202 research outputs found

    Pedestrian Liveness Detection Based on mmWave Radar and Camera Fusion

    Get PDF

    High Precision Human Detection and Tracking using Millimetre-Wave Radars

    Get PDF

    Design and development of safety systems for high frequency inductive power transfer

    Get PDF
    As wireless charging is gaining its popularity among consumer electronics, e.g., phones, smart wearables, electric toothbrushes, etc., there has been a trend of expanding this technology into a wider range of applications e.g. drones, robots, electric vehicles etc.. To achieve this, both the charging power and range need to be increased. This thesis discusses the limitations of widely used kHz inductive power transfer systems and emphasises the challenge of deploying into a wider range of applications. High-frequency inductive power transfer (HF-IPT) systems are then discussed with two real-world applications presented to showcase HF-IPT’s potential over kHz IPT systems. Some of the benefits of the HF-IPT, e.g., the large air gap and tolerance to misalignment, could increase the chances for live or other unintended objects to be coupled into the wireless charging system, which could cause safety hazards if the system was not designed carefully. This thesis, therefore, focuses on the safety systems design and development for HF-IPT systems. A number of existing and potential foreign and live object detection methods (FOD/LOD) including a new FOD/LOD method based on reflected impedance are introduced. The proposed method can operate without additional sensors, and without a communication link between IPT transmitter and receiver. A detection accuracy of 95% is achieved by implementing such FOD/LOD method. In addition, a FOD/LOD technique based on a mmWave radar sensor is also introduced. Differing from typical radar applications, the proposed method leverages machine learning techniques to perform object recognition to reduce the false detection rate. The developed FOD/LOD system could classify six different charging scenarios with an average accuracy of 96%. For applications that do not involve any live or unintended objects, this thesis also introduces a localisation technique based on the IPT system to help guide a drone or robot to a specific location e.g. a wireless charging point. Such a system was designed to reduce the risk of charging by minimising human’s involvement.Open Acces

    Towards joint communication and sensing (Chapter 4)

    Get PDF
    Localization of user equipment (UE) in mobile communication networks has been supported from the early stages of 3rd generation partnership project (3GPP). With 5th Generation (5G) and its target use cases, localization is increasingly gaining importance. Integrated sensing and localization in 6th Generation (6G) networks promise the introduction of more efficient networks and compelling applications to be developed

    Advanced automotive radar front-end based on gapwaveguide technology

    Get PDF
    The pursuit of higher levels of autonomous driving necessitates the utilization of advanced radar sensors that possess improved environmental perception capabilities. Consequently, next-generation automotive radars require sophisticated antenna systems with high efficiency, thereby making waveguide antennas a more viable choice. In this context, it has been observed that gapwaveguides exhibit superior performance in comparison to traditional waveguides, particularly in terms of assembly reliability, when employed in the development of multi-layer waveguide antennas. Within the scope of this thesis, the primary objective is to comprehensively explore the design of front-ends for cutting-edge automotive radar sensors by leveraging the potential of gapwaveguide technology. The initial aspect of this thesis involves an exploration of integration techniques capable of achieving high performance in waveguide-based RF front-ends. In particular, the thesis introduces novel vertical gapwaveguide-to-microstrip transitions that facilitate the integration of RF front-ends featuring multi-layer configurations. Furthermore, this thesis introduces radar transceivers equipped with built-in waveguide-to-microstrip transitions, known as launcher-in-package, along with an imaging radar antenna featuring customized interconnections explicitly designed utilizing gapwaveguide technology to interface with the transceivers.Secondly, in light of the utilization of radar sensors incorporating orthogonal dual polarizations on the transmitting and/or receiving ends, an opportunity arises to acquire polarimetric information from the surrounding environment, thereby representing a promising advancement in the realm of autonomous driving. This thesis presents novel antenna designs based on gapwaveguide technology for polarimetric radar sensors. An 8×\times8 planar array utilizing double grooved circular waveguide polarizers is introduced, specifically designed for fixed beam, high gain polarimetric sensing applications. In addition, this thesis presents a polarimetric radar sensor that utilizes a MIMO configuration featuring single-CP transmitting antennas and dual-CP receiving antennas. The antenna design incorporates series-fed septum polarizers, which offer low-profile characteristics.In summary, this thesis undertakes a comprehensive investigation into the designs of advanced automotive radar front-ends utilizing gapwaveguide technology. The study explores the advancements in terms of integration techniques and polarimetric capability, demonstrating the potential of gapwaveguide technology for the practical implementation of waveguide-based RF front-ends. The utilization of such front-ends can significantly enhance the capabilities of autonomous driving systems

    A Contactless Health Monitoring System for Vital Signs Monitoring, Human Activity Recognition and Tracking

    Get PDF
    Integrated sensing and communication technologies provide essential sensing capabilities that address pressing challenges in remote health monitoring systems. However, most of today’s systems remain obtrusive, requiring users to wear devices, interfering with people’s daily activities, and often raising privacy concerns. Herein, we present HealthDAR, a low-cost, contactless, and easy-to-deploy health monitoring system. Specifically, HealthDAR encompasses three interventions: i) Symptom Early Detection (monitoring of vital signs and cough detection), ii) Tracking & Social Distancing, and iii) Preventive Measures (monitoring of daily activities such as face-touching and hand-washing). HealthDAR has three key components: (1) A low-cost, low-energy, and compact integrated radar system, (2) A simultaneous signal processing combined deep learning (SSPDL) network for cough detection, and (3) A deep learning method for the classification of daily activities. Through performance tests involving multiple subjects across uncontrolled environments, we demonstrate HealthDAR’s practical utility for health monitoring

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed
    • …
    corecore