm muscles are
streamed directly to a computer where mathematical algorithms transform it
into sketching shapes.

Nevertheless, our findings and the general approach have several limita-
tions:

(1) In our study, we recognized sketching shapes from the EMG patterns.
Reconstruction of sketching traces using decoding algorithm is a much more
accessible and natural interface than recognition. Researchers have proposed
several methods for reconstruction of handwriting from multichannel elec-
tromyographic recordings [30,22]. Analogously, EMG signals seem sufficient
for the reconstruction of sketching traces, which will be the research focus of
our future work.

(2) The accuracy rate of 100% is really rare in real-life, challenging classifi-
cation tasks. In our future work, we will repeat the training and test procedure
for each shape several times, each time with a different training data and test
data, to consider the variance of test error and enhance the robustness of the
method.

(3) We used sketching templates for drawing, in which we specified the
sequence of shapes, the starting point and the direction of movements. This
makes the problem simplified as compared to a real-life scenario, in which
people have their own habits of drawing the same shape (e.g. circle can be
drawn both in clockwise and counter-clockwise directions). Our future work
will consider more flexible and variable ways of sketching.

(4) Subjects were required to sketch on a template with fixed dimensions
(Fig. 1). However, these basic shapes can also been shown with different de-
grees and scales in practical drawings. Whether our method is able to recognize
these additional one-stroke shapes needs further research.

(5) In this experiment, each subject was instructed to trace printed shapes,
instead of free drawing. Tracing is not the same as a free drawing of shapes,
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and may reduce variability. In future studies, we therefore also plan to explore
whether our method can be used to detect shapes of free drawing.

(6) Seven time domain indices of sEMG signals were extracted as features.
However, too many indices may increase the number of parameters for input
vectors of classifiers, which may reduce recognition rates. To further improve
the robustness and accuracy, frequency domain indices and time-frequency
domain indices could be additionally extracted, and we could find out the
best combination of indices among them.

(7) While we recognized 7 one-stroke shapes from the EMG patterns, which
are most common in diagrams and CAD modeling tools. However, there is no
definitive set of basic sketching shapes. In the future work, we should enlarge
the number of tested shapes and make the tested shape set more comprehensive
and practical.

4 Conclusion

In this paper, we investigated the relationship between sketching and neuro-
muscular activity measured by electromyography. We built the SVM classifier
in order to recognize the basic one-stroke shapes based on the corresponding
sEMG measurements. We showed that the SVM classifier slightly outperforms
two other classifiers. While the results are encouraging, additional research is
needed to further develop the method. Further progress in this field would
become useful in muscle-computer interfaces, associated with sketching.
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