212 research outputs found

    Spatio-temporal centroid based sign language facial expressions for animation synthesis in virtual environment

    Get PDF
    Orientador: Eduardo TodtTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 20/02/2019Inclui referências: p.86-97Área de concentração: Ciência da ComputaçãoResumo: Formalmente reconhecida como segunda lingua oficial brasileira, a BSL, ou Libras, conta hoje com muitas aplicacoes computacionais que integram a comunidade surda nas atividades cotidianas, oferecendo interpretes virtuais representados por avatares 3D construidos utilizando modelos formais que parametrizam as caracteristicas especificas das linguas de sinais. Estas aplicacoes, contudo, ainda consideram expressoes faciais como recurso de segundo plano em uma lingua primariamente gestual, ignorando a importancia que expressoes faciais e emocoes imprimem no contexto da mensagem transmitida. Neste trabalho, a fim de definir um modelo facial parametrizado para uso em linguas de sinais, um sistema de sintese de expressoes faciais atraves de um avatar 3D e proposto e um prototipo implementado. Neste sentido, um modelo de landmarks faciais separado por regioes e definido assim como uma modelagem de expressoes base utilizando as bases faciais AKDEF e JAFEE como referencia. Com este sistema e possivel representar expressoes complexas utilizando interpolacao dos valores de intensidade na animacao geometrica, de forma simplificada utilizando controle por centroides e deslocamento de regioes independentes no modelo 3D. E proposto ainda uma aplicacao de modelo espaco-temporal para os landmarks faciais, com o objetivo de observar o comportamento e relacao dos centroides na sintese das expressoes base definindo quais pontos geometricos sao relevantes no processo de interpolacao e animacao das expressoes. Um sistema de exportacao dos dados faciais seguindo o formato hierarquico utilizado na maioria dos avatares 3D interpretes de linguas de sinais e desenvolvido, incentivando a integracao em modelos formais computacionais ja existentes na literatura, permitindo ainda a adaptacao e alteracao de valores e intensidades na representacao das emocoes. Assim, os modelos e conceitos apresentados propoe a integracao de um modeo facial para representacao de expressoes na sintese de sinais oferecendo uma proposta simplificada e otimizada para aplicacao dos recursos em avatares 3D. Palavras-chave: Avatar 3D, Dados Espaco-Temporal, Libras, Lingua de sinais, Expressoes Faciais.Abstract: Formally recognized as the second official Brazilian language, BSL, or Libras, today has many computational applications that integrate the deaf community into daily activities, offering virtual interpreters represented by 3D avatars built using formal models that parameterize the specific characteristics of sign languages. These applications, however, still consider facial expressions as a background feature in a primarily gestural language, ignoring the importance that facial expressions and emotions imprint on the context of the transmitted message. In this work, in order to define a parametrized facial model for use in sign languages, a system of synthesis of facial expressions through a 3D avatar is proposed and a prototype implemented. In this way, a model of facial landmarks separated by regions is defined as a modeling of base expressions using the AKDEF and JAFEE facial bases as a reference. With this system it is possible to represent complex expressions using interpolation of the intensity values in the geometric animation, in a simplified way using control by centroids and displacement of independent regions in the 3D model. A spatial-temporal model is proposed for the facial landmarks, with the objective of define the behavior and relation of the centroids in the synthesis of the basic expressions, pointing out which geometric landmark are relevant in the process of interpolation and animation of the expressions. A system for exporting facial data following the hierarchical format used in most avatars 3D sign language interpreters is developed, encouraging the integration in formal computer models already existent in the literature, also allowing the adaptation and change of values and intensities in the representation of the emotions. Thus, the models and concepts presented propose the integration of a facial model to represent expressions in the synthesis of signals offering a simplified and optimized proposal for the application of the resources in 3D avatars. Keywords: 3D Avatar, Spatio-Temporal Data, BSL, Sign Language, Facial Expression

    Data-Driven Synthesis and Evaluation of Syntactic Facial Expressions in American Sign Language Animation

    Full text link
    Technology to automatically synthesize linguistically accurate and natural-looking animations of American Sign Language (ASL) would make it easier to add ASL content to websites and media, thereby increasing information accessibility for many people who are deaf and have low English literacy skills. State-of-art sign language animation tools focus mostly on accuracy of manual signs rather than on the facial expressions. We are investigating the synthesis of syntactic ASL facial expressions, which are grammatically required and essential to the meaning of sentences. In this thesis, we propose to: (1) explore the methodological aspects of evaluating sign language animations with facial expressions, and (2) examine data-driven modeling of facial expressions from multiple recordings of ASL signers. In Part I of this thesis, we propose to conduct rigorous methodological research on how experiment design affects study outcomes when evaluating sign language animations with facial expressions. Our research questions involve: (i) stimuli design, (ii) effect of videos as upper baseline and for presenting comprehension questions, and (iii) eye-tracking as an alternative to recording question-responses from participants. In Part II of this thesis, we propose to use generative models to automatically uncover the underlying trace of ASL syntactic facial expressions from multiple recordings of ASL signers, and apply these facial expressions to manual signs in novel animated sentences. We hypothesize that an annotated sign language corpus, including both the manual and non-manual signs, can be used to model and generate linguistically meaningful facial expressions, if it is combined with facial feature extraction techniques, statistical machine learning, and an animation platform with detailed facial parameterization. To further improve sign language animation technology, we will assess the quality of the animation generated by our approach with ASL signers through the rigorous evaluation methodologies described in Part I

    A Survey of Applications and Human Motion Recognition with Microsoft Kinect

    Get PDF
    Microsoft Kinect, a low-cost motion sensing device, enables users to interact with computers or game consoles naturally through gestures and spoken commands without any other peripheral equipment. As such, it has commanded intense interests in research and development on the Kinect technology. In this paper, we present, a comprehensive survey on Kinect applications, and the latest research and development on motion recognition using data captured by the Kinect sensor. On the applications front, we review the applications of the Kinect technology in a variety of areas, including healthcare, education and performing arts, robotics, sign language recognition, retail services, workplace safety training, as well as 3D reconstructions. On the technology front, we provide an overview of the main features of both versions of the Kinect sensor together with the depth sensing technologies used, and review literatures on human motion recognition techniques used in Kinect applications. We provide a classification of motion recognition techniques to highlight the different approaches used in human motion recognition. Furthermore, we compile a list of publicly available Kinect datasets. These datasets are valuable resources for researchers to investigate better methods for human motion recognition and lower-level computer vision tasks such as segmentation, object detection and human pose estimation

    Survey on Emotional Body Gesture Recognition

    Get PDF
    Automatic emotion recognition has become a trending research topic in the past decade. While works based on facial expressions or speech abound, recognizing affect from body gestures remains a less explored topic. We present a new comprehensive survey hoping to boost research in the field. We first introduce emotional body gestures as a component of what is commonly known as "body language" and comment general aspects as gender differences and culture dependence. We then define a complete framework for automatic emotional body gesture recognition. We introduce person detection and comment static and dynamic body pose estimation methods both in RGB and 3D. We then comment the recent literature related to representation learning and emotion recognition from images of emotionally expressive gestures. We also discuss multi-modal approaches that combine speech or face with body gestures for improved emotion recognition. While pre-processing methodologies (e.g., human detection and pose estimation) are nowadays mature technologies fully developed for robust large scale analysis, we show that for emotion recognition the quantity of labelled data is scarce. There is no agreement on clearly defined output spaces and the representations are shallow and largely based on naive geometrical representations

    Statistical modelling for facial expression dynamics

    Get PDF
    PhDOne of the most powerful and fastest means of relaying emotions between humans are facial expressions. The ability to capture, understand and mimic those emotions and their underlying dynamics in the synthetic counterpart is a challenging task because of the complexity of human emotions, different ways of conveying them, non-linearities caused by facial feature and head motion, and the ever critical eye of the viewer. This thesis sets out to address some of the limitations of existing techniques by investigating three components of expression modelling and parameterisation framework: (1) Feature and expression manifold representation, (2) Pose estimation, and (3) Expression dynamics modelling and their parameterisation for the purpose of driving a synthetic head avatar. First, we introduce a hierarchical representation based on the Point Distribution Model (PDM). Holistic representations imply that non-linearities caused by the motion of facial features, and intrafeature correlations are implicitly embedded and hence have to be accounted for in the resulting expression space. Also such representations require large training datasets to account for all possible variations. To address those shortcomings, and to provide a basis for learning more subtle, localised variations, our representation consists of tree-like structure where a holistic root component is decomposed into leaves containing the jaw outline, each of the eye and eyebrows and the mouth. Each of the hierarchical components is modelled according to its intrinsic functionality, rather than the final, holistic expression label. Secondly, we introduce a statistical approach for capturing an underlying low-dimension expression manifold by utilising components of the previously defined hierarchical representation. As Principal Component Analysis (PCA) based approaches cannot reliably capture variations caused by large facial feature changes because of its linear nature, the underlying dynamics manifold for each of the hierarchical components is modelled using a Hierarchical Latent Variable Model (HLVM) approach. Whilst retaining PCA properties, such a model introduces a probability density model which can deal with missing or incomplete data and allows discovery of internal within cluster structures. All of the model parameters and underlying density model are automatically estimated during the training stage. We investigate the usefulness of such a model to larger and unseen datasets. Thirdly, we extend the concept of HLVM model to pose estimation to address the non-linear shape deformations and definition of the plausible pose space caused by large head motion. Since our head rarely stays still, and its movements are intrinsically connected with the way we perceive and understand the expressions, pose information is an integral part of their dynamics. The proposed 3 approach integrates into our existing hierarchical representation model. It is learned using sparse and discreetly sampled training dataset, and generalises to a larger and continuous view-sphere. Finally, we introduce a framework that models and extracts expression dynamics. In existing frameworks, explicit definition of expression intensity and pose information, is often overlooked, although usually implicitly embedded in the underlying representation. We investigate modelling of the expression dynamics based on use of static information only, and focus on its sufficiency for the task at hand. We compare a rule-based method that utilises the existing latent structure and provides a fusion of different components with holistic and Bayesian Network (BN) approaches. An Active Appearance Model (AAM) based tracker is used to extract relevant information from input sequences. Such information is subsequently used to define the parametric structure of the underlying expression dynamics. We demonstrate that such information can be utilised to animate a synthetic head avatar. Submitte

    Facial expression imitation for human robot interaction

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Joint optimization of manifold learning and sparse representations for face and gesture analysis

    Get PDF
    Face and gesture understanding algorithms are powerful enablers in intelligent vision systems for surveillance, security, entertainment, and smart spaces. In the future, complex networks of sensors and cameras may disperse directions to lost tourists, perform directory lookups in the office lobby, or contact the proper authorities in case of an emergency. To be effective, these systems will need to embrace human subtleties while interacting with people in their natural conditions. Computer vision and machine learning techniques have recently become adept at solving face and gesture tasks using posed datasets in controlled conditions. However, spontaneous human behavior under unconstrained conditions, or in the wild, is more complex and is subject to considerable variability from one person to the next. Uncontrolled conditions such as lighting, resolution, noise, occlusions, pose, and temporal variations complicate the matter further. This thesis advances the field of face and gesture analysis by introducing a new machine learning framework based upon dimensionality reduction and sparse representations that is shown to be robust in posed as well as natural conditions. Dimensionality reduction methods take complex objects, such as facial images, and attempt to learn lower dimensional representations embedded in the higher dimensional data. These alternate feature spaces are computationally more efficient and often more discriminative. The performance of various dimensionality reduction methods on geometric and appearance based facial attributes are studied leading to robust facial pose and expression recognition models. The parsimonious nature of sparse representations (SR) has successfully been exploited for the development of highly accurate classifiers for various applications. Despite the successes of SR techniques, large dictionaries and high dimensional data can make these classifiers computationally demanding. Further, sparse classifiers are subject to the adverse effects of a phenomenon known as coefficient contamination, where for example variations in pose may affect identity and expression recognition. This thesis analyzes the interaction between dimensionality reduction and sparse representations to present a unified sparse representation classification framework that addresses both issues of computational complexity and coefficient contamination. Semi-supervised dimensionality reduction is shown to mitigate the coefficient contamination problems associated with SR classifiers. The combination of semi-supervised dimensionality reduction with SR systems forms the cornerstone for a new face and gesture framework called Manifold based Sparse Representations (MSR). MSR is shown to deliver state-of-the-art facial understanding capabilities. To demonstrate the applicability of MSR to new domains, MSR is expanded to include temporal dynamics. The joint optimization of dimensionality reduction and SRs for classification purposes is a relatively new field. The combination of both concepts into a single objective function produce a relation that is neither convex, nor directly solvable. This thesis studies this problem to introduce a new jointly optimized framework. This framework, termed LGE-KSVD, utilizes variants of Linear extension of Graph Embedding (LGE) along with modified K-SVD dictionary learning to jointly learn the dimensionality reduction matrix, sparse representation dictionary, sparse coefficients, and sparsity-based classifier. By injecting LGE concepts directly into the K-SVD learning procedure, this research removes the support constraints K-SVD imparts on dictionary element discovery. Results are shown for facial recognition, facial expression recognition, human activity analysis, and with the addition of a concept called active difference signatures, delivers robust gesture recognition from Kinect or similar depth cameras

    AI-generated Content for Various Data Modalities: A Survey

    Full text link
    AI-generated content (AIGC) methods aim to produce text, images, videos, 3D assets, and other media using AI algorithms. Due to its wide range of applications and the demonstrated potential of recent works, AIGC developments have been attracting lots of attention recently, and AIGC methods have been developed for various data modalities, such as image, video, text, 3D shape (as voxels, point clouds, meshes, and neural implicit fields), 3D scene, 3D human avatar (body and head), 3D motion, and audio -- each presenting different characteristics and challenges. Furthermore, there have also been many significant developments in cross-modality AIGC methods, where generative methods can receive conditioning input in one modality and produce outputs in another. Examples include going from various modalities to image, video, 3D shape, 3D scene, 3D avatar (body and head), 3D motion (skeleton and avatar), and audio modalities. In this paper, we provide a comprehensive review of AIGC methods across different data modalities, including both single-modality and cross-modality methods, highlighting the various challenges, representative works, and recent technical directions in each setting. We also survey the representative datasets throughout the modalities, and present comparative results for various modalities. Moreover, we also discuss the challenges and potential future research directions
    corecore