4,877 research outputs found

    MobiFace: A Novel Dataset for Mobile Face Tracking in the Wild

    Full text link
    Face tracking serves as the crucial initial step in mobile applications trying to analyse target faces over time in mobile settings. However, this problem has received little attention, mainly due to the scarcity of dedicated face tracking benchmarks. In this work, we introduce MobiFace, the first dataset for single face tracking in mobile situations. It consists of 80 unedited live-streaming mobile videos captured by 70 different smartphone users in fully unconstrained environments. Over 95K95K bounding boxes are manually labelled. The videos are carefully selected to cover typical smartphone usage. The videos are also annotated with 14 attributes, including 6 newly proposed attributes and 8 commonly seen in object tracking. 36 state-of-the-art trackers, including facial landmark trackers, generic object trackers and trackers that we have fine-tuned or improved, are evaluated. The results suggest that mobile face tracking cannot be solved through existing approaches. In addition, we show that fine-tuning on the MobiFace training data significantly boosts the performance of deep learning-based trackers, suggesting that MobiFace captures the unique characteristics of mobile face tracking. Our goal is to offer the community a diverse dataset to enable the design and evaluation of mobile face trackers. The dataset, annotations and the evaluation server will be on \url{https://mobiface.github.io/}.Comment: To appear on The 14th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2019

    Robust multi-clue face tracking system

    Get PDF
    In this paper we present a multi-clue face tracking system, based on the combination of a face detector and two independent trackers. The detector, a variant of the Viola-Jones algorithm, is set to generate very low false positive error rate. It initiates the tracking system and updates its state. The trackers, based on 3DRS and optical flow respectively, have been chosen to complement each other in different conditions. The main focus of this work is the integration of the two trackers and the design of a closed loop detector-tracker system, aiming at achieving superior robustness at real-time operation on a PC platform. Tests were carried out to assess the actual performance of the system. With an average of about 95% correct face location rate and no significant false positives, the proposed approach appears to be particularly robust to complex backgrounds, ambient light variation, face orientation and scale changes, partial occlusions, different\ud facial expressions and presence of other unwanted faces

    Efficient illumination independent appearance-based face tracking

    Get PDF
    One of the major challenges that visual tracking algorithms face nowadays is being able to cope with changes in the appearance of the target during tracking. Linear subspace models have been extensively studied and are possibly the most popular way of modelling target appearance. We introduce a linear subspace representation in which the appearance of a face is represented by the addition of two approxi- mately independent linear subspaces modelling facial expressions and illumination respectively. This model is more compact than previous bilinear or multilinear ap- proaches. The independence assumption notably simplifies system training. We only require two image sequences. One facial expression is subject to all possible illumina- tions in one sequence and the face adopts all facial expressions under one particular illumination in the other. This simple model enables us to train the system with no manual intervention. We also revisit the problem of efficiently fitting a linear subspace-based model to a target image and introduce an additive procedure for solving this problem. We prove that Matthews and Baker’s Inverse Compositional Approach makes a smoothness assumption on the subspace basis that is equiva- lent to Hager and Belhumeur’s, which worsens convergence. Our approach differs from Hager and Belhumeur’s additive and Matthews and Baker’s compositional ap- proaches in that we make no smoothness assumptions on the subspace basis. In the experiments conducted we show that the model introduced accurately represents the appearance variations caused by illumination changes and facial expressions. We also verify experimentally that our fitting procedure is more accurate and has better convergence rate than the other related approaches, albeit at the expense of a slight increase in computational cost. Our approach can be used for tracking a human face at standard video frame rates on an average personal computer

    A Comprehensive Performance Evaluation of Deformable Face Tracking "In-the-Wild"

    Full text link
    Recently, technologies such as face detection, facial landmark localisation and face recognition and verification have matured enough to provide effective and efficient solutions for imagery captured under arbitrary conditions (referred to as "in-the-wild"). This is partially attributed to the fact that comprehensive "in-the-wild" benchmarks have been developed for face detection, landmark localisation and recognition/verification. A very important technology that has not been thoroughly evaluated yet is deformable face tracking "in-the-wild". Until now, the performance has mainly been assessed qualitatively by visually assessing the result of a deformable face tracking technology on short videos. In this paper, we perform the first, to the best of our knowledge, thorough evaluation of state-of-the-art deformable face tracking pipelines using the recently introduced 300VW benchmark. We evaluate many different architectures focusing mainly on the task of on-line deformable face tracking. In particular, we compare the following general strategies: (a) generic face detection plus generic facial landmark localisation, (b) generic model free tracking plus generic facial landmark localisation, as well as (c) hybrid approaches using state-of-the-art face detection, model free tracking and facial landmark localisation technologies. Our evaluation reveals future avenues for further research on the topic.Comment: E. Antonakos and P. Snape contributed equally and have joint second authorshi

    Face Tracking dan Distance Estimation pada Realtime Video Menggunakan 3d Stereo Vision Camera

    Full text link
    Face Tracking dan Distance Estimation pada realtime video menggunakan 3D stereo vision camera yang diajukan dalam paper ini adalah sebuah sistem deteksi wajah dan pengukuran estimasi jarak obyek wajah yang terdeteksi menggunakan 3D stereo vision camera. Dalam penelitian ini dikembangkan sistem untuk deteksi wajah menggunakan Haar Cascade Classifier dan untuk pengukuran estimasi jarak wajah dengan kamera menggunakan proyeksi gambar 2D menjadi 3D. Data 3 dimensi pada stereo vision kamera yang digunakan dapat direkonstruksi menggunakan proyeksi 2 Dimensi dari 2 buah titik kamera pada stereo vision camera. Implementasi deteksi wajah (face tracking) dan estimasi jarak pada realtime video menggunakan stereo vision camera yang diusulkan dapat bekerja untuk mendeteksi setiap obyek wajah manusia dengan baik, dan mampu memberikan estimasi jarak antara obyek wajah yang ditangkap dengan stereo vision camera secara riil. Deteksi wajah dan estimasi jarak wajah yang optimal adalah pada kisaran jarak 51-200cm, dengan deteksi wajah dan estimasi jarak yang ideal adalah pada posisi frontal view. Dari percobaan yang dilakukan dapat dihasilkan sebuah sistem tracking wajah yang robust dan dapat diketahui akurasi perhitungan estimasi jarak dibandingkan dengan jarak riil wajah mencapai 94.74 %

    Face tracking using a hyperbolic catadioptric omnidirectional system

    Get PDF
    In the first part of this paper, we present a brief review on catadioptric omnidirectional systems. The special case of the hyperbolic omnidirectional system is analysed in depth. The literature shows that a hyperboloidal mirror has two clear advantages over alternative geometries. Firstly, a hyperboloidal mirror has a single projection centre [1]. Secondly, the image resolution is uniformly distributed along the mirror’s radius [2]. In the second part of this paper we show empirical results for the detection and tracking of faces from the omnidirectional images using Viola-Jones method. Both panoramic and perspective projections, extracted from the omnidirectional image, were used for that purpose. The omnidirectional image size was 480x480 pixels, in greyscale. The tracking method used regions of interest (ROIs) set as the result of the detections of faces from a panoramic projection of the image. In order to avoid losing or duplicating detections, the panoramic projection was extended horizontally. Duplications were eliminated based on the ROIs established by previous detections. After a confirmed detection, faces were tracked from perspective projections (which are called virtual cameras), each one associated with a particular face. The zoom, pan and tilt of each virtual camera was determined by the ROIs previously computed on the panoramic image. The results show that, when using a careful combination of the two projections, good frame rates can be achieved in the task of tracking faces reliably

    3D Face Tracking and Texture Fusion in the Wild

    Full text link
    We present a fully automatic approach to real-time 3D face reconstruction from monocular in-the-wild videos. With the use of a cascaded-regressor based face tracking and a 3D Morphable Face Model shape fitting, we obtain a semi-dense 3D face shape. We further use the texture information from multiple frames to build a holistic 3D face representation from the video frames. Our system is able to capture facial expressions and does not require any person-specific training. We demonstrate the robustness of our approach on the challenging 300 Videos in the Wild (300-VW) dataset. Our real-time fitting framework is available as an open source library at http://4dface.org

    3D Face tracking and gaze estimation using a monocular camera

    Get PDF
    Estimating a user’s gaze direction, one of the main novel user interaction technologies, will eventually be used for numerous applications where current methods are becoming less effective. In this paper, a new method is presented for estimating the gaze direction using Canonical Correlation Analysis (CCA), which ïŹnds a linear relationship between two datasets deïŹning the face pose and the corresponding facial appearance changes. Afterwards, iris tracking is performed by blob detection using a 4-connected component labeling algorithm. Finally, a gaze vector is calculated based on gathered eye properties. Results obtained from datasets and real-time input conïŹrm the robustness of this metho
    • 

    corecore