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Abstract

As social robots become more and more interactive and communicated, it is crucial

that they can understand, perceive and imitate the human emotions appropriately

in the social environment. We propose an interactive system consisting of two key

components, facial expression recognition and robot imitation. Within the recent

decade, facial expression recognition has become a hot topic. But the existing 3D

face mesh for facial expression recognition is based on the assumption of linear

mass-spring model which can not simulate the facial muscle movements effectively.

Thus in the system,a nonlinear mass-spring model is employed to simulate twenty

two facial muscles’ tensions during facial expressions, and then the elastic forces

of these tensions are grouped into a vector which is used as the input for facial

expression recognition. The experimental results show that the nonlinear facial

mass-spring model coupled with the MLPs classifier is effective to recognize the

facial expressions. For the robot imitation, we introduce the mechanism of our

robot on imitating the facial expressions. Experimental results of imitating facial

expressions demonstrate that our robot can imitate six kinds of facial expressions

effectively.

viii



List of Tables

4.1 Facial Muscle Classification . . . . . . . . . . . . . . . . . . . . . . 46

4.2 The Association of Upper Face AUs to Muscle Deformation . . . . 60

4.3 The Association of Lower Face AUs to Muscle Deformation . . . . 61

5.1 The Association of Six Expressions to AUs . . . . . . . . . . . . . 73

5.2 Emotion Classification Results Using Nonlinear Mode . . . . . . . . 78

5.3 Emotion Classification Results Using Linear Model . . . . . . . . . 78

5.4 Upper Face AUs Classification Results Using Nonlinear Model . . . 80

5.5 Upper Face AUs Classification Results Using Nonlinear Model . . . 80

5.6 Emotion Classification Results Using Nonlinear Mode . . . . . . . . 81

5.7 Emotion Classification Results Using Linear Model . . . . . . . . . 81

ix



List of Figures

2.1 Robot imitates human facial expression. . . . . . . . . . . . . . . . 10

2.2 Six universal facial expressions . . . . . . . . . . . . . . . . . . . . . 18

2.3 Robot imitates human facial expression. . . . . . . . . . . . . . . . 27

3.1 Face detection using vertical and horizontal histogram method . . . 32

3.2 The detected rectangle face boundary. . . . . . . . . . . . . . . . . 33

3.3 The outline model of the left eye. . . . . . . . . . . . . . . . . . . . 35

3.4 The outline model of the mouth. . . . . . . . . . . . . . . . . . . . . 37

3.5 The feature extraction results with glasses. . . . . . . . . . . . . . . 38

4.1 The primary muscles of facial expression include: (A) Frontalis

(B) Corrugator (C) Orbicularis oculi (D) Procerus (E) Risorius (F)

Nasalis (G) Triangularis (H) Orbicularis oris (I) Zygomatic minor

(J)Mentalis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Linear muscle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Sphincter muscle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

x



List of Figures xi

4.4 Sheet muscle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Key points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Stress-strain relationship of facial tissue . . . . . . . . . . . . . . . . 51

4.7 The stress-strain relationship of structure spring with different val-

ues of α, k0 = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.8 The facial mass-spring model . . . . . . . . . . . . . . . . . . . . . 53

4.9 Facial expression images and the corresponding deformation maps

in face regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.10 Sadness expression motion . . . . . . . . . . . . . . . . . . . . . . . 56

4.11 Three videos of tracking a set of the deformations in face sequence. 57

4.12 Happy expression motion . . . . . . . . . . . . . . . . . . . . . . . . 58

4.13 Sadness expression motion . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Architecture of multi-layer perceptron. . . . . . . . . . . . . . . . . 65

5.2 Training procedure for multi-layer perceptron network. . . . . . . . 69

5.3 The MLPs model of six basic emotional expressions. Note: HAP −

Happiness. SAD − Sadness. ANG − Anger. SUP − Surprise. DIS

− Disgust. FEA − Fear. Other notations in the figure follow the

same convention above. . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 The temporal links of MLPs for modeling facial expression (two time

slices are shown). Node notations are given in Fig. 5.3. . . . . . . 71

5.5 The concept links of the facial expression for interpreting an input

face image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Real-time emotion code traces from a test video sequence: (a) Frames

form the sequence; (b) Continuous outputs of each of the six expres-

sion detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



List of Figures xii

6.1 The robot head. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 The experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 The robotic face is able to show its emotions through facial features

situated in the frontal part of the head. The figure illustrates the

features’ configuration for each universal expression. . . . . . . . . . 86

6.4 Left column: Some detected keyframes associated with the video.

Middle column: The recognized expression. Right column: The

corresponding robot’s response. . . . . . . . . . . . . . . . . . . . . 88



Chapter 1
Introduction

As robot and people begin to co-exist and cooperatively share a variety of tasks,

”natural” human-robot interaction with an implicit communication channel and a

degree of emotional intelligence is becoming increasingly important. For a robot to

be emotionally intelligent it should clearly have a two-fold capability - the ability

to understand human emotions and the ability to display its own emotion just like

human beings (usually by using facial expressions). There has been a stunningly

vast amount of improvement in the basic capabilities of robotic entities - robots

are getting smarter, more mobile, more aesthetically appealing to the masses, and

subsequently, more widely accepted in the modern society. The incursion of robots

into our everyday lives is unavoidable, and in most cases becoming indispensable.

This explosion of intelligence robot also poses challenging problems of detecting,

recognizing and imitating human emotions. Thus there is a growing demand for

new techniques to efficiently recognize human facial expressions and for advanced

robots to imitate human facial expressions.

1
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1.1 Background

In recent years there has been a growing interest in developing more intelligent

interface between humans and robots, and improving all aspects of the interac-

tion. The emerging field on multi-modal/media human robot interface (HRI) has

attracted the attention of many researchers from several different scholastic tracks,

i.e., computer science, engineering, psychology, and neuroscience[1]. The main

characteristics of human communication are: multiplicity and multi-modality of

communication channels. A channel is a communication medium while a modality

is a sense used to perceive signals from the outside world. Examples of human

communication channels are: auditory channel that carries speech, auditory chan-

nel that carries vocal intonation, visual channel that carries facial expressions, and

visual channel that carries body movements. Facial expression analysis could bring

facial expressions into man-machine interaction as a new modality. Facial expres-

sion analysis and recognition are essential for intelligent and natural HRI, which

presents a significant challenge to the pattern analysis and human-robot interface

research community. Facial expression recognition is a problem which must be

overcome for the future prospective application such as: emotional interaction, in-

teractive video, synthetic face animation, intelligent home robotics, 3D games and

entertainment[2].

Facial expression plays an important role in our daily activities. The human face

is a rich and powerful source which is full of communicative information about

human behavior and emotion. The most expressive way that humans display

emotions is through facial expressions. Facial expression includes a lot of infor-

mation about human emotion. It can provide sensitive and meaningful cues about

emotional response and plays a major role in human interaction and nonverbal

communication[3]. Facial expression analysis originates from Darwin in the 19th

century when he proposed the concept of universal facial expressions in Man and
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Animals. According the psychological and neurophysiological studies, there are

six basic emotions-happiness, sadness, fear, disgust, surprise, and anger. Each ba-

sic emotion is associated with one unique facial expression[4]. Research on facial

expression recognition and analysis in robot has been a hot research topic in the

affective science of robotics. A large number of methods have been developed for

facial expression analysis. There are some key problems need to be solved: de-

tecting a human face in an image, extracting the facial features and classifying the

feature-based facial expressions into different categories.

For the robot to express a full range of emotions and to establish a meaningful com-

munication with a human being, nonverbal communications such as body language

and facial expressions is vital. The ability to mimic human body and facial expres-

sions lays the foundation for establishing a meaningful nonverbal communication

between humans and robots [5].

Successful research and development in the area of social robots has important

implications in several aspects of human society [6]. Intelligent robots which are

capable of participating in meaningful interactions with humans around them have

great potential in the following applications:

• Companions. Social robots, equipped with high level artificial intelligence

and adaptive behaviours, will act as capable companions to users from diverse

age groups. For children, these social robots can provide valuable compan-

ionship and act as babysitters that help parents monitor their children. Such

interactive toys also serve to spark off creativity and can be a great source

of information (via content/ information delivery from internet information

sources) for children, able to answer their questions intelligently. In the case

of adults, these robots act as personal assistants that can help manage the

appointments and work commitments of the working adult. For the elderly,

these robots serve as companions, combating loneliness amongst the elderly,
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which is currently a major cause of depression and suicide and is expected

to become more severe in the coming years. In addition to fulfilling the role

of an able companion, intelligent social robots can also act as a conduit for

bridging the distance between users, where emotions and gestures can be

transmitted and manifested on the social robots on either end with human-

istic robots serving as realistic personifications of loved ones. Furthermore,

persistent wireless connectivity to the world wide web (which is fast becoming

a standard feature on even the most basic digital device) and being equipped

with intelligent filtering and information recognition tools, the social robot

can act as a valuable one-point information source, in addition to a remote

personal assistant.

• Entertainment. These robots will serve as interactive guides, realistic ac-

tors for exhibits, and even competent service providers. Currently, robots

have already been actively employed in entertainment venues and theme

parks. However, the majority of these robots are still limited to simple tasks,

scripted actions and responses, heavily user initiated interactions, and lim-

ited learning. The use of social robots, with high level artificial intelligence

and adaptive behaviours, will bring the concept of entertainment robotics to

a new level and greatly enhance the consumer’s experience. For example, so-

ciable robotic agents will play significant roles in museums as guides, leading

visitors on tours around the museum, providing oral accounts and multime-

dia presentations related to the display pieces. Robotic and human guides

can work in tandem, with the robot handling the repetitive and mentally

exhaustive task of giving oral accounts of the exhibits and the answering of

common questions from the visitors, reducing the workload of their human

counterparts. While human guides will handle questions from visitors that

are beyond the AI of the robotic guides. The immense knowledge capacity
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of robots makes it a suitable candidate for providing the detailed and accu-

rate information on the exhibits to visitors. In addition, the robot can be

equipped with features not available to human guides such as visual displays

and wireless connections.

• Education. Interactive and intelligent robots capable of participating actively

in the educational process will stimulate creativity within the young minds

of students. In addition, the robot will provide new and valuable tools for

teachers in both classroom-based learning and excursions. The near limit-

less information that can be contained within a robot will complement the

teacher’s knowledge base. Inspiring creativity is a major consideration in

the development of interactive edutainment robot. Current robot programs

in the schools focus on the design and development of low level robots. Al-

though this encourages creativity through active participation in the design

process, the hardware restrictions of these low level developmental kits limits

creative exploration. An alternative to these educational robotic systems is

to provide an advanced robotic platform, incorporating a variety of sensor

systems and actuators, with high level software developmental kits (SDK).

The readily available array of sensor systems and easy usage through a high

level SDKs provides flexibility in the design and developmental stage, al-

lowing imagination and creativity to flow. This approach will motivate the

students to become creative thinkers through providing hands on experience

and active participation in robot design. In addition, the SDKs provided

will help to maintain the students’ interest in robotic design by providing

fast results for their efforts compared with low level robotic design where the

process can be tedious and bogged down by hardware technicalities. Apart

from inspiring creativity and facilitating the teaching process, the interactive

robots can trigger significant learning across broad educational themes that
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extend well beyond science, technology, engineering and mathematics, and

into the associated lifelong learning skills of problem-solving, collaboration

and communication through team-based development projects using open

ended architecture.

1.2 Motivation of Thesis

The objective of our research is to develop a video-based human robot interac-

tion system consisting of human facial expression recognition and imitation. Most

existing systems for human robot interaction, however, suffer the following short-

comings:

• Facial expression in a video is a dynamic process or expression sequence.

Most of the current techniques adopt the facial texture or shape information

for expression recognition [7], [8]. There are more information stored in the

facial expression sequence compared to the facial shape information. Its

temporal information can be divided into three discrete expression states

in an expression sequence: the beginning, the peak, and the ending of the

expression. But those techniques often ignore such temporal information.

• The existing 3D face mesh for facial expression recognition is based on the

assumption of linear mass-spring model. As discussed in [9], the simple linear

mass-spring models can not simulate the real issue muscles accurately. The

facial muscle motivation is a nonlinear mass-spring model, and the facial fea-

ture is also controlled by the nonlinear spring motivation which can simulate

the elastic dynamics of real facial skin.

• A facial expression consists of not only its temporal information, but also a

great number of AU combinations and transient cues. The HMM can model
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uncertainties and time series, but it lacks the ability to represent induced

and nontransitive dependencies. Spatio-temporal approaches allow for facial

expression dynamics modeling by considering facial features extracted from

each frame of a facial expression video sequence.

1.3 Contributions

The main contributions of this thesis can be summarized as follows:

1. A nonlinear mass-spring model is implemented to describe the facial muscles’

elasticity in facial expression recognition. We study facial muscles’ temporal

transition characteristics of different expressions and propose a novel feature

to represent the facial expressions based on non-linear mass-spring model.

2. We build up a human-robot interactive system for recognizing and imitating

human facial expressions by integrating our proposed feature. The experi-

mental results showed that our proposed nonlinear facial mass-spring model

coupled with the Multi-layer Perceptrons (MLPs) classifier is effective to

recognize the facial expressions compared with the linear mass-spring model.

A social robot was designed to make artificial facial expressions. Experimen-

tal results of facial expression generation demonstrated that our robot can

imitate six types of facial expressions effectively.

1.4 Thesis Organization

The remainder of this paper is organized as follows:

In Chapter 2, a general framework for facial expression imitation system in human

robot interaction is introduced. The methods of face detection, facial features
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extraction and facial expression classification are discussed. Representative facial

expression recognition system and interactive robot expression animation system

are described finally.

In Chapter 3, the face detection and facial features extraction methods are dis-

cussed. Face detection can fix a range of interests, decrease the searching range

and initial approximation area for the feature extraction. Vertical and horizon-

tal projection methods are conducted to automatically detect and locate face area.

And then facial features are extracted by using deformable templates to get precise

positions.

In Chapter 4, we discuss the nonlinear mass-spring model which can be used to

simulate the muscle’s tension during the expression. It takes advantage of the

optical ow method which tracks the feature points’ movement information. For

each expression we use the typical patterns of muscle actuation, as determined

using our detailed physical analysis, to generate the typical pattern of motion

energy associated with each facial expression.

In Chapter 5, we present how to classify the facial expressions and summarize

the experimental results. Both integration-based approach and action units-based

approach are discussed. Mlps are employed for static facial expression classification.

Chapter 6 describes the proposed human-robot interaction application.From its

concept design, the robotic face’s affective states are triggered by the emotion

generator engine. It’s facial features can give a vivid animation according to the

tester’s expression. This occurs as a response to its internal state representation,

captured through multimodal interaction.

In Chapter 7, we give some conclusions and discuss our future work.



Chapter 2
Literature Review

This Chapter introduces a general facial expression framework, and then discusses

each module in this framework, including face acquisition, feature extraction and

representation, facial expression classification. Then we describe some state-of-the-

art facial expression recognition systems. Some social interactive robots and their

applications in the field of facial emotion expression imitation are also discussed.

Finally, our system description and assumption are introduced.

2.1 A General Framework of Facial Expression

Imitation System in Human Robot Interac-

tion

There are two key components for most existing facial expression imitation sys-

tems. One is for facial expression recognition, and the other is for facial expression

imitation.

9
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Figure 2.1: Robot imitates human facial expression.

As shown in Fig. 2.1, the recognition component is composed of four modules:

face acquisition, facial feature extraction, facial feature representation and facial

expression classification. Given a facial image, the face acquisition module is used

to segment the face region in this image. Then the module of the facial feature

extraction includes locating the positions and shapes of the eyebrows, eyes, nose,

mouth, and extracting facial features in a still image of human face. The mod-

ule of facial feature representation postprocesses the extracted facial features and

preserve all the information for further classification. Finally based on the post-

processed facial features, the module of facial expression classification is used to

classify the given facial image into the predefined emotion class. In the reminder

of this chapter, we will have a closer look at the individual module of this general

framework. Finally, the module of artificial emotion generation can control a social

robot to imitate the facial expression in response of the user’s expression.
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2.2 Face Acquisition

An ideal module of face acquisition should feature an automatic face detector that

allows to locate faces in complex scenes with cluttered backgrounds [10]. Certain

face analysis methods need the exact position of the face in order to extract facial

features of interest while others work, if only the coarse location of the face is

available. This is the case with e.g. active appearance models [11]. Hong et al.

[12] used the PersonSpotter system by Steffens et al. [13] in order to perform

realtime tracking of faces. The exact face dimensions were then obtained by 0tting

a labeled graph onto the bounding box containing the face previously detected

by the PersonSpotter system. Essa and Pentland [14] located faces by using the

view-based and modular eigenspace method of Pentland et al. [15]. To As far as

we know, face analysis is still complicated due to face appearance changes caused

by pose variations and illumination changes. It might therefore be a good idea to

normalize acquired faces prior to their analysis:

1. Pose: The appearance off facial expressions depends on the angle and distance

at which a given face is being observed. Pose variations occur due to scale

changes as well as in-plane and out-of-plane rotations off aces. Especially out-

of-plane rotated faces are difficult to handle, as perceived facial expression

are distorted in comparison to frontal face displays or may even become

partly invisible. Limited out-of-plane rotations can be addressed by warping

techniques, where the center positions of distinctive facial features such as

the eyes, nose and mouth serve as reference points in order to normalize test

faces according to some generic face models e.g. see Ref. [14]. Scale changes

off aces may be tackled by scanning images at several resolutions in order to

determine the size of present faces, which can then be normalized accordingly
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[16].

2. Illumination: A common approach for reducing lighting variations is to filter

the input image with Gabor wavelets or model facial colour and identity with

Gaussian mixtures see Ref. [17] The problem of partly lightened faces is still

an open research problem which is very difficult to solve.

2.3 Feature extraction and Representation

A facial expression involves simultaneous changes of facial features on multiple

facial regions. Facial expression states vary over time in an image sequence and

so do the facial visual cues. For a particular facial activity, there is a subset of

facial features that is the most informative and maximally reduces the ambiguity

of classification. In general, there are three kinds of approaches to extract facial

features.

2.3.1 Deformation based approaches

Deformation of facial features are characterized by shape and texture changes and

lead to high spatial gradients that are good indicators for facial actions and may

be analyzed either in the image or the spatial frequency domain. The latter can

be computed by high-pass gradient or Gabor wavelet-based filters, which closely

model the receptive field properties of cells in the primary visual cortex [18, 19].

They allow to detect line endings and edge borders over multiple scales and with

different orientations. These features reveal much about facial expressions, as both

transient and intransient facial features often give raise to a contrast change with
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regard to the ambient facial tissue. Gabor filters remove most of the variability

in images that occur due to lighting changes. They have shown to perform well

for the task of facial expression analysis and were used in image-based approaches

[20, 21, 22] as well as in combination with labeled graphs [12, 23, 24].

2.3.2 Muscle based approaches

Muscle-based frameworks attempt to interfere muscle activities from visual infor-

mation. This may be achieved e.g. by using 3D muscle models to describe muscle

actions [25, 26]. Modeled facial motion can hereby be restricted to muscle activa-

tions that are allowed by the muscle framework, giving control over possible muscle

contractions, relaxation and orientation properties. However, the musculature of

the face is complex, 3D information is not readily present and muscle motion is not

directly observable. For example, there are at least 13 groups of muscles involved

in the lip movements alone [27]. Mase and Pentland [28] did not use complex 3D

models to determine muscle activities. Instead they translated 2D motion in pre-

defined windows directly into a coarse estimate of muscle activity. As discussed in

[29], the actual facial expressions can be generated by the dynamics of the facial

muscles which are under the skin.

2.3.3 Motion based approaches

Among the motion extraction methods that have been used for the task of facial

expression analysis we find feature point tracking and difference-images.

1. Feature point tracking: Here, motion estimates are obtained only for a se-

lected set of prominent features such as intransient facial features [30, 31, 32].
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In order to reduce the risk of tracking loss, feature points are placed into areas

of high contrast, preferably around intransient facial features as is illustrated

on the right-hand side of Fig. 6. Hence, the movement and deformation of

the latter can be measured by tracking the displacement of the corresponding

feature points. Motion analysis is directed towards objects of interest and

therefore does not have to be computed for extraneous background patterns.

However, as facial motion is extracted only at selected feature point locations,

other facial activities are ignored altogether. The automatic initialization of

feature points is difficult and was often done manually. Otsuka and Ohya

[33] presented a feature point tracking approach, where feature points are

not selected by human expertise, but chosen automatically in the first frame

of a given facial expression sequence. This is achieved by acquiring poten-

tial facial feature points from local extrema or saddle points of luminance

distributions. Tian et al. [31] used different component models for the lips,

eyes, brows as well as cheeks and employed feature point tracking to adapt

the contours of these models according to the deformation of the underly-

ing facial features. Finally, Rosenblum et al. [34] tracked rectangular, facial

feature enclosing regions of interest with the aid of feature points.

Note that even though the tracking of feature points or markers allows to extract

motion, often only relative feature point locations, i.e. deformation information

was used for the analysis of facial expressions, e.g. in [35] or [31]. Yet another

way of how to extract image motion are difference-images: Specifically for facial

expression analysis, difference-images are mostly created by subtracting a given

facial image from a previously registered reference image, containing a neutral

face of the same subject. Compared with difference-images, feature point tracking

approach could be more robust to the subtle changes of face positions. Thus we

employ the feature tracking approach to extract facial features in our system.
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2.4 The measurement of facial expression

Facial expressions are generated by contractions off facial muscles, which results

in temporally deformed facial features such as eye lids, eye brows, nose, lips and

skin texture, often revealed by wrinkles and bulges. Typical changes of muscular

activities are brief, lasting for a few seconds, but rarely more than 5 s or less than

250 ms. We would like to accurately measure facial expressions and therefore need

a useful terminology for their description. Of importance is the location off facial

actions, their intensity as well as their dynamics. Facial expression intensities may

be measured by determining either the geometric deformation of facial features or

the density of wrinkles appearing in certain face regions. For example the degree

of a smiling is communicated by the magnitude of cheek and lip corner raising

as well as wrinkle displays. Since there are inter-personal variations with regard

to the amplitudes off facial actions, it is difficult to determine absolute facial ex-

pression intensities, without referring to the neutral face of a given subject. Note

that the intensity measurement of spontaneous facial expressions is more difficult

in comparison to posed facial expressions, which are usually displayed with an ex-

aggerated intensity and can thus be identi0ed more easily. Not only the nature

of the deformation of facial features conveys meaning, but also the relative timing

off facial actions as well as their temporal evolution. Static images do not clearly

reveal subtle changes in faces and it is therefore essential to measure also the dy-

namics off facial expressions. Although the importance of correct timing is widely

accepted, only a few studies have investigated this aspect systematically, mostly for

smiles [36]. Facial expressions can be described with the aid of three temporal pa-

rameters: onset (attack), apex (sustain), o¡set (relaxation). These can be obtained

from human coders, but often lack precision. Few studies relate to the problem of

automatically computing the onset and offset off facial expressions, especially when
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not relying on intruding approaches such as Facial EMG [37]. There are two main

methodological approaches of how to measure the aforementioned three character-

istics of facial expressions, namely message judgment based and sign vehicle-based

approaches [38]. The former directly associate specific facial patterns with mental

activities, while the latter represent facial actions in a coded way, prior to eventual

interpretation attempts.

2.4.1 Judgment-based approaches

Judgment-based approaches are centered around the messages conveyed by facial

expressions. When classifying facial expressions into a predefined number of emo-

tion or mental activity categories, an agreement of a group of coders is taken as

ground truth, usually by computing the average of the responses of either experts

or non-experts. Most automatic facial expression analysis approaches found in the

literature attempt to directly map facial expressions into one of the basic emotion

classes introduced by Ekman and Friesen [39, 40].

2.4.2 Sign-based approaches

With sign vehicle-based approaches, facial motion and deformation are coded into

visual classes. Facial actions are hereby abstracted and described by their location

and intensity. Hence, a complete description framework would ideally contain all

possible perceptible changes that may occur on a face. This is the goal of facial

action coding system (FACS), which was developed by Ekman and Friesen [40]

and has been considered as a foundation for describing facial expressions. It is

appearance-based and thus does not convey any information about e.g. mental

activities associated with expressions. FACS uses 44 action units (AUs) for the

description off facial actions with regard to their location as well as their intensity,
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the latter either with three or 0ve levels of magnitude. Individual expressions may

be modeled by single action units or action unit combinations. Similar coding

schemes are EMFACS [41], MAX [42] and AFFEX [43]. However, they are only

directed towards emotions. Finally, the MPEG-4-SNHC [44] is a standard that

encompasses analysis, coding [45] and animation off aces (talking heads) [46]. In-

stead of describing facial actions only with the aid of purely descriptive AUs, scores

of sign-based approaches may be interpreted by employing facial expression dictio-

naries. Friesen and Ekman introduced such a dictionary for the FACS framework

[47]. Ekman et al. [48] presented also a database called facial action coding system

affect interpretation database (FACSAID), which allows to translate emotion re-

lated FACS scores into affective meanings. Emotion interpretations were provided

by several experts, but only agreed affects were included in the database.

2.5 Facial Expression Classification

According to the psychological and neurophysiological studies, there are six basic

emotions-happiness, sadness, fear, disgust, surprise, and anger as shown in Fig.

2.2. Each basic emotion is associated with one unique facial expression.

Feature classification is performed in the last stage of an automatic facial expres-

sion analysis system. This can be achieved by either attempting facial expression

recognition using sign-based facial action coding schemes or interpretation in com-

bination with judgment or sign/dictionary-based frameworks.

1. Hidden Markov models (HMM) are commonly used in the field of speech

recognition, but are also useful for facial expression analysis as they allow to

model the dynamics of facial actions. Several HMM-based classification ap-

proaches can be found in the literature [50, 33] and were mostly employed in
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(a) happiness (b) sadness (c) fear

(d) disgust (e) surprise (f) anger

Figure 2.2: Six universal facial expressions [49].

conjunction with image motion extraction methods. Recurrent neural net-

works constitute an alternative to HMMs and were also used for the task

of facial expression classification [51, 34]. Another way of taking tempo-

ral evolution of facial expression into account are so-called spatio-temporal

motion-energy templates. Here, facial motion is represented in terms of 2D

motion fields. The Euclidean distance between two templates can then be

used to estimate the prevalent facial expression [14].

2. Neural networks were often used for facial expression classification [52, 20,

24, 53, 54]. They were either applied directly on face images [21] or combined

with facial features extraction and representation methods such as PCA in-

dependent component analysis (ICA) or Gabor wavelet filters [22, 21]. The

former are unsupervised statistical analysis methods that allow for a consid-

erable dimensionality reduction, which both simplifies and enhances subse-

quent classification. These methods have been employed both in a holistic
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manner [20, 55] or locally, using mosaic-like patches extracted from small

facial regions [52, 22, 55]. Dailey and Cottrell [22] applied both local PCA

and Gabor jets for the task of facial expression recognition and obtained

quantitatively indistinguishable results for both representations. Unfortu-

nately, neural networks are difficult to train if used for the classification of

not only basic emotions, but unconstrained facial expressions. A problem

is the great number of possible facial action combinations, about 7000 AU

combinations have been identified within the FACS framework [38]. An alter-

native to classically trained neural networks constitute compiled, rule-based

neural networks that were employed e.g. in [35].

In [56], the features used for NN can be either the geometric positions of a set

of fiducial points on a face or a set of multiscale and multiorientation Gabor

wavelet coefficients extracted from the facial image at the fiducial points. The

recognition is performed by a two layer perceptron NN. The system developed

is robust to face location changes and scale variations. Feature extraction and

facial expression classification were performed using neuron groups, having

as input a feature map and properly adjusting the weights of the neurons for

correct classification. A method that performs facial expression recognition

is presented in [57]. Face detection is performed using a Convolutional NN,

while the classification is performed using a rule-based algorithm. Optical

flow is used for facial region tracking and facial feature extraction in [58]. The

facial features are inserted in a Radial Basis Function (RBF) NN architecture

that performs classification. The Discrete Cosine Transform (DCT) is used

in [59], over the entire face image as a feature detector. The classification is

performed using a one-hidden layer feedforward NN.

The HMM can model uncertainties and time series, but it lacks the ability to

represent induced and nontransitive dependencies. So NN is often employed in
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most existing facial expression recognition systems based on (FACS).

2.6 State-of-the-art facial expression recognition

systems

In this section, we have a closer look at a few representative facial expression

analysis systems. First, we discuss deformation and motion-based feature extrac-

tion systems. Then we introduce hybrid facial expression analysis systems, which

employ several image analysis methods that complete each other and thus allow

for a better overall performance. Multi-modal frameworks on the other hand in-

tegrate other non-verbal communication channels for improving facial expression

interpretation results.

2.6.1 Deformation extraction-based systems

Padgett et al. [60] presented an automatic facial expression interpretation system

that was capable ofidentif ying six basic emotions. Facial data was extracted from

32×32 pixel blocks that were placed on the eyes as well as the mouth and projected

onto the top 15 PCA eigenvectors of 900 random patches, which were extracted

from training images. For classification, the normalized projections were fed into an

ensemble of 11 neural networks. Their output was summed and normalized again

by dividing the average outputs for each possible emotion across all networks by

their respective deviation over the entire training set. The largest score for a par-

ticular input was considered to be the emotion found by the ensemble of networks.

Altogether 97 images of six emotions from 6 males and 6 females were analyzed and
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a 86% generalization performance was measured on novel face images. Lyons et al.

Experiments were carried out on subsets of totally six different posed expressions

and neutral faces of 9 Japanese female undergraduates. A generalization rate of

92% was obtained for the recognition of new expressions of known subjects and

75% for the recognition of facial expressions of novel expressers.

2.6.2 Motion extraction-based systems

Black and Yacoob [61] analyzed facial expressions with parameterized models for

the mouth, the eyes and the eye brows and represented image flow with low-order

polynomials. A concise description of facial motion was achieved with the aid

of a small number of parameters from which they derived mid- and high-level

description of facial actions. The latter considered also temporal consistency of

the mid-level predicates in order to minimize the e7ects of noise and inaccuracies

with regard to the motion and deformation of the models. Hence, each facial

expression was modeled by registering the intensities of the mid-level parameters

within temporal segments (beginning, apex, ending). Extensive experiments were

carried out on 40 subjects in the laboratory with a 95% correct recognition rate and

also with television and movie sequences resulting in a 80% correct recognition rate.

The employed dynamic face model allowed not only to extract muscle actuations of

observed facial expressions, but it was also possible to produce noise corrected 2D

motion 0elds via the control-theoretic approach. The latter where then classified

with motion energy templates in order to extract facial actions. Experiments were

carried out on 52 frontal view image sequences with a correct recognition rate of

98% for both the muscle and the 2D motion energy models.
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2.6.3 Hybrid systems

Hybrid facial expression analysis systems combine several facial expression analy-

sis methods. This is most beneficial, if the individual estimators produce very

di7erent error patterns. Bartlett et al. [55] proposed a system that integrates

holistic difference-images motion extraction coupled with PCA, feature measure-

ments along predefined intensity profiles for the estimation of wrinkles and holistic

dense optical flow for whole-face motion extraction. These three methods were

compared with regard to their contribution to the facial expressions recognition

task. Bartlett et al. estimated that without feature measurement, there would

have been a 40% decrease of the improvement gained by all methods combined.

Faces were normalized by alignment through scaling, rotation and warping of as-

pect ratios. However, eye and mouth centers were located manually in the neutral

face frame, each test sequence had to start with. Facial expression recognition was

achieved with the aid of a feed-forward neural network, made up of 10 hidden and

six output units. The input of the neural network consisted of 50 PCA component

projections, five feature density measurements and six optical flow-based template

matches. A winner takes it all (WTA) judgment approach was chosen to select

the 0nal AU candidates. Initially, Bartlett et al.s hybrid facial expression analysis

system was able to classify six upper FACS action units on a database containing

20 subjects, correctly recognizing 92% of the AU activations, but no AU intensities.

Later it was extended to allow also for the classification of lower FACS action units

and achieved a 96% accuracy for 12 lower and upper face actions [20, 55].
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2.7 Emotion Recognition in Human-robot Inter-

action

2.7.1 Social interactive robot

In recent years, the robotics community has seen a gradual increase in social ro-

bots, that is, robots that exist primarily to interact with people. Therefore, many

kinds of socially interactive robot operating as partners, peers or assistants, were

invented. Different from traditional industrial robots, socially interactive robots

need to exhibit a certain degree of adaptability and flexibility to drive the inter-

action with a wide range of humans. Socially interactive robots can have different

shapes and functions, ranging from robots whose sole purpose and only task is

to engage people in social interactions to robots that are engineered to adhere to

social norms in order to fulfill a range of tasks in human-inhabited environments

[62, 63].

Socially interactive robots are important for domains in which robots must exhibit

peer-to-peer interaction skills, either because such skills are required for solving

specific tasks, or because the primary function of the robot is to interact socially

with people[64, 65].

The emotion exchanges and interaction is one of the most important and necessary

characteristics of the social robotics, and also called the affective sciences. Affec-

tive science is the scientific study of emotion. An increasing interest in emotion

can be seen in the behavioral, biological and social sciences. Research over the last

two decades suggests that many phenomena, ranging from individual cognitive

processing to social and collective behavior, cannot be understood without taking

into account affective determinants (i.e. motives, attitudes, moods, and emotions).
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The major challenge for this interdisciplinary domain is to integrate research fo-

cusing on the same phenomenon, emotion and similar affective processes, starting

from different perspectives, theoretical backgrounds, and levels of analysis.

For a service robot to be more human friendly, an affective system is an essen-

tial part of the human-robot interaction (HRI), because emotions affect rational

decision-making, perception, learning, and other cognitive functions of a human.

According to the somatic marker hypothesis, the marker records emotional reac-

tion to a situation [66]. We learn the markers throughout our lives and use them

for our decision-making. Therefore, it is quite necessary for a believable robot to

have an affective system such that it can synthesize and express emotions.

In recent years, affective techniques has increasingly been used in interface and

robot design, primarily because of the recognition that people tend to treat com-

puters as they treat other people [67]. Moreover, many studies have been performed

to integrate emotions into products including electronic games, toys, and software

agents[65].

For a robot to be emotionally intelligent it should clearly have a two-fold capability-

the ability to display its own emotions just like human beings (usually by using

facial expressions and speech[68]) and the ability to understand human emotions

and motivations (also referred to as affective states).

2.7.2 Facial emotion expression as human being

Through facial expressions, robots can display their own emotion just like human

beings. The expressive behavior of robotic faces is generally not life-like. This

reflects limitations of mechatronic design and control. For example, transitions be-

tween expressions tend to be abrupt, occurring suddenly and rapidly, which rarely

occurs in nature. The primary facial components used are mouth (lips), cheeks,

eyes, eyebrows and forehead. Most robot faces express emotion in accordance with
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Ekman and Frieser’s FACS system [47, 40, 69].

There have been several attempts to build emotional robots such as Sony’s Aibo

[70], MIT’s Kismet [71], and KAIST’s AMI [72]. In Kismet, its affective system has

a three dimensional affect space of valence, stance, and arousal and the appraisal

of external stimuli is mapped to the space. Similarly, Aibo has its own affect space

of seven emotions based on Takanishi’s model [73] and generates appropriate emo-

tional reactions to a situation. However, the affect space allows the robots to have

only one emotion at a time, because the affect space has a competitive relation-

ship among emotions. For example, Aibo always expresses only one affective state

from among its seven emotions: happy, sadness, fear, disgust, surprise, angry and

hungry.

Since the temporal lobe and the prefrontal cortex have undergone considerable de-

velopment, human beings have several emotions simultaneously and express them

in various ways. Furthermore, according to the studies of human social interac-

tions, people feel more comfortable with a human-like agent. In [74], the authors

propose a dynamic robot affective system inspired from both neuroscience and cog-

nitive science such that it can have various emotional states at the same time and

express those combined emotions just like humans do.

Instead of using mechanical actuation, another approach to facial expression is

to rely on computer graphics and animation techniques. Valerie, for example,

has a 3D rendered face of a woman based on Delsarte’s code of facial expressions

[75]. Because Valerie’s face is graphically rendered, many degrees of freedom are

available for generating expressions.

2.8 Challenges
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It is important to note that the goal of tracking the dynamic information is primar-

ily to estimate the changes of either skin surface on each facial muscle or motion

energy converted from the muscular activations.

In this thesis, we are interested in how to apply dynamics of the facial muscles

to perform the recognition of facial expressions, and build a dynamic physically-

based expression recognition system. A human being can have several emotions

and express them in various ways. The motion characteristics and elastic properties

of real facial muscle have been ignored in “facial motion” tracking. In our work the

skin model is constructed by using the nonlinear spring frames which can simulate

the elastic dynamics of real facial skin. The facial expressions are synthesized by

facial skin nodes driven by the muscle contraction [76]. When muscles contract,

by solving the dynamic equation for feature skin node in the facial surface, we can

observe the affective transformation on facial expressions.

2.9 System description

Our facial expression recognition research is conducted based on the following

assumptions:

Assumption 1. Using only vision camera, one can only detect and recognize the

shown emotion that may or may not be the personal true emotions. It is assumed

that the subject shows emotions through facial expressions as a mean to express

emotion.

Assumption 2. Theories of psychology claim that there is a small set of basic ex-

pressions [40], even if it is not universally accepted. A recent cross-cultural study

confirms that some emotions have a universal facial expression across the cultures
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and the set proposed by Ekman [77] is a very good choice. Six basic emotions-

happiness, sadness, fear, disgust, surprise, and anger are considered in our re-

search. Each basic emotion is assumed associated with one unique facial expression

for each person.

Assumption 3. There is only one face contained in the captured image. The face

takes up a significant area in the image. The image resolution should be sufficiently

large to facilitate feature extraction and tracking .

Figure 2.3: Robot imitates human facial expression.

The system framework is shown in Fig. 2.3. First the face detection module

segments the face regions of a video sequence or an image and locates the positions

of the eyebrows, eyes, nose and mouth. The positions can be represented by some
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driven points with special mathematic properties (i.e., the minima). The module

of feature extraction is used to track the driven points during a facial expression,

and compute their sequential displacements compared to their corresponding fixed

points. In the system a facial muscle is assumed to consist of a pair of key points,

namely driven point and fixed point. The fixed points, which are derived from

the facial mass-spring model, can not be moved during a facial expression. Given

the outputs of feature extraction and a predefined set of facial expressions, the

classification module classifies a video or an image into the corresponding class

of facial expressions (i.e., happiness, fear, etc). Finally, the module of artificial

emotion generation can control a social robot to imitate the facial expression in

response of the user’s expression.

The objective of the facial recognition is for human emotion understanding and

intelligent human computer interface. The system is based on both the deformation

and motion information. Fig. 2.1 shows the framework of our recognition system.

The composition of our system can be distinguished in four main parts. It starts

with the facial image acquisition and ends with facial expression animation.



Chapter 3
Face Detection and Feature Extraction

Human face detection is the first task performed in a face recognition system;

consequently, to ensure good results in the recognition phase, face detection is a

crucial procedure. In the last ten years, face and facial expression recognition have

attracted much attention, though they truly have been studied for more than 20

years by psychophysicists, neuroscientists and engineers. Many research demon-

strations and commercial applications have been developed from these efforts. The

first step of any face processing system is to locate all faces that are present in a

given image. However, face detection from a single image is a challenging task be-

cause of the high degree of spatial variability in scale, location and pose (rotated,

frontal, profile). Facial expression, occlusion and lighting conditions also change

the overall appearance of faces, as described in reference [78].

In reference [78], within a definition of face detection, the author writes: “Given

an arbitrary image, the goal of face detection is to determine whether or not there

are any faces in the image and, if present, return the image location and extent of

each face”.

29
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Analysis of facial expressions requires a number of pre-processing steps which at-

tempt to locate the face, to extract characteristic regions such as eyes, eyebrows,

mouth and nose, to track the movement of facial features using anatomic informa-

tion about the face.

3.1 Face Detection and Location using Skin In-

formation

Skin has a quite characteristic range of colors, which indicates that the face region

can be detected by classifying pixels on their color. There are different ways of

representing the same color in a computer, each with a different color space. Each

color space has its own existing background and application areas.

3.1.1 Gaussian Mixed Model

We know that although the images are from different ethnicities, the skin dis-

tribution is relatively clustered in a small particular area [17]. We denote a class

conditional probability as P (x|ω) which is the probability of likelihood of skin color

x for each pixel of an image given its class ω. This gives an intensity normalized

color vector x with two components. The definition of x is given in Eq. (3.1).

x = [r, b]T (3.1)

where

r =
R

R + G + B
, b =

B

R + G + B
(3.2)

Thus, we project the 3D [R,G,B] model to a 2D [r,b] model. On this 2D plane,

the skin color area is comparatively more centralized which could be described

by a Gauss distribution. P (x|ω) can be treated as a Gauss distribution, and the
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equations of mean(µ) and covariance(C) are given:

µ = E(x) (3.3)

C = E(x − M)(x − M)T (3.4)

Finally, we calculate the probability that each pixel belongs to the skin tone

through the Gaussian density function as shown in Eq. (3.5). Then we use

Gaussian distribution to describe this kind of distribution

P (x | ω) ∝ exp[−0.5(x − µ)T C−1(x − µ)] (3.5)

Through the distance between two pixels and the center we can get the information

on how similar it is to skin and get a distribution histogram similar to the original

image. The probability should be between 0 and 1, because we normalize the three

components (R, G, B) of each pixel’s color at the beginning. The probability of

each pixel is multiplied by 255 in order to create a gray-level image I(x, y). This

image is also called a likelihood image.

3.1.2 Threshold & Compute the Similarity

After obtaining the likelihood of skin I(x, y), a binary image B(x, y) can be ob-

tained by thresholding each pixel’s I(x, y) with a threshold T according to

B(x, y) =











1, if I(x, y) ≥ T

0, if I(x, y) < T

(3.6)

There is no definite criterion to determine a threshold. If the threshold value is too

big, the false rate will increase. On the other hand, if the threshold is too small,

the missed rate will increase. We hope the missed rate will be the lowest, so we

define the threshold value as 0.5. That is, when the skin probability of a certain

pixel is larger or equal to 0.5, we will regard the pixel as skin. In Fig. 3.1(b), the
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(a) The original face image (b) The binary image

Figure 3.1: Face detection using vertical and horizontal histogram method

binary image B(x, y) is derived from the I(x, y) according to the rule defined in

Eq. (3.6). As observed from the experiments, if the background color is similar

to skin, there will be more candidate regions, and the follow-up verifying time will

increase.

3.1.3 Histogram Projection Method

We have used integral projections of the histogram map of the face image for facial

area location. The vertical and horizontal projection vectors in the image rectangle

[x1, x2] × [y1, y2] are defined as:

V (x) =

y=y2
∑

y=y1

B(x, y) (3.7)

H(x) =

x=x2
∑

x=x1

B(x, y) (3.8)

The face area is located by applying sequentially the analysis of the vertical his-

togram and then the horizontal histogram. The peaks of the vertical histogram of

the head box correspond with the border between the hair and the forehead, the
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eyes, the nostrils, the mouth and the boundary between the chin and the neck.

The horizontal line going through the eyes goes through the local maximum of the

second peak. The x axis of the vertical line going between the eyes and through the

nose is chosen as the absolute minimum of the contrast differences found along the

horizontal line going through the eyes. By performing the analysis of the vertical

and the horizontal histogram, the eyes’ area is reduced so that it contains just the

local maximums of the histograms. The same procedure is applied to define the box

that bounds the right eye. The initial box bounding the mouth is set around the

horizontal line going through the mouth, under the horizontal line going through

the nostrils and above the horizontal line representing the border between the chin

and the neck. By analyzing the vertical and the horizontal histogram of an initial

box containing the face, facial feature can be tracked.

(a) Test image 1 (b) Test image 2

Figure 3.2: The detected rectangle face boundary.

As can be seen from Fig. 3.2, faces can be successfully detected in different sur-

roundings in these images where each detected face is shown with an enclosing

window.



3.2 Facial Features Extraction 34

3.2 Facial Features Extraction

A facial expression involves simultaneous changes of facial features on multiple

facial regions. Facial expression states vary over time in an image sequence and

so do the facial visual cues. Facial feature extraction include locating the position

and shape of the eyebrows, eyes, eyelids, mouth, wrinkles, and extracting features

related to them in a still image of human face. For a particular facial activity, there

is a subset of facial features that is the most informative and maximally reduces

the ambiguity of classification. Therefore we actively and purposefully select 21

facial visual cues to achieve a desirable result in a timely and efficient manner while

reducing the ambiguity of classification to a minimum. In our system, features are

extracted using deformable templates with details given below.

3.2.1 Eyebrow Detection

The segmentation algorithm cannot give bounding box for the eyebrow exclusively.

Brunelli suggests use of template matching for extracting the eye, but we use

another approach as described below. Eyebrow is segmented from eye using the

fact that the eye occurs below eyebrow and its edges form closed contours, obtained

by applying Laplacian of Gaussian operator at zero threshold. These contours are

filled and the resulting image containing masks of eyebrow and eye. From the two

largest filled regions, the region with higher centroid is chosen to be the mask of

eyebrow.

3.2.2 Eyes Detection

The positions of eyes are determined by searching for minima in the topographic

grey level relief. The contour of the eyes can be precisely found. Since the real

images are always affected by the lighting and noises, it is not robust and often
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require expert supervision using the general local detection method such as corner

detection [79]. The Snake algorithm is much more robust, but rely much on the

image itself and there may be too many details in the result [80]. We can make

full use of the priority knowledge of human face which describes the eyes as piece-

wise polynomial. A more precise contour can be obtained by making use of the

deformable template.

The eye’s contour model can be composed by four second order polynomials which

are given below:







































y = h1(1 − x2

w2

1

) − w1 ≤ x ≤ 0

y = h1(1 − x2

w2

2

) 0 < x ≤ −w2

y = h2(
(x+w1−w3)2

w2

3

− 1) − w1 ≤ x ≤ w3 − w1

y = h2(
(x+w1−w3)2

(w1+w2−w3)2
− 1) 0 < x ≤ −w2

(3.9)

where (x0, y0) is the center of the eye, h1 and h2 are the heights of the upper half

eye and the lower half eye, respectively.
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Figure 3.3: The outline model of the left eye.

Because the eyes’s color are not accordant and the edge information is abundant,

we can do edge detection first with a closed operation followed. The inner part
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of the eye becomes high-luminance while the outer part of the eye becomes low-

luminance. The evaluation function we choose is:

min C =

∮

∂

D+I(x)dx −

∮

∂

D−I(x)dx (3.10)

where D represent the eye’s area, ∂D+ denotes the outer part and ∂D− denotes

the inner part of the eye.

3.2.3 Nose Detection

After the eyes’ position is fixed, it will be much easier to locate the nose position.

The nose is at the center area of the face rectangle. We can search this area for the

light color region. Thus the two nostrils can be approximated by finding the dark

area. Then the nose can be located above the two nostrils at the brightest point.

3.2.4 Mouth Detection

Similar to the eye’s model, the lips can be modeled by two pieces of fourth order

polynomials which are given below:











y = h1(1 − x2

w2 ) + q1(
x2

w2 −
x4

w4 ) − w ≤ x ≤ 0

y = h2(
x2

w2 − 1) + q2(
x2

w2 −
x4

w4 ) 0 ≤ x ≤ w

(3.11)

where (x0, y0) is the lip center position, h1 and h2 are the heights of the upper half

and the lower half of the lip respectively.
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Figure 3.4: The outline model of the mouth.

The mouth’s evaluation function is much easier to confirm since the color of the

mouth is uniform. The mouth could be easily separated by the different color of

mouth and skin. The position of mouth can be determined by searching for minima

in the topographic grey level relief. The formation of the evaluation function is

similar to Eq. (3.11).

3.2.5 Illusion & Occlusion

The wear of glasses, scarves and beards would change the facial appearance which

make it difficult for face detection and feature extraction. Some previous work

has addressed the problem of partial occlusion [81]. The method they proposed

could detect a face wearing sunglasses or scarf but is conducted under restrained

conditions. The people with glasses can be somehow detected but it may fail

sometimes. Fig. 3.5 shows the face detection and feature extraction results with

glasses. In this paper, we did not consider the occlusion problem such as scarf or

purposive occlusion. Such occlusion may cover some of the feature points, and the

face recognition can’t be conducted subsequently.
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Figure 3.5: The feature extraction results with glasses.

3.3 Summary

In this Chapter, the face detection and facial features extraction methods are

discussed. Face detection can fix a range of interests, decrease the searching range

and initial approximation area for the feature extraction. Vertical and horizontal

projection methods are conducted to automatically detect and locate face area.

And then facial features are extracted by using deformable templates to get precise

positions.



Chapter 4
Non-linear Mass-spring Model for Facial

Expression

The muscles in our face allow us to express emotions without speaking. To make

an expression, we move the facial muscles that lie beneath the skin. Unlike other

skeletal muscles, which are attached to bones, the facial muscles are attached to

other muscles, or to the skin. So even a tiny contraction in one such muscle can

pull the skin and change your expression [82].

Yu zhang et al. proposed a physically-based dynamic facial model based on

anatomical knowledge for facial expression animation. The facial model incor-

porates a physically-based approximation to facial skin and a set of anatomically-

motivated facial muscles. The skin model is established by using a mass-spring

system with nonlinear springs, and they are used to simulate the elastic dynamics

of a real facial skin. Facial muscle models are developed to emulate facial muscle

contraction [29]. In this Chapter, we investigate the facial muscles’s tension by

using linear and non-linear mass-spring models.

39
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4.1 Introduction to Facial Muscles

4.1.1 Facial Muscles I

The Fig. 4.1 shows the facial muscles in a human face. There are nine groups

of muscles in the face that control facial expression. Two groups, that cover the

eyelid and orbital area, control blinking, tear duct control and movement of the

eyeball. Near the nose, there are several small muscles that interconnect with other

muscles in the face, enabling nostrils to flair or compress, and the upper lip to lift.

A muscle runs vertically along the forehead, raising the eyebrows and helping the

face to frown. The ”kissing muscle” (known to anatomists as the orbicularis oris)

closes the mouth and puckers the lips when it contracts. As an expressive muscle,

four relatively distinct movements can be produced by orbicularis oris, a pressing

together, a tightening and thinning, a rolling inwards between the teeth, and a

thrusting outwards. Other muscles control the corners of the mouth: Risorius

acts to stretch the mouth laterally, retracting the corners of the mouth, and has

been thought (erroneously) to produce ”grinning” or ”smiling”; Zygomatic major

lifts the corner of the mouth obliquely upwards and laterally and is a muscle that

produces a characteristic ”smiling expression” (Other muscles produce different

”smiles”); Triangularis This muscle causes the corners of the mouth to turn down

and form the lips into an inverted U, an action stereotyped as indicating grief. It

produces a frown in the mouth [83].

All these muscles are connected by the facial nerve. The facial nerve contains

about 10,000 individual nerve fibers and works like a telephone cable. It carries

electrical impulses to a specific facial muscle, and this signal is what enables us to

laugh, cry, smile, or frown [82].

The actions of above facial muscles are described as follows:

1. The frontalis muscle runs vertically on the forehead, originating in tissues
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Figure 4.1: The primary muscles of facial expression include: (A) Frontalis (B)

Corrugator (C) Orbicularis oculi (D) Procerus (E) Risorius (F) Nasalis (G)

Triangularis (H) Orbicularis oris (I) Zygomatic minor (J)Mentalis
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of the scalp (galea aponeurotica) above the hairline and inserting into the

skin in the forehead and near the eyebrows. (It is considered the front part

of the Epicranius muscle or Occipito-frontalis which covers the scalp from

the forehead to the back of the head.) Contraction of the entire frontalis

draws the eyebrows and skin of the forehead upwards and forms horizontal

wrinkles running across the forehead. It is composed of inner (medial) and

outer (lateral) parts, which can function relatively independently.

Frontalis is innervated by temporal branches of the facial nerve (VII) and is

supplied with blood by the superficial temporal artery.

The inner frontalis is the medial part of the frontalis muscle. Its contraction

raises the medial part of the brow and eyebrows, forming slanted wrinkles in

the forehead and creating a slant up towards the center in the eyebrows.

The outer frontalis is the lateral part of the frontalis muscle. Its contraction

raises the lateral (outer) part of the brow and eyebrows, forming wrinkles in

the lateral part of the forehead and an arched shape to the eyebrows.

2. The corrugator muscle originates at the inner orbit of the eye near the root

of the nose and inserts into the skin of the forehead above the center of each

eyebrow. It pulls the eyebrows and skin from the center of each eyebrow to

its inner corner medially and down, forming vertical wrinkles in the glabella

area and horizontal wrinkles at the bridge of the nose. It most often acts

simultaneously with two nearby smaller muscles, the depressor supercillii and

the procerus. It is one of the most important of expressive muscles. Some

suggest this is the muscle of grief and suffering (research suggests much more

diverse roles). It produces a frown in the eyebrows and forehead.

3. Orbicularis oculi is a sphincter muscle around the eye and acts, in general,

to narrow the eye opening and close the orbit of the eye. This muscle has
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important functions in protecting and moistening the eye as well as in ex-

pressive displays. These muscles constrict skin around the eye, reduce the

eye opening, and close the eye. It has three parts, an outer or orbital part,

an inner or palpebral part in the eyelids, and a small lacrimal part near the

tear duct. The outer part originates in the medial part of the orbit and runs

around the eye via the upper eye cover fold and lid and returns in the lower

eyelid to the palpebral ligament; the palpebral part originates in the palpe-

bral ligament and runs above and below the eye to the lateral angle of the

eye. These two muscles form concentric circles around the eye. Action of the

palpebral part is often involuntary, as in the blink reflex.

4. The Procerus (also known as the depressor glabellae or pyramidalis nasi)

muscle originates in the fascia of the nasal bone and upper nasal cartilage,

runs through the area of the root of the nose, and fans upward to insert in

the skin in the center of the forehead between the eyebrows. It acts to pull

the skin of the center of the forehead down, forming transverse wrinkles in

the glabella region and bridge of the nose. This horizontal wrinkle at the

root of the nose is sometimes referred to as the ”champion pucker” because

this muscle often contracts in effortful activities. It usually acts together

with corrugator and/or orbicularis oculi and/or the nasal part of levator

labii superioris. It is very difficult to contract deliberately without involving

these other muscles.

5. Risorius originates in the fascia of the masseter below the zygomatic arch

and inserts in the skin near the corner of the mouth. It acts to stretch the

mouth laterally, retracting the corners of the mouth, and has been thought

(erroneously) to produce ”grinning” or ”smiling.” It has a connection with

the platysma in that it often contracts with it.
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6. The Nasalis muscle has two main parts, the transverse or compressor part

(also known as compressor naris), which constricts the nostril, and the alar

or dilator part (also known as dilator naris), which flares the nostril. The

compressor part of nasalis originates in the upper jaw near the canine tooth

and inserts into nasal cartilage on the bridge of the nose, each side mixing

with the other (thus transverse). When it contracts, it tends to draw the

nostril wings towards the septum. The dilator part originates in the upper

jaw and cartilage of the nose and inserts in skin of the nostril. When it

contracts, it pulls the nostril wings away from the septum. (Depressor septii

is considered by some to be a part of nasalis.)

7. Triangularis, a name based on its shape, (also known as Depressor anguli

oris) originates in the mandible and platysma and inserts in the skin and

orbicular muscle at corner of the mouth. It is a muscle whose evolutionary

connection to the platysma is evident, being continuous with it and extending

to the mouth. This muscle causes the corners of the mouth to turn down and

form the lips into an inverted U, an action stereotyped as indicating grief. It

produces a frown in the mouth.

8. Orbicularis oris is the sphincter muscle around the mouth, forming much of

the tissue of the lips. It has extensive connections to muscles that converge

on the mouth. This muscle acts to shape and control the size of the mouth

opening and is important for creating the lip positions and movements during

speech. Several different strands can be distinguished that allow it to form

the lips into versatile shapes. As an expressive muscle, four relatively dis-

tinct movements can be produced by orbicularis oris, a pressing together, a

tightening and thinning, a rolling inwards between the teeth, and a thrusting

outwards.
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9. Zygomatic major originates in the cheek bone (zygomatic arch) and inserts

in muscles (o. oris, depressor, etc.) near the corner of the mouth. This

muscle lifts the corner of the mouth obliquely upwards and laterally and is

a muscle that produces a characteristic ”smiling expression.” (Other muscles

produce different ”smiles.”) Some research suggests that the difference be-

tween a genuine smile and a perfunctory (or lying) smile is that when a person

really feels happy, Zygomatic major contracts together with orbicularis oculi.

Look at the videos below and see what you think (both expressions here are

deliberate).

10. Mentalis is so named because it is associated with thinking or concentration,

although the justification for this view is lacking. It also has been said to

express doubt. It originates in the part of the mandible below the front teeth

and inserts into the skin of the chin, and acts to push the chin boss upwards,

wrinkling it and curving the lips upward in an inverted U.

4.1.2 Facial Muscles II

The facial muscles are mostly attached to both the skull and the facial tissue. One

end of the facial muscle attached to skull is generally considered the origin while

the other end is the insertion. Normally, the origin is the fixed point, and the

insertion is where the facial muscle performs its action. In a human face, a wide

types of muscles exist: rectangular, triangular, sheet, linear, sphincter [84]. Three

main types of facial muscles are incorporated in our face model. They are linear,

sphincter and sheet muscles. Thus the nine groups of facial muscles in section 4.1.1

can be categorized as follows.
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Table 4.1: Facial Muscle Classification

Linear muscle Corrugator, Risorius, Nasalis, Triangularis, Zygomatic minor

Sphincter muscle Orbicularis oculi, Orbicularis oris

Sheet muscle Frontalis, Procerus, Mentalis

Figure 4.2: Linear muscle

Linear Muscle

Linear muscle consists of a bundle of fibers that share a common emergence point

in bone and pulls in an angular direction. One of the examples is the zygomaticus

major which attaches to and raises the corner of the mouth. Fig. 4.2 illustrates

the linear muscle with the following definitions [84]:

xi: arbitrary facial skin point

mj: attachment point of linear muscle j at the skull

xji: the distance between muscle attachment point mj and skin point xi

On contraction, facial regions close to the skin insertion point of a muscle are

affected. The effect of facial muscle contraction is to pull the surface from the area

of the muscle insertion point to the muscle attachment point.
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Figure 4.3: Sphincter muscle

Sphincter Muscle

Unlike the linear muscle,the sphincter muscle attaches to skin both at the origin

and at the insertion, and contracts abound a virtual center. An example is the

orbicularis oris, which circles the mouth and can pout the lips. because sphincter

muscles do not behave in a regular fashion, it can be simplified to a parametric

ellipsoid as shown in Fig. 4.3. The definition of the parameters list are:

O: epicenter of sphincter muscle influence area

a: the semimajor axis of sphincter muscle influence area

b: the semiminor axis of sphincter muscle influence area

Sheet Muscle

Sheet muscle consists of strands of fibers which lie in flat bundles. The obvious

example of this kind of muscle is the frontalis major, which lies on the forehead

and is primarily involved with the raising of the eyebrows. A sheet muscle neither

emanates from a point source, nor contracts to a localized node. In fact, the sheet

muscle is a series of almost-parallel fivers spread over an rectangle area, muscle

model is illustrated in the Fig. 4.4

xi: arbitrary facial skin point

mj: point of sheet muscle attachment line
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Figure 4.4: Sheet muscle

Lj: the length of the rectangle zone influenced by sheet muscle

lji: the distance between skin point xi and sheet muscle attachment line

4.2 Facial Motion and Key Points

For developing a representation of facial motion, we have to find a proper method

to represent the movement of facial muscles. We employed the Simunek’s method

which is for visualization and animation of human face. This approach models the

facial motions based on the deformations of muscles and uses key points to analyze

the movement of the lips [76]. Using key points introduced by this method, we

analyze the movement of the facial muscles. All facial muscles are implemented

as vectors. Two points of the vector determine places, where the muscle is at-

tached. The first point is mobile and we call them driven points. The second

point is immovable and we call them fixed points. The movement of the muscles is

implemented as extending or reducing of a distance between points of the vector.

This reduction or extension performed by movement of control point. We have to

determine limits of vector length by anatomy of a human face. They are depicted

on following picture.

In Fig. 4.5, we mark the driven and fixed points of the muscles by using two
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(a) (b)

Figure 4.5: Key points

different colors: red key points denote driven points, the blue ones denote fixed

points. Facial muscles are plotted by grayer lines and its driven and fixed points

are also connected by them.

4.3 The Linear Mass-Spring Face Model

To physically simulate the deformation of the skin on the human face, we use the

mechanical law of mass-spring model. Networks of masses, connected by spring,

attempt to simulate the behavior of deformable bodies using a primitive model

for the transmission of energy. The motion of a particle in the system is defined

by its physical nature and by the position of other particles. The facial surface is

composed by a set of particles with uniform mass density m. Their behavior is

determined by their interaction with the related muscles. In a correspondence with

the geometric structure of the face model, each key point of the face corresponds

to a particle in the physical model. To simulate elastic effects of facial skin tissue,

we connect each face driven key point with its fixed point by massless spring of

natural length non equal to zero.
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Suppose an driven skin mass point xi is connected with its fixed points xj by the

spring j. The internal spring forces applied on xi is the resultant of the tensions

of the springs linking xi to its fixed point:

f(xi, xj) = kij

(|xi − xj| − dij)

|xi − xj|
(xi − xj) (4.1)

where

dij is the natural length of the spring linking xi and xj.

kij is the spring stiffness of the spring linking xi and xj.











kij = kL εj ≤ εc

kij = kH εj > εc

(4.2)

The spring forces are computed by multiplying the elongation from the rest length

dij of the spring with its spring stiffness kij. The low-strain stiffness kL is smaller

than the high-strain stiffness kH . Like real skin tissue, the biphasic spring is

readily extendible at low strains, but exerts rapidly increasing restoring stresses

after exceeding a strain threshold εc.

4.4 Nonlinear Mass-Spring Model (NLMS)

In order to faithfully simulate the deformation of the facial skin tissue, it is crucial

to investigate the biomechanical nature of soft tissue deformation under applied

loads. Experimental data have been collected in Biomechanics about human tissue

elasticity [85]. The study shows that tissues do not have a linear response: the

curve representing the stretch (strain) of a tissue as a function of the applied force

(stress)is typically a J-shaped curve; as the tissue gets closer to tearing, the increase

in stretching becomes smaller per additional unit of exerted force. Moreover, the

tissue response exhibits hysteresis: the curves for increasing and decreasing force
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are different. Each branch of a specific cyclic process can be described by a non-

linear pseudo-elastic function. Since the difference is insignificant, we approximate

the non-linear relationship by a biphasic curve illustrated in Fig.4.6

Figure 4.6: Stress-strain relationship of facial tissue

Mass-spring model is typically utilized to formulate the facial muscle contraction.

The facial muscle is treated as a linear spring and the elastic stiffness is constant.

Though this assumption simplifies somewhat the equation of motion at each node,

it is undesirable for accurate simulation of the real tissue that has a nonlinear

stress-strain relationship. It is natural to investigate the problem of the elastic

stiffness calculation for nonlinearity factor varying with muscle deformation. In

the existing facial expression approaches based on mass-spring model, the analysis

about facial deformations mainly focuses on the displacement of facial feature or

potential energy. In this section, the mass-spring model is firstly discussed for

nonlinear stress-strain relationship with variable elastic stiffness.

In order to simulate nonlinear deformation of the muscle spring, we need a nonlinear

function to describe the stress-strain relationship. The works as demonstrated in

[86] provide us the mechanical law of soft-tissue points. Using this method, we

calculate the elastic stiffness and elastic force for each functional muscle. Suppose

an arbitrary driven point xi is connected to its corresponding fixed points xj by a
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structure spring with rest length dij. Let ∆xij = xi − xj, we introduce a function

K(xi, xj) to modulate a constant elastic stiffness k0:

K(xi, xj) = (1 + (|∆xij| − dij)
2)αk0 (4.3)

and the elastic force generated by an spring is:

f(xi, xj) = K(xi, xj)
(|∆xij| − dij)

|∆xij|
∆xij (4.4)

In equation (4.3), α is the nonlinearity factor controlling the modulation. In the

later sections, we use fij to denote f(xi, xj).

By assigning different values to α, function (4.3) can be chosen to model linear or

nonlinear stress-strain relationship. Fig. 4.1 illustrates the stress-strain relation-

ship for different values of α. According to [9], we took the value of α as 1.0 and

k0 as 1.0.
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Figure 4.7: The stress-strain relationship of structure spring with different values

of α, k0 = 1.0
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4.5 Modeling Facial Muscles based on NLMS

We use a muscle mapping approach for facial muscle construction. By using

OpenCV, we first save a bitmap from the color buffer. It records the RGB values

of the facial surface. We then specify a set of key points on this bitmap to identify

the ideal locations of the facial muscles that should be designed on it (see Fig. 4.8).

Based on the Facial Action Coding System (FACS, we select 22 major functional

facial muscles to simulate facial expressions. For a linear or sheet muscle, the po-

sitions of the fixed and driven points of its central muscle fiber completely define

the location of the muscle. We mark the attachment and insertion points of the

muscles by using two different colors. In Fig. 4.8, red key points are muscle driven

points, the blue ones are muscle fixed points. For each muscle, its fixed and driven

points are connected by a spring. The driven points are controlled by the related

mass-springs fixed in fixed points. The positions of the key points are marked once

on the reflectance image and the resulting image is named facial muscle image.

Figure 4.8: The facial mass-spring model
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Once the marks are all made, the texture coordinates of each facial mesh vertex

in the facial muscle image are calculated based on an orthographic projection and

the facial muscle image is mapped automatically to the 2D face. Fig. 4.9 shows

the examples of facial expression images and their corresponding muscles’ mov-

ing direction in the face regions. The deformation maps exhibit different patterns

corresponding to different facial expressions. In order to give an explicit and quan-

titative description, we use a nonlinear mass-spring model to describe the physical

property of the deformation map.

Figure 4.9: Facial expression images and the corresponding deformation maps in

face regions.
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4.6 Experiments and Discussions

In this section, we will study the facial muscles’ tension for different facial expres-

sions, and then extract the novel visual features based on such characteristics for

facial expression classification. It is possible that we can encode both the mag-

nitude and the direction of motion by using elastic force of facial muscles. The

psychological experiments as shown in [87] have suggested that facial expressions

are more accurately recognized from a temporal behaviors from a single static

image. The temporal information often reveals the underlying emotional states.

Therefore, our work concentrates on modeling the temporal behaviors of facial

expressions from their dynamic appearances in an image sequence.

4.6.1 Classification Results Comparing with Linear Model

We employed 20 men and 20 women to make the facial expressions in our experi-

ments. Each person was asked to make only one facial expression every time, and

totally each person has to make all the six facial expressions. In each experiment,

we measured the facial muscle mass-spring force of every person’s expression, so

totally we obtained 40 samples of such a mass-spring force for each facial expres-

sion. Thus in the Figure 4.9 we show the mean values of these samples for each

facial expression under the linear and non-linear mass-spring models.

As shown in Fig 4.10, we compared linear and non-linear mass-spring face model

for each muscle’s tension of different facial expressions. The mean value calculated

by linear model rang from −30 to 30 and there are no distinct distribution for

different emotion. In contrast, the mean value calculated by our technique rang

from −800 to 1000. It is worth saying that the nonlinear module leads to more wide

distribution, which is directly related to efficiently differentiate the value of muscle’s

tension at different expression [9]. For instance, when the face express happy,
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Figure 4.10: The performance of the facial muscle tracking method using

nonlinear model and linear model respectively
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Figure 4.11: Three videos of tracking a set of the deformations in face sequence.

sadness, surprise, disgust, fear and anger, the mean value for muscle ’forehead1’

could reach −50, 400, 260, −300, 700 and −800 respectively.

4.6.2 Examples based on integration

Fig.4.11 shows three processes for happy, surprise and sadness. In [69], tempo-

ral changes in neuromuscular facial activity last of a second to several minutes.

Therefore we empirically determined a 10-second of temporal duration based on a

video frame rate of 24 frames. All the sequences start from the neutral state to

the emotional state. In terms of the image sequences of Fig. 4.11, Fig. 4.12 shows

the temporal curves of corresponding elastic forces. As shown in Fig. 4.12, there

are three distinct phrases: starting, apex and ending. At the neutral state, all the

facial features locate at their equilibrium positions and the elastic forces are equal

to zero. When one facial expression reaches its apex state, the magnitude of elastic

force reaches the largest value. When the expression is approaching to the ending

state, the magnitude of elastic force is decreasing accordingly.
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(c) Surprise

Figure 4.12: Results of tracking associated with three video sequences show in

Fig. 4.11
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We observed that the procedures of these three states are different for three facial

expressions. Different facial expressions have their unique temporal patterns at

these three states. Therefore we can make use of such magnitudes of muscle mass-

spring forces to classify the facial expressions.

4.6.3 Examples based on facial action units

The recovered muscle motions are represented in term of magnitudes of some pre-

defined motion of various facial features. Each feature motion corresponds to a

simple deformation on the face. In order to objectively capture the richness and

complexity of facial motions, behavioral scientists have found it necessary to de-

velop objective coding standards. The facial action coding system (FACS) is the

most commonly used and compressive coding system in the behavioral sciences.

The system was again trained on Cohn and Kanade’s DFAT-504 data set which

contains FACS scores by two certified FACS coders in addition to the basic emo-

tion labels. The FACS was developed by Ekman and Friesen [69] for describing

facial expressions by action units (AUs). Of 44 FACS AUs that they defined, 30

AUs are anatomically related to the contractions of specific facial muscles: 12 are

for upper face, and 18 are for lower face.

We refer to these motions vectors as AUs. Each AUs is indeed the combination

of related muscles’ deformations. We group muscles of AUs as primary muscles

and auxiliary muscles. By the primary muscle, those muscle or muscle combi-

nations can be clearly classified as or are strongly pertinent to one AU without

ambiguities. In contrast, the auxiliary muscle or muscle combinations can be only

additively combined with primary muscle to provide supplementary support to the

AUs. Consequently, an AU contain primary muscle and auxiliary muscle. For

example, six forehead muscles can be directly associated with AU1(Inner Brow
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Raiser), AU2 (Outer Brow Raiser) and AU4 (Brow Corrugator), while it is am-

biguous to associate eye muscle with these AUs. When forehead muscles and eye

muscle deform simultaneously, the classification of this muscle combination to one

of above AUs(AU1, AU2 and AU4) then becomes certain. Hence, forehead muscles

are a primary muscle combination of AU1, AU2 and AU4, while eye muscle is an

auxiliary muscle of AU1, AU2 and AU4. Table 4.2 and Table 4.3 give a summary

of primary muscle or muscle combination and auxiliary muscle or muscle combi-

nation associated with some AUs. The AUs are used as the basic features for the

classification scheme described in the next sections.

Table 4.2: The Association of Upper Face AUs to Muscle Deformation

AU code AU Primary Cues Auxiliary Visual Cues

1 Inner brow raise forehead 1, 2, 3 eye

2 Outer brow raise forehead 1, 2, 3 eye

4 Brow corrugator eye forehead 1, 2, 3

5 Upper lid raise eye forehead 1, 2, 3

6 Cheek raise cheek nose, eye

7 Lid Tightener eye forehead 1, 2, 3, nose

Fig. 4.13 shows six animated processes for AU1, AU2, AU7, AU19, AU15 and

AU27. The primary muscle is shown by solid curve and the auxiliary muscle is

shown by broken curve. By combining primary muscles from different AUs, we have

some observations: 1) The value of muscle’s deformation across different AUs, e.g.,

muscle ’Lip1’, when its deformation value reaching 270, generates a primary cues

combination for AU20 shown as Fig.4.13 (e); when its deformation value reaching

860, generates a primary cues combination for AU27 as illustrated in Fig.4.11 (f)

and 2) primary muscles’ combinations belong to different AUs, e.g., when ’Lip 2’

and ’lip 3’ are positive, ’Lip 1’ and ’Mouth 1’ are negative, the four primary muscles
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Table 4.3: The Association of Lower Face AUs to Muscle Deformation

AU code AU Primary Cues Auxiliary Visual Cues

9 Nose wrinkle nose cheek, eye, forehead 1, 2

10 Upper lip raiser lip 1, 3, 4, mouth 1, 2 cheek, jaw, lip 2

12 Lip corner puller lip 1, 2, 3, mouth 1, 2 cheek, jaw, lip 4

15 Lip corner depressor mouth 1, 2, jaw, lip 1, 3 cheek, lip 2, 4

17 Chin raise mouth 2, jaw, lip 1, 3 mouth1, cheek, lip 2, 4

20 Lip stretcher lip 2, 4 mouth 1, 2 cheek, jaw, lip 2, 4

23 Lip tighter lip 2, 4 mouth 1, 2 cheek, jaw, lip 2, 4

25 Lips part lip 1, 3, 2, 4 mouth 1, 2 cheek, jaw

27 Mouth stretch lip 1, 3, 2, 4 mouth 1, 2 cheek, jaw

generate a primary cue combination for AU1 as shown in Fig. 4.13 (d); when all

four lip muscles are positive, ’lip 2’ is less than ’lip 3, 4’ and ’lip 3, 4’ is less than

’lip 1’, the four primary muscles generates a primary cues combination for AU27.

These relations and uncertainties are systematically represented by a probabilistic

framework presented in next chapter.

4.7 Summary

This chapter presents a facial expression representation system based on mass-

spring system. The facial muscle dynamics model is physically-based and con-

structed from anatomical perspective, which is modeled by a nonlinear spring

frame which can simulate the elastic dynamics of real facial skin. Based on the

Lagrangian dynamics, facial tissue is deformed as the muscle force applying on it.

Experimental results show the real-time face deformation process as well as realis-

tic expression representation. Using our facial model, we can generate flexible and
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Figure 4.13: Facial muscle tracking curves showing detection AUs
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realistic expressions.The biggest advantage of our expression modeling system is

that it can analyze the relationship between the facial skin deformation and the

in, side state, which is determined by facial muscle parameters. This enables us

to predict deformation of the facial shape by detailed quantitative analysis of the

relationship between facial muscles and facial skin deformation.



Chapter 5
Facial Expression Classification

Most research work on automated expression analysis perform an emotional classi-

fication. Once the face has been perceived and facial features have been extracted,

the next step of an automated expression analysis system is to recognize the facial

expression conveyed by the face. A set of categories of facial expression is defined

by Ekman referred as the six basic emotions [40].

To classify the facial expressions automatically is still difficult due to some reasons.

Firstly, there is no uniquely defined description either in terms of facial actions or

in terms of some other universally defined facial codes. Secondly, it should be

feasible to classify the multiple facial expressions. There are two common methods

describing all visually distinguishable facial movements [40]. The first one is based

on the integrated facial muscle motion, every available facial motion vectors, which

are extracted from facial expressive model, are inputed into one classifier, then the

output are the six basic emotions. The other one is based on AUs. This method

needs to build two classifiers. Firstly, AUs are decided according to the combination

of related muscles’ deformations. Secondly, using the results from first classifier,

the basic emotion is decided.

The neural network of multi-layer perceptrons (MLPs) is employed for static facial

64
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expression classification.

5.1 Classifier - Multi-layer perceptrons

MLPs networks are general-purpose, flexible, nonlinear models consisting of a num-

ber of units at multiple layers. The complexity of the MLPs network can be changed

by varying the number of layers and the number of units in each layer [88]. Given

the hidden units and data, it has been shown that MLPs can approximate virtu-

ally any function to any desired accuracy [89]. MLPs are powerful tools when we

has few prior knowledge about the relationship between input vectors and their

corresponding outputs . Therefore, we use MLPs neural networ to classify different

facial expression.

Figure 5.1: Architecture of multi-layer perceptron.

The neural network of multi-layer perceptrons consists of a network of processing
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elements or nodes arranged in layers. Typically it requires three or more layers of

processing nodes: an input layer which accepts the input variables (e.g. satellite

channel values, GIS data etc.) used in the classification procedure, one or more

hidden layers, and an output layer with one node per class (Fig. 5.1). The principle

of the network is that when data from an input pattern is presented at the input

layer the network nodes perform calculations in the successive layers until an output

value is computed at each of the output nodes. This output signal should indicate

which is the appropriate class for the input data i.e. we expect to have a high

output value on the correct class node and a low output value on all the rest.

Each processing node in one layer is usually connected to the another node in

the higher and lower layer. The connections carry weights which encapsulate the

behavior of the network and are adjusted during training. The operation of the

network consists of two stages. The “forward pass” and the “backward pass” or

“back-propagation”. In the “forward pass” an input pattern vector is presented to

the network and the output of the input layer nodes is precisely the components

of the input pattern. For successive layers the input to each node is then the sum

of the scalar products of the incoming vector components with their respective

weights. That is the input to a node j is given by

inputj =
∑

i

ωjiouti (5.1)

where ωji is the weight connecting node i to node j and outi is the output from

node i.

The output of a node j is

outputj = f(inputj) (5.2)

which is then sent to all nodes in the following layer. This continues through all
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the layers of the network until the output layer is reached and the output vector is

computed. The nodeat input layer do not perform any of the above calculations.

They simply take the corresponding value from the input pattern vector.

The function f denotes the activation function of each node. A sigmoid activation

function is frequently used,

f(x) =
1

1 + exp(−x)
(5.3)

where x = inputj. This ensures that the node acts like a thresholding device.

The multi-layer feed-forward neural network is trained by supervised learning using

the iterative back-propagation algorithm. In the learning phase a set of input

patterns, called as the training set, are presented as feature vectors into the input

layer , together with their corresponding desired output pattern which usually

represents the classification results for the input patterns. Beginning with small

random weights, for each input pattern the network is required to adjust the weights

attached to the connections so that the difference between the network’s output and

the desired output for that input pattern is decreased. Based on this difference the

error terms or δ terms for each node in the output layer are computed. The weights

between the output layer and the layer below (hidden layer)are then adjusted by

the generalised delta rule[90]

ωkj(t + 1) = ωkj(t) + η(δkoutk) (5.4)

where ωkj(t + 1) and ωkj(t) are the weights connecting nodes k and j at iteration

(t + 1) and t respectively, η is a learning rate parameter. Then the δ terms for

the hidden layer nodes are calculated and the weights connecting the hidden layer

with the layer below (another hidden layer or the input layer) are updated. This

procedure is repeated until the last layer of weights has been adjusted.
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The δ term in Eq. (5.4) above is the rate of change of error with respect to the

input to node k, and is given by

δk = (dk − outk)f
′(inputk) (5.5)

for nodes in the output layer, and

δj = f ′(inputk)
∑

k

δkωki (5.6)

for nodes in the hidden layers, where dk is the desired output for a node k.

The back-propagation algorithm is a gradient descent optimization procedure which

minimizes the mean square error between the network’s output and the desired

output for all input patterns P

E =
1

2P

∑

p

∑

k

(dk − outk)
2 (5.7)

The training set is used to train the network iteratively until the set of weights is

converged or the values of error function are reduced to an acceptable level. Fig.

5.2 shows the training procedure of the multi-layer feed-forward neural network. To

measure the generalization ability of the multi-layer feed-forward neural network

it is common to have a set of data to train the network and a separate set to

assess the performance of the network during or after the training is complete.

Once the neural network has been trained, the trained weights will be used in

the classification phase. During classification, image data are fed into the network

which performs the classification by assigning a class label to a pixel or segment in

terms of the probability values computed at the output layer. Typically the output

node is assigned by a class label which has the highest probability value.
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Figure 5.2: Training procedure for multi-layer perceptron network.
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5.2 Integration-based approaches

In the system, facial expression recognition is formulated as a classification prob-

lem. The input for the classification module is a 22 dimension vector, and each

element denotes the magnitude which has the largest absolute value during a facial

expression. To classify the input vectors, we employ MLPs as the classifier, since

it is able to construct arbitrary decision boundaries.

Generally speaking, the number of inputs to the network is determined by the

number of functional muscles. Similarly, the number of outputs is equal to the

number of emotion classes. The number of hidden nodes is a free parameter and

its value depends on the complexity of the classification problem. We build the

MLPs model as shown in Fig. 5.3. Fig. 5.4 shows the temporal dependencies by

linking the node of in Fig. 5.3.

Figure 5.3: The MLPs model of six basic emotional expressions. Note: HAP −

Happiness. SAD − Sadness. ANG − Anger. SUP − Surprise. DIS − Disgust.

FEA − Fear. Other notations in the figure follow the same convention above.

The top level of layer in the model contains facial muscles information variables.

All the nodes in this layer are observable.

The hidden layer is analogous to linguistic description of the relations between
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hidden nodes and facial expressions. Each expression, which is actually an attribute

node in the classification layer.

The classification layer consists of a class (hypothesis) variable including six states:

happy, sadness, disgust, surprise, anger, and fear, respectively, and a set of at-

tribute variables denoted as HAP, ANG, SAD, DIS, SUP, and FEA corresponding

to the six facial expressions. The goal of this level of abstraction is to find the

probability of class state ci, which represents the chance of class state ci given

facial observations. When this probability is maximal, it has the largest chance

that the observed facial expression belongs to the state of class variable ci.

�
�

�
�

�
�

�
���

Figure 5.4: The temporal links of MLPs for modeling facial expression (two time

slices are shown). Node notations are given in Fig. 5.3.

When used as pattern classifiers, MLPs networks represent the probabilities of the

training data. We adopt the logistic activation function for each neuron.

yj =
1

1 + exp(−υj)
(5.8)

where υj is the induced local field (weighted sum of all synaptic inputs plus the

bias) of neuron j, yj is the output of the neuron j.
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During recognition, the feature vectors derived from the feature generation pro-

cedure form a vector sequence F = { ~ffr1, ~ffl1, ~ffr2, ~ffl2, ~ffr3, ~ffl3, ~fer, ~fel, ~fnr, ~fnl,

~fcr1, ~fcl1, ~fcr2, ~fcl2, ~fmr1, ~fml1, ~fmr2, ~fml2, ~fjr, ~fjl} The network produces six outputs

yout,k, (k = Happy, Sadness, Anger, Sunrise, Disgust, Fear) The outputs are then

normalized by a softmax function as follows

zk =
eỹout,k

∑6
r=1 eỹout,r

, k = Happy, Sadness, Anger, Suprise,Disgust, Fear (5.9)

where tildeyout,k =
yout,k

P (Ck)
represents the scaled outputs and P (Ck) is the prior

probability of class Ck. For MLPs, no output normalization is necessary because

the outputs are always bounded between 0.0 and 1.0. Therefore, for MLPs, we

used the scaled output for classification

zk =
yout,k

p(Ck)
, k = Happy, Sadness, Anger, Suprise,Disgust, Fear (5.10)

For networks with six outputs, happy, fear, sadness, surprise, disgust and anger, a

typical class labeling rule is

Ek = arg max
k

{zk} (5.11)

where Ek is the scaled output of the MLPs, Ek ∈ [0, 1] is a decision threshold.

Then, the decision criterion can be written as:

Ifzl(~x) > ζ, ~x ∈ the emotional class that correspond to l (5.12)

A decision is made for each input vector, and the error rate is the proportion of

incorrect labeling decisions to the total number of decisions.

In this study, we investigated MLPs with two hidden layers where the numbers of

nodes in the hidden layers. Fig. 5.4 shows the temporal dependencies by linking
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the node of in Fig. 5.3 .

5.3 Action units-based approaches

We build the MLPs model as shown in Fig. 5.5, which consists of two classifiers.

In the context of expression classification, the number of inputs and outputs are

same as previous. The number of hidden nodes is a free parameter and its value

depends on the complexity of the classification problem. Table 5.1 contains the

Facial Action Units (AUs) associated with facial expressions.

Table 5.1: The Association of Six Expressions to AUs

Emotional Category AUs

Happy AU6, AU12

Sadness AU1, AU15, AU17, AU4,

AU7

Disgust AU9, AU10, AU17, AU25

Surprise AU5, AU27, AU1, AU2

Anger AU4, AU7, AU9, AU17,

AU23

Fear AU1, AU5, AU7, AU4,

AU20

The top level of classifier in the model also contains facial muscles information

and its output is the results of action units. The visual observations are the facial

feature measurements as summarized in Table 4.2 and Table 4.3.

Then in the second classifier, the classification results of action units from the

first classifier are the inputs, and the outputs are the facial expression results. The

relation between AUs and facial expressions is based on Table 5.1. Each expression
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Figure 5.5: The concept links of the facial expression for interpreting an input

face image.
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category, which is actually an attribute node in the classification layer.

The classification layer consists of a class (hypothesis) variable including six states:

happy, sadness, disgust, surprise, anger, and fear, respectively, and a set of at-

tribute variables denoted as HAP, ANG, SAD, DIS, SUP, and FEA corresponding

to the six facial expressions. The goal of this level of abstraction is to find the

probability of class state ci, which represents the chance of class state given facial

observations. When this probability is maximal, it has the largest chance that the

observed facial expression belongs to the state of class variable.

5.4 Experiments and Discussions

In the system, the resolution of the acquired images is 320 × 240 pixel. The

system is developed by using Microsoft Visual Studio . NET 2005. OpenCV [91]

is employed to implement the module of face detection and key point extraction.

To evaluate the system for facial expression recognition, we generate a total of

600 videos for six facial expressions (100 videos for each facial expression), namely

happy, sad, fear, disgust, anger and surprise. In this work, one video corresponds

to one facial expression and consists of an image sequence. All the facial videos

are automatically captured from one person, since we do not touch the problem of

face recognition. Then, all the data are divided into two groups randomly, 480 for

training and 120 for testing. Thus we have 80 training data and 20 testing data

for each facial expression class.
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5.4.1 Facial expressions classification based on integration-

based approaches

We create a short image sequence involving multiple expressions as shown in Fig.

5.6 (a). Each expression sequence began from a neutral face.For each sequence,

we observe 100 frames. It can be seen visually that the temporal evolution of the

expressions varies over time, exhibiting the spontaneous behavior. Fig. 5.6 (b)

provides the analysis result by our facial expression model. The result naturally

profiles the momentary emotional intensity and the dynamic behavior of facial

expression that the magnitude of facial expression gradually evolves over time, as

shown in Fig. 5.6 (a). Such a dynamic aspect of facial expression modeling can

more realistically reflect the evolution of a spontaneous expression starting from a

neutral state to the apex and then gradually releasing. Since there are interpersonal

variations with respect to the amplitudes of facial actions, it is often difficult to

determine the absolute emotional intensity of a given subject through machine

extraction. In this approach, the belief of the current hypothesis of emotional

expression is inferred relying on the combined information of current visual cues

through causal dependencies in the current time slice, as well as the preceding

evidences through temporal dependencies. Hence, as we can observe from the

results, the relative change of the emotional magnitude can be well modeled at

each stage of the emotional development; this is exactly what we want to achieve.

The accuracy of our facial expression model is also evaluated, as shown in Fig. 5.6.

Here, we take this image set as an sequence showing that a subject poses different

expressions starting from neutral states. Notice that, for this real-time sequence,

we manually identify the pupil positions and our facial feature detection algorithm

then detects and tracks the remaining features.
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(b)

Figure 5.6: Real-time emotion code traces from a test video sequence: (a) Frames

form the sequence; (b) Continuous outputs of each of the six expression detectors
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Table 5.2: Emotion Classification Results Using Nonlinear Mode

Emotion Happiness Sadness Fear Disgust Anger Surprise

Happiness 0.842 0 0.126 0.032 0 0

Sadness 0.009 0.733 0.153 0.070 0.035 0

Fear 0.054 0.063 0.706 0.023 0 0.154

Disgust 0 0.173 0.076 0.616 0.135 0

Anger 0 0 0.005 0.133 0.862 0

Surprise 0 0 0.088 0 0 0.912

Table 5.3: Emotion Classification Results Using Linear Model

Emotion Happiness Sadness Fear Disgust Anger Surprise

Happiness 0.632 0.083 0.219 0.052 0.004 0.010

Sadness 0.038 0.570 0.186 0.113 0.093 0

Fear 0.051 0.141 0.498 0.020 0.013 0.277

Disgust 0 0.014 0.132 0.561 0.287 0.006

Anger 0 0.011 0.036 0.251 0.702 0

Surprise 0.023 0.039 0.122 0.021 0.004 0.791
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To evaluate the accuracy of facial expression recognition, all the results are tabu-

lated in Table 5.2. We set α = 1 for the nonlinear model and α = 0 for the linear

model. As shown in Table 5.2 and 5.3, the system based on nonlinear mass-spring

model achieved better performance for all the facial expressions than the linear

model. In particular, nonlinear model achieved the significant improvements for

happy, sad, fear and surprise compared with linear model. This indicates two folds:

1) Nonlinear mass-spring model is more reasonable for describing the movements

of facial muscles compared with the linear model. 2) Our proposed novel features

based on elastic forces derived from nonlinear spring model are effective for facial

expression recognition.

5.4.2 Facial expressions classification based on action units-

based approaches

Using the MPLs classifier introduced in 5.3 , we classify the action unites. Table

5.1 demonstrates the classification algorithms on the 2D embedding of the original

data. The original data set are of 320×240 dimension, and the goal is to classify the

action unites. To visualize the problem we restrict ourselves to the two features(2D

embedding) that contain the most information about the class. The distribution

of the data is illustrated in Table. 5.4 and 5.5.

Using action units-based approach, we also evaluate the accuracy of facial expres-

sion recognition, as shown in table 5.6 and 5.7. We set α = 1 for the nonlinear

model and α = 0 for the linear model. As shown in table 5.6 and 5.7, the system

based on nonlinear mass-spring model achieved better performance for all the facial

expressions than the linear model. Compared with table 5.2 and 5.3, action units-

abased approach combined with non-linear model achieve the best performance.
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Table 5.4: Upper Face AUs Classification Results Using Nonlinear Model

AUs AU1 AU2 AU4 AU5 AU6 AU7

AU1 0.883 0.053 0 0.064 0 0

AU2 0.112 0.781 0 0 0 0.107

AU4 0.101 0.112 0.787 0 0 0

AU5 0.085 0 0 0.786 0.065 0.064

AU6 0 0.087 0 0 0.825 0.088

AU7 0 0 0 0.115 0.096 0.789

Table 5.5: Upper Face AUs Classification Results Using Nonlinear Model

AUs AU9 AU10 AU12 AU15 AU17 AU20 AU23 AU25 AU27

AU9 1 0 0 0 0 0 0 0 0

AU10 0 0.880 0.087 0.033 0 0 0 0 0

AU12 0 0.095 0.776 0.129 0 0 0 0 0.005

AU15 0 0.056 0.070 0.772 0 0 0 0 0.102

AU17 0 0 0.002 0.008 0.753 0.042 0.073 0.031 0.091

AU20 0 0 0.082 0 0 0.747 0.060 0.093 0.018

AU23 0 0 0 0 0.081 0.072 0.756 0 0.101

AU25 0 0.002 0.003 0.048 0.054 0.028 0.015 0.833 0.017

AU27 0 0.015 0.027 0.002 0.005 0.005 0.038 0.063 0.845
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Table 5.6: Emotion Classification Results Using Nonlinear Mode

Emotion Happiness Sadness Fear Disgust Anger Surprise

Happiness 0.904 0 0.091 0.005 0 0

Sadness 0 0.821 0.127 0.033 0.019 0

Fear 0.010 0.036 0.860 0.007 0 0.087

Disgust 0 0.131 0.022 0.749 0.098 0

Anger 0 0 0.005 0.094 0.901 0

Surprise 0 0 0.065 0 0 0.935

Table 5.7: Emotion Classification Results Using Linear Model

Emotion Happiness Sadness Fear Disgust Anger Surprise

Happiness 0.715 0.062 0.183 0.034 0 0.006

Sadness 0.029 0.663 0.168 0.099 0.041 0

Fear 0.049 0.135 0.534 0.017 0.009 0.256

Disgust 0 0.009 0.106 0.631 0.251 0.003

Anger 0 0.008 0.025 0.216 0.751 0

Surprise 0.019 0.025 0.116 0.018 0 0.822
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5.5 Summary

In this chapter, we present how to classify the facial expressions. We formulate the

dynamic visual information fusion based on the Multi-layer Perceptrons(MLPs) for

real-time facial expression recognition in video sequences and propose an efficient

recognition scheme based on the detection of keyframes in videos.Both integration-

based approach and action units-based approach are discussed.



Chapter 6
Facial Expression Imitation System in

Human Robot Interaction

Facial expression recognition and imitation is an effective way for a social robot to

understand human emotions and communicate with human beings, which plays a

major role in human interaction and nonverbal communication. In order to build

the effective communications between human and robots, an easy approach is to

build up an expressive robotic face which can imitate human emotions.

6.1 Interactive Robot Expression Imitation Sys-

tem

As shown in Fig. 6.1, we build an interactive robot expression animation system

which has the advantage of being especially designed for human robot interaction

The experimental setup is depicted in Fig. 6.2. The input to the system is a video

stream capturing the user’s face.
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Figure 6.1: The robot head.

Figure 6.2: The experimental setup.
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6.1.1 Expressive robotic face

The robot head consists of 16 Degrees of Freedom (DOF) to imitate the facial

expressions. The development of the expressive robotic face is further sub-divided

into:

• The mechanical design of the robotic face, including the various components

of the robotic face, and the joint and motor placement which can be used to

produce different facial expressions.

• The software control of the servo motors. The motors are controlled through

the New Micros ServoPod, which provides the PWM signals to the 16 servo

motors. Therefore we can use IsoMax, which is the New Micros operating

system language, to implement the action units [92] or imitate the facial

expressions by controlling those servo motors. For example, Mouth stretch

can be imitated by controlling two servo motors of upper lip and lower lip.

A methodology for facial motion clone is developed, that is to copy a whole set of

morph targets from a 2D real face image to an expressive robotic face. The inputs

include two face images, one is in neutral position and the other is in a position

containing some motion that to be animated, e.g. in a happy expression. The target

face model exists at the neutral state. The goal is to obtain the target face model

with the expression copied from the source face. Based on the feature tracking

method we described before, the tester’s facial features vector at the neutral state

is subtracted from that at the expression. Therefore, the displacement and velocity

information are extracted. They are multiplied by the a weight vector to reach the

desired animation effects, e.g. exaggerated expression. The weight vector can be

predefined according to the desired animation effects. Subsequently, the weighted

vector is added on the face plane of the robot head in its neutral state. The robot

head is able to show its emotions through an array of features situated in the frontal
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part of the head. These are depicted in Fig. 6.3, and are shown in correspondence

with the six universal expressions.

Figure 6.3: The robotic face is able to show its emotions through facial features

situated in the frontal part of the head. The figure illustrates the features’

configuration for each universal expression.

6.1.2 Generation of artificial facial expression

The facial expression generation is based on Ekman’s six basic emotions(happiness,

surprise, sadness, disgust, fear, anger) [40, 69]. In the system, the robot can imitate

six human facial expressions plus the neutral state of no expressions.

In the system, the robot head are triggered to imitate human facial expressions by

the emotion generator engine, and can generate vivid imitations according to the

tester’s facial expressions. For instance, our robot can imitate the happiness once

it detects a facial expression of happiness. In this application, the robot is just

used to imitate the human facial expression. Generally speaking, the response of

the robot occurs slightly later than the apex of the human expression. In order to

display simultaneously the correspondences between human and robot expressions
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in the video, we put them side by side. In this case, we analyzed the contents of

the video and commands with the facial expression code sent to the robot. Fig.

6.4 illustrates nine detected keyframes from the frame video. These are shown in

correspondence with the robots response. The middle column shows the recognized

expression. The right column shows a snapshot of the robot head when it interacts

with the detected and recognized expression.

6.2 Summary

In this chapter, we describe the mechanism of our robot on imitating the facial

expressions. The expressive robotic face includes a total of 16 Degrees of Freedom

(DOF), whereby various emotions can be expressed in a way that an untrained

human can understand and appreciate. From its concept design, the robotic face’s

affective states are triggered by the emotion generator engine. It’s facial features

can give a vivid animation according to the tester’s expression. This occurs as a

response to its internal state representation, captured through multimodal inter-

action (vision, audio, and touch). Experimental results show that our robot can

imitate the human facial expressions effectively.
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Figure 6.4: Left column: Some detected keyframes associated with the video.

Middle column: The recognized expression. Right column: The corresponding

robot’s response.



Chapter 7
Conclusion and Future Work

7.1 Conclusions

This thesis investigates the problem of how to recognize and imitate the six kinds of

human facial expressions. Recognizing the facial expressions has been a challeng-

ing problem due to the high degree of freedom of facial motions. In our work, two

methods for integration-based approach and action units-based approach recogni-

tion are presented. Our methods can successfully recognize the static, track and

identify dynamic on-line facial expressions of real-time video from one web cam-

era. The face area is automatically detected and located by making using of face

detection and skin hair color information. Our system utilizes a subset of Feature

Points (FPs) for describing the facial expressions. 21 facial features are extracted

from the captured video and tracked by optical flow algorithm.

In the system, nonlinear mass-spring model was employed to simulate twenty two

facial muscles’ deformations during facial expressions, and then the elastic forces

of the facial muscles’ deformation were taken as the novel features to be grouped
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into a vector. Then such vectors were input into the module of facial expression

recognition. The experimental results showed that our proposed nonlinear facial

mass-spring model coupled with the MLPs classifier is effective to recognize the

facial expressions compared with the linear mass-spring model.

We also incorporate facial expression motion energy to describe the facial muscle’s

tension during the expressions for person-independent tracking. It is composed by

the expression potential energy and kinetic energy. The potential energy is used

as the description of the facial muscle’s tension during the expression. Kinetic

energy is the energy which a feature point possesses as a result of facial motion.

For each facial expression pattern, the energy pattern is unique and it is utilized

for the further classification. Combined with the rule based method, the recogni-

tion accuracy can be improved for real-time person-independent facial expression

recognition.

At the back end of the system, a social robot is designed to imitate the facial

expressions. Experimental results of facial expression generation demonstrated

that our robot can imitate six types of facial expressions effectively.

7.2 Future Work

There are a number of directions which could be done for future work.

1. Until now, there is no publication to explain how to estimate the model

parameter α and k0, investigate is still a problem in our future work. In

our system, we currently can not could not evaluate the expression quality

of the proposed robot head, so one possible solution is to investigate user’s

responses to the imitated facial expressions of the proposed robot.

2. In practice, six facial expressions are not enough to reflect human emotions.
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For example, hot anger and cold are two different anger expressions. Thus

we will define more facial expressions and improve our proposed system to

accurately recognize and imitate more facial expressions in the future.

3. One direction to advance our current work is to combine the human speech

and make both virtual and real robotic talking head for human emotion

understanding and intelligent human computer interface, and explore virtual

human companion for learning and information seeking.
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