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Statistical Modelling for Facial Expression Dynamics

Lukasz Zalewski

Abstract

One of the most powerful and fastest means of relaying emotions between humans are facial expres-
sions. The ability to capture, understand and mimic those emotions and their underlying dynamics
in the synthetic counterpart is a challenging task because of the complexity of human emotions, dif-
ferent ways of conveying them, non-linearities caused by facial feature and head motion, and the
ever critical eye of the viewer. This thesis sets out to address some of the limitations of existing
techniques by investigating three components of expression modelling and parameterisation frame-
work: (1) Feature and expression manifold representation,(2) Pose estimation, and (3) Expression
dynamics modelling and their parameterisation for the purpose of driving a synthetic head avatar.

First, we introduce a hierarchical representation based onthe Point Distribution Model (PDM).
Holistic representations imply that non-linearities caused by the motion of facial features, and intra-
feature correlations are implicitly embedded and hence have to be accounted for in the resulting
expression space. Also such representations require largetraining datasets to account for all possible
variations. To address those shortcomings, and to provide abasis for learning more subtle, localised
variations, our representation consists of tree-like structure where a holistic root component is de-
composed into leaves containing the jaw outline, each of theeye and eyebrows and the mouth. Each
of the hierarchical components is modelled according to itsintrinsic functionality, rather than the
final, holistic expression label.

Secondly, we introduce a statistical approach for capturing an underlying low-dimension ex-
pression manifold by utilising components of the previously defined hierarchical representation. As
Principal Component Analysis (PCA) based approaches cannot reliably capture variations caused by
large facial feature changes because of its linear nature, the underlying dynamics manifold for each
of the hierarchical components is modelled using a Hierarchical Latent Variable Model (HLVM) ap-
proach. Whilst retaining PCA properties, such a model introduces a probability density model which
can deal with missing or incomplete data and allows discovery of internal within cluster structures.
All of the model parameters and underlying density model areautomatically estimated during the
training stage. We investigate the usefulness of such a model to larger and unseen datasets.

Thirdly, we extend the concept of HLVM model to pose estimation to address the non-linear
shape deformations and definition of the plausible pose space caused by large head motion. Since
our head rarely stays still, and its movements are intrinsically connected with the way we perceive
and understand the expressions, pose information is an integral part of their dynamics. The proposed
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approach integrates into our existing hierarchical representation model. It is learned using sparse and
discreetly sampled training dataset, and generalises to a larger and continuous view-sphere.

Finally, we introduce a framework that models and extracts expression dynamics. In existing
frameworks, explicit definition of expression intensity and pose information, is often overlooked,
although usually implicitly embedded in the underlying representation. We investigate modelling
of the expression dynamics based on use of static information only, and focus on its sufficiency
for the task at hand. We compare a rule-based method that utilises the existing latent structure and
provides a fusion of different components with holistic andBayesian Network (BN) approaches. An
Active Appearance Model (AAM) based tracker is used to extract relevant information from input
sequences. Such information is subsequently used to define the parametric structure of the underlying
expression dynamics. We demonstrate that such informationcan be utilised to animate a synthetic
head avatar.

Submitted to the University of London in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

Queen Mary, University of London

2012
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Chapter 1

The Introduction

Facial expressions provide one of the most powerful and fastest means of relaying emotions between

humans. As faces are the most easily recognizable feature ofany individual, recognition by facial

identification is faster in most people than for example by name. Neuroscientists suggest that there is

presence of a region in the human brain specifically dedicated to face recognition, and that this region

is further subdivided into a task oriented components responsible for emotion, identity and gender

recognition [48]. Our brain is a beautiful and extremely powerful thing and it is not surprising that

we take for granted the ability to process efficiently and seamlessly all of this information in real

time.

Rapid development of hardware in the last two decades has resulted in an ever greater increase

in processing power, the emergence of the Internet as a global communication medium and the ever

growing popularity of personal computers and portable devices have opened up new and interesting

areas for vision related research. Although we are far away from matching the ability and perfor-

mance of our brains, the ability to re-create facial expressions using synthetic counter-parts, allowing

the simulation of direct visual communication between humans using computer devices, and the in

depth understanding of human nature enables the normally emotionless machines to exhibit, to some
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degree, personality and emotions that increasingly seem more real than ever.

Because of this we can see a change in the way that we perceieveHuman-Computer Interaction

(HCI) designs, with traditional computer-centered setupsinvolving keyboard and mouse, are replaced

by a notion of “ubiquitous computing” where human-centereddesigns are at the forefront [124].

Due to such an increase in interest, and the amount of research carried out, new opportunities and

application fields have emerged where there is a need to understand or quantify facial expressions is

much desired. Some of the potential fields include:� Computer Animation: From the humble beginnings ofTron, through to the pioneering work

of Pixar in this field, and because of its visual nature and its global exposure, this area has

made the most noticeable progress, and features in almost every aspect of the entertainment

field today.� Computer Games: Due to the establishment of the internet as aglobal communication medium

this field has evolved from that of a lonely, or personal, experience to a social phenomena,

where a multitude of players from all around the world meet and immerse themselves in

fantasy realms. With the emergence of Massively Multiplayer Online Role-Playing Games

(MMORPG) that facilitate and encourage communication between players the need to visu-

ally convey, or determine their emotions as the players react to unfolding events has never been

more desirable.� Virtual Meeting/Chat Rooms: From the dawn of time we have relied on person to person

communication and social interaction. Text based communication has been replaced by visual

interaction, where in Instant Messaging Clients (IMC) and specifically designed social virtual

worlds, such asSecond Life1, the addition of facial expressions would complete the experience.� Monitoring: Ability to determine certain behaviours and their extent can be useful, and can

provide insight, or cues on further actions. These states might include pain [69], fatigue [55]

or deceit [130].

1Second Life. http://secondlife.com
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Figure 1.1: Gollum character in Lord of the Rings.� Education: Automated systems that can recognise the underlying emotional states of tutees,

such as interest [119], and the opportunity this insight provides for the system to adapt or tune

its programming according to those recognised states.

However, in our great quest for realism, by large the best results are still obtained by employing ex-

pensive or complex motion capture systems, as the ones used on the set of “Beowulf”, or relying on

skills and experience of animators to transfer facial expression dynamics into synthetic counterparts,

where the prime example is the animation of Gollum’s face in “Lord of the Rings” (Figure 1.1).

Recent interest and advances in computer vision research have produced works that focus on auto-

mated and non-intrusive approaches to extract and define relevant information that does not depend

on expensive and time consuming setups. However many difficulties of the real world scenarios are

still present. They include:

Tracking problems These will occur due to the ubiquitous noise, occlusion, shadows and low

quality of the input source. Their presence might cause lossof tracking or inappropriate infor-

mation being extracted hence causing erroneous classification and animation. In this thesis we

do not directly focus on tracking phase although it is particularly important as it provides the
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foundation which our approach is built on.

Complexity of expressionsExpressions are something more than just a contraction of facial

muscles, they can convey the current emotional state of the person and can open a new dimen-

sion in human-computer interaction. They are also extremely diverse, as no two people exhibit

the same expression in the same way. This makes it very difficult, as trade-offs have to be

made, regarding generality, complexity and performance ofthe models we need to use.

Realistic animation Because people learn how to recognise and interpret faces and facial

expressions from the day they are born, even the slightest imperfections can be easily spotted.

This makes our quest for realism very challenging [76].

1.1 Approach

The goal of this thesis is to address the problem of extracting the dynamics of facial expressions and

providing a parametric description that can be subsequently used to animate a synthetic counterpart.

We can think of it as a process of transition between the real human face and the resulting synthetic

counterpart. In this thesis we study the following problems:

1.1.1 Feature Representation

A very important step for any successful vision system is thechoice of underlying feature representa-

tion. Due to the complexity of the facial expressions and themultitude of available stimuli the choice

is difficult and crucial as it defines the building foundation. The thesis work begins by introducing

the Active Appearance Model (AAM) which consists of a holistic shape and appearance combined

elegantly using a PCA statistical model. We focus on their person-specific variant, which provides

better performance [46], and a more optimal basis from whichto capture subtle dynamics of facial

expressions under a sparse training set.

Most of the existing approaches adopt a holistic representation, where the non-linearities caused

by the motion of facial features and their intra-feature correlations have to be accounted for in the
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resulting expression space. Also such a representation canencode redundant information that is

unnecessary, or even detrimental to the underlying task. Weintroduce a hierarchical decomposition

where the face is separated into eyes and mouth components which are the most salient regions on the

human face. This approach allows us to represent each of these regions according to their intrinsic

functionalities rather than the final expression labels. Wefocus specifically on the shape component

of the AAM, referred to as the Point Distribution Model (PDM), because of its resilience to the

illumination changes and underlying low dimensionality.

By taking advantage of facial symmetry we utilise a single eye model to represent the variation

of both of the eyes. The underlying subspaces are modelled using the Hierarchical Latent Variable

Model (HLVM) [13]. Whilst retaining PCA properties, it defines probability density model, that

allows the discovery of internal within cluster structures, but most importantly it allows modelling of

non-linear manifolds with a combination of localised submodels. We demonstrate the advantages of

such a model over the PCA approach.

1.1.2 Pose Estimation

Head motion is an inherent component of facial dynamics. Thecontinuous head movement, every

tilt, shake or nod is what we learned to perceive, and are usedto, as a constant companion of facial

expressions. Ability to capture and model such movements will compliment, and enrich the resulting

information. A prime example of its importance isPixar’s short feature filmLuxor Jr.2 where a

common household object was given human-like characteristics through the inclusion of such subtle

movements.

Due to the highly non-linear variations, linear mapping is not sufficient to represent pose changes.

We introduce a pose model, which is based on the first level of the HLVM hierarchy, which can

model the non-linear space with a combination of linear components. By just using the shape com-

ponent and appropriate underlying features, the influence of facial expressions on the resulting pose

estimation is minimised, something that would be difficult if the appearance component was also

1Luxor Jr. http://www.pixar.com/shorts/ljr/index.html
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considered. Based on a sparse and discreetly sampled training set our approach is able to estimate

pose through its probabilistic framework. We exploit our previously introduced hierarchical decom-

position, and show that through sub-sampling of the denser shape model we can derive continuous

pose estimates. As we do not utilise any dynamic informationthis method is fast and can deal with

large jumps and discontinuities.

We explore the usefulness of our pose model to the synthesis of facial expressions at arbitrary

viewpoints under an independence assumption of shape and texture. For a linear shape model warp

basis, deformations at extreme viewpoints will result in texture artifact and distortions. Our model

is able to overcome these problems. The choice of features, driven by minimising the effects of

expressions, has a reverse effect where most of the variations are kept in the appearance space and

the shape only serves as a warp vessel. Finally we investigate the effect of pose information on fitting

of AAM where at extreme views self-occlusion causes some of the information to be unavailable. We

employ a dynamically generated, and pose-dependent weightvector that constraints the calculation

of appearance difference at these views and improves the performance.

1.1.3 Dynamics Extraction and Parameterisation

Most of the existing approaches in Automatic Facial Expression Analysis (AFEA) focus on only

determining the underlying facial states, ignoring the underlying gradual changes and treating it as

an on/off process [41]. Given our previously defined hierarchical models we explore the concept

of fusion to combine the intrinsic functionality of eye and mouth components into final expression

labels. We investigate the use of rule-based classifiers andcompare them with a Bayesian Network

(BN) similar to Cohen et al. [20], but with the main focus on the independence between regions

rather than features, and holistic representations of Huang and Huang [53] and Liu et al. [71]. Given

the extracted final expression label, we calculate the corresponding intensity as a gradual change of

the combination of intrinsic intensities of the hierarchical subcomponents. These are extracted using

existing probability density models.

By using the AAM tracker on sequences containing a mixture offacial expressions interleaved
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by speech fragments we show that our method offers better performance over the BN and holistic

approach. Finally we combine extracted expression labels together with their intensity and pose

information and apply its parametric form, in a morph-basedfashion, to a synthetic head avatar.

1.2 Contributions

The main contributions are:� A hierarchical face representation has been introduced that utilises redundancy implied by the

symmetry of the human face. This representation reduces overall complexity of the model.

A statistical model that is built upon this hierarchical representation allows us to accurately

recognise expressions and extract their rate of change [123, 122].� A 2D pose model built using a sparse set of training samples provides invariance under facial

expressions, generalises to continuous and unseen samples. The model serves as a basis for

synthesis of facial expressions across arbitrary views andcan improve the AAM fitting process

[121, 120].� A fusion framework that draws from our hierarchical models to produce expression labels, aids

in the definition of the resulting expression intensity and applies resulting parameterisation to

animate a synthetic head avatar. [123, 122, 120].

1.3 Overview of the Thesis

Chapter 2 Review of previous work on facial expression analysis.

Chapter 3 Introduction of hierarchical facial decomposition into sub-components and their

representation using the Hierarchical Latent Variable Model (HLVM).

Chapter 4 Investigation into pose estimation based on our previouslyintroduced hierarchical

representation and its usefulness in synthesis and tracking.
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Chapter 5 Overview of the framework for fusing hierarchical subcomponent information with

rule-based classifier and resulting expression intensity estimation. Application of parame-

terised data to synthetic head counterpart.

Chapter 6 Conclusions and future work.
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Chapter 2

Literature Review

Early work by Suwa et al. [101] identified many problems associated with facial tracking and expres-

sion recognition. Recent advances in hardware developmentand huge increases in the processing

power of computers have triggered considerable interest inthe research community. However devel-

opment of vision systems that automatically understand andsynthesise facial expressions is still a

rather difficult and daunting task. A huge body of work is already present in the areas of Automatic

Facial Expression Analysis (AFEA) [41, 87, 88, 106, 72, 85, 124, 99]. The primary focus of these

studies is aimed at providing relevant labels, the underlying context of expression dynamics however

is mostly overlooked. We can divide the process of expression dynamics analysis into the following

stages:� Face acquisition - This step is necessary to find or detect a face in an input source, which can be

an image or a sequence of images. The problem offace detectionhas been largely addressed

in the literature [50, 131, 117]. Once the face has been detected, usually some alignment is

performed. Also pose estimation can be performed if significant head motion is present.� Feature extraction - Once the face has been located, this step will extract and formulate the

features necessary to represent facial expressions. The exact representation of features can
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vary. It will form the basis for stages that follow.� Semantics (or expression dynamics) formulation - will extract and formulate the information

needed to describefacial statein a parametric form, which can then be used for avatar an-

imation. Facial expressions underneath are more than just descriptive labels that we usually

associate with them. They are a direct manifestation of our emotional state, and are affected by

the surroundings and the context they were used in [72]. On the surface they are an intricate in-

terplay of facial features driven by muscle contractions. The way and the rate they evolve over

time, including rigid head motion associated with them, arethe integral part of their dynamics.

Since no two people exhibit them in the same way, and due to oursusceptibility to even small-

est imperfections, the ability to capture and learn those underlying semantics accurately poses

a great challenge.

In the following section, we review the existing work on feature representation (Section 2.1) and

semantics formulation (Section 2.2).

2.1 Feature Representation

In order to successfully recognise expressions we need to choose the appropriate representation of

“features”. We refer to features as attributes used to describe the modelof the face, rather than a

specific representation thereof, such as fiducial points of prominent landmarks on the face like nose,

mouth or eyes. The choice of the appropriate features is important for reasons such as computational

efficiency, discriminative power and resilience to missingand incomplete data [93]. Most importantly

such choice will have a direct effect on the methods used to extract information from the input source

and the approaches used to process that information. We can subdivide the representation into two

different levels: conceptual and data-based.
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2.1.1 Conceptual Level Representation

On the conceptual level, features can be defined as holistic (i.e. as a whole unit) or localised, to reflect

changes in specific regions of the face. Holistic approachestreat the face as a whole unit, usually by

combining all of the information such as shape, appearance and motion into a single monolithic unit,

and process them as such. The underlying feature vectors usually have high dimensions, especially

when dealing with the appearance data. They embed information, which might be irrelevant for

expression recognition task, and could have a direct impacton the classfiers ability to uncover its

true nature [84]. More importantly they implicitly encode correlations between facial features, which

can cause non-linearites in the resulting expression space. These correlations are important [21, 100]

as they determine the underlying facial states, but do not have to be accounted for at this particular

stage. Similarly, they will also implicitly encode global information of the underlying dynamics.

Localised features are associated with specific parts of theface. These parts are usually based

on the areas that are mostly prone to change, or contain the most relevant information for facial ex-

pression recognition. Psychophysical experiments conducted by Cunningham et al. [27] suggest that

changes only in certain regions of the face, are sufficient tosuccessfully recognise facial expressions.

In their work, they focused on the eye and mouth regions, which are the most intuitive and salient

regions of the human face. They concluded, that these regions, either on their own or in combination

can be used to recognise facial expressions. Furthermore these regions have been widely used and

relied upon in computer facial animation [42, 81, 63]. Nusseck et al. [81] examined the concept

of necessity with respect to different facial regions towards successful recognition of expressions.

Their findings suggest that for some of the expression categories individual regions of a face alone

can be used to successfully represent the expressions. Berisha et al. [10] have also highlighted the

importance of those regions and their influence on the globalperception of the face. Rather than

performing the analysis from the perspective of recognition, or functional importance of the regions,

the significance of these regions was described in the context of sources of variation in the facial

image.
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Figure 2.1: The 90 feature points used for PDM representation. From Huang and Huang [53].

2.1.2 Data Level Representation

On a different level, data-representation features can be divided into two main categories: geometric

and appearance-based [106]. Geometric features usually define the location and/or shape of facial

components, such as the mouth, nose or eyes. Appearance-based features represent the textural infor-

mation of the face, such as hair or skin, and its visual characteristics such as furrows or wrinkles. This

level is orthogonal to the previously defined conceptual level such that any data-level representation

can be either holistic or localised.

Geometric Features

Huang and Huang [53] used 90 landmark points placed on the face (Figure 2.1) combined with

parabolic curves for upper and lower lip shapes. Resulting shape was represented by a Point Distri-

bution Model (PDM) to capture the underlying holistic shapevariations using Principal Component
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(a) (b)

Figure 2.2: (a) Location features, whereL1;L2;L3;L4;L5 correspond to distances between six facial features. (b) Shape
features with normalized image on the left and zones of the edge map on the right. From Tian et al. [105].

Analysis (PCA) under a linear relationship assumption, which tends to fail in the presence of non-

linear variations such as those caused by large facial or pose variations. No rigid head motion, or

illumination variations should be present. Similar shape model based approach was used by Chang

et al. [16, 17], but with 58 facial landmarks. Tian et al. [105] used a combination of six location

and shape features from frontal, or near-frontal views. Thesix location features consisted of the

eye corners, eyebrow inner end-points, and mouth corners, and were represented by five parameters

defined by distances between the features in question. Shapefeatures were used for the mouth area

and defined by applying an edge detector to a normalised face to produce a 3�3 edge map. Then the

mouth shape features were computed from zonal shape histograms of the edges of the mouth region.

Figure 2.2 shows the location features (a), and shape features with the normalized face on the left

and corresponding edge zone map on the right (b). Valstar andPantic [110] used a set of 20 fiducial

facial points (Figure 2.3(a)) plus the location of both irises and the centre of the mouth in a frontal

view which locations were detected using Gabor-feature based boosted classifiers. Terzopoulus and
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(a) (b)

Figure 2.3: (a) 20 frontal fiducial facial points (from Valstar and Pantic [110]) (b) 19 frontal and 10 profile fiducial facial
points (from Pantic and Rothkrantz [89]).

Waters [103] used 11 active snakes (also known as deformablecontours) to represent lips and facial

features. Their approach required the subjects to wear feature enhancing make-up therefore making

it unsuited for real world environments.

Although the majority of existing approaches deal with frontal views only, multiple, or alterna-

tive views can be employed in order to bootstrap and help disambiguate issues related to the feature

extraction process. Pantic and Rothkrantz [88] used frontal and profile views with 30 and 10 location

points respectively. Multiple detectors were used for eachof the prominent facial features, and the

best representation was chosen based on knowledge of the facial anatomy and the confidence of each

of the detectors. This provided some measure of redundancy,but was limited solely to the detection

stage and required manual initialisation. Pantic and Rothkrantz [89] utilised frontal and profile views

with 19 and 10 points respectively (Figure 2.3(b)). Howeverthe practicality of their approach was

impaired by the need to wear head mounted camera rig. In theirfollowing work Pantic and Patras

[86] focused on a profile view only using 15 points.

Besides the location and/or shape of the features, cues suchas motion or displacement can be added.

These can only be used with images sequences where such information is available. Kimura and
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Figure 2.4: Motion Units (MUs) representation. From Cohen et al. [21].

Yachida [58] used an elastic net model, or more precisely, the motion vectors caused by its deforma-

tions. Otsuka and Ohya [83] used optical flow to estimate the motion of localised face regions such

mouth and right eye. The exclusion of the left eye region meant that the changes that occur in single

eye only cannot be adequately represented. Also the facial symmetry assumption regarding the range

of motion in both parts of the face cannot always be guaranteed. Cohen et al. [21] used an explicit

3D wireframe model of the face to represent direction and magnitude of the displacement of 12 facial

features. He called them Motion Units (MUs) (Figure 2.4). Essa and Pentland [40] used optical flow

to estimate facial movements. Those movements were then constrained and refined recursively by a

detailed physical face model of Platt and Badler [92]. Lien et al. [67] used motion vectors extracted

from coarse-to-fine pyramidal optical flow feature tracking, dense optical flow for holistic face mo-

tion, and spatio-temporal domain gradient information formodelling of furrows in the skin. Lee and

Xu [65] also applied pyramidal optical flow to calculate the displacement of 19 feature points placed

around facial landmarks such as the eyes, brows, nose and mouth. In general, flow-based techniques
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Figure 2.5: Facial features resulting from Gabor wavelet convolution. On the left are two facial expressions, and on the
right Gabor representations representing four differently oriented kernels. From Fasel and Luettin [41].

are computationally intensive and easily influenced by variations in lighting, non-rigid motion and

are sensitive to image registration and motion discontinuities [128].

Overall, geometric features provide low dimensionality data and a conceptually easy way to

model and describe expressions. They are tolerant to variations in illumination, and to some extent

also to inter-person differences. Unfortunately they can’t easily encode subtle skin changes such

as wrinkles or furrows caused by facial expressions. Their main disadvantage is that they rely on

accurate and reliable detection and tracking, which in manysituations cannot be guaranteed. They

do not deal very well with occlusion, and large pose variations. Also in low resolution images and

real-world environments such information might not be easily available [105, 106].

Appearance-based Features

Gabor filter based features [70, 5, 108, 110, 68, 6, 2, 71] are the most widely used appearance feature

representations due to their resilience to variations in lighting and to small shifts and deformations

[85]. Figure 2.5 shows sample features obtained from Gabor wavelet convolution. They can be

applied in holistic fashion, or to specific locations, whereby Gabor filters are placed at selected
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locations on the face to limit computational complexity [112].

Statistical analysis, such as Principal Component Analysis (PCA) [109], Local Feature Analysis

(LFA) [28], Local Discriminant Analysis (LDA), Independent Component Analysis (ICA) [28] have

also been widely used. They were pioneered by the “eigenfaces” work of Turk and Pentland [109].

Padgett and Cottrell [84] explored the concept of local principal components, or eigenfeatures, in

which windows were placed around facial feature regions (such as eyes and a mouth). Eigenfeature

based representation produced better results that its holistic counterpart, but required normalised

image data and was susceptible to differences in the mouth and eye structure. Donato et al. [28]

compared the use of several techniques such as holistic spatial analysis, including PCA, ICA, LFA,

LDA and approaches based on the outputs of local filters, suchas Gabor wavelet representation and

local principal components. The best results in recognising facial expressions were obtained using

Gabor wavelet representations and ICA. This experiment demonstrated the superiority of localised

representation.

Since appearance feature numbers and their dimensionalitycan be large, this implies high com-

putation costs, for example in Gabor convolution using a large number of features. To overcome

this problem, various feature selection techniques have been proposed to select a subset of the most

effective ones. Littlewort et al. [68] and Bartlett et al. [6] employed AdaBoost to select the best

subset of Gabor filters. Valstar and Pantic [110] compared GentleBoost feature selection against

AdaBoost and by using their dataset the former outperforms the latter. Local Binary Patterns (LBP)

provide an alternative to the Gabor based representation. First introduced by Ahonen et al. [1] and

subsequently adopted by Shan et al. [98], they offer lower computational cost and tolerance against

illumination variation, whilst retaining sufficient internal feature information. Shan [100] compared

AdaBoost with Conditional Mutual Information (CMI) based Boosting using LBP features, noting

that AdaBoost produced better results.

The general criticism of appearance-based features is thatthey are more susceptible to illumina-

tion variations and inter-person differences, unless a substantial quantity of features and large varied

training datasets are used [85]. Zhang et al. [129] have shown that Gabor-filter based appearance
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Figure 2.6: 34 fiducial points representing facial geometry. From Zhang et al. [129].

features perform better than geometric features alone. This is understandable as they can generally

encode more information compared to their geometric counterparts. However, study conducted by

Pantic and Bartlett [85] shows that this is not always the case. Work of Pantic and Patras [86] who

used a geometric feature representation performs similar or better than some appearance methods,

notably that of Bartlett et al. [7].

The obvious way forward is to combine both geometricandappearance features together, hence

utilising both their strengths and minimising their individual weaknesses [124]. Zhang et al. [129]

used 34 fiducial points selected manually on the face (Figure2.6) and applied a set of multi-scale and

orientation Gabor filters at those points. Tian et al. [104] used a multi-state face component model: a

three-state lip model (with open, closed and tightly closedstates), a two-state eye model (with open

or closed states), and one state model for the brow and cheek.In addition, appearance features from

the eye and nose area were incorporated into a two state model(present or absent). Zhang and Ji
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[126, 128] used a set of 26 facial features around the eyes, nose and mouth and a set of transient

features similar to that of Tian et al. [104].

The Active Appearance Model (AAM) [33, 77, 114, 73, 59, 11] isanother example of a model

relying on both geometric and appearance-based features. AAM uses a holistic representation with

combined shape and appearance features modelled in a PCA space. Similarly to PDM, which is

a component of AAM, it models both shape and texture under a linear relationship assumption,

and in the same way it tends to fail in the presence of non-linear variations caused by large facial

or pose variations [43]. Matthews and Baker [77] improved the performance of AAM in terms

of speed and accuracy by using an inverse compositional fitting algorithm. However their method

can only work with an independent AAM, in which shape and appearance are not combined, and

increases the dimensionality of the resulting model. Xiao et al. [114] utilised both 3D as well as

2D information in what they call a combined 2D+3D AAM. This method uses 3D information to

bootstrap the fitting process and is more resilient to occlusions, but it requires an additional 3D input

training data. Unfortunately the AAM approaches require very large and exhaustive training sets in

order to accurately capture and model inter-person and intra-person expression-specific variations.

Gross et al. [46] introduced the concept of Person-specific AAMs. This improves the performance

and reduces the number of training samples by removing inter-person variation, but requires training

separate models for each individual person. Zhang and Cohen[125] investigated the lack of flexibility

in the holistic representation of AAM and presented a component-based approach, where separate

models for eye and mouth-nose regions were combined with a global representation providing more

flexibility, accuracy in shape localisation.

2.1.3 Expression Manifold Representation

The dimensionality of a face input space is defined by the features used to represent it. It will range

from tens in the case of geometrical features to thousands for appearance features. Given high dimen-

sionality of the face input space, face representations lieintrinsically on lower dimensional manifold

[102, 97]. An expression can be represented as a point on sucha manifold and variations, or changes
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in those expressions can be represented by a path in such non-linear manifold, which is of intrinsi-

cally lower dimensionality than its corresponding input space [16, 17, 97].

Identification of a global, concise and accurate representation for all possible facial expressions, is

crucial for modelling facial dynamics. Subspace analysis methods such as PCA and LDA have been

used to model manifolds, but they fail to find the true structure of the data due to its underlying

non-linearity [102]. In some cases PCA can be sufficient whena small set of significantly different

expressions is used, hence keeping resulting non-linearities to the minimum. For example Kimura

and Yachida [58] represented anger, surprise and happinessin such way. Liu et al. [71] and [53] em-

ployed a PCA based representation combined with a Gaussian Mixture Model (GMM) to represent

the distribution of facial expressions. While the additionof a GMM produces better results com-

pared to PCA alone there was significant overlap of clusters in the manifold. This is understandable,

as GMM can only provide constraints on the shape variations to aid the classification, but it cannot

reliably model the underlying non-linear data variation, as its built on top of PCA representation and

inherits its underlying flaws. Various extensions to PCA have been proposed to allow representation

of non-linear manifolds, such as Non-linear Principal Component Analysis (NLPCA) or Kernel Prin-

cipal Component Analysis (KPCA) [43]. Although they overcome the linearity problem by utilising

higher dimensional subspace, these methods capture the overall variance of the data which might be

the most optimum solution. Moghaddam [78] investigated useof linear and non-linear techniques

such as PCA, ICA, NLPCA and KPCA for manifold modelling in thecontext of face recognition.

Their results show that in terms of matching accuracy, KPCA outperforms PCA by margin of 10%

but it is surpassed by Baesian methods such as ProbabilisticPrincipal Component Analysis (PPCA).

Heap and Hogg [49] introduced the concept of Hierarchical Principal Component Analysis (HPCA)

where combination of local linear sub-models were used to represent non-linear variations in PDM.

Although the work was in context of shape modelling and underlying constraints, the principals

are applicable to generic scenarios. Their model consistedof a global PCA model in the root of

the hierarchy, and linear combination of local PCA models constructed in the global, or root, PCA

subspace. Tenenbaum et al. [102] used Isometric feature mapping (Isomap) to discover meaningful
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structure from high dimensionality data, while Chuang et al. [19] used shape and texture statistical

representation similar to Cootes et al. [25] and a bilinear model to represent the facial expression

space. Symmetric and asymmetric formulations were employed to model speech and three facial

expressions. Du et al. [31] presented a method of mapping expressions to a 2D Valence-Arousal

emotion space, based on the 3D Valence-Arousal-Control model of Russell and Mehrabian [95] us-

ing linear mapping. Given the non-linear nature of the data,such a mapping is not sufficient to

efficiently model the manifold. Chang et al. [15] compared two types of embedding for expression

manifold modelling: Locally Linear Embedding (LLE) and Lipschitz embedding. Chang et al. [16]

also presented a probabilistic framework for recognising and synthesising six basic expressions using

enhanced Lipschitz embedding. In their following work Chang et al. [17] proposed an Active Shape

Model (ASM) representation and existing probabilistic framework to model six basic expressions.

As they modelled a global, generic expression manifold, their training set only included two sub-

jects, which barely provided sufficient validation. Shan [100] used Locality Preserving Projections

to model a generic manifold in the LBP appearance space to account for more detailed feature vari-

ations. They point out that sparse geometrical representation is not sufficient as it does not capture

detailed features such as wrinkles or furrows, and that having a separate manifold for each subject

does not provide enough generalisation.

2.2 Semantics Formulation

In order to successfully classify an expression one needs todefine a “dictionary” that describes our

facial expression state. It is worth pointing out that facial expression analysis is not analogous to

emotion analysis [106, 72]. In order to understand emotions, higher level knowledge is required and

additional factors such as context, body language, cultural elements and sound should be considered.

There are two distinct approaches: sign and message judgment [22]. Subsets of those are sometimes

referred to as emotion (affect) based, and muscle (Action Unit) based [106, 100, 85]:

* Message judgment- message judgment tries to describe facial expressions in terms of inferred

emotions. During an extensive study Ekman [35] proposed sixcategories of emotional ex-
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Figure 2.7: Universal expressions (from left to right): Fear, Joy, Disgust, Surprise, Sadness, Anger. From Kanade et al.
[56].

pressions, referred to as the basic, or universal expressions: happiness, sadness, surprise, fear,

anger and disgust (Figure 2.7 shows examples of each). His experiments suggest that these

basic expressions are universally displayed and recognised across different cultures. This is by

far the most popular method and has been widely adopted in thefield of automatic expression

recognition. There have also been attempts to recognise other emotional states such as interest

[119], pain [69], fatigue [55], deceit [130], and conversational components such as agreement,

disagreement, thinking, cluelessness and confusion [81].

* Sign judgment- Sign judgment attempts to describe facial expressions in terms of surface be-

haviour such as facial component movement or change. The Facial Action Coding System

(FACS) [36] is considered to be the most popular for analysing facial activity. It defines the

expressions in terms of 44 atomic Action Units (AUs) in which30 of those correspond to

movements of particular muscle groups and are partitioned to two sets, corresponding to upper

face and lower face (12 for the upper face and 18 for the lower face). The remaining 14 AUs

have anatomically undefined basis and are referred to as miscellaneous actions [56]. Using

those rules a particular expression can be decomposed into asingle AU or the combination

that describes that particular expression. More than 7000 combinations have been observed

[57]. Figure 2.8 illustrates some of the AUs for the upper part of the face. However FACS

in itself does not define a way to translate the AUs into labelled expressions. Extensions such

as the Facial Action Coding System Affect Interpretation Database (FACSAID) [38] or Emo-

tion Facial Action Coding System (EMFACS) [37] allow translation of AUs into predefined
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Figure 2.8: Some Action Units corresponding to the upper part of the face. From Tian et al. [104].

emotional categories. Alternative system is the Facial Animation Parameter (FAP) [82] coding

system developed for the MPEG-4 standard. It defines a set of 84 feature points (FPs) placed

at predefined locations on the face. Facial movements are represented by FAPs which are de-

fined as FP displacements with respect to a neutral state, andare measured in FAP units which

correspond to the distances between key features. Althoughthis system does not define the

way by which we formulate expressions, it does define the template on which the data should

be represented. It is based purely on facial feature points,unlike FACS, which is driven by

facial muscle movements.

2.2.1 Pose Information

Changes in pose are common by-products of facial expressions. Some of the expressions, such as

agreement or disagreement, can be represented by head movements alone [27]. Since our head rarely
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remains still, and its motion directly influences expression dynamics, it is imperative to extract this

information in order to provide more complete and accurate semantical description. Relatively few

works in the literature try to model pose together with facial expressions, or take such information

into consideration in the semantics formulation process [124]. The rigid head motion is intrinsically

embedded with non-rigid local feature motion and the main challenge is in separation of the two.

Usually the rigid motion is estimated first, and the non-rigid second, entailing that the face is a rigid

object without taking into consideration expression changes [132]. Bascle and Blake [8] investi-

gated coupling between pose and facial expressions. For theexpressions, they used a linear model

built from key expressions, and the pose estimation method used affine projection with parallax.

Combined influence of both was represented with a bilinear model and de-coupling was achieved

using Singular Value Decomposition (SVD). The main focus oftheir work was on the removal of

pose influence in the expression recognition process, and pose information was not explicitly de-

fined. Also the subject were required to wear enhancing make-up. Zhu and Ji [132] proposed an

improved approach based on a Normalised Singular Value Decomposition (N-SVD) to recover head

pose information in an analytic fashion. Constraints were added using non-linear techniques impos-

ing orthonormality condition on the pose parameters. The evaluation on a synthetic data, where the

original feature points were displaced by applying different levels of Gaussian noise, shows signif-

icant improvement over Bascle and Blake [8]. Sarris et al. [96] used a 3D model and optical flow

to estimate pose information from video sequences. The assumption was that the 3D model could

be adequately fitted in the very first frame. Eisert and Girod [34] also employed 3D models. Both

methods fitted into the FAP framework. Gu and Ji [47] used Infra-Red (IR) information to define

several properties such as inter-pupil distance, size or orientation, which were subsequently mod-

elled using PCA to form a Pupil Feature Space (PFS). Head posewas determined by mapping those

parameters into PFS. A similar technique was used by Zhang and Ji [127]. Dornaika and Davoine

[30] use a deterministic registration technique based on Online Appearance Models to estimate head

pose. On the other hand, Tian et al. [105] used the silhouetteof a head rather than face, which was

then converted to grayscale, histogram equalised, and resized to the appropriate resolution. This was
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then passed through a Neural Network (NN) with the outputs being one of the following: frontal,

near-frontal, side, profile, back or occluded. By using the silhouette the effects of facial expressions

were mostly removed, but such representation could be susceptible to ambiguities and could not be

used for more fine-grained, or precise, pose definition. Nevertheless the pose information can be ex-

tracted from the underlying model - this is especially true for the 3D-based models. Xiao et al. [114]

can automatically obtain pose information from the 3D head model which was used to constrain the

2D AAM model. Similarly Xiao et al. [115] developed means of extracting pose information from

the cylindrical model.

2.2.2 Expression Categories Extraction

After the extraction of the required features, one may wish to recognise (or classify) facial expression

labels based on the given data. Different classifiers can be used for this task. These can be NNs

[60, 104, 105, 129, 84, 57], Support Vector Machines (SVMs) [5, 3, 110, 70, 98], BNs [21] and their

dynamic counterparts [128, 108, 47, 126], Hidden Markov Models (HMMs) [21, 66, 83, 57] or rule

based classifiers [86] and Particle filters [30]. We can form two main categories of approach: static,

in which information used for expression analysis is extracted from a single image, and dynamic, in

which temporal information is also utilised [106, 85].

Posed versus Spontaneous Expressions

There is a clear physical distinction between posed and spontaneous expressions. Neurological re-

search suggests that they are driven by two different neuralpathways in the brain, and that the facial

muscles and dynamics are different [85]. For example the spontaneous expressions are driven by

different motor pathways, resulting in non-symmetric expressions [106]. Also, spontaneous expres-

sions are context and culture specific, and only small subsetof them can be defined across culture or

context. Most of the existing work uses data that contains deliberately posed expressions. This data

is easier to obtain or generate, but such data rarely exists in a real world scenarios. The use of posed

data was partly driven by convenience, but mostly due to the lack of comprehensive and available

datasets.
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Figure 2.9: The 5-point intensity scale of FACS. From Bartlett et al. [6].

Expression Intensity

We can define expression intensity as a rate of change with respect to some point of reference,

usually neutral facial expression. Such a measure is important in the modelling of facial dynamics,

and necessary for synthesis and animation of expressions. Pantic and Bartlett [85] point out that

there is a coupling between expression decoding accuracy, perceived intensity of the underlying

emotional state, and physical intensity of the facial emotion. An expression intensity measure is

important for accuracy, and has significant impact on discrimination between posed and spontaneous

expressions. As facial expressions rarely convey only one type of emotion, it is also important to be

able to detect and extract a combination of displayed emotions and their respective intensities. For

basic expressions, such intensities are usually represented as normalised, continuous values within a

specified range. The FACS coding system on the other hand usesa 5-point discrete intensity scale

(A-F) to describe intensity variation in each of the AUs [106, 85]. Figure 2.9 shows an example of

such a scale. Also some of the AU’s themselves, combined in groups, can function as a measure of
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intensity, e.g. AUs 41-45 can represent intensity change within the eye region [106]. Most of the

existing work treats expression classification as a binary state (present or absent), and only a small

subset address, or provide the means to define expression intensity as a continuous or multi-level

discrete measure [66, 58, 67, 128, 100, 68, 118, 65].

Static Approaches

Kimura and Yachida [58] proposed a method for recognising three kinds of expressions: happiness,

anger and surprise. They used potential net motion flow information generated by comparing the

expressionless reference frame with the target expression. Then PCA was applied to the extracted

vectors to create what they call an emotion space. Intensityand the type of the expression was

defined as the distance and direction of a straight line in first two principal components, approxi-

mated by the least squares method. This assumes that the expression subspace is constructed in a

star-shaped manner with neutral expression at the centre, which might not be true for a larger and

non-standard set of expressions. Huang and Huang [53] used a2D Gaussian mixture model of PCA-

represented Action Parameters (APs) space. The PCA space was constructed using 180 location (90

feature PDM) and 13 mouth shape parameters. Combinations ofAPs defined by Vanger et al. [111]

were then used to classify six prototypic expressions. Due to overlaps of each of the expressions with

two or more other expressions, in the PCA space, the highest score of the three correlations deter-

mined the final expression achieving average recognition rate of 84%. Cohen et al. [21] investigated

the use of Bayesian Network Classifiers, focusing on underlying distribution assumptions and design

of the network with respect to feature dependency. The underlying feature representation consisted

of Motion Units (MUs). In their first experiment they used a Naive-Bayes classifier (Figure 2.10

(a)) and compared the use of the Gaussian and Cauchy distributions. Their findings suggest that

the latter performs better, however the independence assumption imposed by the model might not

hold true due to correlation between various facial motionsduring the expressions. The second ex-

periment used a Tree-Augmented-Naive (TAN) Bayes classifier ( (Figure 2.10 (b)) to automatically

learn the dependencies amongst different features in orderto overcome the implied feature indepen-

dence shortcoming of Naive Bayes. They reported recognition rates of 79:36%, 80:05% and 83;31%
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Figure 2.10: Visualisation of Naive Bayes (a) and Tree Augmented Naive Bayes (b) Network of Cohen et al. [21].

for Naive-Bayes Gaussian, Cauchy and TAN classifiers respectively. Neither approach however ad-

dresses the issue of modelling expression intensity. Pantic and Rothkrantz [88] employed a rule based

forward reasoning classifier to recognise six basic emotions from an AU encoded representation of

the expression with 91% success rate. In their following work, Pantic and Rothkrantz [89] extended

the previous approach and used two rule-based classifiers torecognise single, or a combination of,

24 AUs in profile view and 22 AUs in frontal view. If both frontal and profile views are available

then their system is able to recognise single or combinations of 32 AUs. As the primary focus was on

AUs recognition, the logic behind and corresponding set of rules was complex and in the case of [88]

was computationally intensive. Littlewort et al. [70] and Bartlett et al. [5] compared the performance

of an SVM classifier, AdaBoost and AdaSVM classifiers. A Gaborrepresentation was used, based

on patches extracted from the output of the face detector as input to the classifier. For classification

a two stage process is performed. Firstly, seven SVM classifiers, one for each emotion class, were

used to discriminate each emotion from all others. Then the decision regarding emotion category was

made based on the classifier with the maximum margin. Multiple kernels were tested, with Linear

and RBF kernels using a unit-width Gaussian performing best. The performance was then compared

with an AdaBoost classifier using individual Gabor patches as features. Finally a combination of
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AdaBoost selected features were used to provide a reduced representation for the SVM classifier,

which showed the best results of all. Expression intensity was calculated by passing a 7-D emotion

structure, obtained from the output of the classifier to a CU Animate tool [75], in which each of the

expressions was calculated as a weighted combination of morph targets for each emotion. The same

approach was adapted to recognise seven upper face AUs by Littlewort et al. [68] and twenty AUs in

a non-posed environment by Bartlett et al. [6]. In addition [6] was able to determine AU intensity us-

ing the output margin of the SVM classifier. Tian et al. [104] used two (one for the upper and one for

the lower face) three-layer NN with one hidden layer to recognise 16 AUs (6 for the upper and 10 for

the lower face). According to Tian et al. [106] this is the first system to handle a combination of AUs.

Although they have taken the advantage of localised representation, such localisation was performed

at the very coarse level. Reilly et al. [94] compared the performance of KPCA with LLE using SVM.

They focused only on four lower facial AUs. Rather than trying to estimate intensity they performed

classification under varying intensity. The limitation of the above approaches is that they perform

recognition without any temporal component of facial expression, which is an important factor in

expression recognition [9].

Dynamic Approaches

Eisert and Girod [34] used a 3D model, optical flow and 3D motion equations to produce an FAP de-

scription. Similarly Sarris et al. [96] used a 3D model and optical flow to extract appropriate motion

parameters using geometric transformations. The extraction process was bootstrapped by previously

extracted pose information. In both approaches, there wereno attempts to explicitly provide ex-

pression labels or intensity, because this information wasintrinsically embedded in FAP parameters.

Bettinger et al. [12] presented an approach to modelling thedynamics of facial expression. An AAM

was used to model the appearance, and image sequences were represented as trajectories in a param-

eter space. The trajectories were broken into segments, anda variable length Markov Model was

used to learn the relationships between those segments. Theauthors were able to synthesise novel

sequences, but did not provide any means for explicit expression labelling or intensity estimation.

Otsuka and Ohya [83] used HMM to spot five states corresponding to different contractions of facial
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Figure 2.11: Multi level HMM model. From Cohen et al. [21].

muscles: relaxed (neutral) , contraction (onset), apex, relaxation (offset). Transition probabilities

were conditioned using thresholds to constrain the model and prevent misclassification. No attempts

were made to recognise individual, or combination of AUs or intensity associated with them. Lien

et al. [67] used a set of HMMs representing individual or combinations of AUs. Once the input ex-

pression has been determined the intensity is defined by computing the sum-of-squared differences

in PCA space. Cohen et al. [21] used a multi-level HMM for expression classification. The model’s

higher level section, which defined six basic emotion statessuch as surprise, disgust, anger, fear

sadness and happiness, was represented as a star shaped model with neutral being in the middle.

The lower level consisted of six HMMs, one relating to each ofthe recognised expressions (Fig-

ure 2.11). The lower-level model used MUs as its feature inputs and higher-level model used the
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six-state feature vector obtained from the lower-level model. Their approach performed successful

segmentation of a video sequence into sections containing different facial expressions. Koelstra and

Pantic [61] used GentleBoost for classification and a separate HMM for each of 27 AUs to detect

and model their dynamics. For each of the AUs they were able todetect four temporal segments,

based on the transitions between neutral, onset, apex and offset, however no fine-grained intensity

estimation was conducted. Tian et al. [105] used a three-layer NN with one hidden layer to recognise

six prototypic expressions. The network was trained by the standard back-propagation method and

used five location features and twelve zone components of mouth shape features as inputs. Dornaika

and Davoine [30] used a particle filter to classify six expressions and estimate head pose. Valstar and

Pantic [110] proposed a method to recognise 15 AUs individually, or in combination, from frontal-

face views. They use SVM classifiers for recognition of an AU and its dynamics (i.e. neutral, onset,

apex, offset) based on a set of the best features selected by AdaBoost. Pantic and Patras [86] used a

temporal rule-based classifier on profile-view faces to recognise, segment, and model the dynamics

of 27 AUs individually, or in combination. Similarly to Valstar and Pantic [110], a particle filter was

used to track 15 facial points. Yacoob and Davis [116] used local parametric motion models and

a heuristic classifier to discriminate one of six facial expressions. Anderson and McOwan [3] used

velocity information obtained from optical flow and an SVM classifier to classify the expressions.

Amin et al. [2] employed PCA-based representation of Gabor filters for dimensionality reduction,

and fuzzy c-Means clustering to provide best pair-wise match of principal components. Membership

of the clusters is mapped to degrees of facial expression intensity. However they only deal with two

types of expressions: happiness and surprise, and employ a three-grade intensity scale (less, medium

or very). Shan [100] used fuzzy k-Means and a similar three-grade intensity scale, but his approach

included all of the six basic expressions. Zhang and Ji [126]used multi-sensory information fusion

and Dynamic Bayesian networks to model the temporal behaviour of Action Units and classification

of six prototypic expressions. As a follow-up, Zhang and Ji [128] used the same information fusion

technique but focused on modelling of temporal changes and intensity variation, and on reduction

of inter-personal variations. Lucey et al. [73] used the AAMrepresentation and compared Nearest
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Neighbour classifiers based on PCA and LDA subspaces with an SVM classifier in recognition of

spontaneous facial expressions using FACS. Their findings suggest that there is no real advantage of

NNs over SVM classifiers. The experiments were restricted toone FACS intensity scale (peak). Yang

et al. [118] treated intensity estimation as a ranking problem and used RankBoost to model it. The

ranking score was used as a direct measure of the intensity, and extended to incorporate expression

classification. They also obtained significant performanceimprovement with RegRankBoost, which

introduced L1 norm regularisation into RankBoost. Lee and Xu [65] used the Cascade Neural Net-

work, where structure was learned during a training stage, together with an SVM to estimate facial

expression intensity. They experimented with different SVM kernels, and concluded that polynomial

kernels performed best. However they only dealt with happy,angry and sad expressions.

2.3 Summary

In this thesis we address the following issues:

1. Facial feature representation: Facial feature representation has been widely discussed in the

existing literature to date. However the most effective choice and representation of features

still remains an open question. In Chapter 3 we explore the concept oflocalised representation

for the purpose of modelling the expression space, and present its advantages over the holistic

approach. We also introduce a hierarchical model decomposition in order to help produce

semantic information using geometric features alone. Thisproduces a compact representation,

reduces inter-feature correlations, and to some extent, inter-person variations. We investigate

its advantages and disadvantages with respect to appearance and combined representations.

Multiple components of such a representation can be utilised for different tasks, such as pose

estimation.

2. Representation of the facial expression subspace: Correct representation of the facial ex-

pression subspace is an important factor for interpretation and modelling. Such a mapping is

usual non-trivial and involves projection of higher-dimensional data onto a lower-dimensional
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space. In Chapter 3 in order to provide the best representation, we model regions of interest,

such as the eyes and mouth, according to their intrinsic functionalities, rather than using a

holistic approach that models them according to the basic expression types. For this task we

employ a probabilistic framework which is a form of Hierarchical Latent Variable Model that

is applied to each of the regions. We show that such a model, employing geometric features

alone, removes some of non-linearities from the underlyingstructure, and is able to model

variations using a small set of training samples that generalises well to larger, sample sets.

3. Pose estimation: Pose information is crucial for realistic animation. Currently there are few

works that provide a unified framework that is capable of modelling the expressions and pose

together. Also such pose information can be fed back into theframework to improve expression

classification, usually when large pose variations are present. In Chapter 4 we introduce a

pose model trained on a sparse set of training samples, whichcan provide continuous pose

estimation and minimise effects of facial expressions.

4. Semantics formulation: Being able to provide an appropriate semantic descriptionis neces-

sary to successfully mimic the expression exhibited by a synthetic counterpart. in Chapter 5

we investigate the concept of facial region necessity with respect to expression definition. We

modify the commonly used standard set of prototypic expressions to achieve best visual im-

pact, for example we represent the happy expression as both smile and grin states. We present

the use of the rule-based classifiers and compare it with BN and holistic approaches in a context

of sufficiency for the task at hand without the use of temporalinformation. Such an approach

also provides facial expression intensity estimation. Finally we produce a parametric descrip-

tion of expressions that includes intensity and pose information, that can be applied to a 3D

avatar in a morph-target based fashion.
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Chapter 3

Hierarchical Feature Representation

Being able to represent facial features in an effective and robust manner is a crucial step for mod-

elling and understanding facial behaviour. One might say itforms a basis for it, as it influences all

the steps that will follow.

In this chapter we consider a facial feature representationbased on an Active Appearance Model

(AAM), but more precisely focus on a hierarchical decomposition of its shape component that is also

referred to as the Point Distribution Model (PDM). Althoughshape models cannot encode informa-

tion such as skin changes they provide significantly lower feature and hence model dimensionality

when compared to appearance models, or combined shape and appearance models. Also removal of

the appearance component provides invariance to illumination changes and to some extent to intra-

person variations. Hierarchical decomposition further reduces the resulting model dimensionality,

aids in the removal of non-linearities caused by large variations, and decreases the number of possi-

ble combinations that must be accounted for in order to modelthe set of required expressions.

We begin by describing how shape and texture are used by the AAM representation. We then fol-

low this by expression manifold representation, where we introduce our hierarchical feature and

demonstrate its advantages. Finally in the experiment section we demonstrate how such hierarchical
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representation can further reduce overall model dimensionality and analyse its performance.

3.1 Active Appearance Models

Active Appearance Models (AAMs) were introduced by Edwardset al. [33], and have been widely

established as a technique for face detection and tracking.They have also appeared in modelling and

analysis of facial expressions and their underlying manifolds. AAMs are parametric models which

consist of shape and appearance components modelled using Principal Component Analysis (PCA).

In addition, the resulting shape and texture models can be combined and modelled under the assump-

tion that both the shape and appearance are linearly related. There is also the alternative approach

that treats shape and appearance independently of each other and is referred to as Independent Ap-

pearance Models (IAMs). Such decoupling opens up interesting possibilities, by which each of these

components can vary independently of the others, but this increases the overall dimensionality of

the model. Matthews and Baker [77] improved fitting performance of the AAM by employing an

Inverse-Compositional Algorithm in such a decoupled representation.

Gross et al. [46] compared two categories of AAMs: generic and person-specific, where the first

tries to model variation of many individuals, and the secondfocuses on the variation of a single

individual. Their empirical evaluation showed that the overall performance of person-specific AAMs

in terms of modelling and fitting is better than for generic models. In this chapter, we follow the same

line of thought, as we consider that person-specific models are better able to capture the intricate

dynamics of facial expressions, provide a better tracking basis, and are more robust under sparse

training sample sets.

3.1.1 Shape Component

The shape of any object can be defined by a set ofJ D-dimensional points. These points may repre-

sent boundaries of the given object, or key feature points. The points can take an arbitrary dimension,

that isD 2 I+, whereI+ is positive integer space, although we will focus on 2D spatial coordinates

representing positions of the selected landmarks in the image plane. Usually, these coordinates are
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Figure 3.1: Selected training samples with overlaid PDM mask.

obtained by manually labelling the training set, but they can also be extracted by using automated

labelling procedures, such as the one described by [24]. Figure 3.1 shows some of the training ex-

amples with an overlaid shape mask. Let us define vectors= fx1;y1;x2;y2; :::;xJ;yJgT to represent

our shape. GivenN training examples, the data set is given byD = fs1;s2; :::;sNg. These vectors

form a distribution in a 2J dimensional space. To minimise the effects of global transformations,

such as rotation or scale, these vectors are aligned in a common co-ordinate frame. This is achieved

by Generalised Procrustes Analysis (GPA) [44], and the procedure is as follows:

1. Translate each of the shapes from the training set so that its centre of gravity is at the origin.

2. Choose and scale one of the samplest0 as an initial estimate of the mean, such thatx̄s = t0 andjx̄sj= 1.

3. Align all the shapes with the current estimate of the mean using GPA.

4. Re-estimate the mean shape from the aligned shapes.

5. Constrain the current estimate of the mean by aligning it with t0 and scaling such thatjx̄sj= 1.
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6. Return to step 3 if not converged (convergence is determined to be when there is no further

significant change of the mean estimate between iterations).

Once the shapes have been aligned in a common co-ordinate frame, we calculate the mean

x̄s = 1
N

N

∑
n=1

xn (3.1)

and covariance matrix

ΣΣΣs = 1
N

N

∑
n=1

[xn� x̄s℄[xn� x̄s℄T (3.2)

of the training set. After applying PCA, we obtain eigenvectors ui and corresponding eigenvalues

λi of ΣΣΣs. Next the eigenvalues are sorted into decreasing order (i.e., λi � λi+1). If U contains the

eigenvectors corresponding to thet largest eigenvalues then any example can be approximated bythe

following:

xs� x̄s+Ubs (3.3)

whereb is at dimensional vector such that

bs = UT(xs� x̄s) (3.4)

which defines a set of parameters controlling the model. In our experiments the dimensionalityt of

the model is determined by retaining 98% of the variation present in the training set. Alternatively,

the choice of the number of model parameters can be selected on the model’s ability to approximate

any of the training samples with pre-defined accuracy. This involves building multiple models, and

choosing the one that best satisfies the criteria [24].

By varying the elements ofbs one can vary the shapexs using Equation (3.3). The variance

of the ith parameterbi across the training set is given byλi . By constrainingbi , such thatbi 2[�2:5pλi;+2:5pλi ℄, we ensure that newly generated shapes are similar to those of our training set.

Under the linearity assumption of the shape space, this constraint also defines a Valid Shape Region

(VSR). Figure 3.2 shows the effect of varying each of the shape parameters in turn between�2:5
standard deviations.
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Figure 3.2: Effects of varying the first three (top to bottom)shape parameters in turn between�2:5 standard deviation.

3.1.2 Appearance Component

The appearance is defined as a pattern of pixels across an image patch. The patch in the training set

is described by the set of points belonging to the corresponding PDM. However the number of pixels

in each patch may be different due to external factors, such as scale or head orientation. In order to

perform successful analysis of the texture, a coordinate frame has to be found in order to establish

correspondence between pixels in the training set.

Firstly, a reference shape is defined, either by selecting a mean shape from the corresponding

PDM, or by choosing a sample from the shape training set. Nextall the training examples can

be morphed to the reference shape to obtain a shape free patch, either by using piece-wise affine

morphing [24], or with Thin Plate Splines [14]. Once our shape free patches have been extracted

the pixel information is sampled and stored in the vectorgim. Each patch now contains very little

texture variation caused by exaggerated expressions and differences in shape. Figure 3.3 shows part

of the training image with a shape overlaid on top of it (left image) and the corresponding shape

free texture patch (right image). Next, normalisation is performed to minimise the effects of global

lighting variation by scalingα and offsetβ such that

gt = (gim�β1)=α (3.5)

whereα = gim:ḡt andβ = (gim:1)=n. This is an iterative process, similar to shape alignment, i.e.
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Figure 3.3: Two selected training images (top and bottom) with corresponding shape mask (left) and shape free texture
patch (right)

1. Choose one of the samplesg0 as an initial estimate of the mean, such thatḡt = g0.

2. Align all of the samples with the current estimate of the mean using Equation (3.5).

3. Re-estimate the mean from the aligned samples.

4. Return to step 2 if not converged (convergence is determined to be when there is no significant

change of the mean estimate between iterations).

Next the mean

ḡt = 1
N

N

∑
n=1

gn (3.6)

and covariance matrix

ΣΣΣt = 1
N

N

∑
n=1

[gn� ḡt ℄[gn� ḡt ℄T (3.7)

of the training set are calculated. By applying PCA a linear model is given by:

gt � ḡt +Ptbt (3.8)
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Figure 3.4: Effects of varying the first three texture parameters in turn between�2:5 standard deviations.

where ḡt represents mean of the normalised data,Pt is the set of eigenvectors corresponding to

the largestk eigenvalues which define a set of orthogonal modes of variation, andbt is the set of

parameters controlling the model. The actual image texturegim can be generated using previously

calculated normalisation parameters using:

gim � α(ḡt +Ptbt)+β1 (3.9)

Figure 3.4 shows different texture examples obtained by varying the fist three parameters ofbt in

turn by�2:5 standard deviations.

3.1.3 Shape and Appearance Combined

The shape and texture can be represented by the parameter vectorsbs andbt respectively. Assuming

that there is correlation between the two, the combined sample vector is defined as follows:

ba =0B� Wsbs

bt

1CA=0B� WsPT
s (xs� x̄s)

PT
t (gt � ḡt) 1CA (3.10)
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Figure 3.5: Shape variation obtained by varying the first three appearance parameters in turn between�2:5 standard
deviations.

wereWs is a weight matrix with diagonal elements to compensate for difference in units between

shape and appearance. Such a matrix can be defined as

Ws = rI (3.11)

wherer2 is the ratio of total intensity variation to total shape variation in the normalised frames. Next

PCA is applied to the combined sample vectors, yielding the following model

ba = Paa (3.12)

wherePa are the eigenvectors anda is a vector controlling the appearance parameters. Figure 3.5

shows different examples obtained by varying the fist three parameters ofa in turn by�2:5 standard

deviations.
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3.2 Expression Manifold Representation

Given a combined shape and appearance model, the main challenge we investigate here is how to pro-

vide a meaningful representation of the expressions and an accurate estimate of this representations

underlying manifold. This expression manifold will help with the modelling of each expression’s

dynamics and in turn aid resulting parameterisation. To demonstrate the range of expressions we

want to model we have selected those that provide the most visual impact. Although based on the

set of universal expressions (happiness, sadness, surprise, fear, anger and disgust) defined by Ekman

[35], it differs in two following ways: firstly, we divide happiness into two separate smile and grin

expressions, and secondly we do not distinguish between surprise and fear and treat them both as a

single, or joint, label. The former choice is influenced by similar expression categorisations that have

been used in the gaming and on-line communities in the form ofemoticons, where smile and grin

represent two distinct states. A similar distinction has been used in facial animation to emphasise

different levels of happiness [42]. The latter choice was influenced by the analysis of our training set,

and observation of a close similarity between fear and surprise expressions: they only differed in the

underlying intensity.

We have found that because AAMs, and their respective shape and appearance components are

modelled using PCA, which is based on linear statistics, each of the modes can only vary along a

straight line, and non-linear modelling is achieved by a combination of two or more modes [49].

Although Hong et al. [51] and Cho et al. [18] have reported success using PCA to represent the

expression manifold, they only considered three expressions: disgust, happiness and surprise. This is

understandable, as the number of variations present in their dataset was relatively small. When one

considers more varied expression changes, PCA is not very well suited to manifold representation as

it cannot reliably capture, or separate, subtle intra-feature variations and determine the true degrees

of freedom, when large variations, due to expression or posechanges, occur [17].

Even in datasets where variations due to inter-person differences are not present, such a represen-

tation still does not not yield a compact and clearly defined grouping with respect to the predefined

labels in the resulting subspace. Figure 3.6 shows the first two (left column) and second two (right
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column) principal components for holistic shape, appearance and combined shape and appearance

(top to bottom) respectively, of the AAM trained using 886 labelled samples from a person-specific

dataset. To overcome the limitation of PCA based techniques, various approaches have been pro-

posed. Chang et al. [17] applied a modified Lipschitz embedding to the training set, consisting of six

reference sets for each of the modelled expressions. Shan etal. [97] introduced Locality Preserving

Projections to model the manifold of expression space. Cootes et al. [23] used separate AAMs for

profile, half-profile and frontal views, although their primary motivation was to account for viewpoint

variation. A similar approach was undertaken by Moghaddam and Pentland [79].

We propose a different solution. Rather than treating facial expression as a holistic entity, and

modelling it as such, we define it as the combination of the most salient and intuitive facial regions.

This is because our experiments [121] suggest that for particular facial expressions, only certain re-

gions convey the most relevant information, and the contribution of others is marginal. For example

when we grin, mainly the lower part of the face; the mouth shape together with possible skin creases

around the nose area; contains the relevant information, and when we are surprised, relevant infor-

mation is mostly conveyed through mouth shape and widening of the eyes. Figure 3.7 shows the

different activation areas for two different types of expressions, obtained by motion differencing of

selected frames with an initial (neutral expression) frame. We can see that for the grin expression (a)

the motion is mostly concentrated around the mouth and nose areas, and for the surprised expression

(b) concentration falls in the mouth and eye regions. Such a region driven representation has been

utilised in the context of computer generated facial animation [42, 63] and also has been investigated

in psychophysical experiments and found to be the most descriptive and sufficient in the context of

facial expression recognition [27].

3.2.1 Hierarchical Representation

In our new approach we define a hierarchical representation of features in terms of subcomponents

based on selected regions of the face. The subcomponents aredefined as follows:� The jaw outline, nose, centres of the eyes and mouth form the root of our hierarchy.
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Figure 3.6: First (left column) and second (right column) are the two principal components of the training set that have
been projected onto shape (top row), texture (middle) and combined shape and texture (bottom) in the expression space.
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(a) Surprised (b) Grin

Figure 3.7: Original image (top rows in (a) and (b)), and the regions of the image exhibiting motion during expressions
(bottom rows) such as surprise (a) and grin (b).� With the leaves, or children, being used to model the eye eyebrow pairs and the mouth.

Figure 3.8 shows an example of such a decomposition. The leaves are used for expression modelling,

Figure 3.8: Structure of our hierarchy. The top row corresponds to the highest point in the hierarchy (root), the middle
row corresponds to the leaves.

and the root component is utilised for estimating pose (which we will investigate in Chapter 4).

Localised representation, based on similar face regions have been used by Padgett and Cottrell [84],

however their motivation was different and focused entirely on face detection. The advantages of
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localised compared to holistic representation are:� Firstly of all, each of the expressions is defined in a more intuitive and quantitative way, for

example, as a combination of intrinsic functionalities of each of the subcomponents - this form

of expression implied facial feature independence has beenexploited by [28].� Secondly, such a representation allows us to account for similar expressions (smile with eyes

open, or smile with eyes closed) with a much smaller trainingset. Figure 3.9 demonstrates

four expressions, which for holistic representation wouldall have to be included in the training

set in order to be successfully modelled. For hierarchical representation inclusion only of the

first two is necessary: the others will be automatically accounted for.

Figure 3.9: Example expressions that would have to be included in the training set if holistic model was used. In case of
hierarchical model only two are necessary.� Thirdly, we remove the explicit need to model, or account for, correlation between those facial

parts at this stage. Also non-linearities resulting from variations caused by large expression

changes are minimised. We can also discard some informationthat might be either unneces-

sary, or in the worst case actually diluting the true nature of the data.� Finally, each of the hierarchical components can be modelled according to its intrinsic func-

tionality, for example, eye components could represent wide open, neutral or squint. This al-

lows the capture of more localised variations, and more accurate dynamics. Also this provides
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the ability to re-formulate, or learn, the final expression states as a combination of component

states, or even represent states of the subcomponents in isolation.

We choose only the shape component for our hierarchical representation. The shape is individually

independent given appropriate normalisation, hence can beefficiently utilised to capture manifolds

of the facial expressions. Texture information was not selected because it is susceptible to external

factors such as illumination or identity changes. Althoughshape alone is hardly sufficient to represent

subtle skin variations such as wrinkles or furrows, it has been shown to perform as well as texture

in some circumstances [85]. The use of the shape component onits own has also been adopted by

Huang and Huang [53] and Chang et al. [16, 17] to represent andmodel facial expression subspaces.

A hierarchical approach can also be extended to the underlying data representation layer. This is

especially useful in cases where data contains multiple classes, whose variation we wish to capture

and represent. Instead of using PCA we adopt Hierarchical Latent Variable Model (HLVM) of [13].

This approach provides several advantages in terms of clustering, density modelling, and dimension-

ality reduction. The main shortcoming of PCA is the lack of a probability density framework [107].

By incorporating this into Bayesian frameworks, it would become possible to model class based den-

sities, and to provide interoperability should there be anymissing values. Also, most importantly,

non-linear variations could be represented by a collectionof localised linear models. Finally, all of

the model parameters can be determined in a maximum likelihood framework, where the partitioning

of the data and the calculation of respective principal components are obtained automatically as the

likelihood is maximised.

3.3 Hierarchical Latent Variable Model

Bishop and Tipping [13] introduced the HLVM, which is an extension of the Mixture of Probabilistic

Principal Component Analysers [107]. Figure 3.10 demonstrates the concept of such a hierarchy,

where each of the levels successively defines a more refined and detailed representation of the data.

For a given data setft ig wherei 2 f1; :::;Ng and each element oft i has dimensionalityd, and where

we have a single latent variable model defining the root of thehierarchy, the linear mapping onto aq
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Figure 3.10: Conceptual visualisation of the HierarchicalLatent Variable Model. The top level corresponds to a single
latent variable model, and subsequent levels correspond tofine-grained mixtures of them.

dimensional spacex is given as:

y = Wx +µµµ + ε (3.13)

whereW is a factor loading matrix,µµµ is mean andε � N (0;σ2I) is a noise process. For a givenx

the probability distribution overt is:

p(tjx) =N (Wx +µµµ ;σ2I) (3.14)

wherep(x)�N (0; I). The probability density function of such a model is defined as:

p(t) = Z
p(tjx)p(x)dx (3.15)

which is also Gaussian, such that:

p(t) =N (µµµ ;C) (3.16)

where thed�d model covariance matrixC = σ2I +WWT . The posterior distribution can be defined

as:

p(xjt) =N (M�1WT(t�µµµ);σ2M�1) (3.17)
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where theq�q posterior covariance matrix isM = σ2I +WTW.

Tipping and Bishop [107] showed that the maximum likelihoodsolution for parametersµµµ , W and

σ2 is:

µµµML = 1
N

N

∑
i=1

tn (3.18)

WML = Uq(ΛΛΛq�σ2I) 1
2 R (3.19)

σ2
ML = 1

d�q

d

∑
j=q+1

λ j (3.20)

(3.21)

whereUq are the eigenvectors andΛΛΛq are the eigenvalues of the sample covariance matrixS of the

observed values:

S= 1
N

N

∑
i=1

(t i �µµµ)(t i �µµµ)T (3.22)

A reduced dimensionality transformation of the data pointtn is given by:

x̂n = WT
ML(tn�µµµML) (3.23)

and its optimal reconstructiontn is given by:

tn �WML(WT
MLWML)�1x̂n+µµµML (3.24)

This can be extended to a mixture of such models, hence defining the second level of the hierarchy.

The mixture density model is then given as follows:

p(t) = M

∑
i=1

πi p(tji) (3.25)

whereM defines the number of components in the mixture, andπi are the mixing coefficients cor-

responding to the mixture componentsp(tji). Each of the mixture components is a latent variable

model, so the model is defined in terms of parametersπi , µµµ i , W i andσ2
i . To obtain the parame-

ters, Tipping and Bishop [107] show that for a given posterior responsibility of componenti, that is

generating data pointtn, we can express:

Rni = p(ijtn) = p(tnji)πi

p(tn) (3.26)
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and an iterative, two stage EM algorithm produces the following parameter updates:

π̃i = 1
N

N

∑
n=1

Rni (3.27)

µ̃µµ i = ∑N
n=1 Rnitn

∑N
n=1Rni

(3.28)

W̃ i = SiW i(σ2
i I +M�1

i WT
i SiW i)�1 (3.29)

σ̃2
i = 1

d
Tr(Si �SiW iM�1

i W̃T
i ) (3.30)

(3.31)

whereSi is defined as the local responsibility weighted covariance matrix:

Si = 1
π̃iN

N

∑
n=1

Rni(tn� µ̃µµ i)(tn� µ̃µµ i)T (3.32)

Given the definition of the second level of the hierarchy, this can be extended further, where each of

theM components can be decomposed intoOi subcomponents in the lower levels of the hierarchy.

For each such level, the density function is given by:

p(t) = M

∑
i=0

πi ∑
j2Oi

π jji p(tji; j) (3.33)

wherep(tji; j) defines independent latent variable models,π jji defines mixing coeficients for eachi,

and∑ j π jji = 1. Each of the given levels corresponds to a generative model, with child levels provid-

ing more detailed and refined information. Now, the posterior responsibilities for the componenti; j

generating a data pointtn is:

Rni; j = RniRnij j = π jji p(tnji; j)
∑ j0 π j0ji p(tnji; j 0) (3.34)

where∑ j2Oi
Rni; j = Rni, gives rise to the following update equations:

π̃ jji = ∑N
n=1Rni; j

∑N
n=1Rni

(3.35)

µ̃µµ i; j = ∑N
n=1Rni; j tn

∑N
n=1Rni; j

(3.36)fW i; j = Si; jW i; j(σ2
i; j I +M�1

i; j WT
i; jSi; jW i; j)�1 (3.37)

σ̃2
i; j = 1

d
Tr(Si; j �Si; jW i; jM�1

i; j W̃T
i; j) (3.38)
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where againSi; j is defined in a responsibility weighted covariance matrix:

Si; j = 1

∑N
n=1Rni; j

N

∑
n=1

Rni; j(tn� µ̃µµ i; j)(tn� µ̃µµ i; j )T (3.39)

3.4 Experiment

Our main training set consists of 1300 640�480 colour images and manually labelled shapes (con-

sisting of 74 landmarks), which include the following six expressions: neutral, smile, grin, sadness,

anger, surprise/fear and large variations in pose. Figure 3.1 shows selected samples from the dataset.

Although our focus is mainly on person specific expression parameterisation, we also use selected

samples from the Cohn-Kanade facial database [20] which contains 486 sequences from 97 subjects.

This ensures wider variation of expressions being modelled, accounts for unpredictability in contin-

uously changing facial motion, and provides a better generalisation of the model. For testing of the

model we used two sequencesT1 andT2 consisting of 1536 and 1541 frames respectively, which

were tracked using an AAM based tracker and contained a variety of modelled expressions. Those

sequences included a substantial amount of noise caused by misalignment failures in the tracking

procedure. Although good results were obtained using the training set, or parts of it, we felt that

using output from the tracker provided a more realistic test-bed. Figure 3.11 demonstrates some of

the correctly (top) and incorrectly (bottom) tracked expressions.

Rather than modelling each of the states as belonging to a setof six classes of prototypic expressions,

we investigate each of the hierarchical components with respect to their intrinsic functional labels.

For eye components they are neutral, open and squint. For mouth component they are neutral, anger,

sad, smile, grin and wide open. In Chapter 5 we present a method which based on these intrinsic

functionalities will produce the final expression labels. We define three models, one corresponding

to each of the eyes and one to the mouth area. Our implementation of HLVM is based on the PhiVis

toolbox of [13].
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Figure 3.11: Sample of correctly (top) and incorrectly (bottom) tracked expressions.

3.4.1 Eye Models

To build models for both left and right eyes we use a training set of 288 samples from a person

specific training dataset, and 114 samples from the Cohn-Kanade dataset, where each of the samples

consisted of 19 facial landmarks. Those landmarks were obtained by sub-sampling the holistic shape

representation according to the defined hierarchical decomposition rules in Section 3.2.1. The pro-

portions of intrinsic eye states present in the training setare listed in Table 3.1.

Neutral Open Squint

25% 33% 42%

Table 3.1: Proportions of intrinsic eye states present in the training set.

We injected some artifical variation by duplicating the training set and perturbing each of the dupli-

cated samplesto by a vectorv whose elements were drawn from uniform distribution and scaled such

that v 2 [�1;1℄. The displaced sampletd was given bytd = to+ v � constwhereconstdetermined
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(a) Left Eye Model (b) Right Eye Model

Figure 3.12: Visualisation of the hierarchical clusteringin the eye space for (a) left and (b) right eye models. Colours
correspond to the intrinsic functionalities of the components. Each of the rows depicts a level in the hierarchy. The

numbered clusters in the top level correspond to the order ofthe cluster frames in the lower levels.

the severity of the displacement. This is analogous to the small shifts of landmarks introduced during

the labelling process or by tracking errors. A similar concept was used by Cootes and Taylor [24],

but their primary motivation was to add extra unseen variation in order to enhance the flexibility of

the model, rather than to reinforce the existing variations. The artifically perturbed samples were

appended to the original training set. We chose a supervisedapproach to building the model, where

the initial cluster centre positions used to initialise theEM algorithm were selected interactively for

each of the levels of the hierarchy of the model. Although this does not yield an automated process,

it allows discovery of the internal data structure and creation of the model based on it. Alternative

methods such as K-Means, or taking an average value of the data according to the assigned labels,

could also be used as a starting points for the EM algorithm. At each level of the hierarchy conver-

gence was assumed after a few iterations. Figure 3.12 shows avisualisation of the resulting models

for the left eye (a) and right eye (b). Because the number of modelled classes was small, a two level

hierarchy was sufficient for representing the model.

As both eye shapes are nearly symmetric, we can use a single, unified model. This would result
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in a smaller number of models being needed to represent the expressions, and reduce the number of

overall parameters. By taking one of the data sets belongingto a particular eye, we can mirror the

samples along the vertical axis, and after applying the appropriate normalisations, both datasets can

be treated as a unified single eye data set. We have to acknowledge that there will always be small

discrepancies between the two shapes, mainly due to the factthat the face is not exactly symmetrical

and the range of motions exhibited is not the same either. However such an approximation is desirable

and can be used to create a model that will capture the required variations in a unified manner.

To that end, we have taken samples from the training set for the right eye, mirrored them along the

y-axis and aligned them. Then those samples were used to validate the left eye model. A similar

procedure was repeated whereby samples from the left eye were taken, mirrored along the y-axis,

aligned and used to validate the right eye model. Table 3.2 shows the resulting 3-class confusion

matrices for the left eye model (a) and right eye model (b).

Neutral Open Squint

Neutral 96.64% 3.36 0

Open 0 94% 6%

Squint 20.4% 0 79.6%

Neutral Open Squint

Neutral 87.1% 0 12.9%

Open 23.3% 71.9% 4.8%

Squint 0 0 100%

(a) Left Eye Model (b) Right Eye Model

Table 3.2: Confusion matrices of the left eye model (a) and the right eye model (b).

Given the promising results of models built using data from asingle eye, which were cross-

validated with the data from the other eye, we used samples from both eyes to train the combined

eye model. Once mirrored, aligned and combined, the training set contained 804 samples. Given

the definition of a hierarchical latent variable model in theprevious section, a visualisation of the

combined eye model is shown in Figure 3.13. Compared to the single eye models, this model now

contains clusters corresponding to each of the intrinsic labels for each of the eyes. In the case of
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Figure 3.13: Hierarchical clustering in the eye space. Colours correspond to the intrinsic functionalities of the
components. Each of the rows depicts a level in the hierarchy.

both single and combined eye models, the dimensionality of the latent space was set toq= 3. This

number was selected experimentally, and chosen to maximisethe classification accuracy.

To evaluate the performance of the combined eye model and findout how well it generalises to

larger datasets containing unseen samples, we tested it using our two test sequences:T1 andT2. The

selected proportions of each of the intrinsic eye states arelisted in Table 3.3.

Neutral Open Squint

T1 35% 30% 35%

T2 37% 35% 28%

Table 3.3: Proportions of intrinsic eye states forT1 andT2 test sequences.

The classification of intrinsic functionalities was performed by evaluating class conditional probabil-

ities and choosing the class, or label with the highest value. For a given eye shapeteye this is given
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by:

j = argmax p( jjteye) (3.40)

wherep( jjteye) = p(teyej j)p( j)
p(teye) . The results were compared with manually assigned ground truth labels.

Table 3.4 shows the 3-class confusion matrix of the eye modelfor test sequenceT1 (a) and test

sequenceT2 (b).

Neutral Open Squint

Neutral 89.40% 2.87% 7.73%

Open 11.69% 88.31% 0%

Squint 0.28% 0% 99.72%

Neutral Open Squint

Neutral 81.32% 5.34% 13.34%

Open 32.03% 57.83% 10.14%

Squint 1.16% 0% 98.84%

(a) (b)

Table 3.4: Confusion matrix of the overall eye state classification for test sequenceT1 (a) andT2 (b) for the combined
eye model.

Next we compared our method with that used by Huang and Huang [53] and Liu et al. [71] in which

a Gaussian Mixture Model (GMM) was fitted over the existing PCA subspace. We used exactly the

same training and validation datasets to train and validatethe relevant models. First we compared

the performance of our method with the PCA+GMM approach for separate models built for each

of the eyes. Figure 3.14 shows the overall results of the experiment. This confirms the advantage

of the HLVM approach over PCA+GMM one. We can also see that theright eye model does not

perform as well as the left eye model. Next we repeated the same procedure but used the combined

eye model. Figure 3.15 shows the overall results of the test.Interestingly forT1, the HLVM was

able to compensate for poorer performance in the right eye, producing very similar scores for both

eyes. This is due to the HLVM ability to capture and representthe local variations more accurately.
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(a) Test sequenceT1 (b) Test sequenceT2

Figure 3.14: Classification results for test sequenceT1 (a) and test sequenceT2 (b) using separate eye models for each of
the eyes.
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(a) Test sequenceT1 (b) Test SequenceT2

Figure 3.15: Classification results for test sequenceT1 (a) and test sequenceT2 (b) using the single eye model.
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3.4.2 Mouth Model

For the mouth model we followed the same procedure as with theeye model. We have used 527

training samples from a person specific training dataset and114 samples from the Cohn-Kanade

dataset. Each of the samples consisted of 26 facial landmarks, and those landmarks were obtained by

sub-sampling the holistic shape representation accordingto the defined hierarchical decomposition

rules in Section 3.2.1. The proportions of intrinsic mouth states present in the training set are listed

in Table 3.5.

Neutral Smile Grin Anger Disgust Sad Open

13% 19% 20% 14% 10% 9% 15%

Table 3.5: Proportions of intrinsic mouth states present inthe training set.

Artificial variation was injected in the same way as for the eye models. Similarly, an interactive model

creation process was adopted, where at each level of the hierarchy the convergence was assumed

after few iterations. The dimensionality of the latent space was set toq = 3. Again, this number

was selected experimentally in order to maximise the classification accuracy. Figure 3.16 shows a

visualisation of the resulting mouth model. To evaluate theperformance of the mouth model and to

see how well it generalises to larger datasets containing unseen samples, we performed similar test

to the eye model, again using our two test sequencesT1 andT2. The selected proportions of each of

the intrinsic mouth states are listed in Table 3.6.

Neutral Smile Grin Anger Open Sad

T1 14% 16% 18% 21% 12% 19%

T2 16% 22% 13% 19% 5% 25%

Table 3.6: Proportions of intrinsic mouth states forT1 andT2 test sequences.

The classification of intrinsic functionalities was performed by evaluating class conditional prob-

abilities and choosing the label with the highest value. Fora given mouth shapetmouth this was given
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Figure 3.16: Hierarchical clustering in the mouth space. Colours correspond to the intrinsic functionalities of the
components. Each of the rows depicts a level in the hierarchy.

by:

j = argmax p( jjtmouth) (3.41)

wherep( jjtmouth) = p(tmouthj j)p( j)
p(tmouth) . The results were compared with manually assigned ground truth

labels. Table 3.7 shows the 6-class confusion matrix of the mouth model for test sequenceT1 (a) and

test sequenceT2 (b).

As before, we compared our method with that used by Huang and Huang [53] and Liu et al. [71]

in which a Gaussian Mixture Model (GMM) was fitted over the existing PCA subspace. Again, the

same training and validation datasets were used to train andvalidate both models, and Figure 3.17

shows the overall results. The performance of the mouth model is much lower than that of eye
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Figure 3.17: Classification results for the mouth model.

model, with sad expression being completely missclassified. This is due to the natural flexibility of

the mouth which results in the highly non-linear behaviour observed here and by the way this has

reduced the reliability and accuracy of captured face images during the tracking process.

3.5 Discussion

In this chapter, we have presented a foundation in the form ofhierarchical decomposition, both in

the conceptual and in the data sense, which offers an alternative way to represent and model facial

expressions. It overcomes problems of non-linearities caused by variations in facial features and al-

lows their description using intrinsic functionalities ofthe components (improved performance using

eye and mouth regions was also observed by [4]). However we would like to point out that such

decomposition, especially using shape alone, would not necessarily be sufficient to provide FACSs

parameterisation due to the missing information needed to represent wrinkles and furrows in the skin.

One of the solutions is to extend the number of modelled components to provide more detailed in-
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formation. This was investigated by Cosker et al. [26] in which additional regions, including textural

information, were included to extend the amount of available facial state data. On the other hand,

using shape alone allows us to further reduce the complexityof the resulting model by being able to

represent both of the eyes in a unified model.

The Hierarchical Latent Variable Model (HLVM) model provides additional benefits over PCA

in the context of manifold representation. Besides its ability to model non-linear manifolds with a

combination of local, linear subspaces, it also provides a density model, from which class conditional

probabilities can be easily computed. However, because it utilises the EM algorithm, it is rather

susceptible to initial starting positions during the training stage, so can be time consuming in creating

an optimal or best fitting model for a given set of data, and itsmodel.

If accurate and reliable tracking is available, then this model alone could be used to represent

each of the face components reliably. Unfortunately, such an assumption is rarely valid in real world

environments.

This investigation also highlights the importance of the eye region based on its very good perfor-

mance, over the mouth region. This is partially due to the better tracking results in that area, but

mainly due to the small number of classes being modelled and the relative rigidity of the sub-

components that correspond to eyes and their brows.

In the next chapter we investigate how the root of our hierarchical model can be utilised to

estimate the pose of the subject’s face.
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Neutral Anger Smile Grin Open/Fear Sad

Neutral 73.79% 4.85% 1.94% 19.42% 0% 0%

Anger 0% 100% 0% 0% 0% 0%

Smile 8.14% 0% 91.86% 0% 0% 0%

Grin 0% 0% 0% 100% 0% 0%

Open/Fear 0% 0% 0% 2.48% 97.52% 0%

Sad 12.13% 0 0 0 87.87% 0%

(a) Test SequenceT1

Neutral Anger Smile Grin Open/Fear Sad

Neutral 86.67% 0% 5.33% 6.67% 1.33% 0%

Anger 1.16% 98.84% 0% 0% 0% 0%

Smile 3.46% 0% 96.54% 0% 0% 0%

Grin 0% 0% 3.33% 96.67% 11.66% 0%

Open/Fear 0% 0% 0% 0% 100% 0%

Sad 18.75% 0% 0% 10.42% 70.83% 0%

(b) Test SequenceT2

Table 3.7: Confusion matrix of the mouth state classification for T1 (a) andT2 test sequences in a model built using a
person-specific dataset .
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Chapter 4

Pose Estimation

Pose information is an important component of facial dynamics. As our head rarely stays still, it plays

an important role in the formulation of the meaningful and realistic parameterisation of expressions

[76, 45]. Pose can also implicitly encode expressions, suchas agreement or disagreement, and enrich

existing information by adding subtle tilts or movements. In this chapter we present a method for

estimating pose based on a sparse training set that covers only a fraction of the viewsphere but

is able to provide generalisation to a continuous viewsphere, as compared to most of the existing

models that require dense sampling of the entire viewsphere[43, 80]. Rather than adopting an ad-hoc

approach, our method maps directly into the hierarchical shape framework introduced in Chapter 3.

This model can also be used in the synthesis of arbitrary views where it serves as a shape, or warp

basis onto which a chosen texture can be rendered, either from a single image or from the underlying

appearance model. Furthermore a prior knowledge of pose information can help in bootstrapping the

Active Appearance Model (AAM) fitting process where, due to self-occlusion caused by large pose

variation, parts of the texture information cannot be reliably extracted.

We begin by investigating the pose model in question, then provide experiments that demonstrate our

findings.
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(a) (b)

Figure 4.1: Invalid shape reconstructions of profile views (b). These were generated using modes of variations of a linear
shape model trained at near frontal views (a).

4.1 Pose Model

Large pose variations cause the shape space to become highlynon-linear, and this makes the lin-

ear mapping used to model the subspace no longer sufficient [43]. The problem is illustrated in

Figure 4.1. Invalid shape reconstruction of profile views (b) on the right, where the underlying

model was generated using samples from the near frontal views in (a). Our investigation [121]

shows that the shape distribution forms distinctive bands of points in the PCA space with respect to

the pose. Figure 4.2 shows projections of the data onto the first three principal axes of the shape

model. The grouping was performed with respect to Y-axis (yaw) rotation, where triangles rep-

resent[�40o;�20o℄, crosses[�10o;10o℄ and circles[20o;40o℄ ranges respectively, sampled at 10o

intervals. We choose to model the underlying non-linear manifold with a combination of linear sub-

components. The methodology is similar to that of [49] wherecombination of PCA models was used

to constrain the Valid Shape Region (VSR). But in addition tothose constraints, we also strive to

provide both a pose estimation and a synthesis basis. Our pose model is based on the Hierarchical

Latent Variable Model (HLVM) described in Section 3.3. We utilise the second level of the latent

hierarchy which is equivalent to a mixture of PPCA models defined by Equation (3.25). Then the

pose density model of the mixture is given by:

p(tpse) = M

∑
i=1

πi p(tpseji) (4.1)
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Figure 4.2: The shape variation of facial expression imagesfrom [�40o;40o℄ 3D views (in yaw) projected onto the 1st
three principal components. The manifold forms continuousand separable clusters:[�40o;�20o℄ (shown by triangles),[�10o;10o℄ (shown by crosses) and[20o;40o℄ (shown by circles)
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wheretpse is a pose shape vector,M defines the number of components in the mixture, andπi are the

mixing coefficients corresponding to the mixture components p(tpseji). A visualisation of the pose

model is shown in Figure 4.3. In this figure the top row corresponds to a single PPCA model, and

the second row defines the components of our mixture. Each of the mixture components corresponds

to one of the rotation bands,[�40o;�20o;0o;20o;40o℄, sampled at 20o intervals in yaw. We focus

on yaw as the discriminative factor for our clustering scheme, as this type of rotation is the primary

cause of non-linearites, and is more likely to be present in the input data (as opposed to pitch rotation).

Conceptually our method is similar to the View-Based Appearance approaches of [23] but with the

1

2

3 4

5

−40
−20
0  
20 
40 

Figure 4.3: Visualisation of the hierarchical pose model. Bottom row corresponds to components of our mixture (depicted
with yaw rotation sampled in 20o intervals at[�40o;�20o;0o;20o;40o℄).

following differences: Firstly we do not require the manualprocess of building multiple models. As

we use shape only, the dimensionality of the model and resulting training time, is greatly reduced.
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Secondly there is no need to establish the relationship between each of the models to find which

one is responsible for generating a given data point. Finally the full correspondence between features

among the components is established, allowing for uniform trajectories of the shape across the model

view-sphere. Our model is able to easily generate novel samples at arbitrary view-points and warp

selected textures onto them. This is in contrast to [43], where KPCA was used to model resulting

non-linearites and the feature space was implicit and unknown, the model proposed here can easily

reconstruct, or generate novel samples, as the model definesboth forward and reverse mappings to

and from lower dimensional manifold. We chose not to incorporate any temporal information, and

the estimation can be done frame-wise on-the-fly in real time. This approach is able to cope with

very large jumps and discontinuities in pose change.

Each of the components is capable of capturing an underlyingvariation of interest, according to

its clustering scheme. Figure 4.4 shows a visualisation of the mean values corresponding to each of

the PPCA components with respective yaw labels determined by the predefined data grouping.

40o 20o 0o �20o �40o

Figure 4.4: Means corresponding to each of the PPCA models defined by the hierarchical pose model with their
respective yaw labels.

From the definition of our model, latent variables are assumed to be drawn from a Gaussian dis-

tribution. Given anyd-dimensional multivariate Gaussian distribution with mean µ and covariance

matrix C, its marginalq-dimensional multivariate distribution (whereq << d) is also Gaussian, as

described by Krzanowski [62]. LetB be aq�d dimensional matrix with diagonal elements set to

1 and all remaining elements equal to 0. Then the marginalq-component multivariate Probability
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Distribution Function (PDF)fq is given by:

fq �N (Bµµµ ;BCBT) (4.2)

The corresponding Cumulative Distribution Function (CDF)is defined as the probability that a real-

valued random variableX with a given probability distribution will be found at a value less than or

equal tox. If we interpret this as a value less than or equal to a specificpose value captured by the

underlying distribution, we can use this to extract the poseinformation based on it. Following the

concept of the marginal PDF, we define the CDFΦ such that for aq-dimensional random variablex

it is given by:

Φ(x) = Z x�1 fq(x)dx (4.3)

We are mostly interested in CDFs that are closely related to the components responsible for yaw and

pitch rotation. For a given shapetpsethe estimate of the pitch rotationrpitch is given by Equation (4.4),

wherea1;a2 are coefficients of a linear polynomial andppitch is the marginal CDF of the model

component responsible for generating shapetpse:

rpitch = a1ppitch+a2 (4.4)

ppitch = Φmp(tpse)
Figure 4.5 shows visualisation of linear relationship for the pitch estimate for an example cluster.

For yaw rotationryaw the estimate is given by Equation (4.5), whereb1;b2 are coefficients of a linear

polynomial andpyaw is a weighted sum of marginal CDFs of the model.

ryaw = b1pyaw+b2 (4.5)

pyaw = M

∑
i=1

πiΦmy(tpseji)
Figure 4.6 shows visualisation of linear relationship for the yaw estimate.

Although we do not account for roll rotation in our model, we adopted the approach of Horprasert

et al. [52], where for the eye centroidsteyeLandteyeR, the head roll is given by:
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Figure 4.5: Visualisation of linear relationship for the pitch estimate for an example cluster using discretely sampled
training data at 10o intervals.

rroll = arctan
∆y
∆x

(4.6)

∆y = ty
eyeR� ty

eyeL

∆x = tx
eyeR� tx

eyeL

The above equations encompass the formulation of our model.

4.2 Experiment

Our training and validation dataset consists of 540 labelled 2D shapes from 12 individuals each

defining 14 landmarks. Figure 4.7 shows selected training samples from this training set. The shapes

have associated ground truth information, obtained by using a magnetic sensor rigidly attached to

the subjects head, and are sparsely sampled at 10o intervals, covering only part of the view-sphere,(�40o;40o) around the yaw axis and(�20o;20o) around the pitch axis. We divided the dataset
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Figure 4.6: Visualisation of the linear relationship for the yaw estimate using discretely sampled training data at 20o

intervals.

Figure 4.7: Selected training samples from the pose estimator dataset.

into groups consisting of 300 and 240 samples. The first groupcontained samples selected using 20o

intervals for yaw, consisted of rotation bands[�40o;�20o;0o;20o;40o℄, and was used for training the

model. The second group was set aside for validation purposes, sampled using similar 20o intervals

and consisted of yaw rotation bands not used in the training set, i.e.[�30o;�10o;10o;30o℄.
To train the model we chose to calculate the means for each of the groups of labelled data, and
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used those means as starting points for the EM algorithm. Although we experimented with using the

K-means algorithm we found that the expected clustering arrangement, with respect to location of

clusters, was not always guaranteed. And as our method was based on the assumption of a pre-defined

clustering scheme we settled for the former EM approach. Following mean calculation, the EM al-

gorithm was run and after a few iterations convergence was declared. In contrast to the approach that

was undertaken when building the models for the eye and mouthcomponents in Section 3.4, this of-

fers a fully automated model building process without the need for user-driven feedback. For each of

the individuals we have calculated corresponding marginalCDFs and fitted appropriate polynomials

according to Equation (4.5) and Equation (4.6) for pitch andyaw respectively. Also, because there

were differences in the estimated parameters, final polynomial coefficients were taken as an average

over the coefficients obtained from serveral different individuals.

Facial expression can affect the resulting pose information obtained by the model. This is mainly

caused by variations, or movement of facial components (predominantly the eyes and mouth in the

case of our shape representation). Although techniques tryto model the pose by including these

regions and account for their influence, we choose the alternative approach of selecting only those

features that will remove, or minimise the impact caused by varying facial expression. We choose

jaw and nose outlines, and the centres of the eyes and mouth for our pose shape representation. Our

model is able to generalise to a denser shape model. This is achieved by down-sampling the larger

PDM to the required size by calculating the centroids of the eyes and mouth and selecting a subset

of jaw outline landmarks. For the mouth shape, the centroid is calculated as an intersection of two

lines formed by two middle landmarks on the upper and lower lips and two landmarks on the jaw

outline. This provides a more stable representation under varying facial expression and compensates

for more flexible and unconstrained lip deformations. Figure 4.8 shows how eye and mouth centroids

are determined.

Figure 4.9 provides visualisation of this down-sampling process across selected facial expressions

using previously unseen data. The top row corresponds to thefull PDM representation consisting of

74 landmarks and the bottom row to the down-sampled 14 landmark representation. Each of the
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Figure 4.8: Visualisation of the eye and mouth centroids with the latter calculated by intersecting two lines formed by the
landmarks on lip and jaw outline.

down-sampled shapes has a pose estimate associated with it (yaw,pitch,roll), and we can see that

there is not much pose change between different expressionswhen using the reduced representation,

compared to that exhibited in the full size shape model. We acknowledge that this is only an approx-

imation, as the calculated eye and mouth centroids will exhibit small amounts of movement where

facial expressions are present. However as we are more likely to experience those expressions in a

frontal, or near frontal views, the impact on the estimationat extreme views is minimised.

To test the ability of the model to generalise to new data we employ the second part of the dataset.

We project the data onto the latent subspace, estimate its pose information and compare it against the

assigned ground truth labels. Given the Root Mean Square Error (RMSE) as our measure of error:

RMSE(x;y) =s 1
N

N

∑
i=1

(xi �yi)2 (4.7)

wherex represents the vector of ground truth values andy is corresponding vector of estimated

values, we obtained average errors of 5:22 degrees for yaw and 6:66 degrees for pitch.

To perform an evaluation on how well the model is able to generalise to a continuous sequence

we have used a test set of 500 samples which exhibited pose variations in yaw, pitch and roll with
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�4:0o,0:4o,�0:6o �4:0o,�0:7o,�4:1o �4:4o,�1:0o,�4:2o �4:0o,0:4o,�2:9o

Figure 4.9: Denser shape model consisting of 74 landmarks (top), sparse set of 14 landmarks (bottom) with
corresponding estimated pose angles (yaw,pitch,roll).

a much denser arrangement of landmark points. Each of the shapes was down-sampled and sub-

sequently used to estimate the pose. Due to the lack of a tracker that can reliably and consistently

track a face beyond frontal, or near frontal views we have manually labelled the training set. The

top plot in Figure 4.10 shows the result of the experiment. Wecan see that the yaw estimation is

consistent throughout the sequence, but pitch estimation contains errors, especially around frames

228� 285 and 340� 385. This is caused by an incorrect choice of cluster membership obtained

through class-conditional probability. The errors show that our initial assumption that each of the

clusters responsible for the appropriate yaw rotation bandwill always be chosen to estimate the pitch

was not correct, and it also highlights the fact that the clusters outside the designated band perform

poorly in such estimation. To address this problem we have introduced yaw-based constraints, which

follow the design of the model more closely. Rather than using class-conditional probability to de-

termine the cluster membership, we enforce the selection byconditioning each choice on the interval

into which the estimated yaw value falls. The bottom plot in Figure 4.10 demonstrates the results
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obtained from this yaw constrained model.
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Figure 4.10: Pose estimates obtained from the original posemodel (top) and from the yaw constrained one (bottom).

Although introducing the constraints corrected the previous errors, both methods produce jagged

curves caused by small shifts in landmarks, and general inaccuracies resulting from the estimation

process. This makes the representation unsuitable for parameterisation, as they will produce jerky

animation sequences. In order to produce smoother curves weconvolved the estimated pose data

with a Gaussian kernel. Although some of the information is lost during the smoothing process,

this is a justified trade-off and should not be too noticeableto the viewer in most circumstances.

Figure 4.11 shows the results of this filtering, where the difference between the original (jagged)

curve and the smoothed one can clearly be seen. The final results are depicted in Figure 4.12 with
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Figure 4.11: Section of pitch rotation plot: original jagged curves (green solid line) and their smoothed out counterparts
(red dashed line).

the yaw corrected and smoothed rotation curves. Figure 4.13shows the selected frames from the

input sequence (left image), with the corresponding synthesised avatar alongside (right image). The

synthesis was performed with LightWave 3D1, where each of the rotation curves was converted into

its respective channel envelope and used to drive the avatar. The resulting video can be viewed here

2.

The experiments conducted in this section have shown how thepose model developed here can be

used to provide smooth and continuous pose estimation.

1LightWave 3D http://www.newtek.com/lightwave/
2http://www.eecs.qmul.ac.uk/�lukas/videos/pose*.[avijmov]
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Figure 4.12: Results of continuous pose estimation experiment.
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Figure 4.13: Selected samples from the original sequence (left image) with corresponding frames from the synthesised avatar (right image).
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4.3 Synthesis

The pose model developed in this chapter can be also be used tosynthesise samples at arbitrary

viewpoints. We investigate the use of Independent Appearance Models (IAMs), where dependence,

or correspondence, between texture and shape is ignored. Although this increases the overall dimen-

sionality of the model, it opens up the possibility of using different texture models interchangeably

with a single shape model. In our case the given shape is treated as a warp, or morph basis onto

which a selected texture will be rendered from the underlying appearance model.

This procedure usually involves a shape-free texturet which will be warped onto a target shape

st , and using shapetb as the warp base, which is usually defined by the mean of the model. For

each of the shapes we will have a corresponding set of triangles that have been obtained obtaining

by applying Delaunay triangulation [64] to the convex hull defined by the set of control points, or

landmarks. The number of triangles, and their respective vertex indices are computed once, during

the shape model creation. This is to reduce the computational load caused by re-calculating the

triangulation every time warping is performed, but more importantly to ensure that the rendering of

the texture stays uniform across the synthesis and extraction process. The triangulation can be done

in an automated way, where the triangles are created to best fit the control points, or they can be

manually defined to conform to a particular scheme, such as from left to right, or from top to bottom.

Next, for each of the triangles, the shape-free texture fragment t, contained within, is warped

from the base shapetb onto the target shapett to produce the resulting synthesised sample. This

process works well in frontal, or near frontal views, but fails in extreme views when a linear model

has been used to generate the view. Figure 4.14 demonstratessuch failure: (a) shows shape-free base,

or mean shape, with its corresponding triangulation. (b) and (c) show the shape reconstructions of

extreme views and their corresponding triangulation from alinear shape model trained at near frontal

views. Because of the inability of the model to generate valid shapes at these views, some of the

triangles will overlap. During the warping process this will cause distortion to the resulting texture,

at arbitrary places if the triangulation was automated, or at the edges of a single extreme pose view

if the triangulation was performed left to right.
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(a) (b) (c)

Figure 4.14: Visualisation of triangulation when warping using a linear model: (a) base (mean) triangulation, (b, c)
extreme view triangulation.

Our hierarchical model is able to handle the non-linear changes much better. Figure 4.15 shows

(a) (b) (c)

Figure 4.15: Visualisation of triangulation when warping using a hierarchical model: (a) base (mean) triangulation, (b, c)
extreme view triangulation.

a similar triangulation where (a) is the shape-free base, ormean shape, and (b) and (c) are the shape

reconstructions of profile views.

Our choice of features for the pose shape model was driven by the need to minimise, or remove,

the effects of facial expressions. Interestingly, in the context of synthesis, or warping this has an

inverse effect. Rather than having shape free appearance which will minimise the effects of the
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expressions on the underlying appearance model, we have an appearance model which does not aim

to minimise the effects of the expressions. This is illustrated in Figure 4.16, where the top row

corresponds to a full size PDM with a small amount of expression being carried over to the resulting

shape free appearance sample. The bottom row depicts the pose PDM where most of the expression

Figure 4.16: Shape and expression-free appearance with full PDM mask (top) and shape-free with pose PDM mask
(bottom).

is propagated over to the corresponding shape free appearance sample. Given a separate texture

model, and our pose model, we can easily generate arbitrary expressions at arbitrary viewpoints by

varying the components of each of the models independently.To show this we built an appearance

model using 490 images from the Cohn-Kanade database, and used it as a basis for synthesis of

arbitrary viewpoints. Figure 4.17 shows samples of the results from our synthesis, where in each

set of expressions, labelled (a), (b) and (c), the top row corresponds to the expression synthesised

using our pose model and bottom row to an expression synthesised using a PCA pose model, and

Figure 4.18 illustrates the cluster membership for the shape bases used in the synthesis. Note that

in the PCA model synthesis, only one of the extreme views exhibits severe texture distortion. This

is due to the triangulation order that we imposed (left to right), so that overlapping triangles happen
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(a) Expression 1

(b) Expression 2

(c) Expression 3

Figure 4.17: Examples of morphing (synthesising) facial expressions into extreme virtual views. The top rows in (a), (b),
(c) were computed using the HLVM model. The bottom rows were computed using the PCA model with visible kinks at

extreme 3D views (profile views) due to the non-linearities present.

to be drawn in a correct order (as an analogy, this can also be thought of as a painter’s algorithm

[113]). If the pose information were known, the warping process could be controlled by enforcing

the order with respect to the pose value, i.e. either from left to right or from right to left. This would

ensure that the incorrect triangles are drawn first, and correct ones second. However this would be a

half measure and in the case of the linear model this would only work for overlapping triangles and

would not correct the artifacts caused by the extreme, non-overlapping distortions. In this section we
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Figure 4.18: Visualisation of the cluster membership for the shape bases used in the synthesis (top and middle rows)
together with the synthesised samples (bottom row).

have described and demonstrated how the pose model can be used to successfully generate synthetic

samples at arbitrary viewpoints.

4.4 Improved AAM Fitting

The fitting process of the AAM is defined as an optimisation problem, where the difference between

an image and the synthesised counterpart is minimised. A difference vector can be defined by:

∆T = T im�Tm (4.8)

whereT im, Tm are the texture instances in the image and model frame respectively. However the

basic representation of an AAM is only able to cope with frontal or near-frontal views ([�15o;15o℄



4.4. Improved AAM Fitting 100

in yaw). At the extremes of pose change, due to occlusion during the warping process, the texture is

distorted creating large residuals and causing tracking failure. Figure 4.19 shows the original images

from a sequence in the top row, and the corresponding frontalview warped texture vectors, with

visible distortions in the bottom row. Given the knowledge of the pose information Dornaika and

Figure 4.19: Distortions due to the pose changes and self-occlusion. Top row: original images, bottom row: frontal view
warped images.

Ahlberg [29] proposed the approximation of the missing information by mirroring the warped image

when necessary. Figure 4.20 shows the results of this mirroring process, where the top row consists

of the original images and the bottom row shows pose corrected mirrored images. As we can see

Figure 4.20: The mirroring process. Original images (top row) and resulting pose corrected frontal view warped images
(bottom row).

mirroring provides only an approximation to the true representation of the face at extreme views and
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can distort the true representation of the data.

To further improve the tracking process we introduce a pose corrected weight vector such that

the original texture difference∆T = T im�Tm becomes∆Tcorr = W 
 ∆T, whereW is the pose

dependent weight vector drawn from the normal distributionand
 is element-wise multiplication.

We consider that the weight vector as a measure of the influence of each of the pixels within the

texture vector towards the final texture difference conditioned on the current pose estimate. For areas

that will be occluded, hence containing distorted data, theamount of influence will be minimal, or

zero and should not influence the fitting process. If we define aw�h shape free mask, then for

every row of pixels in that mask, each elementj in that row contains the weight value given by its

probability:

p( j) = e
( j�µ)2

2σ2 (4.9)

µ = 0:5�w (4.10)

σ = 0:5�E � (0:5�w)
90

(4.11)

whereE = j40� ryawj whenjryawj < 40 orE = 1 otherwise. We only calculate the weights for the

occluded half of the image, which we determine from the pose estimation, and the fully visible parts

of the image are set to 1. Figure 4.21 shows different representations ofW with respect to different

yaw rotation values.

�32o �17o 1o 17o 39o

Figure 4.21: Different weight vector representations for different yaw rotation values.

We have compared the performance of the original formulation of the AAM with our method.



4.5. Discussion 102

Figure 4.22 shows the results of the experiment, where the top row contains the frames from the

original AAM implementation, and the bottom row contains the pose corrected method. Although

we obtained better results, our approach was not able to provide consistent and reliable tracking. This

is due to the influence of the underlying linear shape model, and its flexible and invalid variation.

Figure 4.22: Selected frames from the experiment in fitting AAM onto the extreme pose view. Top row corresponds to the
original AAM model formulation and bottom row to the pose corrected model.

In summary, we have investigated and shown how to minimise the effects of distortions due to

self-occlusions caused by extreme pose viewpoints. The results show improvement over standard

AAM fitting techniques in the literature.

4.5 Discussion

In this chapter we have described a pose model, which integrates into our hierarchical decomposition,

and is able to estimate and generalise to continuous poses based on a sparse set of training samples.

The choice of shape component and the underlying features, allowed us to minimise the influence

that facial expressions have on the resulting pose estimation, a goal that would be difficult to achieve

if the appearance component was considered. However in someinstances, for example in the case

of the surprise expression, jaw outline may exhibit some amount of movement, which can affect the

estimated pose. Given the underlying probabilistic framework and its ability to deal with missing
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data, features such as parts of the jaw outline and centroidsof eyes and the mouth can be treated as

missing, and the pose can be estimated in such a way that almost completely negates the effects of

expressions. Luthi et al. [74] used the missing data approach to reconstruct a full set of data from a

single PPCA model using only a subset of the original features.

Our model can also be utilised as a warp basis, onto which arbitrary textures are rendered, and

which provides superior performance to the linear PCA model. However our model is a combination

of linear models, and invalid reconstructions can still occur in some circumstances. Extending the

model to cover additional yaw rotation would extend the model coverage. Although we only consider

single images from the underlying model, this could easily be extended to sequences containing the

expressions exhibiting facial actions. Then the trajectories in texture space could be learned and

reconstructed using an approach similar to [12].

Finally prior knowledge of the pose can help bootstrap the AAM fitting process where self-

occlusions lead to missing information, and artifacts in the resulting shape free texture, affecting

calculation of the pixel difference, and resulting parameter updates. Although the proposals of Sec-

tion 4.4 method offered improvement over the standard AAM approach, it seems that constraining

texture alone is not enough. In order to achieve stable and consistent tracking we must add constraints

to our linear model, or we must adopt a non-linear model for the shape component.

Next in Chapter 5 we explore the concept of fusion, which combines the information extracted

from our hierarchical components to produce final expression labels, and allows us to estimate the

underlying expression intensity. Labels together with pose and intensity information are converted

to a parametric form which will be used to animate a synthetichead avatar.



104

Chapter 5

Modelling Expression Dynamics

Facial expressions play an important role in communicatinghuman emotions. Unfortunately the ma-

jority of approaches focus predominantly on the ability to just determine a set of emotional labels.

Although frequently underestimated, the intensity or severity of these states, combined with pose

information, is an important factor that contributes to theunderlying dynamics of those states. Since

our eyes are able to distinguish even the slightest of imperfections and because we perceive expres-

sions mostly in a dynamic context, we should make use of this valuable information to more fully

accomplish its successful transfer to a synthetic counterpart.

In this chapter we introduce a facial expression modelling framework which produces param-

eterised expression dynamics information. Based on our hierarchical decomposition, presented in

Chapter 3, we explore the use of rule based classifiers to combine the information obtained from the

facial expression components previously considered. To complete the parameterisation, we compute

severity information for each of the identified expressionsand produce continuous animation curves

that can be used to animate a synthetic head avatar in a morph-based fashion. We investigate the use

of static information only and its sufficiency for the task athand.

Using an Active Appearance Model (AAM) based tracker, we compare the performance of our
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approach with that of a holistic representation plus Bayesian Network (BN) approach under chal-

lenging conditions, where misalignments during the tracking process can produce noisy or incorrect

information.

The work in this chapter begins with a description of expression parameterisation, then we ex-

plain our 3D animation model and provides experiments that demonstrate how our system performs

dynamic expression modelling.

5.1 Expression Parameterisation

Let us first develop a compact parametric description of the expressions which can summarise their

underlying dynamics and can be subsequently used to animatean avatar. In the context of parameter-

isation much recent work has been focused on recognition of Facial Action Coding System (FACS)

Action Units (AUs) [67, 86, 110, 73]. We try to avoid the complexity and computational demands of

processing FACS, although their detailed description of expressions and realistic animation provide

a desirable goal. In real world scenarios this level of detailed information is unlikely to be easy to

extract or accurate enough.

In theory each of the hierarchical components introduced inChapter 3 should be sufficient on

their own to define the resulting labels and the underlying dynamics. However in practice due to the

inevitably inaccurate input information this approach is likely to produce biased results. Conceptu-

ally we wish to represent final expression labels and their underlying dynamics as a combination of

intrinsic functionalities, or states of the hierarchical subcomponents. This can be summarised as:

expression= statemouth+stateeyeR+stateeyeL

This concept is analogous to the way character rigging is performed in facial animation, where actions

of the most salient, or influential components are combined together to produce the final state [42].

To achieve that goal, we investigate a fusion approach. Fusion is usually associated with combining

data from multi-sensory input sources, but in our case we treat each of our hierarchical regions as a

different input source.
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5.1.1 Framework Overview

For a given image sequence, the flow of information through our processing pipeline can be described

by the following tasks:

1. Pre-processing: The input image is converted to HSV space, which has proved to be success-

ful in detecting, or separating, skin regions [54]. Background segmentation is performed by

thresholding Hue and Saturation components to segment the image into the face region (fore-

ground) and anything else (background). Next the segmentedimage is converted to grey scale

and passed on to the subsequent module.

2. Tracking: The face of interest is tracked across the sequence of images. Once the image

has been fitted, extraction of the shape component and its hierarchical de-composition is per-

formed.

3. Pose estimation: The root component of the hierarchical decomposition is used to estimate

yaw, pitch and roll rotations. The information can be fed back to the tracker to assist with

non-frontal views.

4. Label assignment: Each of the hierarchical components has its final expression label deter-

mined.

5. Intensity estimation: Once the labels have been assignedthe corresponding intensity for that

label is calculated.

6. Parameterisation: Pose information, together with labels and corresponding intensity is con-

verted into a parametric description of the facial state.

7. Rendering: The resulting expression is rendered using the previously defined parametric form.

The overview of our framework is depicted in Figure 5.1. The bottom line of boxes corresponds to

the framework described. The upper boxes in Figure 5.1 correspond to training the expression model

and training the pose model.
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Figure 5.1: General overview of the process in our system.
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5.1.2 Rule-based fusion

Rule-based classifiers are frequently used in machine learning because of the ease with which rules

might be interpreted by humans. If the number of rules is relatively small, and the detection accuracy

is sufficiently high, such classifiers are an optimal choice,because the reasons for their decisions

can easily be verified [32]. Furthermore they do not require training, which in the case of large

datasets can be time consuming. For optimal results, rules should be mutually exclusive, and their

coverage should be exhaustive over the problem domain. Thiscan be tricky for complex problems

that cannot be easily decomposed into simpler, atomic units. Pantic and Rothkrantz [89] used a rule

based classifier to determine the resulting AUs from a parametric description of the features. Our

concern is at a higher level of abstraction, and its intent tocombine, or fuse available information

from the eye and mouth components. Given shape input featurevectorstmouth; teyeL; teyeRobtained

from hierarchical decomposition described in Chapter 3, and resulting class-conditional probabilities

for eye and mouth models defined by Equations (3.40) and (3.41), we define the discrete outputs for

the mouth (M), left eye (EL) and right eye (ER) as follows:

M = i; i 2 f1(neutral);2(smile);3(grin);4(open);5(anger);6(sad);7(disgust)g
ER = j; j 2 f1(squint);2(neutral);3(open)g
EL = k; k2 f1(squint);2(neutral);3(open)g (5.1)

wherei, j andk correspond to the class, or label with the highest value. Thefinal label assignment is

performed by combining the information obtained from all three discrete outputs together. The final
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expression label F is defined as:

F =
8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

smile M= 2

grin M = 3

f ear=surp (M = 4^ (ER= 3_EL= 3))_(M = 4^ER= 2^EL= 2)
anger (M = 5^ (ER= 1_EL= 1))_(M = 1^ER= 1^EL= 1)
sad M= 6^ (ER= 1_EL= 1)
disgust M= 7^ (ER= 1_EL= 1)
neutral otherwise

(5.2)

where_ represents logical OR and̂represents logical AND.

Note, that for some expressions, certain facial regions arenot utilised. In the design of this

classifier we have taken into consideration the findings of Nusseck et al. [81] regarding necessity

and sufficiency of similar facial regions with respect to expression recognition. Their psychophysical

experiments show that some expressions depend solely on a single facial region, where as for others

dependence extends to the combination of such regions. For example for happiness and surprise the

mouth region is sufficient, but for surprise both eyes and mouth are required. On the other hand,

Pelachaud and Poggi [91] suggest that for surprise both mouth and eye regions are necessary. We

adopted the latter line of thought, as firstly we consider that surprise can be represented by raising

of the eyebrows only, and secondly the use of both regions provides some level of redundancy. The

latter reason was driven mainly by practicality, because inaccurate data from the mouth region alone

cannot provide reliable labels.

5.1.3 Severity Criterion

We have found [123] that severity, or intensity combined with an appropriate expression label, sum-

marises the underlying expression dynamics. The majority of approaches are only interested in

expression classification, and their parameterisation will only deliver a discrete on/off output. Un-
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fortunately such a representation does not yield the required continuous response and fine-grained

detail for the expressions in question for many applications.

To address this issue, our severity information metric is defined in terms of the combination

of severities of the hierarchical subcomponents. For each of the eye and mouth components the

information is measured in terms of corresponding low level, or intrinsic, behaviours. Given the

high level final expression labelF obtained during the fusion process in Equation (5.2), for each

of the components, severity is defined by the marginal cumulative distribution function given by

Equation (4.2) of the probability density model for the low level behaviour belonging to thej-th

hierarchical component, wherej 2 fmouth;eyeL ;eyeRg.
For the combined intensity value, if the high level labelF 2 fsmile;gring then the severityS is

given by:

S= Φmouth(tmouth) (5.3)

whereΦ(tmouth) is the the cumulative distribution of the probability density function of the mouth

hierarchical component, andS2 [0;1℄. For expressions other than smile or grin the severity is given

by the weighted combination of all of the facial regions:

S=∑
j

w jΦ j(t j) (5.4)

whereΦ(t j) is the cumulative distribution of the probability density function of the classified expres-

sion componentj 2 fmouth;eyeL;eyeRg, w j are weights such that∑w j = 1, andS2 [0;1℄. The choice

of weights was determined experimentally and was set to(0:4;0:3;0:3) for themouth;eyeL;eyeR com-

ponents respectively, and reflects the amount of influence each has towards the overall intensity. We

also experimented with Mahalanobis Distance (MD) as an alternative measure for the calculation of

severity which is given by:

DM =q(t�µ)TΣΣΣ�1(t�µ) (5.5)

Unfortunately we have found that it is not sufficient for the task. Figure 5.2 shows two images that

demonstrate gradual change for two expressions grin (top row) and fear (bottom row). We can see

that our SC produces correct values compared to MD. This is caused by a lack of symmetry in PCA
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SC 0% 41% 86%

MD 0% 0% 50%

SC 0% 24% 60%

MD 0% 0% 98%

Figure 5.2: Selected frames from two expressions demonstrating gradual change for grin (top row) and fear (bottom row)
and the severities associated with them using our method (SC) and naive approach based on (MD).

space and the fact that variation in each of the principal components is a combination of many factors,

not just those caused solely by the expressions.

5.2 3D Animation Model

The output from our expression parameterisation system is used to operate a 3D animation model. We

employ a blend shape, or morph based approach, where the resulting expression is created through

the combination from the collection of existing sample bases [39]. Every character is required to have

a set of predefined bases corresponding to the expressions wewish to model. Then any expressionE

is given by:

E =∑
i

wiΓi (5.6)

wherew defines a weight vector andwi 2 [0;1℄ for every i. Γ defines a set of morph bases corre-

sponding to predefined expression states. Figure 5.3 shows an example of these morph bases for

two different avatars (top and bottom). Although somewhat limited in the sense of available free-
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Figure 5.3: An example of morph bases (left to right) for neutral, smile, grin, surprise/fear, anger for two different avatars
(top and bottom).

dom, and requiring pre-rigged characters, such an approachoffers several advantages. Firstly the

representation is compact and independent of the animationengine, giving us the ability to model

human and non-human characters alike. Secondly the complexity of the model and the number of

parameters is relatively small compared to physics-based models, such as the one described by [90].

Reduced complexity and the small number of control parameters opens up possibilities for real-time

animation. We demonstrate how our 3D animation model performs in the next section.

5.3 Experiment

Here we use our expression parameterisation approach together with the 3D animation model de-

scribed in the previous section. These form part of our system outlined in Figure 5.1. For face

tracking we employed the Cootes and Taylor [24] Active Appearance Model (AAM) tracker, which

was trained using a set consisting of 1300 images and shapes (each with 74 landmarks), which con-
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sisted of six basic expressions (neutral, smile, grin, sadness, surprise/fear, anger) and variations in

pose. The resulting tracker was based on a person specific AAMfor robustness under sparse training

samples, and also for providing a better basis for capturingintricate expressions.

To test our system we used two test sequencesT1 andT2 totalling 2850 frames altogether. In

both of the sequences the exhibited expressions were interleaved with casual speech intervals. Al-

though we did not specifically consider modelling speech, wefelt its inclusion might provide a more

realistic scenario, where expressions would naturally be separated by speech fragments. To evaluate

the performance we compared our rule-based method with thatof a holistic approach adopted by

Huang and Huang [53] and Liu et al. [71], and with the BayesianNetwork (BN) of Chuang et al.

[19]. Although in the latter the BN was defined in the context of features and by design assumed

independence between them, we will utilise the hierarchical models and assume independence be-

tween those. All of the methods were trained using the same training set consisting of 813 hand

labelled samples, representing continuous changes of various facial expressions. For the BN we have

performed supervised training. Figure 5.4 shows the label assignment results for test sequenceT1

and Figure 5.5 shows the label assignment results for test sequenceT2. In both cases our rule based

method provided the best results. All three methods were able to reliably assign labels to grin and

surprise expressions, and this is partly due to the fact thatthose expressions were the most reliably

and accurately tracked. However the holistic approach completely failed to recognise smile and anger

expressions, whilst the BN method completely failed to recognise smile, and had more limited suc-

cess generally. Unfortunately all of the methods completely failed to recognise sadness. These results

highlight the ability of the rule driven selection in our hierarchical approach to provide the required

level of redundancy and the ability to cope with noisy data. On the other hand, the holistic approach

is not able to provide such redundancy and hence is unable to adapt, mainly due to its global nature

and the resultant constraints. Similarly, the performanceof the BN, although better than the holistic

method, can be attributed to the training process, in which only correct data was used. Figure 5.6 de-

picts overall label assignment scores, and Table 5.1 summarises the results of the experiment. Due to

the lack of standardised evaluation tests for continuous and gradual parameterisation the evaluation
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Figure 5.4: Label assignment together with the corresponding ground truth and selected keyframes for test sequenceT1 where the top row corresponds to
rule-based, middle to holistic and bottom to BN approaches.
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Figure 5.5: Label assignment together with the corresponding ground truth and selected keyframes for test sequenceT2 where the top row corresponds to
rule-based, middle to holistic and bottom to BN approaches.
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Rule-based Holistic ([53, 71]) Naive Hierarchical

seqT1 81:15% 42:40% 67:19%

seqT2 80:57% 52:82% 67:66%

Table 5.1: Table comparison of label assignments methods.
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Figure 5.6: Final label assignment scores for test sequences T1 andT2.

was based only on a simple label assignment scheme (expressions present/absent) as the compared

approaches did not define the severity of the expressions.

Given the resultant labels from the best performing method,we next move on to estimating the

expression intensity. The choice of the marginal CDFs for each of the hierarchical regions was

determined by analysis of the underlying models, and choosing the one that contributes the most

to the underlying intrinsic functionality rate of change. Similarly to the pose estimation technique,
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we have smoothed the animation curves by convolving them with a Gaussian kernel. Figure 5.7

shows the resulting severities for each of the expressions for test sequenceT1 (bottom row) together

with corresponding label assignment scores for rule-basedapproach (top row). Figure 5.8 shows

the resulting severities for each of the expressions for test sequenceT2 (bottom row) together with

corresponding label assignment scores for rule-based approach (top row).

Finally we assembled the complete parametric form and applied it to a virtual head avatar. Fig-

ure 5.9 shows selected frames from a casual conversation sequence. Within each of the boxes the

left image corresponds to the currently tracked image framewith the AAM appearance mask super-

imposed on it. The image on the right corresponds to the synthetic avatar animated according to the

classified expression. These results clearly show a useful correlation between input expressions and

the avatar output.

5.4 Discussion

In this chapter we have presented an alternative way of describing expressions as a combination of in-

trinsic functionalities of three hierarchical component areas corresponding to the face, both eyes and

the mouth. To formulate the final expression labels, we investigated the concept of fusion of infor-

mation obtained from different hierarchical components. Rule-based classification offers an efficient

and more robust alternative to more complex classifiers due to its simplicity and absence of training

stage. We have shown that our approach performs better than the holistic approach of [53, 71] and

the Bayesian Network (BN) approach of [19] where the relationships amongst the components were

learned through a training process. This highlights the fact that holistic methods model the global na-

ture of variations and cannot adapt to localised changes caused by inaccuracies in the data. Although

BN performed better than the holistic approach, since it wasbased on hierarchical components, its

ability to determine the correct labels was limited by the training set, which only contained correct

samples.

Given the resulting labels, we have also explored intensityestimation of the corresponding ex-

pressions as a weighted combination of intensities of component intrinsic functionalities. This of-
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Figure 5.7: Severity curves for test sequenceT1 (bottom row) together with correpsonding label assignmentscores for rule-based approach (top row).
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Figure 5.8: Severity curves for test sequenceT2 (bottom row) together with correpsonding label assignmentscores for rule-based approach (top row).
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Frame 20 (neutral:100%) Frame 63 (smile:70%) Frame 63 (anger:27%)

Frame 303 (anger:71%) Frame 471 (grin:92%) Frame 651 (surprise:60%)

Frame 1050 (surprise:71%) Frame 1354 (anger:63%) Frame 1450 (grin:90%)

Figure 5.9: Selected frames from experiments on expressionclassification and avatar animation with corresponding labels and severity (as a percentage). Each of
the images shows the tracked frame with AAM mask superimposed on it (left), and corresponding synthesised avatar (right).
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fered the ability to account for contributions of differentfacial regions towards the final value, and

allowed us to measure the intensity of expressions, where only single regions trigger the activation.

Overall in this chapter we have demonstrated the possibilities of processing facial representations

from input to output with evident success. The range of possible applications for such a system must

surely be considerable.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The human face provides a most powerful medium for relaying emotions between humans and plays

an important, if not crucial, role in our day to day social interaction. Due to the rapid advances of

computer hardware and the growing popularity of personal computers in our everyday lives, machine

analysis of facial expressions has been emerging as an active field for the last decade with growing

interest in application fields such as human-computer interaction, computer animation, computer

gaming and social networking.

In this thesis we studied methods for building a framework capable of modelling and parameter-

ising facial expression dynamics. In particular three challenging issues have been addressed:

Hierarchical Feature Representation

We investigated facial feature representation based on theActive Appearance Model (AAM), and fo-

cused on its shape component also known as Point Distribution Model (PDM). Although shape alone

cannot capture skin changes, it provides significantly lower feature and hence model dimensionality.

This approach also provides invariance to illumination changes and some invariance to intra-person
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variations. We have employed hierarchical decomposition of the holistic shape representation into

subcomponents corresponding to the eyes and mouth; which wefound to be the most salient fa-

cial regions. The underlying dynamics of each of those regions was represented by a Hierarchical

Latent Variable Model (HLVM). We have found that both eye components can be sufficiently repre-

sented by a unified, single model further reducing the overall model dimensionality. In contrast to the

holistic representation, our approach allows us to reduce the number of non-linearities present due

to intra-feature correlations, and provide a more precise representation with respect to the intrinsic

functionalities of the components, rather than final expression labels. In real world scenarios, where

data will contain inaccuracies and noise, our approach provides better performance compared to a

PCA based one.

Pose Estimation

Pose is an important, but somehow overlooked, part of expression dynamics. As our head rarely

stays still, it is intrinsically connected with the way we perceive facial expressions. Some of the ex-

pressions, such as nods or shakes are even represented solely by the pose. Large head motion causes

non-linearities in the shape space which makes PCA not sufficient for representing this subspace. Our

proposed method integrates into our existing hierachical framework, and employs a HLVM to model

its underlying distribution, and is entirely based on 2D information obtained from a sparse, discretely

sampled training set. As expressions can have significant impact on pose we have demonstrated that

by making an appropriate choice of features we can reduce this impact. We have demonstrated how

the underlying probability model can be used to estimate thepose and can generalise to estimate

continuous pose from unseen samples. Such a model can also beused in the synthesis of arbitrary

expressions at arbitrary viewpoints, where it serves as a morph, or warp basis. Finally prior knowl-

edge of the pose information can also assist in an AAM fitting process, where due to self-occlusion

parts of the available appearance information become unavailable.
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Expression Dynamics Modelling

We have introduced a framework that is capable of extractingfacial dynamics information and pro-

ducing a parameterised version thereof. We investigated the fusion of information obtained from

hierarchical components using rule-based and Bayesian Network (BN) classifiers. Based on the as-

signed labels and using an underlying hierarchical statistical model we estimate the intensity of the

final expression as a combination of intensities of the intrinsic functionalities of the modelled facial

regions. We show that our method performs better than the holistic approach. Finally we create a

parametric description of the expression dynamics and apply it to animate a synthetic head avatar.

6.2 Future Work

So far we have discussed issues related to modelling of facial dynamics, and although progress has

been made our work still has some limitations. Here we list those limitations and possible directions

for future work:� The AAM based tracking is not feasible in real world environments, due to the laborious

labelling process. We would like to investigate alternative methods, which provide a more

stable and reliable basis and ultimately help to reduce model preparation and training time.� Another important component of facial dynamics is eye blinking. Combined with subtle head

movements it defines what we learn to perceive as expressionsfrom a very young age. Its

absence makes the synthesised expressions unrealistic.� Although our test sequences included fragments of speech, we have not focused on them

specifically. In real world scenarios, it might not be possible to extract the visemies1, due

to the fast and usually blurred lip movements. However knowledge of the speech and non-

speech segments would give us the ability to simulate, or synthesize lip movements in the

synthetic counterpart hence enhancing the visual experience even more.

1viseme is a representational unit used to classify speech sounds in the visual domain. It describes the par-
ticular facial and oral positions and movements that occur alongside the voicing of phonemes. (from wikipedia)



6.2. Future Work 125� Throughout the course of this work we have focused on a pre-defined universal set of expres-

sions. We would like to expand this set to include a wider range of expressions including those

caused by the head movements alone.� We have focused on static expression parameterisation and its sufficiency for the task at hand.

We do realise, that for some of the expressions, dynamic knowledge of how the face changes

over time is important and enhances the amount of available information.� So far we have shown that shape alone can provide a sufficient basis for estimating the dy-

namics of the expressions. In addition, we would like to analyse the appearance information,

which would increase the amount of available information, allowing us to investigate FACS

parametric descriptors.
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