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ABSTRACT

Human activity recognition (HAR) has been studied for decades in computer vision and
has shown great success. However, as people are caring more about privacy issues,
researchers are investigating non-intrusive HAR systems using radar-based techniques,

among which millimetre-wave (mmWave) radars have received great popularity due to their
capability of capturing high-resolution spatial information about the scene. This thesis presents
a systematic study of HAR using mmWave radars. It explains the fundamentals of mmWave
sensing techniques, discusses its use in HAR applications, and highlights the challenge of the
sparse and noisy data through a purpose-built simulation system that can import arbitrary
3D models to form a scene and simulate the radar signal with configuration antenna settings.
A software framework for managing multiple radars is presented that allows real-time data
transmission, data processing, and result visualization.

Based on the software framework, three HAR systems are presented. First, a human detection
and tracking system is presented as the fundamental of HAR. The system operates two radars
simultaneously that verify each other’s detection and significantly reduce the probability of false
alarms. The system achieves 90.4% sensitivity and 98.6% precision when detecting up to four
people in the room. Then, a human posture estimation system is presented that uses two radars
as a vertical array and a neural network model to estimate the joint positions of the person. The
system achieved over 71.3% accuracy when detecting postures that are commonly seen in an
office environment with arbitrary limb motions. Finally, a human vital sign detection system
is presented that uses one mmWave radar to detect a person’s heart rate when exercising on a
treadmill. It overcomes the challenge that the heartbeat signal can be difficult to extract when
there is body movement, and achieved a low error rate of 5.4%.

i





DEDICATION AND ACKNOWLEDGEMENTS

I would like to thank my supervisor, Professor Naim Dahnoun, for all the academic and
general support throughout my time at Bristol. You are always very attentive and put a lot of
effort into providing timely feedback and guidance on my work that many supervisors would

not do. I would like to thank my parents. You allow me to be able to finish my study and choose
my career in the way I want, and always with the most assertive confidence. Special thanks to
my girlfriend, Ling. Thank you for joining my life, adding an extra layer of brilliance to my study
and making it some of my best memories.

Thanks to my colleagues who I have worked with. It has been a great pleasure to do the
research work with you. Thanks to my friends for all the joyful time when away from work, and
especially to mention the badminton games that helped me keep fit somehow. Thanks to my family,
for no particular reasons, but just being the most kind and supportive family I could imagine.
Finally, thanks to all who have provided feedback on my research in various ways, including
academics at the University of Bristol, staff from Texas Instruments, reviewers and editors of
my papers, and researchers who have cited my publications. Although not always positive, these
experience have somehow increased my confidence in my work and, more importantly, let me feel
the life as a real researcher.

iii





AUTHOR’S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the
requirements of the University’s Regulations and Code of Practice for Research
Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the
candidate’s own work. Work done in collaboration with, or with the assistance of,
others, is indicated as such. Any views expressed in the dissertation are those of the
author.

SIGNED: .................................................... DATE: ..........................................

v





TABLE OF CONTENTS

Page

List of Tables xi

List of Figures xiii

List of Abbreviations xvii

List of Notations xxi

1 Introduction 1
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background and Related Work 9
2.1 Machine Learning Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 HAR with Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Wearable Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Multidimensional Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Human Posture Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Human Vital Sign Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 mmWave Radars Fundamentals 27
3.1 Millimetre-wave Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 FMCW mmWave Radar Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Intermediate Frequency Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



TABLE OF CONTENTS

3.2.2 Distance Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3 Velocity Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.4 Angle Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 TI mmWave Radars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Hardware Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 DPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 Radar Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.4 Data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Using mmWave Radar as 3D Sensor 51
4.1 mmWave Radar Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Point Cloud Construction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Data Processing Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Model Order Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Steering Vector Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Data Processing Chain and Algorithms . . . . . . . . . . . . . . . . . . . . . 58

4.4.3 Subject Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.4 SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.5 Antenna Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.6 Chirp Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Super-resolution Point Cloud Construction Algorithm . . . . . . . . . . . . . . . . . 66

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Human Detection and Tracking 71
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Real-Time Software Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Radar Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Frame Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.3 Visualizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.4 Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Signal Interference between Multiple Radars . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Detection and Tracking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.1 Individual Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.2 Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



TABLE OF CONTENTS

5.5.3 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6.1 Ground Truth from Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6.2 Evaluation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Human Posture Estimation 87
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 Single Radar Angle-of-view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.2 Radar Array Angle-of-view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.3 Radar Array Posture Capturing . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.4 Data Collection and Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 Part Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.2 Spatial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Temporal Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6 Real-time System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.7 Operating on Embedded Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Human Vital Sign Detection 109
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1.1 Raw Data Capturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Phase Ambiguity and Unwrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Heart Signal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3.1 Phase Signal Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3.2 Phase-FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3.3 Heart Rate Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4.1 Experimental Setup and Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4.2 Phase Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4.3 Heart Rate Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Conclusion 127
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

ix



TABLE OF CONTENTS

Bibliography 131

x



LIST OF TABLES

TABLE Page

3.1 Main mmWave radar manufacturers and the frequency they use. . . . . . . . . . . . . 29

3.2 TI mmWave radar AoV at given signal strength (H for Horizontal and V for vertical). 44

4.1 FMI (standard deviation in parentheses) comparison between the algorithms when

using a 4×4 antenna array and a subject velocity of 0.05 m/s. . . . . . . . . . . . . . . . 59

4.2 IoU (standard deviation in parentheses) comparison between the algorithms when

using a 4×4 antenna array and a subject velocity of 0.05 m/s. . . . . . . . . . . . . . . . 59

4.3 Normalized execution time comparison between the algorithms using the baseline setup. 61

4.4 Relative FMI difference of the algorithms when using a 4×4 antenna array and a

subject velocity of 0.5 m/s in comparison to 0.05 m/s. . . . . . . . . . . . . . . . . . . . . 61

4.5 Relative FMI difference of the algorithms when using a 4×4 antenna array and a

subject velocity of 1 m/s in comparison to 0.05 m/s. . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Performance difference when using a 4×4 antenna array and a subject velocity of

0.05 m/s in a low SNR environment (5 dB in comparison to 30 dB). . . . . . . . . . . . . 63

4.7 Performance difference when using a 4×4 antenna array and a subject velocity of

0.5 m/s in a low SNR environment (5 dB in comparison to 30 dB). . . . . . . . . . . . . . 63

4.8 Performance comparison between different antenna layouts using the baseline config-

uration and the DPC1-MUSIC-2D algorithm (standard deviation in parentheses). . . 64

4.9 FMI (standard deviation in parentheses) comparison between four chirp configurations

using the DPC1-MUSIC-2D algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.10 Performance comparison of two algorithms with and without SRPC. . . . . . . . . . . . 68

5.1 Average variances of the main radar’s detection on static objects. . . . . . . . . . . . . 78

5.2 Performance evaluation of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Tracking performance comparison between the proposed system and the literature. . 85

6.1 AP (using OKS) and mean localization error (MLE) of the system, and a comparison

to the literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Mean localization error at different stages. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 Result of the proposed system and a comparison to the literature. . . . . . . . . . . . . 125

xi





LIST OF FIGURES

FIGURE Page

2.1 The process of training a supervised model. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Basic model of a neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Three typical activation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Region-based object classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Posture estimation using HRNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Example of the chirp signal and the IF signal of the radar. . . . . . . . . . . . . . . . . 33

3.2 The azimuth and elevation angle of an object. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Phase difference between two receivers from one signal source. . . . . . . . . . . . . . . 38

3.4 The AoA can be estimated from the phase difference between adjacent antennas. . . 39

3.5 IWR6843/IWR1443/IWR1843 radar antenna layout, the virtual antenna array and

the received phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 IWR6843ODS radar antenna layout, the virtual antenna array and the received phases. 41

3.7 DPC of the TI mmWave radar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Configuration of a chirp frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Structure of a chirp signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.10 Raw data format from an IWR1443 radar when using a DCA1000 board. . . . . . . . . 49

3.11 Example message structure from IWR1443. . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 One frame of radar data represented as a 3D matrix. . . . . . . . . . . . . . . . . . . . 53

4.2 Two possible DPCs for mmWave radar point cloud construction. . . . . . . . . . . . . . 54

4.3 Three approaches when searching for the steering vectors. . . . . . . . . . . . . . . . . 55

4.4 Some examples of the mesh models and point clouds from the FAUST dataset. . . . . 56

4.5 Chirp configuration of one frame in the baseline setup. . . . . . . . . . . . . . . . . . . . 58

4.6 Examples of the radar detection using the different algorithms, when using a 4×4

antenna array and a subject velocity of 0.05 m/s. . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 FMI of the DPC1 2D MUSIC algorithm with different subject velocities. . . . . . . . . 62

4.8 Examples of the radar detection using the different algorithms, when using a 4×4

antenna array and a subject velocity of 1 m/s. . . . . . . . . . . . . . . . . . . . . . . . . 62

xiii



LIST OF FIGURES

4.9 The list of receiver layouts being evaluated. (a)-(d) are square antenna arrays. (e)-(f)

are non-regular antenna arrays implemented on TI radars. . . . . . . . . . . . . . . . . 64

4.10 Examples of the radar detection using the different antenna layouts, when using a

4×4 antenna array and a subject velocity of 0.05 m/s. . . . . . . . . . . . . . . . . . . . 65

4.11 Using SRPC algorithm to improve the resolution and distribution of the data. . . . . . 66

4.12 Examples of point clouds constructed with and without the SRPC algorithm. . . . . . 68

5.1 Hardware setup of the two radars for human detection. . . . . . . . . . . . . . . . . . . 73

5.2 Software framework for managing multiple radars and applying customized processing

chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Transmitted and received signals when detecting an object at 6 m. . . . . . . . . . . . . 77

5.4 Received signal strength (and the standard deviation represented by the coloured

area) at zero-Doppler domain from the main radar, when the interference radar is

placed at a close distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Workflow of the human detection system, with one person present in the area (top-

down view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Example detection when two people are present in the area, from a top-down view

(left) and a 3D view (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Example of human tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Radar vertical AoV at various distance when pointing to a flat wall. . . . . . . . . . . . 89

6.2 Radar vertical AoV at various distance when pointing to a person. . . . . . . . . . . . . 90

6.3 Radar vertical AoV when detecting human-size subjects. Top: Only a limited area of

the person can be detected with one radar. Bottom: The detection results and their

distribution at various distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Two radars vertical AoV at various distances when pointing to a person. . . . . . . . . 91

6.5 Detection results and their distribution using two radars. . . . . . . . . . . . . . . . . . 92

6.6 Experimental setup of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.7 Radar array vertical AoV at various distances when pointing to a person. Top-left:

Standing still. Top-right: Bowing. Bottom-left: Standing and holding one arm. Bottom-

right: Sitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.8 The architecture of the part detector model. . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.9 The architecture of the spatial model, showing the head and the hip as an example. . 97

6.10 Dependency graph of the left shoulder and left hip. . . . . . . . . . . . . . . . . . . . . . 97

6.11 Example of how prior knowledge helps predict a joint’s position. Left: the likely position

of the left and right shoulders given the position of the head. Right: the likely position

of the knees given the position of the hips. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.12 The training procedure of the proposed neural network model. . . . . . . . . . . . . . . 99

xiv



LIST OF FIGURES

6.13 An example of 400 continuous frames, showing that the stability of the estimation can

be improved by assessing and correlating C and M in the temporal domain. . . . . . . 100

6.14 An example of how an estimate can be improved by restricting the maximum displace-

ment of the joints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.15 The cumulative distribution function of the localization error. . . . . . . . . . . . . . . 102

6.16 Example posture estimation results from the full system. . . . . . . . . . . . . . . . . . 104

6.17 The cumulative distribution function of the localization error at different stages. . . . 105

6.18 Some examples of the comparison between the part detector and the spatial model.

Left: data input from the radar. Middle: output from the part detector. Right: output

from the spatial model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.19 The complete system framework. The posture estimation part is highlighted in red. . 107

7.1 Software framework when capturing the raw data from a radar. 1) Configure the

DCA1000 board. 2) Configure the radar. 3) The radar starts dumping data to the

DCA1000 board. 4) The data is received by the DCA1000EVM CLI software. 5) The

data is transmitted to the DCA1000 handler. 6) Process the data. . . . . . . . . . . . . 112

7.2 When a change in the phase is observed, the red and the yellow path show two possible

interpretations of the object’s motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 The motion of an object can be restored by unwrapping the phase signal. . . . . . . . . 114

7.4 The four stages of a common exercise cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.5 flowchart of the proposed algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.6 An example of the phase construction step. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.7 Tracking the FFT bin index using a Gaussian distribution. . . . . . . . . . . . . . . . . 117

7.8 Example of the phase signal and phase-FFT when a person is stationary. . . . . . . . 119

7.9 Example of the phase signal and phase-FFT when a person is exercising. . . . . . . . 119

7.10 Example of using an SVM to predict the HR based on the phase-FFT result. . . . . . . 121

7.11 Experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.12 HR distribution of the two datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.13 The distribution of the error between the ground truth and the nearest peak in the

phase-FFT spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.14 HR estimation result using the proposed system. . . . . . . . . . . . . . . . . . . . . . . 125

xv





LIST OF ABBREVIATIONS

AdaBoost adaptive boosting.

AdaGrad adaptive gradient algorithm.

Adam adaptive moment estimation.

ADC analogue to digital converter.

AoA angle-of-arrival.

AoV angle-of-view.

API application programming interface.

bpm beats per minute.

CFAR constant false alarm rate.

CNN convolutional neural network.

CPU central processing unit.

CUT cells-under-test.

CW continuous wave.

DBSCAN density-based spatial clustering of applications with noises.

DFT discrete Fourier transform.

DPC data processing chain.

DSP digital signal processor.

ECG electrocardiogram.

FAR false alarm rate.

FFT fast Fourier transfrom.

xvii



LIST OF ABBREVIATIONS

FIFO first in first out.

FIR finite impulse response.

FMCW frequency-modulated continuous-wave.

FMI Fowlkes–Mallows index.

FN false negative.

FP false postive.

FPGA field programmable gate arrays.

FPS frame per second.

GPS global positioning system.

GPU graphic processing unit.

HAR human activity recognition.

HoG histograms of oriented gradients.

HR heart rate.

IF intermediate frequency.

IMU inertial measurement unit.

IoU Intersection over Union.

ISM industrial, scientific and medical.

KNN k-nearest neighbour.

LIDAR light detection and ranging.

LSTM long short-term memory.

MDL minimum descriptive length.

MIMO multiple-in multiple-out.

mmWave millimetre wave.

MUSIC Multiple Signal Classifier.

MVDR Minimum Variance Distortionless Response.

xviii



LIST OF ABBREVIATIONS

NHS National Health Service.

PC personal computer.

R-CNN region-based convolutional neural network.

ReLU rectified linear unit.

RF radio frequency.

RGB red, green and blue.

RNN recurrent neural networks.

RNSProp root mean square propagation.

RSS received signal strength.

RX receiver.

SDK software development kit.

SGD stochastic gradient descent.

SIFT scale invariant feature transform.

SNR signal to noise ratio.

SURF speeded up robust features.

SVM support vector machine.

TI Texas Instruments.

TN true negative.

ToF time-of-flight.

TP true positive.

TX transmitter.

UWB ultra-wide band.

WHO World Health Organization.

WLAN wireless local area network.

xix





LIST OF NOTATIONS

M(X×Y ) A 2D matrix with X rows and Y columns.

Mx,· The xth row of M as a vector.

M·,y The yth column of M as a vector.

Mx,y The element at xth row and yth column of M..

Mx1:x2,y1:y2 A sub-matrix of M from row x1 to x2 and column y1 to y2.

|M| The absolute values (or magnitude) of each element in M.

∠M The Euclidean plane angle (or phase) of each element in M..

MT The transpose of M.

MH The Hermitian transpose of M.

M−1 The inverse matrix of M.

{x} A set containing an element x..

{x...y} A set containing integer elements from x to y..

|{x}| The cardinality of the set {x}.

[x, y] A continuous range from x to y.

xxi





C
H

A
P

T
E

R

1
INTRODUCTION

W ith the development of micro-electronic technology, computers are playing an increas-

ingly important role in many industries. Interaction and cooperation between humans

and digital tools have become the key to improving working efficiency and saving

human resources. Therefore, human activity recognition (HAR) has received a lot of interest in

both the academic and industry fields. HAR can include recognizing people’s identities, location,

motion, activity, health status and other information that can be beneficial in human-computer

interaction. Being able to gather this information allows tasks in many industries, such as

health care and security, to be addressable by computers with reduced human intervention. HAR

tasks have been challenging due to the high complexity and diversity of human activities in

real-world scenarios. However, with the development of machine learning techniques, many

solutions have been proposed for complex HAR tasks, such as human tracking, identification, and

motion recognition.

Among all the industries that would benefit from HAR, health monitoring has received

the greatest attention, especially during and post the Covid-19 pandemic. The pandemic has

resulted in more people in the UK experiencing delayed hospital treatment. According to the

National Health Service (NHS) statistics released in March 2022, people need to wait 12 weeks

on average before getting treatment (in comparison to 7 weeks in 2019), and there are over

300,000 people who need to wait for over a year (in comparison to only around 2,000 people in

2019) [1]. Meanwhile, studies show that the national volume of surgical activity has dropped

more than 33%, and this is expected to continue for years [2, 3]. The increase in waiting time and

the reduced capacity for medical treatment make self-health monitoring increasingly important.

Researchers have shown that a large variety of monitoring tasks can be performed by computers

with different sensors, including monitoring people’s positions, motions, vital signs, postures, and
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actions.

One of the most important tasks in health monitoring is assessing a person’s heart status

and detecting abnormal heart activities. The World Health Organization estimates that there

are 17.9 million deaths per year globally due to cardiovascular diseases, contributing to 32% of

the total deaths [4]. In the UK, the number is estimated to be around 160 thousand, of which

73% are aged above 75 [5]. In addition, there are 7.6 million people living with cardiovascular

diseases, who might require long-term monitoring of their health status [5]. Nonetheless, certain

types of diseases are hard to diagnose, and the patients may not receive timely treatment. For

example, it is estimated that 12.5% of people diagnosed with atrial fibrillation are not treated

effectively, and 40% of people diagnosed with heart failure could benefit from earlier treatment

[5]. Regular monitoring of the heart status and detecting any potential diseases at early stages is

critical in reducing unexpected deaths, especially when medical resources are limited. Although

professional checks like electrocardiograms might not always be possible at home or in the work

environment, researchers have shown that simple monitoring of the heart rate can be an effective

way of assessing a person’s cardiac health and indicating the possibility of potential diseases [6].

A recent study has shown that the heart rate can also be used to analyse a person’s emotion [7],

which helps understand their mental health. However, analysing the health status through the

heart rate often requires data over a long period of time and across different intervals of the day.

Therefore, contactless and ubiquitous monitoring is required to allow people to monitor their

heart rate at home and work, as well as to monitor patients at hospitals with a reduced cost of

equipment and human resources.

Another important aspect to be monitored is the daily activity pattern. Nowadays, many

people spend the majority of their time sitting, either for work (people in midlife) or for entertain-

ment (elderly). An international survey shows that most people spend 180 to 480 minutes per

day sitting [8], and there is also evidence that long-time sitting increases the possibility of a large

range of health problems [9]. Even with enough daily activity, long-time sitting has deleterious

cardiovascular and metabolic effects [10]. Therefore, it would be beneficial to have a posture

monitoring system that could detect prolonged sitting time and suggest breaks automatically.

Meanwhile, the sitting posture has also been shown to have various effects on the person’s health

[11] and reflects the person’s emotion and stress level [12]. Similar effects are also found for

walking postures [13] and sleeping postures [14]. These issues can be further addressed by having

an effective posture monitoring system, to maintain a healthy posture in various daily activities

and provide another dimension in understanding the person’s health status.

Finally, detecting and understanding human posture allows advanced human-computer inter-

action systems to be developed and improve user experiences in many environments, including

at home, at work and in public places. For example, smart homes have been proposed to help

elderly and disabled people live more conveniently and comfortably at home [15]. These systems

often use various types of sensors to understand the person’s activity and provide appropriate
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assistance, where a posture estimation system could provide more detailed information about the

person and help recognize a wider range of activities, as well as detecting abnormal activities

like a fall.

Effective HAR often relies on high-resolution data of the subject to be collected. Therefore,

there is a large amount of literature in computer vision that uses optical cameras for HAR,

including analysing a person’s vital signs, activities and postures. However, cameras have the

disadvantages of being intrusive, raising privacy concerns and relying on good lighting conditions.

There are also many kinds of wearable devices that could measure a person’s heart rate and

breathing rate, but it is often practically impossible to ask the subject to wear it all the time,

and there is a possibility that the device can be damaged or lost. Smartwatches can be used to

monitor a person’s heart rate and exercise level, but they are generally expensive and might

not be affordable to people with low incomes. There are also non-contacting solutions using

radio-frequency (RF) signals to monitor the heart rate and breathing rate [16, 17]. However, most

of them require the subject to be stationary, which is not suitable for long-time monitoring or

for monitoring people while exercising. Smart chairs, like [18], have been proposed to analyse a

person’s sitting posture by installing various sensors on an office chair. However, the information

returned from the sensors is simple and does not include the full posture. Non-contacting solutions

for posture monitoring often have a high cost, like the Microsoft Kinect. There is a lack of one

system that is low-cost, contactless, non-intrusive, and capable of detecting the person’s vital

signs, activity level and postures at the same time.

To address the mentioned problems, this research proposes to use millimetre wave (mmWave)

radars to build a complete and multi-functional HAR system, that is capable of long-term ubiqui-

tous detection of a person’s vital signs, activities and postures, hence providing an effective tool

for monitoring, analysing and improving their health status. A mmWave radar sends a modulated

electromagnetic signal, detects the signal reflection from any object, processes the signal and

determines the range, velocity and angle of incidence of the object. It has the advantages of

being non-intrusive, having a small antenna size, and being able to capture the scene at a higher

resolution when compared with traditional radars. The high resolution allows detailed informa-

tion about the subject to be analysed and advanced data processing algorithms to be developed,

whereas smaller antenna sizes reduce the cost of the radar chip and provide high portability.

For example, the cost of a mmWave radar chip from Texas Instruments (TI) can be around £10

[19], which can be affordable to people at all income levels. In addition, the non-intrusive nature

means that only anonymous data will be collected, so that the privacy of the subject can be better

protected. They can also operate in various conditions including darkness, smoke and fog, which

are crucial in many applications. All these features increase the popularity of mmWave radars

for human activity recognition and health monitoring. 1

In this research, the mmWave radars from TI are used. The radars operate at 77 GHz to

1Some text in this paragraph have been published in [20, 21] ©2021-2022 IEEE.
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81 GHz, with a bandwidth of 4 GHz and a wavelength of around 4 mm. The high bandwidth

provides a distance resolution at 4 cm. In addition, tiny displacement at millimetre levels can be

detected by analysing the phase change of the signal. The radar has three transmitters and four

receivers that can operate concurrently, allowing the radar to separate signal sources in azimuth

and elevation domains, and, therefore, to monitor multiple people in the range simultaneously.

This research investigates the capability of mmWave radar in HAR, with a particular interest in

three challenges: human detection and tracking, posture estimation, and heart rate detection.

1.1 Contribution

The contribution of this thesis can be summarized as follows:

• A human detection and tracking system using two radars is presented. A novel DPC is

presented to filter out irrelevant information, such as clutter and noise, and locate people in

the scene. It is shown that mmWave radars have good performance in indoor environments,

with over 90% sensitivity. However, using a single radar can raise a large number of

false alarms due to unstable data and noise, whereas the precision of the system can be

improved significantly with two radars. The system achieves 90.4% sensitivity and 98.6%

precision when detecting multiple people in an office environment. The system achieves a

mean localization error of 5.6 cm on people tracking, which outperforms the state-of-the-art

RF-based tracking systems. (Chapter 5.)

• A human posture estimation system using two radars is presented. The system detects

people with arbitrary postures in indoor environments at close distances (within two metres)

and estimates the posture by localizing the key joints. In contrast to much existing research

that only focuses on standing postures, this work is the first mmWave radar-based system

that can accurately estimate a rich set of postures that are commonly seen in an office

environment, while having real-time processing speed and a low cost. Two mmWave radars

are used to capture the scene and a neural network model is used to estimate the posture.

The neural network model consists of a part detector that estimates the subject’s joint

positions, and a spatial model that learns the correlation between the joints. A temporal

correlation step is introduced to further refine the estimate when in real-time operation.

The system can provide an accurate posture estimate of the person in real-time at 20 fps,

with a mean localization error of 12.2 cm and an average precision of 71.3%. (Chapter 6.)

• A vital sign detection system is presented that uses one mmWave radar to detect a person’s

heart rate when exercising on a treadmill. It overcomes the challenge that the heartbeat

signal can be difficult to extract when there is body movement, by using a novel phase

signal construction algorithm that measures the person’s chest displacement at a high

resolution, and a machine learning model that predicts the person’s heart rate based on the

4



1.2. THESIS OUTLINE

motion level. In contrast to many existing systems that require the person to stay static

during the measurement, this is one of the first research that targets people in exercise.

The system achieved a low error rate of 5.4%. (Chapter 7)

• A simulation system is designed for simulating the radar signal in a customized scene, as

the first mmWave radar simulator for 3D imaging applications. It let researchers focus on

the high-level DPC design and verification without worrying about hardware setup and

data acquisition. It supports a rich set of parameters to be configured based on the desired

use case, including the number of radars, antenna layout, chirp configuration, objects and/or

people in the scene and their motions, and noise in the environment. 3D models from other

datasets can be imported into the simulator as the ground truth, allowing real-world scenes

to be studied. (Chapter 4)

• A super-resolution point cloud construction (SRPC) algorithm that aims to improve the

distribution and resolution of the point cloud generated by the radar. Experiments showed

that the quality of the radar data can be sparse and noisy when compared to cameras or

light detection and ranging (LIDAR) systems. When evaluating the SRPC algorithm using

the simulation system, the algorithm successfully improved the overall accuracy of the

radar and provided a more natural point cloud with reduced outliers. (Chapter 4)

1.2 Thesis Outline

The outline of the thesis is described below.

Chapter 2 Background and Related Work

This chapter reviews related research in HAR and machine learning. It introduces the funda-

mental knowledge of machine learning and reviews HAR algorithms and systems based on the

hardware used, including cameras, sensors, and wearable devices. It also discusses the back-

ground of mmWave sensors and their use in the HAR literature. Then, it discusses two fields that

are particularly related to this research: human posture estimation and vital sign detection.

Chapter 3 mmWave Radars Fundamentals

This chapter explains the fundamentals of mmWave radars in terms of how they can capture

information in the scene. It describes the underlying frequency-modulated continuous-wave

(FMCW) model of the radars on the distance, velocity, and angle-of-arrival (AoA) detection of

objects. It also describes the TI mmWave radar models that are used in this research, including

the hardware aspect, the DPC implementation, and the communication between the radar and a

host environment.
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Chapter 4 Using mmWave Radar as 3D Sensor

This chapter presents a simulation system that implements the DPC described in Chapter 3. It

allows 3D models from public datasets to be imported into the simulator to form a customized

scene and serve as the ground truth, and can simulate the radar data as the radar is placed in

the scene. Based on this system, a qualitative and quantitive study of how well a mmWave radar

can capture information from a scene and serve as a 3D sensor is presented. The study evaluates

several key factors that could affect radar detection, such as the DPC, environment and antenna

layouts. It shows that there is still a big gap between the quality of mmWave radar detection and

higher resolution systems like LIDARs, and emphases the importance of data post-processing in

higher-level applications. Finally, a novel SRPC algorithm is proposed to improve the resolution

and distribution of the radar detection and is verified using the simulation system. This work

has contributed to a paper published in the MECO conference [22].

Chapter 5 Human Detection and Tracking 2

In this chapter, a human detection and tracking system using mmWave radars is presented. The

system uses two radars to verify each other’s detection and a tracking module to continuously

analyse the people’s location over time, which significantly reduces the probability of false alarms.

A purpose-built software framework for real-time radar management and data processing on

a PC is presented. The content of this chapter has been published in the IEEE Aerospace and

Electronic Systems Magazine [20] and in an international patent [23]. An extension of this work

has been published in the MECO conference [24].

Chapter 6 Human Posture Estimation 3

In this chapter, a novel human posture estimation system using mmWave radars is presented.

The system achieved over 71.3% accuracy when detecting postures that are commonly seen in an

office environment, like sitting, standing, and walking, with arbitrary limb motions. The system

uses a two-phase neural network model to estimate the posture from the radar data and is one

of the first research in the field that uses mmWave radars to detect a wide range of postures.

The content of this chapter has been published in the IEEE Sensors Journal [21] and the MECO

conference [25], and published in the patent with the detection and tracking system [23]. An

extension of this work has been submitted to the Microprocessors and Microsystems [26].

Chapter 7 Human Vital Sign Detection

In this chapter, a vital sign detection system is presented that can detect a person’s heart rate

while exercising on a treadmill. One mmWave radar is used to detect the position of the person,

2This chapter contains reprinted content from [20] ©2021 IEEE.
3This chapter contains reprinted content from [21, 25] ©2020-2022 IEEE.

6



1.3. PUBLICATIONS

construct a phase signal representing the chest movement, and analyse the phase signal to

identify the heart rate. While there has been much research on detecting the vital sign of a

stationary person, detecting a moving person is significantly more difficult, as the body movement

would be much stronger than the chest displacement due to heartbeats. To address the issue, a

machine learning model is presented that predicts the trend of the heart rate change based on

the motion level of the subject. Experiments showed that the proposed system can detect the

heart rate of an exercising person with a low error rate of 5.4%. This work has contributed to a

UK patent application [27], a paper published in the MECO conference [28], and a journal paper

submitted to the Microprocessors and Microsystems [29].

1.3 Publications

This research has contributed to three journal papers (two published and one under review), four

conference papers (all published) and two patents (one published and one filed).

Journal Papers

• H. Cui and N. Dahnoun, “Real-time short-range human posture estimation using mmWave

radars and neural networks,” IEEE Sensors Journal, vol. 22, no. 1, pp. 535-543, 2022.

• H. Cui and N. Dahnoun, “High precision human detection and tracking using millimeter-

wave radars,” IEEE Aerospace and Electronic Systems Magazine, vol. 36, no. 1, pp. 22–32,

2021.

• J. Wu, H. Cui, and N. Dahnoun, “A voxelization algorithm for reconstructing mmwave radar

point cloud and an application on posture classification,” Submitted to Microprocessors and

Microsystems, June 2022, under review.

Conference Papers

• J. Wu, H. Cui, and N. Dahnoun, “A novel heart rate detection algorithm with small

observing window using millimeter-wave radar,” in 2022 11th Mediterranean Conference on

Embedded Computing (MECO), 2022.

• J. Wu, H. Cui, and N. Dahnoun, “An improved angle estimation algorithm for millimeter-

wave radar,” in 2022 11th Mediterranean Conference on Embedded Computing (MECO),

2022.

• J. Wu, H. Cui and N. Dahnoun, “A Novel High Performance Human detection, Tracking and

Alarm System Based on millimeter-wave Radar,” in 2021 10th Mediterranean Conference

on Embedded Computing (MECO), 2021.
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• H. Cui and N. Dahnoun, “Human posture capturing with millimetre wave radars,” in 2020

9th Mediterranean Conference on Embedded Computing (MECO), 2020.

Patent Application

• N. Dahnoun and H. Cui, “Radar detection and tracking,” International Patent Published

WO 2022/130 350 A1, Dec. 18, 2020.

• N. Dahnoun, H. Cui, and J. Wu, “Determining vital signs,” U.K. Patent Filed GB2 203

223.9, Mar. 08, 2022
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2
BACKGROUND AND RELATED WORK

HAR has been studied in depth in the literature and many systems have been proposed,

especially during the past decade with the rapid development of microprocessors and

machine learning techniques. This chapter gives literature reviews of the related work

of this thesis. The chapter is divided into five sections. Section 2.1 provides the preliminary

knowledge on machine learning for understanding this thesis. Section 2.2 reviews HAR tech-

niques by the hardware used, including cameras, sensors and wearable devices. Section 2.3 and

Section 2.4 discuss two subjects in HAR that are particularly relevant to this thesis: human

posture estimation and vital sign detection. Section 2.5 concludes the chapter. Some content in

this chapter has been published in [20, 21].

HAR tasks include but are not limited to:

• Detecting and recognizing the presence of people.

• Locating people and tracking their motion.

• Posture estimation, such as distinguishing between sitting and standing.

• Vital sign detection, such as detecting the heart rate and breathing rate.

• Activity classification, such as distinguishing between walking and running, distinguishing

between working and entertaining, or detecting abnormal activities like fall detection.

A HAR system often focuses on one or a subset of these problems, as performing all the tasks

using a single system is often impractical. Many HAR tasks are inherently machine learning

problems. HAR systems often adopt machine learning techniques to process the data captured

by the sensor and recognize the underlying human activity based on prior knowledge. These
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Figure 2.1: The process of training a supervised model.

systems often use a mathematical model to learn the relationship between the input data and

the possible outcomes. This chapter discusses the fundamentals of machine learning techniques

and their applications in HAR.

2.1 Machine Learning Fundamentals

There have been many reviews on the machine learning techniques in the literature, such as [30].

This section aims to give a brief introduction to the most important concepts of machine learning,

in terms of supervised learning, unsupervised learning and neural networks, respectively.

2.1.1 Supervised Learning

Supervised learning models require a training stage, where a mathematical model between the

data and the target classes has to be designed and trained using a set of known data. The model

iteratively maps the input to a possible outcome, compares it with the ground truth and modifies

its internal parameters to minimize the prediction error. Once the model has been trained, it can

be applied to unseen data and predict the most possible outcome.

The process of training a supervised model is summarized in Figure 2.1. The first step is data

collection and labelling. The data should be collected in the same or a similar environment as the

deployment environment, and the amount of data should be large enough to cover common cases.

Supervised learning requires data to be labelled with the ground truth, to guide the model during

the training process. For classification problems, the output of the model is defined into classes

and the model computes the most possible class that an input belongs to. Classification models

can be used for simple decision-making problems when the possible outcomes have well-defined
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boundaries, such as detecting if a person is present or not. In contrast, for regression problems,

the output can span across a continuous space and the model predicts the most possible output

in that range based on the input. Regression models can be used when the output is continuous

and cannot be expressed as classes, such as detecting the position of a person in the room.

The data collection and ground truth generation process differs a lot depending on the

hardware used and the application. For example, when using radar data for human detection,

the scene should be set up based on the desired use case and the ground truth location of the

person subjects should be captured using a separate reliable and high-resolution system, like

a robust computer vision system. Once the data has been collected, it needs to be split into a

training dataset and a test dataset. During the training process, only data from the training

dataset should be used for updating the model parameters, to prevent the model from overfitting

to the data collected. The test dataset simulates the real use case and should only be used for

evaluating a trained model. Some applications also have an additional validation dataset to

further prevent data leakage during the training process.

Machine learning models often rely on the features extracted from the input data. For image

data, feature extraction algorithms on HAR include SIFT (scale invariant feature transform) [31],

SURF (speeded up robust features) [32], HOG (histograms of oriented gradients) [33], Haar-like

features for face detection [34], motion features extracted from temporal information [35], and

many others as reviewed by Nixon and Aguado [36]. These algorithms convert the image input

into various mathematical representations that can be handled by the model. For 1D signal,

the features are often derived from the signal amplitude, phase, and frequency, and feature

extraction algorithms can include time-domain analysis like peak detection and convolution,

or frequency-domain analysis like fast Fourier transfrom (FFT) and wavelet transform. Then,

depending on the number of features and the complexity of the task, there is a rich set of machine

learning models that can be selected [30]. To name a few, support vector machine (SVM) is a

powerful classification model when there are well-defined boundaries between the data from

different classes, but does not scale to large datasets; Decision tree and random forest can handle

a rich set of data types beyond numeric values, but at the expense of a higher complexity; Naive

Bayes is a statistical model with low complexity and works well for large datasets, but with the

condition that the input features should not be correlated [30]. A special type of model is the

neural networks, which will be discussed separately in Section 2.1.3.

After determining which model and features to use, the datasets can be processed to a

higher level abstraction and be fed into the model training stage. The training stage is an

optimization process that can be applied to the entire dataset at once or applied iteratively to sub-

datasets, whose objective is to find a set of parameters that minimize a loss function that defines

the difference between the prediction and the ground truth. The model has a set of randomly

initialized parameters, processes the input data to get the initial prediction, compares it with

the ground truth, and updates the parameters to reduce the error. The training continues until
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the model parameter converges and the accuracy no longer improves. One example optimization

algorithm is the gradient descent algorithm. For each data instance, it computes the gradient of

the loss with respect to the parameters and updates the parameters along the direction that would

reduce the gradient, until the minimum gradient is found, which corresponds to a minimal loss

between the prediction and the ground truth. The amount of updates depends on the user-defined

learning strategy and learning rate, where a higher learning rate corresponds to a larger update

rate and more aggressive learning. There have been many optimizations being proposed over the

standard gradient descent to improve the learning efficiency and/or reduce the computational

cost, such as the stochastic gradient descent (SGD) algorithm, the Adaptive Moment Estimation

(Adam) algorithm [37] and the Adaptive Gradient (AdaGrad) algorithm [38]. A more detailed

review of optimization algorithms can be found in [39, 40].

One particularly important problem in machine learning is preventing the model from

overfitting to the training data. An overfitted model may perform extremely well on the training

dataset, like when using a decision tree with an unlimited number of leaves, but may fail in

real applications due to poor generalization. One way to reduce the chance of overfitting when

training on a large-scale dataset is using regularization techniques, often by adding a penalty

term in the loss function to constrain the importance of certain parameters, such as the shrinkage

method in traditional machine learning and weight decaying in neural networks [41]. Having

a separate test dataset (and a validation dataset when necessary) is also an important way to

examine if a model is overfitting or not, given that the correlation between the datasets is kept

minimal. Finally, if the performance is not satisfactory, there can be many reasons and one may

need to re-evaluate each step of the workflow in Figure 2.1. For example, evaluating whether

the quality of the data and the ground truth is good enough, whether the feature extracted can

effectively represent the data, or whether the complexity of the model is capable of handling the

task. If the model is showing a satisfactory performance without appearing to be overfitting, it

can be deployed in the real application.

2.1.2 Unsupervised Learning

An unsupervised learning model does not require training data that have a ground truth label,

and will not receive any feedback on its prediction. Instead, the model analyses and learns the

most significant features of the input data and performs tasks like clustering or feature analysis.

Unsupervised learning does not require the training stage, but it still plays an important role in

the data processing.

One well-known example of unsupervised clustering algorithms is the density-based spatial

clustering of applications with noises (DBSCAN) algorithm [42], it examines all data points

in the feature space, finds the points with a high density as the centroids of clusters, and

allocates neighbouring points into the cluster. Points that are not close to any of the centroids

will be regarded as noise. The clustering algorithm is useful in determining the number of
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data sources and noise removal in radar signal processing. Another example is the mixture

of Gaussian algorithm that fits the distribution of the data using a combination of Gaussian

distribution models, and determine the possibility of incoming data belonging to the distribution.

This algorithm has been used widely in removing noise and clutter from the data. A more detailed

review of unsupervised learning models can be found in [43].

2.1.3 Neural Network

Neural networks, as an emerging supervised machine learning technique, have shown outstand-

ing performance on various artificial intelligence tasks. They were first developed as a perceptron

model for simulating the neurons in the human brain, and started to receive increasing popular-

ity since the announcement of AlexNet [44], a convolutional neural network (CNN) for image

classification that achieved significant improvement over traditional machine learning methods

in object classification. Since then, many neural network architectures have been designed and

implemented for various tasks.

Neurons, or artificial neurons, are the basic unit of a neural network. A neuron simulates

the functionality of a biological neuron. It receives one or more inputs, modifies them with the

neuron’s internal states, applies certain non-linear transformations and sends out one output

signal. Neural networks consist of a number of layers, each layer with a number of neurons

connecting to each other, as shown in Figure 2.2.

(a) Biological neuron. (b) Artificial neuron. (c) Neural network.

Figure 2.2: Basic model of a neural network.

Neural networks are designed as universal function approximators to learn complex trans-

formations from an input to a higher level abstraction. Mathematicians have proven that, with

a combination of linear and non-linear functions, even single-layer neural networks can work

as universal approximators [45, 46], though with a potentially very large number of neurons.

With multi-layer neural networks, the number of neurons can be reduced to a feasible size for

modern computers to process, while still being able to approximate complex functions for solving

real-world problems.

Typical neural networks consist of an input layer, a number of hidden layers, and an output

layer. The term deep learning is used to define neural networks with many hidden layers, though
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the exact value to be qualified as deep is not strictly defined in the literature. The first deep neural

network was designed by Hinton et al. [47] with three hidden layers. Therefore, many researchers

refer to deep neural networks as networks with three or more hidden layers. However, the number

of layers increased dramatically in the next few years due to the emergence of convolutional

layers. For example, AlexNet [44] has eight layers, the VGG network [48] has more than 16 layers

and the authors named it a very deep network, and the residual network [49] has up to 1200

hidden layers and the authors named it an extremely deep network. Although the author also

claimed that the performance of the network hardly improves after 110 layers, an extension to

their work by Huang et al. [50] showed that the 1200-layer network can still show meaningful

improvement. Traditional machine learning methods often rely on effective feature extraction

from the raw data, whereas a deep neural network can be applied directly to the raw data and

extract features as part of its learning process.

2.1.3.1 Deep Neural Network Layers

This section provides the fundamental of deep neural networks required for this thesis, whereas

more detailed information can be found in [51]. The dense layer, or fully connected layer, is one of

the most important layers in deep neural networks. A dense layer contains a number of units,

with each unit having independent weighted connections w to each of the inputs x and a bias b to

be added to the output. The operation of a dense layer can be written as:

xi = f (w · xi−1 +b) (2.1)

where xi is the output of the layer, xi−1 is the output from the last layer and the input of the

current layer, and f is the activation function. Dense layers usually have large numbers of

trainable parameters. For example, to process an input with 100 features with a 10-unit dense

layer, there will be 100 (features)×10 (weights)+10 (bias) trainable parameters. The output of a

dense layer will have the number of features equal to the number of neurons in the layer. Dense

layers consider all possible relationships between all input features and are strong at extracting

hidden features.

The convolutional layer is another type of the most important layer in neural networks.

Convolution is a well-known technique in signal processing, which defines the operation of

applying a kernel to an input signal to extract a certain feature. Convolution can be performed

on data with any dimension, though it is the most common on 1D (e.g. sound) and 2D signals (e.g.

images). While dense layers extract all information from every possible combination of features,

convolutional layers focus on features that are spatially close to each other. In image processing

tasks, convolutional layers consider features in pixel blocks instead of arbitrary groups of pixels.

This is especially helpful when extracting spatial features in images, such as edges, regular

shapes and textures. Convolutional layers also reduce the computational cost significantly in

comparison to a dense layer. For example, to process an 100×100×3 RGB image with a 3×3×10
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convolution kernel, i.e. to learn 10 possible features by examining every 3×3 pixel block, there

will be only 3×3×10+10 (bias) trainable parameters and the output of the layer would be

98×98×10 (without explicit padding and striding). The operation can be written in a similar

way as the one for the dense layer, as:

xi = f (w∗ xi−1 +b) (2.2)

where ∗ denotes the convolution operation. The development of convolutional layers significantly

improved the learning speed of neural networks and made them more suitable for graphic

processing unit (GPU) acceleration, as the convolution operation can be processed in parallel.

There are also non-trainable layers that are designed for certain operations. For example,

dropout layers randomly deactivate some neurons in a trainable layer to improve the general-

izability of the network and avoid overfitting; Batch normalization layers normalize the data

regarding a batch of data, to reduce the data variance caused by outliers from the previous layers

or the input; Pooling layers compress the data from neighbouring locations and help the network

to focus on certain spatial features. These functional layers help the network to extract features

from input and train more efficiently.

Apart from the most common layers mentioned above, there are many other types of layers

and architectures that are designed for different applications (as reviewed by Abiodun et al. [52]),

such as the recurrent neural network which is designed to model temporal information within

the data, and the graph neural network which is designed for graph-like or point cloud data.

Some examples of their usage in HAR will be given in later sections.

2.1.3.2 Activation Function

While the dense layer and the convolution layer mentioned above perform linear operations on

the input, activation functions are also an important element that performs non-linear operations

on the data. These functions give networks the ability to perform non-linear transformation from

input to output and are essential for the network to serve as a universal function approximator

[45]. Activation functions are normally performed at the end of every layer and are applied to

the intermediate result of the layer. They determine whether the output from the previous layer

will be activated or discarded. There have been a number of activation functions proposed in the

literature, a more detailed discussion of them can be found in Nwankpa et al. [53]. Three common

activation layers, Rectified Linear Unit (ReLU), sigmoid and tanh are shown in Figure 2.3. The

sigmoid function is one of the earliest activation functions that aims to map the output of a

neuron to [0,1], but it has a non-zero mean and can become inefficient in training [53]. The tanh

function helps address the problem as a zero mean function. However, they have been mostly

replaced by the ReLU function and its variants, which have shown superior performance in many

applications [53].
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(a) ReLU. (b) sigmoid. (c) tanh.

Figure 2.3: Three typical activation functions.

2.1.3.3 Network Training

As a supervised machine learning model, the training step is very similar to that mentioned

in Section 2.1.1. When a neural network is created, all trainable parameters in the layers are

initialized randomly or following a user-defined pattern. The training is the process of modifying

these parameters so that the network provides the best approximation from the input to the

output. During each training step, the network takes a batch of data, applies the forward

propagation, generates its prediction, compares it with the ground truth and calculates the cost

accordingly using some cost functions.

The cost function plays the most important role in network training, as it defines how

to evaluate the correctness of a model and how the network weights should be modified to

approach the ground truth. The design of a cost function largely depends on the application. In a

classification problem, the objective of the model is often to classify a data instance into a few

possible categories, where the cross-entropy cost is one of the most popular choices that give a

high cost when the model misclassifies the data [52]. Some example applications of this type of

network include human identification, activity classification and fall detection.

Many applications do not require categorical output. For example, human tracking requires

the coordinate of the person in a continuous space, where a mean-squared error or sum-squared

error function is often used to measure the disparity between a prediction and the ground truth,

which the network needs to minimize [52]. Another example would be face recognition, where a

triplet loss function is used that assigns a low cost to faces that belong to the same person while

assigning a high cost to faces that belong to different people [54]. Once the cost is calculated, it

will be backpropagated through each layer of the network and the parameters will be updated

using the gradient descent algorithm.
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2.2 HAR with Machine Learning1

The main hardware required for data collection in a HAR system can be categorized into cameras,

sensors, and wearable devices. While some researchers would refer to cameras as one kind of

sensor, they are studied as a standalone subject in the context of this research, considering

the significant difference in the data processing chain (DPC) between camera data and the

others. Commonly used sensors include Doppler radars, radio frequency (RF) sensors and various

environment sensors. They are often set at a fixed location and measure certain changes in the

environment. Wearable devices are worn or carried by people and measure certain properties

of the person or the environment. Some of them are single-purpose sensors, like GPS (Global

Positioning System) or accelerometers, while others might have multiple functions. More complex

wearable devices can contain one or more portable sensors, transceivers and processors integrated

into a mobile platform, such as a mobile phone or smartwatch. This section reviews HAR systems

based on the hardware used.

2.2.1 Cameras

Camera-based HAR has been studied in depth in computer vision, as reviewed by Poppe [55],

Nguyen et al. [56] and Kong and Fu [57]. The data collection step is often simply collecting images

or videos using the cameras. Pre-processing of the data, such as filtering and pixel normalization,

is sometimes required to reduce the effect of inconsistent lighting conditions or camera artifacts,

but varies a lot between different techniques.

Region selection is often an important aspect of a camera-based system. Since cameras

record everything in the scene within the angle-of-view, it is necessary to reduce the input size

and ideally only analyse areas around the object-of-interest. When there are multiple people

in the scene doing different activities, it is also important to divide the image into subregions

and analyse them independently. A sliding window algorithm divides the image into a number

of rectangular subregions from different scales and analyses them in sequence. This is the

simplest method and generates a regular and balanced workload, but the result often contains

many irrelevant candidates and can result in a waste of resources. One advanced technique

is foreground extraction, where the object-of-interest (the foreground) will be extracted from

the scene using temporal information, such as the mixture of Gaussian model. A bounding box

with a pre-defined size will be generated around the foreground for further processing. Another

commonly used method is the segmentation-based method, where the image is segmented into

irregular regions based on pixel features like edges or colours, which are then converted into

regular shapes for the next steps. Regions generated with foreground extraction or segmentation

often contain more precise features, but also require more processing power. An example of a

region-based object classification algorithm using neural networks is shown in Figure 2.4.

1A condensed version of this section has been published in [20] ©2021 IEEE.
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(a) Compute bounding boxes
around potential objects.

(b) Divide the source image into
a grid and compute the class
probability distribution of each
cell.

(c) Assign class labels to the
bounding boxes.

Figure 2.4: Region-based object classification.

Once the candidate regions have been selected, the next step is to extract features within

each region. Although with the emerging neural network techniques, feature extraction is often

performed implicitly by the hidden layers in the network, many traditional machine learning

techniques rely on features to be extracted explicitly before feeding into the classifier. Feature

extraction algorithms on HAR include SIFT (scale invariant feature transform) [31], SURF

(speeded up robust features) [32], HOG (histograms of oriented gradients) [33], Haar-like features

for face detection [34], motion features extracted from temporal information [35], and many others

as reviewed by Nixon and Aguado [36]. These algorithms convert the image input into various

mathematical representations that can be handled easily by the classifier.

After the classification, some algorithms require an extra step to combine the results from

different candidate regions. For example, if the algorithm uses a sliding window, results from

overlapping regions will need to be combined to avoid repeat detection. Algorithms using different

candidate regions for different purposes will also need to combine these results. For example,

Chen and Yuille [58] performed upper-body and lower-body detection separately and combined

the result for full posture recognition.

There has been much research focusing on the detection of a person in a scene. For example,

Dalal and Triggs [33] applied SVM on HOG features for human detection. Viola and Jones [34]

used AdaBoost (Adaptive Boosting) on Haar features for face detection. There is also research

that assumes the presence of the person and focuses on the recognition of activities. For example,

Dhulavvagol and Kundur [59] applied SVM with SIFT feature extractors for classifying a set of

actions. Manosha Chathuramali and Rodrigo [60] applied SVM on spatial-temporal data from

videos for action classification and claimed 100% recognition rate on public datasets. Nasution

and Emmanuel [61] applied k-nearest neighbour (KNN) on image histograms for an elderly

monitoring system and claimed over 90% accuracy on five postures.

Beyond human detection and activity classification, there are many other systems designed
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Figure 2.5: Posture estimation using HRNet.

for advanced tasks. Examples of such systems include face recognition using principal component

analysis (PCA) [62] or neural networks [54], and posture recognition (or pose estimation) using a

tree-based model [63] or neural networks [64–66]. One example of a posture recognition system

is shown in Figure 2.5 (using the algorithm from Sun et al. [66]). These examples do not provide a

direct classification of human activities, but they provide powerful tools for building an advanced

HAR system.

Depth cameras, also known as 3D cameras, are specialized cameras that provide distance

information from the camera to the object, in addition to the optical image. One type of depth

camera is the stereo camera. A stereo camera has two camera lenses separated by a small

distance. It captures two images at once, and the disparity between the left and right images

can be used to estimate the depth information of the scene. Output from stereo cameras is often

in the format of a dense depth map. Stereo cameras are low cost, but the disparity calculation

algorithm often requires a significant amount of processing power [67]. The other type is a normal

camera with depth sensors, where the depth information is captured either using time-of-flight or

structured-light and can be represented as either depth maps or point clouds. One example of this

kind of depth camera is the Kinect [68]. The 3D information captured by the depth cameras led

to the study of 3D point-cloud-based HAR (reviewed by Aggarwal and Xia [69]) or skeleton-based

HAR (reviewed by Han et al. [70]). These techniques share similar advantages and disadvantages

with the normal camera-based methods. They provide dense information about the scene and

have relatively low cost, but they are intrusive, and their performance is limited by the viewing

condition.
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2.2.2 Sensors

Sensors capture information from the environment other than the vision. Contact sensors require

physical contact with people to measure certain biomedical properties, whereas non-contact

sensors use certain signals, like RF signals, to sense the environment. One major difference

between these data and the vision data is that, while the temporal dimension in vision data is

supplementary, it is often more important in sensor data for a sensible interpretation. Some of

the most common sensors for HAR are summarized as follows:

Doppler radars are designed for detecting the Doppler motion of the subject. They use

various frequencies for different applications, from a few megahertz to a few hundred gigahertz.

Researchers have used Doppler radars for classification of simple actions [71], motion detection

[72], gait analysis [73], and vital signs detection [74].

Radio frequency sensors sense the environment with RF signals at different frequencies.

For example, WiFi systems use RF signals at 2.4 GHz and use multiplexing schemes to divide

the available bandwidth into channels, where any change in the environment will be encoded

in the channel state information as the signal propagates, such as the amplitude and the phase

of each channel [75]. One common approach with RF sensors is to set up one or multiple signal

transceivers at fixed locations in the environment, where people in the environment will reflect

signals with different strengths and properties, based on their distance to the transceivers.

Recent research has also shown the possibility of detecting the human pose [76] and generating a

skeleton model [70] based on RF signals.

LIDAR sensors use the time-of-flight of laser pulses to measure the distance between an

object and the sensor. LIDAR measurements can have extremely high accuracy and robustness

and are often used in the fields of geology, astronomy and agriculture. As the cost of LIDARs

decreases, it has also been used for automotive driving and robotics. There are also researchers

studying its use in human detection and classification [77]. However, the cost of LIDARs is still

much higher than many of the other sensors, preventing them from being used more widely.

Ultrasonic sensors detect human activities through ultrasound. Passive ultrasonic sensors

listen to sound in the environment and extract useful information, whereas active ultrasonic sen-

sors transmit modulated ultrasonic signals and analyse the received signals for action recognition.

For example, Qi et al. [78] presented a gait analysis system that used a few passive ultrasonic

sensors to determine the location of a moving person.

Biomedical sensors measure the biomedical activities of a person and provide an indication

of their health status and activity status. They often require physical contact with the subject

and are more commonly seen in clinical environments and hospitals. Some examples include the

electrocardiogram (ECG) sensors for detecting the heart’s electrical activity, and photoplethysmo-

gram (PPG) sensors for detecting the blood volume change in the microvascular and, hence, the

heart rate or blood pressure of the subject. These sensors can be used for daily health monitoring

and the detection of diseases or abnormal activities. For example, Butt et al. [79] used ECG
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sensors for fall detection.

Environment sensors include temperature sensors, thermal sensors, audio sensors, light

sensors, humidity sensors, pressure sensors and others. They measure various information about

the environment as their name states and are often used in conjunction with other sensors for

HAR tasks (like [80]).

While each of these sensors can give detection on one aspect, a combination of them is often

required to gather multidimensional data and hence obtain enough information for complex HAR

tasks. Data can be combined either at the raw-data level when the same type of sensors are used,

or at the decision level when each type of sensor requires a separate DPC [81].

When merging data from different sensors, it is often required to transfer all the data to

a central processor for processing. The data transmission can be carried through a wire or

wirelessly. Wireless transmission can be made through commercial communication protocols such

as Bluetooth and WiFi, or customized short-range communication protocols [82]. For example, van

Kasteren et al. [83] used a combination of infrared sensors, pressure mats and contact sensors

for data collection and a wireless network for data communication. They collected data in three

houses under daily conditions and evaluated a set of classification algorithms. A recurrent neural

network-based approach using the same dataset was also published later [84].

2.2.3 Wearable Devices

While sensors have to be fixed at the point of interest, have a certain range of view and do not

provide any information if the human is out of the region, wearable devices need to be worn or

carried by people and contain sensors that provide continuous information about their activity.

Apart from the data collected, the DPC with wearable devices is very similar to those of sensors.

One difference is that wearable devices often require wireless transceivers to transfer the data to

a central processor or have an embedded processor for processing the data and providing real-time

feedback to the user. The processing power of embedded platforms is often constrained by power

consumption and thermal dissipation. Common wearable devices for HAR can be summarized as

follows:

Accelerometers and Gyroscopes measure the acceleration and the orientation of the device

in the x-y-z dimension. A combination of the two is also referred to as an inertial measurement

unit (IMU). These sensors have shown success on various tasks, such as movement detection [85],

activities classification [86] and fall detection [87, 88].

GPS measures the geometrical position of a person. A commercial GPS can estimate the

location of a person with a resolution of a few meters, and is often used in conjunction with other

sensors. For example, the fall detection system designed by Wu et al. [88] used accelerometers for

fall detection and a GPS for the location of the fall.

Portable biomedical sensors measure certain biomedical activities of a human, such as

the heart rate, breathing rate and blood oxygen saturation levels. They are often in the form of a
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smartwatch, chest band or wristband. Although they may not provide professional information

as those for clinical uses, they have a much lower cost and higher convenience and are often used

for personal health care.

Portable LIDAR systems are similar to fixed LIDAR systems but embedded into mobile

platforms. They provide high-resolution information about the scene at a high cost. One of their

most common usages in HAR is face recognition, as sometimes can be seen on high-end mobile

phones.

Portable environment sensors provide information about the environment, as mentioned

in the last section.

Again, each type of these sensors provides information from one aspect, and data fusion

between multiple sensors is often required to provide multidimensional data for HAR tasks. For

example, Kantoch [89] proposed a health monitoring system using a mixture of ECG sensors,

temperature sensors and accelerometers, for monitoring physiological data during different

activities.

In many cases, wearing multiple sensors can be inconvenient and impractical. This encour-

ages the development of embedded wearable devices. Such devices are dedicated to having a few

selected sensors, transceivers and processors, forming a portable HAR system with acceptable

power consumption. For example, Wu et al. [88] designed a fall detection device with accelerome-

ters and GPS modules. Maurer et al. [90] designed a smartwatch that contains multiple different

sensors for activity monitoring.

With the development of embedding processing and integrated sensors, mobile phones have

received lots of attention as wearable devices for HAR. Mobile phones have many integrated

sensors, among which the IMU and the GPS are the most common, providing the motion infor-

mation and location of the subject, respectively. In addition, modern mobile phones have strong

processors, including CPUs (central processing units), GPUs and DSPs (digital signal processors),

allowing the sensor data to be processed in real-time. The built-in network modules also allow

data to be transferred for remote processing or cloud processing. Therefore, using mobile phones

for HAR has become an emerging research topic, as reviewed by Su et al. [91]. For example, Khan

et al. [92] designed a HAR system using accelerometers, pressure sensors and microphones on a

mobile phone, demonstrated both an online processing approach and an offline approach, and

showed that it can classify between 15 activities.

There are also public datasets available for wearable devices based HAR, where researchers

ask a number of testers to bring the devices and perform activities in certain environments,

collect the data from the sensors and label them manually [93–95]. These datasets often contain

data measured from IMUs and a selection of other common sensors, and allow much theoretical

work [96–98] to be developed without repeat data collection. Other reviews on wearable device

based HAR can be found from Lara and Labrador [99], Mukhopadhyay [100] and Su et al. [91].
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2.2.4 Multidimensional Data Fusion

While each type of the discussed hardware gives certain information from certain aspects, fusing

them together enables the full potential of HAR systems to be explored. To give a few examples,

Brdiczka et al. [101] used cameras, a set of audio sensors and the Hidden Markov Model for HAR

at home. Gharghan et al. [102] presented a fall detection system using both wearable devices and

environment sensors. Fotiadis et al. [103] used laser sensors and cameras for human detection.

Huang et al. [104] fused mmWave radars and cameras for tracking moving subjects. Ulrich et al.

[105] fused mmWave radars and cameras for estimating the size of subjects. Zouba et al. [80]

used multiple environment sensors and cameras to monitor elderly activities at home. Chen et al.

[106] reviewed HAR systems using depth sensors and inertial sensors.

The term “smart home” is used to refer to a home environment equipped with various sensors

and interactive devices. They are designed to be able to monitor human activity at home and

provide appropriate services at their best convenience. Common techniques in a smart home are

reviewed by Demiris and Hensel [15]. Smart homes are originally designed for health and safety

monitoring of elderly, disabled people or people under medical treatment, but they are tending

to receive increased popularity among the general public due to the development of ubiquitous

sensors and HAR systems.

2.3 Human Posture Estimation 2

One of the main interests of this research is human posture estimation. The topic has been

studied in depth in computer vision based on camera data. Postures are often represented by the

position of a few key joints of the person. Many researchers use a two-phase approach: using local

pixel features to estimate the positions of the joints independently, and then using spatial models

to encode the correlation between the joints and refine the estimate. Traditional methods often

rely on handcrafted models of these joints and require manual feature extraction, such as the

pictorial structure [107, 108], hierarchical model [109] and deformable model [110]. While early

work is restricted by the effectiveness of the tree-based models, researchers have proposed many

improved methods, such as using strong part detectors [111] and using a mixture of models [63].

However, although these approaches improved the generalizability and robustness of the model,

they have been outperformed by the neural network-based methods since their emergence [112].

In contrast to the traditional methods, neural network-based methods often have a strong

ability to extract features from the input data, which relaxes the requirement of handcrafted

features and models. Therefore, many researchers have adopted neural network models for

posture estimation and have demonstrated significantly higher accuracy compared with the

traditional methods [64, 66, 112, 113]. They are shown to be more effective in dealing with a

complex environment and less common postures, and have achieved the top accuracy in many

2This section has been published in [21] ©2022 IEEE
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datasets. The work from Toshev and Szegedy [112] is one of the first neural network-based

posture estimation systems in the literature and has 7 network layers, whereas later work, like

Sun et al. [66], have increased the number of layers to hundreds and achieved the state-of-the-art

accuracy (78.2%) in public datasets.

These models often use fixed-size images as the input to the neural network and use the x-y

coordinates of the joints as the ground truth to train the model. Tompson et al. [113] proposed

a spatial model as a part of the neural network model to encode the relationship between the

joints as a Markov Random Field (MRF) model and trained it using the same backpropagation

algorithm as a typical CNN. In addition to estimating the posture of a single person, CNN models

are also shown to be able to estimate postures for multiple people in one scene concurrently [65].

These techniques eliminate the requirement of locating the person in an image before estimating

the posture.

Due to the various disadvantages of cameras, such as privacy concerns, researchers are

also investigating alternative techniques for posture estimation using various kinds of sensors

[114]. For example, Zhao et al. [115] used extensive radio-frequency antenna arrays to detect

human posture. There are a few very recent studies on posture estimation using mmWave

radars [116–119], but many only focused on a limited set of standing or walking postures. The

performance of these models may degrade on unseen postures. For example, a sitting posture has

a significantly different joint structure from a standing posture. Such situations require a robust

and generalizable model. Therefore, this research aims to estimate arbitrary human postures

commonly seen in an indoor environment (Chapter 6).

2.4 Human Vital Sign Detection

Vital sign detection can be an effective tool for monitoring people’s health status and early

detection of cardiovascular disease. Non-contact vital sign detection using sensors has been

studied for decades and many systems have been proposed, as reviewed in [120–122]. While most

early research was in the lower frequency band at sub-24 GHz, researchers are moving towards

mmWave at higher than 60 GHz, which has several advantages, such as a higher resolution, a

higher sensitivity to small movement and a smaller antenna size [120].

The existing work using mmWave radars to detect people’s heart rates can be split into three

categories: targeting stationary people, targeting people with restricted movement or slow and

regular walking, and targeting people with free body movement. When a person is stationary, a

phase signal of the chest movement can be easily constructed, and the frequency of the heart

pulses can be computed through spectrum analysis. There are many works following this standard

workflow presented for different scenarios, such as [16, 123–126], often with a low error rate

below 5 beats per minute. However, the phase signal can be distorted and noisy when the person

moves, as the phase change caused by movement is significantly higher than the displacement
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due to heart pulses and makes phase extraction more difficult [122, 127]. There are studies

that target restricted movement in an office environment that involves simple movement from

the limbs and legs [128, 129], or walking in straight lines at a low speed of maximum 25 cm/s

[130, 131]. These methods use certain signal processing techniques, like wavelet transform, to

look for signal periods that are less noisy and then estimate the HR. However, in situations

like exercising, the noise can be high for a long period of time and these methods may fail.

Some researchers proposed to use cameras with radars to track the person [132–134], but are

constrained by having privacy concerns and requiring good lighting conditions. Wang et al. [135]

used two radars to cancel out the Doppler effect of the movement and obtain the heart rate of a

person jogging. However, it requires explicit synchronization between the radars and can only

measure the subject in the middle of the two radars. In addition, only one set of data was given in

the original paper. Gong et al. [127] used a neural network to learn the heart rate of the person

from the motion information captured by the radar, but requires a re-training for each unseen

person using their static heart rate, as well as a long processing time (5 seconds) on a GPU.

This research aims at estimating the heart rate of a person when exercising on a treadmill with

real-time operation (Chapter 7).

2.5 Conclusion

This chapter discusses the fundamentals of machine learning that can be used for HAR. Machine

learning tasks can be categorized as supervised learning and unsupervised learning, the former

requires a training stage with ground truth data and can be used for various regression or classi-

fication tasks, whereas the latter is often used for data analysis and clustering. In this chapter,

related work in HAR, categorized based on the use of cameras, sensors and wearable devices, have

been reviewed. These systems have different applications and use cases. Camera-based systems,

due to the high amount of information that can be captured by images, often achieve the top

performance in HAR tasks. However, they have the disadvantages of being intrusive and relying

on lighting conditions. Sensor-based systems use non-vision signals to capture information about

the scene. They often have a fixed field of view and only capture anonymous data about the

person, and are receiving increased popularity in the industry. Wearable devices can be worn or

carried by the subject and are not limited by the field of view, but can be inconvenient and have a

limited use case. Without the use of cameras, HAR requires a lot of data fusion between sensors

for complex tasks, which increases the cost and the setup complexity of the system. There lacks

one low-cost, multifunctional, real-time system that is capable of complex HAR tasks.
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MMWAVE RADARS FUNDAMENTALS

This chapter introduces preliminary knowledge of frequency-modulated continuous-wave

(FMCW) mmWave radars, with a particular focus on the radars manufactured by Texas

Instruments (TI). Section 3.1 reviews mmWave radar-based HAR systems in the literature.

Section 3.2 discusses the typical FMCW mmWave radar model and explains how the distance,

velocity, and angle of objects in the scene can be detected by a radar. Section 3.3 introduces

the radar models made by TI, the data processing chain (DPC) implementation, host-device

communication and data transfer.

3.1 Millimetre-wave Sensing1

mmWave is an electromagnetic wave with a frequency between 30 GHz and 300 GHz, and a

wavelength of 1 mm to 10 mm. Signals at this high frequency were not explored until the last

decades, when people started looking at 5G communication and mmWave radars. The largest

benefit at this frequency is the available bandwidth. For radar and sensor usage, there is

an industrial, scientific and medical (ISM) radio band at 24 GHz, but it only has a 250 MHz

bandwidth. There is a UWB of 5 GHz from 21.65 GHz to 26.65 GHz GHz available for radars,

but its usage will be phased out by 2022 in both Europe and the US [136, 137]. Currently, many

industries are looking at mmWave sensors 76 GHz to 81 GHz [138] or around 60 GHz (e.g. 57 GHz

to 64 GHz following European regulations [139]). The high bandwidth allows a potentially very

high resolution for object detection, and the shorter wavelength allows a much smaller antenna

size and allows the signal to penetrate through thin materials.

1Some content of this section has been published in [20] ©2021 IEEE.
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mmWave radars used in different industries would have different types of antennas. Long-

range radars often use large antennas, such as horn antennas and Yagi antennas, whereas

short-range radars (within a few hundred metres) often use integrated patch antennas, due

to the advantage of the much lower cost. Most mmWave radars are the frequency-modulated

continuous-wave (FMCW) radars. These radars have at least one pair of a transmitter and

receiver. The transmitter sends out a continuous radio frequency wave and the receiver receives

the reflected signal. A DPC is performed on the two signals in order to extract information from

the scene. Non-modulated continuous wave radars act as Doppler radars, which are only able to

detect changes in the signal frequency caused by the Doppler shift, i.e. only being able to detect

moving objects. FMCW radars modulate the frequency of the transmitted wave and are able to

extract more information from the received signal [140]. There are a few different modulation

schemes with different characterizations, where the most common modulation scheme is using

the chirp signal, whose frequency is set to increase linearly during a certain period of time

and the frequency and phase difference between the received signal and the transmitted signal

will contain the information about the scene. A set of chirp signals forms a frame and allows

continuous sensing of the environment. More details on the FMCW radar theorem will be given

in Section 3.2.

Apart from FMCW radars, there are also mmWave sensors designed for active imaging. This

type of radar often uses antenna arrays to scan objects in a certain area. In other words, the

radar emits a signal and measures the received signal at every possible position, in a similar

way to an optical camera. The resultant image can be a dense depiction of the scene and can

be used for complex tasks like object classification [141, 142]. There are also sweeping radars,

where the transmitters and the receivers move and/or rotate during the operation to obtain a

larger field-of-view [143]. These radars achieve good performance in certain applications when

the environment is known, like security checks at airports, but might not be suitable in general

purpose applications where the environment can be arbitrary and the cost needs to be kept low.

The data processing of mmWave signal can be categorized as signal-level processing and

data-level processing. Signal-level processing refers to the low-level signal processing techniques

applied to the digital signals after the analogue to digital converter (ADC), such as signal filters

and FFTs. These techniques are designed to extract the information-of-interest from the raw

data and convert it to a higher-level representation that can be better understood by the user.

For example, as will be shown in Chapter 3, FFTs can be used to process the raw data and

construct a point cloud that represents the scene. Data-level processing refers to the high-level

data processing techniques that are related to the desired applications, such as human detection

and posture estimation based on the constructed point cloud.

A market research on commercial mmWave radars has been carried out and the result is

shown in Table 3.1. The majority of the manufacturers focus on automotive applications and

do not provide technical specifications for their products. Only a few of them are developing
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Table 3.1: Main mmWave radar manufacturers and the frequency they use.

Company Frequency Range Number of Antennas
Ainstein 60-64 GHz and 76-81 GHz 3x4
Bosch 76-77 GHz 2
Continental Engineering 77 GHz Not available
Denso 76-77 GHz 1x1
Infineon 60-66 GHz and 77 GHz 1x1 and 3x4
MediaTek 76-81 GHz 1x1
Metawave Corporation 77 GHz Not available
NXP 76-81 GHz 3x4
Panasonic 79 GHz Not available
Smartmicro 60-64 and 76-81 GHz Not available
ST Microelectronics 76-81 GHz 3x4
Texas Instruments 76-81 GHz and 60-64 GHz 3x4
Uhnder 77 GHz 12x16
Vayyar (Minicircuits) 60 GHz and 79 GHz 20x20, up to 72
Veoneer 77 GHz Not available
ZF Friedrichshafen AG 77 GHz Not available

industrial and personal-use radars with complete datasheets and technical support, such as TI

and Minicircuits, and are preferable to researchers.

mmWave radars have been used widely in autonomous driving due to their ability to detect

the distance, velocity, and angle-of-arrival (AoA) of objects. Autonomous driving often uses short-

range radars and signal processing techniques for understanding the road environment, as

reviewed by Patole et al. [144] and Bengler et al. [145]. mmWave radars are shown to be able to

perform many tasks in automotive driving, such as car tracking [146], traffic monitoring [147],

navigation [148], and collision avoidance [149]. Data fusion between mmWave radars and other

sensors has also been proposed. For example, Streubel and Yang [150] used mmWave radars and

stereo cameras for pedestrian detection on the road. Kim et al. [151] used mmWave radars and

infrared cameras for navigation in a strong smoking environment.

The use of mmWave is also receiving a lot of popularity in HAR. Yang et al. [124] used

mmWave signals to detect the heart rate and breathing pattern of a person by analysing the

variation of the signal strength reflected from the chest and achieved a low error of 0.43 breaths

per minute and 2.15 beats per minute, respectively. Kianoush et al. [152] used separate mmWave

transmitters and receivers, and presented a passive detection system of human movement

between them at over 95% accuracy. When the person walks between the transmitters and

receivers, the system records the signal signature and uses a neural network to determine the

motion. Lien et al. [153] used mmWave radars for hand gesture recognition at a close distance. It

uses mmWave signals to capture the motion of the hand and uses a neural network to classify

between a set of pre-defined gestures, which achieved 92.1% accuracy. Björklund et al. [72] used

mmWave radar as a Doppler radar to detect and classify human movement. However, most of
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the research only used the Doppler signal or the received signal strength (RSS) in their systems.

Only a few researchers have utilized the high bandwidth and, hence, the high range resolution

of mmWave radars. There are only a few researchers who have used mmWave radar as a 3D

sensor for HAR. For example, Singh et al. [154] used a neural network to process the point cloud

captured by the radar and achieved 90.5% accuracy when classifying five actions. Similarly, Zhang

and Cao [155] presented a system for classifying four actions and achieved 95.2% accuracy. These

systems often use a classification model to classify between a set of pre-defined activities and

are not generalizable to other unseen activities, which can be critical in real-world applications.

Zhao et al. [156] used a neural network for people identification and tracking and achieved 96%

accuracy when identifying 12 people. However, it had a localization error of 16 cm which, as will

be shown in Chapter 5, can still be improved significantly. Meanwhile, although deep neural

networks have shown outstanding performances in many tasks, their high computational cost

makes real-time operation a concern.

The geometry information provided by the radar allows a point-cloud-based classification to

be performed. Accurate 3D point-cloud data are often only obtainable from expensive sensors

such as LIDAR systems. Although the data from mmWave sensors are much less accurate and

sparse, their lower cost allows the use of several for reliable detection.

In this thesis, the use of mmWave radars for complex HAR in indoor environments is proposed.

mmWave radars from TI were chosen, as they have a rather matured product line, detailed

documentation and a good supporting community on their products.

3.2 FMCW mmWave Radar Preliminaries2

Radars can be categorized as pulse radars or continuous wave (CW) radars, depending on the

length of each signal transmission [157]. Pulse radars can be used to detect the distance of the

object based on the received signal strength and the time-of-flight, whereas CW radars can encode

more information in the frequency and phase of the signal. One of the most common types of

CW radars is the FMCW radars, where the frequency of the transmitted signal is modulated

as a function of time. Commercial mmWave radars are generally FMCW radars. The radar

sends a modulated signal, detects the signal reflection from any object, processes the signal

and determines the range, velocity and angle-of-arrival (AoA) of the object. A typical frequency

modulation scheme used in FMCW radars is to increase the frequency of the signal linearly

with time. Since the reflected signal is a time-delayed version of the transmitted signal, the

two signals will have a constant difference in the frequency domain that is determined by the

time-of-flight and, hence, the distance between the object and the radar. The velocity and the AoA

can be determined by the phase information in the reflected signal.

2A condensed version of this section has been published in [20] ©2021 IEEE.

30



3.2. FMCW MMWAVE RADAR PRELIMINARIES

3.2.1 Intermediate Frequency Signal

The transmitter sends a chirp signal Stx (a signal with frequency increasing linearly with time)

to detect any object in front of the radar. When Stx is reflected by the object, the signal is received

as Srx. Assuming the signal has an initial frequency f0 and a slope of S, then the frequency of

Stx is a function of t:

f tx(t)= f0 +S · t (3.1)

The instantaneous phase of the signal is a function of t and is the integral of f tx:

φtx(t)=
∫ t

τ=0
2π · f tx(τ) dτ

=
∫ t

τ=0
2π · ( f0 +S ·τ) dτ

= 2π · f0 · t+
∫ t

τ=0
2π ·S ·τ dτ

= 2π · f0 · t+2π · 1
2

S · t2

= 2π · f0 · t+π ·S · t2

(3.2)

The transmitted signal Stx can be written as a sinusoid signal:

Stx(t)= A · cos(2π f0t+πSt2) (3.3)

where A is the transmission power. The received signal is a delayed and downscaled version of

Stx:

Srx(t)=αA · cos
(
2π f0(t−τ)+πS(t−τ)2)

(3.4)

where τ is the time-of-flight of the signal and indicates the distance of the object, and α is the

downscale factor that models the transmission loss. The two signals, Stx and Srx, are combined

through a mixer (a multiplier) to generate one signal with both the sum frequency and the

difference frequency. The trigonometric identities state that:

cos(X1 ± X2)= cos(X1)cos(X2)∓ sin(X1)sin(X2) (3.5)

which gives:

cos(X1)cos(X2)= 1
2

(
cos(X1 + X2)+ cos(X1 − X2)

)
(3.6)

Applying Equation (3.6) to Stx ·Srx gives:

Stx(t) ·Srx(t)= αA2

2

(
cos

(
(2π f0t+πSt2)+ (2π f0(t−τ)+πS(t−τ)2)

)+
cos

(
(2π f0t+πSt2)− (2π f0(t−τ)+πS(t−τ)2)

))
= αA2

2

(
cos

(
2π(2 f0 −Sτ)t+2πSt2 +πSτ2 −2π f0τ

)+
cos

(
2π(Sτ)t+2π f0τ−πSτ2))

(3.7)
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There are two cos terms in the result. The first one has a frequency of 2 f0 and will be removed

by a low pass filter. The second one is the called the intermediate frequency (IF) signal or the

beat frequency. The IF signal has the equation:

IF(t)= B · cos
(
2π(Sτ)t+2π f0τ−πSτ2)

(3.8)

where B = αA2

2 . The signal has a frequency Sτ, i.e. the slope of the chirp multiplied by the time-

of-flight. Therefore, the frequency of the IF signal is directly proportional to the time-of-flight.

Given that the slope of the chirp S is known, the distance of the object can be calculated from

the frequency of the IF signal. The phase of the IF signal, (2π f0τ−πSτ2), can be simplified to

(2π f0τ), as the second term is negligible: S has an order of 1012, τ has an order of 10−8, so (πSτ2)

will have a negligible order of 10−4. To interpret the phase term better, (2π f0τ) can be rewritten

to (4πd/λ0) by substituting τ= 2d/c and f0 = c/λ0, where λ0 is the wavelength of the mmWave

signal at frequency f0. In summary, the IF signal can be written as:

IF(t)= B · cos(ωb t+φb) (3.9)

where the angular frequency ωb and the phase of the signal φb are:

ωb = 2π ·Sτ, φb = 2π f0τ= 4πd
λ0

(3.10)

The frequency in Hertz can be derived from the angular frequency as fb = ωb
2π . The above equations

assume that the object is stationary. If the object is moving, the time-of-flight τ will be varying

with respect to t. However, considering that this variation is limited within a single chirp time, it

is unlikely to produce a big change in the frequency. For example, a person moving at 1 m/s will

give a frequency change of around 10 Hz, which is negligible as the frequency of the IF signal

is often higher than 1 MHz. The change in phase can be more significant, but will only affect

certain applications where the phase information is critical, such as vital sign monitoring. In

such cases, the phase can be written as a function of t as φb(t)= 4πd(t)
λ0

, where d(t) describes the

displacement of the object during the chirp time.

Note that the TI mmWave radar uses a complex band architecture. It uses a complex mixer

(an IQ mixer) to multiply the two signals Stx and Srx, which has several advantages like a lower

noise figure, as discussed in [158]. When in complex form, the IF signal in Equation (3.9) can be

written as:

IF(t)= B · e j(ωb t+φb) (3.11)

which has the same frequency and phase as in Equation (3.10). After obtaining the IF signal, a

DPC will be applied to determine the presence of any object, as will be explained in the following

sections.
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3.2.2 Distance Calculation

For a single object, the frequency difference between the transmitted signal and received signal

will be a constant value fb. Figure 3.1 shows an example chirp signal and how an object can be

represented as a constant frequency component in the IF signal. This frequency is equal to S×τ,

where S is the slope of the chirp and τ is the time-of-flight. Let d denote the distance between

the radar and the objects, then the time-of-flight can be expressed as τ= 2d/c. Therefore, d can

be estimated as shown below:

fb =
2d
c

·S (3.12)

d = fbc
2S

(3.13)

where fb is the frequency of the IF signal in Equation (3.8). This frequency can be found by

applying an FFT to the IF signal, known as the range-FFT.

Figure 3.1: Example of the chirp signal and the IF signal of the radar.
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3.2.2.1 Maximum Distance

The maximum distance that a radar can detect is limited by several factors. Some examples

include:

• The power of the transmitters and the antenna gain of the receivers.

• The signal-to-noise ratio (SNR) in the environment.

• The reflectivity and cross-section area of the objects.

• The ADC sampling rate.

• The memory size for storing the ADC samples.

• The maximum allowed frequency of the IF signal.

• The slope of the chirp.

Some of these factors are limited by the environment and the hardware, as can be modelled by

the well-known radar range equation [159]:

dmax = 4

√
σPtxG txGrxλ2

(4π)3LPrx
(3.14)

where dmax is the maximum detectable range, Ptx is the transmission power, G tx and Grx are

the antenna gains of the transmitter and receiver, λ is the wavelength, L is the loss of the entire

system, and Prx is the minimum power required for the receiver to receive the signal.

On the other hand, the frequency of the IF signal and the slope of the chirp can be adjusted by

the user to fit different applications. The maximum IF frequency depends on the signal processing

chain. For example, for the IWR1443 mmWave radar from TI [160], the typical ADC sampling

rate is 37.5 MHz, which limits the maximum IF frequency to 18.75 MHz according to the Nyquist

sampling theorem. The digital filter uses an FIR filter with an 80% passband, and therefore

the maximum IF frequency is 15 MHz. On the other hand, while the slope of the chirp can be

configured within a certain range, its value affects many other factors. For example, a slower

chirp could increase the distance of detection, but would also increase the memory required to

store the processed signal and increase the time required to finish one chirp. For another example,

when setting the IF frequency to 15 MHz and the slope of the chirp to S = 100 MHz/us, according

to Equation (3.13), the maximum distance that can be measured will be 45 metres. However,

considering the requirement of other measurements like the resolution, the maximum distance

is often set much lower. As the scope of this research is in indoor environments, the range is

typically configured to be within 10 metres.
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3.2.2.2 Distance Resolution

In order to distinguish two objects that are close to each other, according to the Fourier Transform

Theory, it is required that the frequencies of the two IF signals representing the two objects

should be greater than the reciprocal of the signal period. Let T denote the length of the IF signal

(roughly equal to the signal transmission time), the two objects can only be distinguished if the

following equation is true:

2d
c

·S > 1
T

d > c
2ST

d > c
2B

(3.15)

The minimal value of d is the distance resolution, i.e. the minimal distance required to distinguish

two objects. It can be seen that the distance resolution solely depends on the available bandwidth

of the radar. The larger the bandwidth, the smaller (better) distance resolution. In practice, TI

mmWave radars use up to 4 GHz bandwidth and have a distance resolution of around 4 cm.

3.2.3 Velocity Calculation

In order to measure the velocity, the radar transmits a chirp every Tc seconds, and computes

the phase differences between them. Assuming an object is moving at velocity v, then the

displacement of the object between any two successive chirps would be Tc ·v. In other words, the

second chirp signal would have travelled an additional distance of ∆d = 2 ·Tc ·v in comparison to

the first chirp. Based on Equation (3.10), the phase of a sinusoid before and after travelling a

distance ∆d can be written as 2π f τ and 2π f (τ+ ∆d
c ), respectively, and the phase shift would be:

∆φ= 2π f (τ+ ∆d
c

)−2π f τ= 2π f0
∆d
c

= 2π
∆d
λ

(3.16)

Therefore, the phase shift between two chirps due to the velocity is:

∆φ= 2π
2 ·Tc ·v

λ
= 4π

Tc ·v
λ

(3.17)

Re-arranging this equation gives:

v = λ∆φ

4πTc
(3.18)

To get an accurate velocity estimation, the radar sends multiple chirps to form a frame and

performs a Doppler-FFT over the phases received from these chirps to find ∆φ and, hence, the

velocity.

3.2.3.1 Maximum Velocity

Since the phase of a signal always has a range of [−π,π], unambiguous measurement of the phase

requires |∆φ| ≤ 180° or |∆φ| ≤π. This limits the maximum velocity of the subject that a radar can
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measure. Considering the extreme situation where ∆φ=π, taking it into Equation (3.18) gives:

vmax = λπ

4πTc
= λ

4Tc
(3.19)

That is, within a certain period of time, measuring a higher velocity will require a shorter Tc, i.e.

more frequent measurements. As an example, when the wavelength λ is 4 mm, a Tc of 100 us

(10 kHz measuring rate) gives a maximum measurable velocity of ±10 m/s.

3.2.3.2 Velocity Resolution

The velocity of the subject is determined through a Doppler-FFT, where the frequency component

corresponds to the rate of the phase change due to the velocity. The theory of discrete Fourier

transforms (DFT) states that two frequencies can be resolved if their difference ∆φ is greater than

2π/N, where N is the total number of samples, i.e. the number of chirps in a frame. Considering

the extreme situation where ∆φ= 2π/N and taking it into Equation (3.17), it becomes:

2π
N

= 4π
vTc

λ
(3.20)

Defining T f = Tc ·N to be the duration of a frame,

1
N

= 2
vT f

λN

v = λ

2T f

(3.21)

That is, a longer frame time will give a smaller (better) velocity resolution. For example, with 50

chirps in a frame and each chirp being 100 us, then the velocity resolution will be 0.4 m/s.

3.2.4 Angle Calculation

The angular position of the object, or the AoA, can be estimated by having multiple antennas

operating concurrently and by comparing the phase difference between neighbouring receivers. A

number of receivers form an antenna array. Due to the spatial location difference between the

receivers, the signal received at each receiver will have a slight phase difference depending on

the relative position of the receivers and the AoA. The AoA can be computed in both azimuth

and elevation directions, given that there exists more than one antenna in each direction. The

azimuth angle θa is defined to be the angle between the object’s projection on the horizontal plane

and the front direction of the radar. As shown in Figure 3.2, the line of incidence of the object

OA is projected onto the horizontal plane as OB, and the angle between OB and the y-axis is the

azimuth angle θa. The elevation angle θe is defined to be the angle between the object and the

horizontal plane (between line OA and the x-y plane). The azimuth and elevation angles together

will be denoted as θ(a,e).
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Figure 3.2: The azimuth and elevation angle of an object.

There are many algorithms designed for estimating the AoA based on a linear-spaced an-

tenna array, such as the FFT-based method, beamforming method and subspace method. These

algorithms provide a trade-off between the computational complexity and the angular resolution,

as discussed in [161]. In the following sections, some of the most widely-used methods will

be explained, including the FFT-based method, conventional beamforming (also known as the

Bartlett beamforming or the delay-and-sum beamforming), the Minimum Variance Distortionless

Response (MVDR) beamforming (also known as the Capon beamforming) [162], and the Multiple

Signal Classifier (MUSIC) subspace method [163].

Assuming there are Na ×Ne receivers in the azimuth and elevation directions, and M objects

in different directions θ(a,e)m, then each object can be viewed as a signal source and the antenna

array will receive a signal (denoted as x) as a weighted sum of the M data source:

x(Na×Ne) =
M∑

m=1
αms(θ(a,e)m)+n (3.22)

where s(θ(a,e)m) is the steering vector that represents the phase difference between receivers

when a signal arrives with angle θ(a,e)m, α is an unknown parameter that models the signal

transmission from the data source to the receivers, and n is the noise. The AoA estimation can be

modelled as estimating the values of θ(a,e) for each object m, given a set of receiver data (x).

3.2.4.1 Steering Vector

The steering vector is a function of the antenna layout and the incident angle, as will be shown

in Equation (3.25) and Equation (3.29). To introduce the concept of steering vectors, it is easier

to start with the one-dimensional situation. For linear-spaced arrays, the receivers are often
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Figure 3.3: Phase difference between two receivers from one signal source.

separated by a small distance l that is equal to half of the signal wavelength, i.e. l = λ
2 , to maximize

the angle-of-view (AoV) (see Section 3.2.4.5). Assuming there are two receivers separated by l,

a signal will travel an additional distance ∆d to reach the second receiver, where the following

approximation can be made (as shown in Figure 3.3):

∆d = l · sin(θ) (3.23)

Given that the phase of a sinusoid signal travelled over any distance ∆d will have a phase 2π∆d
λ

(see Equation (3.16)), the phase difference between the two neighbouring receivers will be:

∆φ= 2π · ∆d
λ

= 2π · l · sin(θ)
λ

=π · sin(θ) when l = λ

2

(3.24)

When using an antenna array with N azimuth receivers, each subsequent receiver beyond

the first one will receive an additional phase change of ∆φ, which can be written as a steering

vector:

s(θ, N)= [1, e jπ·sin(θ), e2 jπ·sin(θ), ..., e(N−1) jπ·sin(θ)] (3.25)

When considering the AoA in both azimuth and elevation directions, the situation is shown

in Figure 3.4. Distance ∆da and ∆de represent the extra distance travelled by the signal to reach

receiver RX0 when compared with the azimuth receiver RX1 and the elevation receiver RX2

respectively. Similar to Equation (3.24), the estimation of the elevation angle θe is given by:

sin(θe)= ∆de

l

= ∆φe

π

(3.26)
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(a) Estimating the elevation angle. (b) Estimating the azimuth angle.

Figure 3.4: The AoA can be estimated from the phase difference between adjacent antennas.

where ∆φe is the phase difference between RX0 and RX2.

The azimuth angle requires a projection from the object’s 3D location to the horizontal plane.

As shown in Figure 3.4b, the projection from ∆da to ∆da’ gives:

∆da =∆da’ · cos(θe) (3.27)

Then, the angle θa can be calculated as:

sin(θa)= ∆da’
l

= ∆da

l · cos(θe)

= ∆φa

π · cos(θe)

(3.28)

where ∆φa is the phase difference between RX0 and RX1.

When using an antenna array with Na azimuth receivers and Ne elevation receivers, the

steering vector can be written as:

s(θ(a,e), Na, Ne)=


1, e j∆φa , ..., e j(Na−1)∆φa

e j∆φe , e j(∆φe+∆φa), ..., e j(∆φe+(Na−1)∆φa)

..., ..., ..., ...

e j(Ne−1)∆φe , e j((Ne−1)∆φe+∆φa), ..., e j((Ne−1)∆φe+(Na−1)∆φa)

 (3.29)

where ∆φe =π·sin(θe) and ∆φa =π·cos(θe)·sin(θa), as shown Equation (3.26) and Equation (3.28).

Certain radar applications require the x-y-z coordinate of the object instead of the azimuth

and elevation angles. Therefore, the calculation of the exact value of θa and θe is sometimes not

required. Referring to Figure 3.2 and using Equation (3.26) and Equation (3.28), the coordinate
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of the object can be calculated as:

x =OB · sin(θa)=OA · cos(θe)sin(θa)=OA · ∆φa

π

z =OA · sin(θe)=OA · ∆φe

π

y=
√

OA2 − x2 − z2

(3.30)

Given that OA can be obtained from the range-FFT as discussed in Section 3.2.2, the x-y-z

coordinate can be obtained from the phase difference ∆φa and ∆φe. Therefore, the AoA estimation

of an object can be considered equivalently as searching for the best matching steering vector

s(θ(a,e)m) of the object.

3.2.4.2 Angle-FFT Method

The simplest way of estimating s(θ(a,e)m) of an object m in Equation (3.22) is by using correlation

between the receiver data x and the steering vector from the candidate angles. A set of candidate

steering vectors s(θ̄(a,e)) is defined for θa ∈ [−π,π],θe ∈ [−π,π], and the correlation is calculated as

s(θ̄(a,e)) · x, which will yield a peak output when θ̄(a,e) equals to θ(a,e)m. This process is equivalent

to applying an FFT over the receiver data x, since the steering vector can be considered the same

as a set of FFT coefficients, which gives the frequency components in terms of ∆φa and ∆φe. This

FFT is also referred to as the angle-FFT.

As an example, Figure 3.5 shows the antenna layout of the TI IWR6843 radar. It has three

transmitters and four receivers, which can form a 12-antenna array when using multiple-in

multiple-out (MIMO) techniques [164]. The phase at each virtual antenna is also shown, where ϕ

is the random initial phase of the first receiver. The azimuth antennas will form a signal e j(∆φan+ϕ)

and the elevation antennas will form a signal e j(∆φan+2∆φa+ϕ+∆φe), where n is the antenna index

in each direction. The value of ∆φa can be obtained by applying an azimuth-FFT over the azimuth

antennas (RX1-RX4 and RX9-RX12), which will give the frequency ∆φa and phase ϕ. The value

of ∆φa can be obtained by applying an FFT over the elevation antennas, which will give the

frequency ∆φa and phase 2∆φa +ϕ+∆φe. Hence, the value of ∆φe can also be calculated given

∆φa and ϕ.

One limitation of the above approach is that, although the azimuth-FFT can distinguish

objects from different azimuth angles, objects from the same azimuth but different elevation

angles can hardly be distinguished. Separation of such objects would rely on the range- and

Doppler-FFT, as the object only needs to be distinguished once during the entire DPC. An

alternative approach to calculate ∆φa is by applying an elevation-FFT over a set of antennas in

the elevation direction. For example, Figure 3.6 shows the layout of the TI overhead detection

sensor (ODS) model, where the antennas form a near-square shape and allows a 2D angle-FFT to

be performed. The ODS models allow a higher elevation resolution at the cost of reduced azimuth

resolution.
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Figure 3.5: IWR6843/IWR1443/IWR1843 radar antenna layout, the virtual antenna array and
the received phases.

Figure 3.6: IWR6843ODS radar antenna layout, the virtual antenna array and the received
phases.

The major problem of the angle-FFT method is the resolution. Considering there are two

objects separated by an angle ∆θ, the phase difference between adjacent receivers for the two

objects, according to Equation (3.24) and assuming l = λ
2 , will be:

∆φ1 =π · sin(θ)

∆φ2 =π · sin(θ+∆θ)
(3.31)

and the difference between them will be:

∆φ=π · (sin(θ+∆θ)− sin(θ)) (3.32)

The small angle approximation states that sin(α+β)≈ sin(α)+β·cos(α) for small angles. Applying

the approximation to the equation above gives:

∆φ=π · cos(θ)∆θ (3.33)
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According to the DFT theorem, two frequencies can be resolved if ∆φ > 2π/N, where N is the

number of samples. Therefore, in order to separate the two angles, the following equation needs

to be satisfied:

π · cos(θ)∆θ > 2π
N

∆θ > 2
N · cos(θ)

(3.34)

where N is how many receivers are available. With Ntx transmitters and Nrx receivers, a virtual

antenna array of Ntx × Nrx can be generated with MIMO techniques. This is equivalent to 1

transmitter and Ntx ×Nrx receivers and will result in an improvement in the angular resolution:

θres = 2
Nrx ·Ntx · cos(θ)

(3.35)

The resolution will be higher with smaller angles and more antennas. For example, when detecting

objects at 30° with 8 virtual receivers, the angular resolution will be θres = 0.289= 16.6°.

3.2.4.3 Beamforming Method

Beamforming methods calculate a set of weights w(Nrx×Θ) for the Nrx virtual receivers in the array

(both azimuth and elevation), and for all possible angles θ(a,e) ∈Θ where θa ∈ [−π,π],θe ∈ [−π,π].

When applying a column of weights to the receiver data x, the signal from the direction θ will

receive a constructive inference. By searching all possible angles θ(a,e), a power spectrum p with

size Θ can be obtained, where a high power in the spectrum indicates that there is a data source

in that direction:

p = wH x (3.36)

where wH is the Hermitian transposition of w. The angles of the M objects can be obtained by

taking the M highest peaks in p and finding the corresponding entries in w.

In the data model shown in Equation (3.22), signals reflected from objects will be correlated

when being received at each receiver, whereas the noise will be uncorrelated. Therefore, one way

to extract signal information from x is by calculating a sensor covariance matrix Rx:

Rx = E{xH x} (3.37)

where E represents the statistical expectation. In practice, it is impossible to get an accurate

covariance matrix, but only an estimation from a set of data snapshots over time:

Rx = E{xH x}≈ 1
N

N∑
t=1

xH(t)x(t) (3.38)

where x(t) represents one snapshot (or one frame) of the receiver data x. When evaluating the

beamforming power spectrum using multiple snapshots, the overall power spectrum becomes the
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statistical expectation of p in Equation (3.36) over the snapshots, which gives:

P = E{|wH x|2}

= 1
N

N∑
t=1

|wH x(t)|2

= 1
N

N∑
t=1

wH x(t)xH(t)w

= wHRxw

(3.39)

There are many algorithms designed for calculating the weights w. The conventional beam-

forming uses the steering vector directly as the weights, which is conceptually equivalent to the

angle-FFT method (or correlation-based method) in Section 3.2.4.2:

Pconventional = sHRxs (3.40)

where s is the candidate steering vector in the format of Equation (3.29).

There are also adaptive beamforming algorithms that calculate the weights using the signal

information embedded in the covariance matrix. For example, the MVDR algorithm aims at mini-

mizing the variance from non-interested directions while keeping the signal from the candidate

direction distortionless [162]. It defines the weight w as:

wmvdr =
R−1

x s
sHR−1

x s
(3.41)

Putting Equation (3.41) together with Equation (3.39) simplifies to:

Pmvdr =
1

sHR−1
x s

(3.42)

Once the beamforming power spectrum is computed, the peaks in the spectrum will correspond

to the signal from the objects.

3.2.4.4 Subspace Method

The core of the subspace method is that, since the signal x should contain M correlated signals

and uncorrelated noise, the covariance matrix Rx should have M non-zero eigenvalues and

N −M zero eigenvalues, where N is the rank of Rx that is equal to the number of receivers. The

eigenvectors corresponding to the M eigenvalues form the signal subspace, and the eigenvectors

corresponding to the zero eigenvalues form the noise subspace. The signal subspace and the noise

subspace are orthogonal.

One of the most widely-used subspace-based algorithms is the MUSIC algorithm [163]. It

searches for steering vectors that are orthogonal to the noise subspace. The power spectrum of

the MUSIC algorithm can be written as:

Pmusic = 1
sHUUH s

(3.43)
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where U is the set of eigenvectors corresponding to the zero eigenvalues. A more detailed

evaluation of the mentioned AoA estimation algorithms will be given in Chapter 4.

3.2.4.5 Maximum Angle-of-View

Unambiguous measurement of the angle requires |∆φ| ≤ 180° or |∆φ| ≤ π, since phases of any

signal have a range of [−π,π]. Considering the extreme situation where ∆φ=π, Equation (3.24)

gives

π= 2π · l · sin(θ)
λ

sin(θ)= λ

2l

θ = sin−1(
λ

2l
)

(3.44)

which gives the maximal value of θ as

θmax = sin−1(1)= 90° when l = λ

2
(3.45)

That is, neighbouring receiving antennas should be separated by a distance of half the wavelength

of the signal (approximately 2 mm), to achieve a ±90° AoV.

However, due to the antenna characterization and signal attenuation, the actual AoV of the

radar is much smaller. Table 3.2 shows, for some TI radar models, at which angles the signal

strength of the radar will drop to a certain level (data from TI [165–168]). As an example, all

radars can hardly detect anything beyond ±50° horizontally, as the signal strength would reduce

to 1/4 (−6 dB) of the original.

Table 3.2: TI mmWave radar AoV at given signal strength (H for Horizontal and V for vertical).

Frequency 3 dB-H 3 dB-V 6 dB-H 6 dB-V
IWR1443 77 GHz 28° 14° 50° 20°
IWR1642 77 GHz 32° 14° 48° 18°
IWR1843 77 GHz 28° 14° 50° 20°
IWR6843 60 GHz 32° 11° 47° 17°
IWR6843ODS 60 GHz 28° 32° 40° 46°

3.3 TI mmWave Radars3

In this section, the details of the TI mmWave radars are discussed, including the DPC implemen-

tation on the radar, the radar configuration steps and the data transmission between the radar

and a host environment.

3Some content of this section has been published in [20] ©2021 IEEE.
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3.3.1 Hardware Models

The TI mmWave radars consist of two main series: the industrial IWR series and the automotive

AWR series. There are also different models in each product series. The models differ mainly in

the following aspects:

1. Number of antennas and the layout. Some models (like the IWR1443) have three transmit-

ters that include both azimuth and elevation channels, whereas others (like the IWR1642)

have two transmitters that only include the azimuth channel. All models have four re-

ceivers.

2. Processors and hardware accelerators. Most radars have an ARM processor for controlling

the radio frequency subsystem and communication between the host environment. Some

models (like the IWR1443) have hardware accelerators that are designed for the FFTs,

and some (like the IWR1642) have programmable DSPs that perform the FFTs and other

advanced post-processing.

3. Operational frequency, mostly either 77 GHz to 81 GHz or 60 GHz to 64 GHz.

4. Supported chirp configuration, which is mainly restricted by the maximum IF frequency,

ADC sampling rate and memory size.

5. Peripherals for communications with external hardware and the host environment.

More detailed comparisons between the models are available from the TI radar datasheets [169].

For this research, the IWR1443 and IWR1843 radars have been used. They both have three

transmitters and support 3D scanning of the scene. The IWR1443 models were used in the early

stage of this research and were replaced by the IWR1843 models after their release, as the latter

has additional DSPs on the chip. However, empirically no significant performance difference

between the two models was observed, and the models did not affect the research outcome much

as most of the data processing in this research was done in a host environment.

3.3.2 DPC

TI mmWave radars have on-chip processors that are able to implement the algorithms described

in Section 3.2. Figure 3.7 shows the default DPC implemented on the radar, where more details

on the other possible DPCs will be discussed in Chapter 4.

The radars use a complex mixer to mix the transmitted signal and the received signal, a

lowpass filter to generate the IF signal, and an ADC to convert it into a digital signal. The

IF signal is generated and processed independently regarding each receiver. A range-FFT is

computed inline after the sampling of the IF signal, and the range-FFT result is saved to the

on-chip memory. When a frame is finished and the range-FFT result of all chirps is saved, a

Doppler-FFT is applied over each range bin across the chirps, which gives a 2D matrix containing
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Figure 3.7: DPC of the TI mmWave radar.

the Doppler-FFT result at each range-Doppler bin. This process is also referred to as the range-

Doppler-FFT. Once the range-Doppler-FFT is finished, a constant false alarm rate (CFAR) peak

detection algorithm is applied to extract the peaks from the 2D matrix, where each peak is

considered to represent one object. Finally, a virtual antenna array is constructed and an angle-

FFT is applied over each peak across the virtual antennas to determine the AoA of the object. The

final output will be in the format of a point cloud, where each point corresponds to an object and

encodes the x-y-z coordinate and the velocity of the object. The point cloud could be post-processed

using the on-chip DSP or be transmitted to a PC for further processing.

3.3.2.1 CFAR Peak Detection

After each stage of the FFTs, a peak detection algorithm is required to identify the presence of

the subject. A common choice of the peak detection algorithm for radar applications is the CFAR

algorithm [170]. It uses an adaptive threshold and aims to give a constant FAR (False Alarm

Rate) at different signal strengths, which is particularly useful for radars as objects far away

tend to give a low signal strength. The algorithm iterates through all data points (referred to as

the cell-under-test (CUT)) and calculates the noise power from neighbouring cells in a window.

The noise power is defined to be a scaled sum of all neighbouring cells, except those immediately

next to the CUT (referred to as the guard cells), to avoid any power leakage from the CUT. The

scale factor is determined based on the desired FAR. At any position, if the power of the CUT is

higher than the noise power, then it is considered to be a peak and is likely to correspond to a

real object in the scene. CFAR is performed on the chip using either the hardware accelerator or

DSP. The window size and the desired FAR can be configured regarding the application.

3.3.3 Radar Configuration

Using the mmWave software development kit (SDK) provided by TI [171], the user can configure

the chirp to fit their use case. The on-chip ARM processor can be used to read commands from
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the host environment and configure the RF subsystem. The main properties that need to be

configured include the following:

1. Transmitters and receivers to be used.

2. Structure of the chirp and frame.

3. Post-processing algorithms, including the FFTs and the CFAR algorithm.

Figure 3.8: Configuration of a chirp frame.

The radars have two to three transmitters and four receivers that can run concurrently.

However, when multiple transmitters are used at the same time, a modulation scheme is required

to separate the signal from each transmitter, especially when estimating the AoA of the object.

Two modulation schemes are supported, time-division multiplexing (TDM) and binary phase

modulation (BPM) [164]. In the TDM mode, only one transmitter is enabled in each chirp and

the chirps are interleaved in the time domain, which allows the signal from each transmitter to

be separated easily (see Figure 3.8). However, the potential of the multiple transmitters is not

fully used with TDM, as only one transmitter will be active at any timestamp. In contrast, in

the BPM mode, all transmitters are enabled at the same time but send signals with a certain

phase shift. When the signals are received, the signal from each transmitter can be restored by

an appropriate decoding scheme. BPM has a higher complexity, but can provide a higher SNR as

all the transmitters are enabled at the same time. However, TI radar models do not fully support

the BPM mode, so this research focuses on the TDM mode and left BPM as future work.

The structure of a chirp is shown in Figure 3.9 [171]. A chirp mainly consists of three

properties:

1. The idle time between any two successive chirps. A 2 us to 7 us idle time is generally

required for the chirp to be reset after each transmission.

2. The ramp time, where the frequency of the chirp signal increases at a certain slope

within this period. The transmitters are generally switched on at the start of the ramp

time. However, they can be configured to be switched on before or after the ramp time,
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Figure 3.9: Structure of a chirp signal.

if required. The ramp time of a chirp is often around 50 us to 200 us and can vary a lot

between applications.

3. The ADC active time, where the ADC actively samples the data from the receivers at its

sampling rate. The ADC should only be active within the ramp time while setting aside a

few microseconds of settling time before and after to ensure the quality of the chirp. The

settling time is generally around 5 us to 10 us.

The sweeping bandwidth of the chirp is defined as ramp time×chirp slope and should be

below the available bandwidth (4 GHz), whereas the effective bandwidth is ADC active time×
chirp slope. An ideal chirp configuration should aim at utilizing the full 4 GHz bandwidth, but

can also vary a lot depending on the desired detection resolution of the application. The detailed

configuration used in this research will be given in each chapter later.

3.3.4 Data format

There are two ways to read data from a radar: reading the digitalized IF signal directly from the

ADC or reading the processed point cloud from the serial port.

3.3.4.1 IF signal

Since the ADC sampling rate can reach up to 37.5 Msps, transferring the raw IF signal to a PC

requires a very high bandwidth. Therefore, TI provides separate hardware platforms to capture

the raw data: the TSW1400 [172] and the DCA1000 board [173]. Both of them are FPGA (Field

Programmable Gate Arrays) based designs and allow raw IF signal capturing from the mmWave

radar modules. The IF signal after the mixer can be transmitted to the data capture board

through up to four low-voltage differential signalling (LVDS) lanes. The TSW1400 board has

1 GB memory that is able to hold the raw data, which can be dumped to a PC through a serial

port once the capturing process is finished. In contrast, the DCA1000 board allows real-time data
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Figure 3.10: Raw data format from an IWR1443 radar when using a DCA1000 board.

streaming from the radar to the PC through a gigabits Ethernet port. Since the DCA1000 allows

real-time data capturing and does not have any memory constraints, it is the preferred approach

for this research. This setup has been used in the vital sign detection system in Chapter 7.

The radar uses a complex band architecture that includes a quadrature mixer for generating

the IF signal. It mixes the received signal with both an in-phase and a quadrature version

of the transmitted signal, to generate a complex IF signal. This brings the advantage of an

improved noise figure and detection performance [158]. The ADC can operate in three modes:

real, complex-1x and complex-2x. The ADC only takes the in-phase signal when in the real mode,

and takes both the in-phase and the quadrature signal when in the complex mode. When in the

complex mode, the signal consists of an in-band signal and an image band signal. The former

contains signals reflected from the object and is used for object detection, and the latter contains

noise and inference information that can be used for signal quality evaluation and inference

cancellation. When in the complex-1x mode, the complex signal will be filtered and shifted so that

only the in-band signal is kept. Complex-2x, on the other hand, contains both the in-band and

the image band, and can be used for custom applications when information in the image band is

necessary.

Each ADC sample is a 2-byte word. The captured data will be arranged in different layouts

depending on the capture board, the radar model and the antenna configuration (more details

in [174]), and the corresponding decoding scheme is required when reading the data for post-

processing. For example, Figure 3.10 shows the data format when using four receivers on an

IWR1443 radar with the DCA1000 board.

3.3.4.2 Point Cloud

The on-chip hardware processors on the radar implement a complete DPC for processing the

ADC data. Therefore, it is much easier for the user to configure the processors and only capture
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Figure 3.11: Example message structure from IWR1443.

the processed data. Communication with the radar is made through the use of two serial ports:

one configuration port and one data port. The configuration port allows the PC to interact with

the radar and send commands, such as configuring the antennas and switching on/off the radar.

The data port is read-only from the PC side, where the radar will start dumping the processed

data to this port once it starts operating.

The on-chip DPC is user-programmable. By using the out-of-box system firmware provided

by TI, the processed data can be captured in the form of data messages. As an example, the

structure of a data packet from the IWR1443 radar is shown in Figure 3.11. Each message will

have a header to indicate the start of a packet, its content type and its length. Decoding the data

packet includes detecting and parsing the header, fetching the content whose length is specified

by the header, and processing the content. The most important data packets are those stating

the presence of any object in front of the radar, which will be reported with its x-y-z coordinates,

velocity and signal strength.

3.4 Conclusion

This chapter introduces the use of mmWave radars in HAR and describes the fundamentals of

mmWave sensing techniques required for developing the rest of this research. It explains the

underlying FMCW theorem of the radar that is used for detecting the distance, velocity and

AoA of an object in front of the radar. The radar sends a chirp signal, receives its reflection and

processes the signal to get the frequency and phase variation due to the signal passing through

the scene. The distance of the object can be determined by the signal frequency, the velocity

can be determined by sending successive chirps and analysing the phase variation between

the chirps, and the AoA can be determined by using multiple transmitters and receivers and

analysing the phase variation between the receivers. There are many AoA estimation algorithms

in the literature, including angle-FFT methods, beamforming methods and subspace methods,

among which the angle-FFT is the least computationally expensive and can be used on embedded

processors, whereas the other algorithms provide a higher resolution. A combination of the

distance and AoA allows a point cloud to be generated that encodes the spatial shape of the object,

which forms the foundation for HAR systems in the next chapters.
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4
USING MMWAVE RADAR AS 3D SENSOR

As discussed in Chapter 3, mmWave radars are able to generate point clouds to represent

objects in the scene. However, the accuracy and density of the generated point cloud

are still much lower than LIDARs. Although researchers have used mmWave radars for

various applications, there are few quantitative evaluations on the quality of the point cloud

generated by the radar and there is a lack of a standard on how this quality can be assessed.

This work aims to fill the gap in the literature. A radar simulator is built to verify the DPC

described in Chapter 3 and to examine the capability of the mmWave radar as a high resolution

3D sensor. It will be shown that the point cloud generated from the radars can be noisy and

have an imbalance distribution. To address the problem, a novel super-resolution point cloud

construction (SRPC) algorithm is proposed to improve the spatial resolution of the point cloud

and is shown to be able to produce a more natural point cloud and reduce outliers.

The rest of the chapter is organized as follows. Section 4.1 presents the details of the simulator

for simulating the radar raw data towards a scene. Section 4.2 describes the DPCs that are

commonly seen on a mmWave radar. Section 4.3 describes the FAUST dataset used with the

simulator for evaluating the radar. Section 4.4 presents and discusses the evaluation results.

Section 4.5 presents the novel SRPC algorithm to improve the resolution of the radar point cloud

and shows its effectiveness. Section 4.6 concludes the chapter.

4.1 mmWave Radar Simulator

Radar data simulation allows researchers to focus on algorithm design and verification, instead of

investing too much time in the hardware and real-world data collection. Existing radar simulators

are often not designed for 3D imaging and have certain constraints. For example, the system in

[175] generates range and Doppler information of the radar rather than the raw data, the system
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in [176] only supports single antenna data generation and cannot be used to estimate the AoA,

and the system in [177] only supports up to four receivers in one direction and cannot be used for

3D imaging. In this research, a lightweight mmWave radar simulator is designed that supports

raw data generation of a multi-antenna mmWave radar, configurable antenna parameters and

layout, and customized scene construction using 3D human models with programmable motions.

The radar is simulated to have one transmitter and one receiving antenna array, which is

practically equivalent to a multi-transmitter multi-receiver radar using an appropriate mod-

ulation scheme [164]. Any two neighbouring receivers in the array are separated by λ0/2, as

explained in Section 3.2.4.5, where λ0 (approximately 3.9 mm) is the wavelength of the mmWave

signal at its chirp starting frequency (77 GHz). The simulator simulates the IF signal at each

receiver of a mmWave radar when pointing toward a scene. The scene consists of M points, where

each point has a unique x-y-z coordinate and represents the spatial location of the object in the

scene. Each point is modelled as a corner reflector and reflects the mmWave signal sent out by

the radar with a certain reflectivity. The IF signal at a receiver during one chirp is modelled

using Equation (3.10) and Equation (3.11) in Chapter 3. Given a certain chirp configuration, the

frequency and phase of the IF signal from one point are determined by the distance d between the

point and the receiver. The amplitude of the IF signal is set to be inversely proportional to d4, to

simulate the power loss due to distances according to the radar range equation (Equation (3.14)).

The final IF signal at a receiver is the accumulated IF signals from all M points in the scene,

with an additional white Gaussian noise n, as shown in Equation (4.1).

IF(t)=
M∑

i=1

1
d4

i
e j(2π·Sτi ·t+ 4πdi

λ0
) +n (4.1)

where di and τi are the distance and time-of-flight (ToF) from the transmitter to the point i and

then to the receiver, and S is the slope of the chirp. The amplitude of the noise n is controlled

by the desired SNR during the experiment. The signal IF(t) is sampled into a digital signal

of length Ns, where Ns = (duration of the chirp)× (ADC sampling rate). During one chirp, the

radar receives a signal that can be represented as a 2D matrix of size Nrx ×Ns, where Nrx is

the number of receivers in the array. One frame includes Nc chirps that form a 3D matrix of

size Nrx ×Nc ×Ns, which becomes the input matrix of the point cloud construction algorithm, as

shown in Figure 4.1.

4.2 Point Cloud Construction Algorithm

The construction of a point cloud takes an input matrix of size Nrx × Nc × Ns and outputs a

2D matrix PCK of size K ×3 (referred to as the output point cloud), where K is the number of
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Figure 4.1: One frame of radar data represented as a 3D matrix.

detected points and 3 is the x-y-z coordinates.

PCK =


x1, y1, z1

x2, y2, z2

..., ..., ...

xk, yk, zk

 (4.2)

The distance and AoA of the object are required to estimate its x-y-z coordinate. In an FMCW

radar model, the distance of an object can be computed through a range-FFT over the IF signal,

whereas the AoA estimation can be performed by analysing the signal difference between multiple

receivers. As discussed in Section 3.2.4, there are a variety of algorithms for computing the AoA

based on a uniform antenna array, including the angle-FFT, beamforming and subspace methods.

The angle-FFT method is a single-snapshot method that can make an estimate based on a single

chirp, whereas the other methods are multi-snapshot methods that require a few chirps to make

one estimate. The performance of the algorithms depends on several factors, including the antenna

layout, number of antennas, chirp configuration, number of snapshots, SNR, environment, etc.

This section studies one of the most common DPCs used on mmWave radars and its variant,

which have shown success in many HAR systems, like in [116, 154, 156].

4.2.1 Data Processing Chains

There are two possible DPCs depending on the use of a Doppler-FFT or not, as shown in Figure 4.2.

Both DPCs require a range-FFT over the raw data. The range-FFT identifies the frequency

components in the IF signal that corresponds to the distance of an object. It transforms the

input matrix X of size Nrx ×Nc ×Ns into a range matrix R of size Nrx ×Nc ×N∗
s , where N∗

s is

the length of the range-FFT. The first DPC is used by TI in the radar firmware. It applies a

Doppler-FFT on the data from all the chirps and generates a Range-Doppler heatmap of size

Nrx ×N∗
c ×N∗

s , where N∗
c is the length of the Doppler-FFT. Then, it searches for peaks in the

Range-Doppler heatmap (using the average of all receivers), extracts the receivers’ data for each

peak and generates a 2D matrix of size K ×Nrx, where K is the number of detected peaks and,

equivalently, the number of detected points. The CFAR algorithm described in Section 3.3.2.1 is
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Figure 4.2: Two possible DPCs for mmWave radar point cloud construction.

used for detecting peaks from the Range-Doppler heatmap. The parameters of CFAR control the

sensitivity of the peak detection and are considered the hyperparameters of the system. Finally,

a single-snapshot AoA estimation is applied to each point in the matrix for a total of K times,

to obtain the x-y-z coordinates of all detected points. The AoA estimation algorithm can be any

of the angle-FFT, beamforming or subspace methods. Although the beamforming and subspace

methods are multi-snapshot algorithms, the Doppler-FFT implicitly uses the information from

all chirps and allows a good estimate of the covariance matrix at the AoA estimation stage.

The second DPC does not include a Doppler-FFT. Instead, it considers the chirps as different

snapshots and performs one multi-snapshot estimation for each range bin for a total of N∗
s times.

More specifically, the input range matrix of size Nrx×Nc×N∗
s is re-arranged into N∗

s instances of

Nrx ×Nc matrix, and the AoA estimation is applied on each Nrx ×Nc matrix using Nc snapshots.

The AoA estimation algorithm can be any of the beamforming or subspace methods. Finally,

the points detected at each range bin are concatenated into one point cloud. In this research,

the angle-FFT, conventional beamforming, MVDR beamforming and MUSIC subspace methods

described in Section 3.2.4 are being studied.

4.2.2 Model Order Estimation

As described in Section 3.2.4.3 and Section 3.2.4.4, the beamforming and subspace methods

include an angle power spectrum computation step, where each peak in the spectrum corresponds

to an incoming signal from a point. However, in both DPCs, the expected number of incoming
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(a) An azimuth search (red) fol-
lowed by an elevation search
(black).

(b) A full 2D azimuth-elevation
search.

(c) A 2D azimuth-elevation
search using sub-grids.

Figure 4.3: Three approaches when searching for the steering vectors.

signals will be unknown in practice. Therefore, this number needs to be estimated from the

signal data. This step is referred to as model order estimation. For this purpose, the covariance

matrix of the signal data and its eigenvalues are computed. As described in Section 3.2.4.4,

the covariance matrix should have a size of Nrx × Nrx and has a full rank equal to Nrx, and

there should be M large eigenvalues that correspond to the number of incoming signals and

Nrx −M zeros corresponding to noise. In practice, due to the presence of noise, the difference

between these eigenvalues may not be significant. Therefore, the minimum descriptive length

(MDL) algorithm [178] is used for estimating the value of M. It fits a statistical model using the

eigenvalues and searches for the optimal value of M that minimizes a cost function. The MDL

algorithm is used in the AoA estimation step in both DPCs to estimate the number of incoming

signals. Once the angle power spectrum has been calculated, all the local maxima will be found

and the largest Mmdl peaks will be taken as the output, where Mmdl is the value found from the

MDL algorithm.

4.2.3 Steering Vector Searching

The beamforming and subspace methods search for the steering vectors that maximize a power

function. This process can be carried out using three approaches: an azimuth search followed by

an elevation search, a 2D azimuth-elevation search or a 2D search using sub-grids. An example

of the three approaches is shown in Figure 4.3. In the example, the power spectrum shows the

incoming direction of the signal. The space of the spectrum is sampled into a 17×17 grid and

each vertex on the grid represents a candidate AoA to be tested. In the first approach, an azimuth

AoA search is performed using the data from azimuth receivers and steering vectors that only

consider the azimuth angle. Then, based on the azimuth AoA output, a secondary search is

performed in the elevation direction using the data from all receivers. This approach has the
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Figure 4.4: Some examples of the mesh models and point clouds from the FAUST dataset.

least computational cost (34 searches in the example), but the performance can be suboptimal as

the azimuth search may not cover the actual AoA. The second approach performs a 2D search

that considers all possible combinations of the azimuth and elevation directions and uses data

from all receivers. It is computationally expensive (289 searches in the example) but provides

the most accurate estimate. The third approach defines several levels of grids and performs

the AoA search at different granularities. It starts the searching with a sparse grid, finds the

peaks, defines a denser grid around each peak and performs the next search. The process can be

performed iteratively until the desired resolution is achieved. It reduces the computational cost

of the second approach significantly as it skips certain regions in the spectrum (50 searches in

the example), at the cost of the potential possibility of missing some peaks.

4.3 Dataset

The FAUST dataset [179] is used to serve as the ground truth for the simulator, to evaluate the

point cloud construction algorithms described. The datasets contain human models in the form

of watertight triangulated meshes. The meshes are generated from a high-resolution camera

system containing stereo cameras, RGB cameras and speckle projectors. The FAUST dataset

contains 10 subjects and 30 static postures per subject, of which 10 postures are provided with

aligned watertight models, giving 100 models in total.

In the simulation, the models are placed at 2 m from the radar and facing towards the radar.

The height of the radar is set to be in the middle of each model. A ground truth point cloud is

constructed from each model by randomly sampling M points from the surface of the mesh model,

where each point is assumed to be a corner reflector. Some examples of the mesh models and point

clouds are shown in Figure 4.4. The simulator will compute a signal matrix for each point cloud

to simulate the IF signal that would be received by the radar when placed towards a subject, as

described by Equation (4.1). The entire dataset containing the 100 models is split into 80 training

data and 20 test data, where the training data is used for hyperparameters searching in the point
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cloud construction algorithms, and the test data is used for evaluating the algorithms.

When generating the IF signal matrix, there are two sources of randomness: the noise term n

introduced in Equation (4.1) and the random sampling of the ground truth point cloud from the

mesh model. Therefore, all the evaluation processes were repeated 10 times for each mesh model

and the average metrics are reported, to minimize any potential effect of the randomness.

4.4 Evaluation

4.4.1 Evaluation Metrics

To evaluate the quality of the point cloud constructed by an algorithm, it is necessary to define

the evaluation metrics for comparing the output point cloud against the ground truth point cloud.

Let PCM denote the ground truth point cloud and PCK denote the point cloud generated by the

radar, which are a M ×3 matrix and a K ×3 matrix, respectively. It is important to note that,

the point cloud construction algorithm can provide an uncertain number of points that might be

different to the ground truth (M ̸= K), and PCK can have a non-uniform distribution while PCM

is distributed uniformly on the mesh model. The evaluation metrics should take the two point

clouds PCM and PCK as input and measure the similarity between them. First, two points are

defined to be close to each other if their Euclidean distance is less than a certain distance D. In

this research, D is set to 10 cm as an empirical estimation of the error tolerance of a HAR system.

Then, the following terms and metrics are defined:

• Precision: Number of points in PCK that has at least one close point from PCM , divided by

K . It evaluates how many points in PCK are considered to be accurate.

• Sensitivity/Recall: Number of points in PCM that has at least one close point from PCK ,

divided by M. It evaluates how well PCK can cover the space of PCM .

• Fowlkes–Mallows index (FMI): the geometric mean of precision and sensitivity, that is√
precision×sensitivity.

• Intersection over Union (IoU): Establish two regular 3D voxel grids for PCK and PCM with

the voxel size set to 10 cm×10 cm×10 cm, consider a voxel to be occupied if there is at least

one point present in the voxel, then the IoU is calculated as the number of overlapping

voxels of the two voxel grid, divided by the union. The IoU evaluates the similarity of the

two point clouds at the granularity of the voxel size.

An ideal system should have both high precision and high sensitivity, whereas the relative

importance of the two depends on the application. In this section, the FMI, i.e. the geometric

mean of precision and sensitivity, is used to indicate the performance of the system. The IoU also

provides a good indication of how the generated point cloud can represent the scene. However,
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Figure 4.5: Chirp configuration of one frame in the baseline setup.

as the calculation of the IoU is highly sensitive to the voxel size and outliers, it is used as a

secondary metric.

4.4.2 Data Processing Chain and Algorithms

In the first experiment, the two DPCs combined with different AoA algorithms were evaluated

and compared, in terms of the quality of the estimated point cloud and the computational cost. A

baseline radar and scene configuration were designed to approximate a typical setup in a common

indoor environment as follows:

• The radar has one transmitter and a 4×4 uniform receiver array.

• The chirp frequency is 77 GHz to 81 GHz, the slope is 40 MHz/us, the chirp duration is

100 us, the ADC sampling rate is 15 MHz, each frame is 50 ms with 50 chirps, and each

chirp has 1500 samples (as shown in Figure 4.5).

• Each human mesh model is sampled into 512 points and placed at 2 m away from the radar.

• SNR is 30 dB.

• The subject has a velocity of 0.05 m/s moving away from the radar.

• The AoA algorithm uses 512 bins to cover the ±90° AoV, i.e. the angular resolution is 0.35°.

The velocity of the subject is introduced following the assumption that a real person cannot

stay absolutely stationary during the measurement. At a velocity of 0.05 m/s and a frame time of

50 ms, the total displacement will be 2.5 mm and is considered negligible. The velocity provides

a variation on the signal received at different chirps, as otherwise the multi-snapshot AoA

estimation algorithms would receive an identical signal at all chirps and would yield a poor

performance.

Combining the two DPCs with different AoA estimation algorithms, there are 14 methods

in total to be evaluated. For each method, both the 1D search approach and the 2D sub-grid
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Table 4.1: FMI (standard deviation in parentheses) comparison between the algorithms when
using a 4×4 antenna array and a subject velocity of 0.05 m/s.

FMI in %
Angle-FFT

Conventional
Beamforming

MVDR
Beamforming

MUSIC

1D 2D 1D 2D 1D 2D 1D 2D
DPC1 68.3

(7.5)
68.2
(7.9)

60.6
(8.7)

67.2
(7.6)

67.7
(7.6)

74.5
(6.7)

69.7
(6.9)

77.0
(6.2)

DPC2 NA 43.7
(7.8)

46.5
(7.1)

50.2
(7.6)

53.1
(7.4)

52.7
(7.4)

53.2
(7.0)

Table 4.2: IoU (standard deviation in parentheses) comparison between the algorithms when
using a 4×4 antenna array and a subject velocity of 0.05 m/s.

IoU in %
Angle-FFT

Conventional
Beamforming

MVDR
Beamforming

MUSIC

1D 2D 1D 2D 1D 2D 1D 2D
DPC1 21.2

(4.3)
22.5
(4.6)

14.6
(3.9)

20.6
(4.1)

18.0
(4.4)

23.4
(4.1)

19.0
(4.1)

22.7
(3.5)

DPC2 NA 11.2
(3.2)

12.2
(3.0)

13.2
(3.3)

14.7
(3.4)

14.6
(3.2)

14.6
(3.3)

approach described in Section 4.2.3 are included. For the 2D angle-FFT method, the full-grid

approach is used instead of the sub-grid approach, since the benefit of the lower computational

cost is less significant for FFTs. The algorithms will be referred to using the format “DPC-Method-

1D/2D” throughout the chapter. For example, DPC1-Conventional-2D refers to the conventional

beamforming method in DPC1 that uses a 2D steering vector search. The angle-FFT method is

not applicable in DPC2 as it is not a multi-snapshot algorithm. Algorithms in DPC1 include a

CFAR peak detection step on the Range-Doppler heatmap, where the optimal parameters for the

CFAR were searched on the training dataset. Then, the performance of the algorithms on the

test dataset were evaluated and compared. The result is shown in Table 4.1 and Table 4.2 as FMI

and IoU (in % and with the standard deviation in parentheses), respectively.

There are a few important observations from the experiment. Even though the subject had

a low velocity, the DPC1 with a Doppler-FFT outperformed the other significantly. One main

reason is that, as the number of antennas is much lower than the number of signals, the AoA

estimation algorithm can fail to distinguish points with a close angle. Instead, these points will

be identified as one strong signal source. On the contrary, the CFAR peak detection step in DPC1

picks a set of points around the peak that are above the CFAR threshold. As these points also

contribute to the point cloud, the output becomes denser and the sensitivity is improved. This

effect can be observed from the example detection shown in Figure 4.6.

In terms of the different algorithms, the MVDR and MUSIC methods outperformed the

angle-FFT and conventional methods, at the expense of higher complexity. Meanwhile, all the 2D

methods outperformed the 1D methods due to a more fine-grained resolution (as shown earlier in

Figure 4.3). The best performance was achieved with the DPC1-MVDR-2D and DPC1-MUSIC-2D
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Figure 4.6: Examples of the radar detection using the different algorithms, when using a 4×4
antenna array and a subject velocity of 0.05 m/s.

methods, with an FMI of 74.5% and 77.0%, respectively. However, the IoU metrics show that

the point clouds were still far from the objective of high-accuracy scene reconstruction, as the

highest IoU was only 23.4%. It can be seen from Figure 4.6 that, while the distribution of the

point cloud mostly fitted the subject, the distribution was not even and there were body parts

(like the hands) that received fewer points. Therefore, there is still a big gap before the radar

output can be directly used by applications that require high quality data.

Table 4.3 compares the algorithms in terms of computational complexity. The algorithms

were run using the same dataset and parameters multiple times. The algorithms were written

in Python without any processor-specific optimization and were run on one Intel i7-9700K CPU

core. The result is shown as the relative execution time of each algorithm when compared with

the DPC1-FFT-1D method (the most lightweight method) and normalized with the number of

detected points, to give an indication of their relative complexity. All the 2D methods have a

higher complexity than the 1D methods. For algorithms in DPC1, the 1D angle-FFT method

has the lowest computational cost. With the sub-grid optimization, the complexity of the 2D

beamforming and MUSIC methods can be kept at around twice the 1D methods. The complexity

without the sub-grid optimization is expected to be much higher, as can be estimated from the

difference between the 2D and 1D angle-FFT methods. When considering both the complexity

and the performance, the DPC1-FFT-1D method provides a good trade-off between them. The
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Table 4.3: Normalized execution time comparison between the algorithms using the baseline
setup.

Normalized
Complexity

Angle-FFT
Conventional
Beamforming

MVDR
Beamforming

MUSIC

1D 2D 1D 2D 1D 2D 1D 2D
DPC1 1.00 13.42 4.38 9.32 3.51 8.99 4.02 8.85
DPC2 NA 5.69 12.38 5.31 10.89 5.67 10.61

Table 4.4: Relative FMI difference of the algorithms when using a 4×4 antenna array and a
subject velocity of 0.5 m/s in comparison to 0.05 m/s.

FMI in %
Angle-FFT

Conventional
Beamforming

MVDR
Beamforming

MUSIC

1D 2D 1D 2D 1D 2D 1D 2D
DPC1 +8.3 +11.4 +12.1 +10.7 +10.4 +8.8 +10.1 +7.7
DPC2 NA +4.6 +2.6 +5.3 +4.6 +8.4 +5.6

MVDR methods and MUSIC methods in DPC1 give the best performance at the cost of 9x higher

complexity and require additional efforts on the hardware and implementation.

4.4.3 Subject Velocity

The motion of the subject being sensed has a significant impact on the detection output. In DPC1,

a higher velocity makes a subject easier to be identified in the Range-Doppler heatmap. Due to

the relative position difference between the body parts of the subject, they will have a different

radial velocity with respect to the radar, making them distinguishable in the Range-Doppler

heatmap. In DPC2, a higher velocity increases the variance of the signal between chirps and

allows a better estimate of the data covariance matrix. To verify the theorem, an experiment was

carried out using the same configuration as the baseline setup, except that the velocity of the

subject was set to different values from 0.1 m/s to 1 m/s. The ground truth point cloud was taken

as the average position of the subject during the motion.

Table 4.4 and Table 4.5 show two examples of the experiment where the subject velocity was

set to 0.5 m/s and 1 m/s, respectively. When compared with Table 4.1, all algorithms achieved

a 2.6% to 14.5% improvement in terms of the FMI when the subject had an increased velocity.

Figure 4.7 shows the FMI and IoU of the DPC1-MUSIC-2D method with different subject

velocities from 0.1 m/s to 1 m/s. An overall positive correlation can be observed between the

subject velocity and the detection performance, and the impact is the most obvious at lower

velocities (<0.5 m/s). Some examples of the detection at 1 m/s are shown in Figure 4.8.
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Figure 4.7: FMI of the DPC1 2D MUSIC algorithm with different subject velocities.

Figure 4.8: Examples of the radar detection using the different algorithms, when using a 4×4
antenna array and a subject velocity of 1 m/s.
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Table 4.5: Relative FMI difference of the algorithms when using a 4×4 antenna array and a
subject velocity of 1 m/s in comparison to 0.05 m/s.

FMI in %
Angle-FFT

Conventional
Beamforming

MVDR
Beamforming

MUSIC

1D 2D 1D 2D 1D 2D 1D 2D
DPC1 +9.7 +13.0 +14.5 +12.8 +12.0 +9.8 +11.6 +8.2
DPC2 NA +5.3 +2.6 +4.3 +3.4 +9.3 +5.8

Table 4.6: Performance difference when using a 4×4 antenna array and a subject velocity of
0.05 m/s in a low SNR environment (5 dB in comparison to 30 dB).

FMI in %
Angle-FFT

Conventional
Beamforming

MVDR
Beamforming

MUSIC

1D 2D 1D 2D 1D 2D 1D 2D
DPC1 -8.1 -5.8 -5.5 -5.6 -6.4 -6.3 -5.7 -6.2
DPC2 NA +2.2 +2.8 +1.7 +2.7 +1.6 +2.4

Table 4.7: Performance difference when using a 4×4 antenna array and a subject velocity of
0.5 m/s in a low SNR environment (5 dB in comparison to 30 dB).

FMI in %
Angle-FFT

Conventional
Beamforming

MVDR
Beamforming

MUSIC

1D 2D 1D 2D 1D 2D 1D 2D
DPC1 -7.8 -6.2 -7.2 -6.1 -8.3 -7.5 -8.9 -7.4
DPC2 NA +2.5 +2.8 +1.0 +0.8 -0.7 +0.9

4.4.4 SNR

In a practical environment, a radar system can experience noise from different sources, such as

the thermal noise of the radar chip. The SNR also depends on the distance between the radar

and the subject, as the signal power drops quickly along with the distance. In the simulator,

the SNR can be controlled by the power of the noise term n in Equation (4.1). In this section,

the performance of the algorithms between a high SNR environment (40 dB) and a lower SNR

environment (5 dB) is compared. Two experiments were carried with the subject velocity set to

0.05 m/s and 0.5 m/s, respectively. The results are shown in Table 4.6 and Table 4.7.

In the low SNR environment, all the algorithms in DPC1 experienced a similar drop in

performance, as expected. However, the algorithms in the DPC2 showed a higher performance.

The reason is that the higher noise affected the model order estimation step and the system

tends to report a higher number of points. Taking the DPC2-Conventional-2D method as an

example, the average size of the detected point cloud was found to be 20.3% higher in a low SNR

environment than in a higher SNR environment. However, this was still insufficient to reach a

similar performance as DPC1.
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Figure 4.9: The list of receiver layouts being evaluated. (a)-(d) are square antenna arrays. (e)-(f)
are non-regular antenna arrays implemented on TI radars.

Table 4.8: Performance comparison between different antenna layouts using the baseline configu-
ration and the DPC1-MUSIC-2D algorithm (standard deviation in parentheses).

Antenna
Layouts

a b c d e f g

FMI
in %

76.7 (6.4) 77.0 (6.2) 76.8 (4.8) 77.9 (4.5) 72.4 (6.3) 77.8 (5.9) 65.0 (6.0)

IoU
in %

23.4 (4.1) 22.7 (3.5) 20.5 (2.8) 18.8 (2.7) 20.8 (4.0) 23.9 (4.2) 17.0 (3.5)

4.4.5 Antenna Layout

Theoretically, the antenna layout determines the angular resolution that an AoA estimation

algorithm can achieve. The more receivers in one direction, the higher resolution the radar

can measure. However, this is questionable when the signal sources are spatially close and

continuous. Meanwhile, having more antennas also increases the cost of the hardware, as more

circuit components, processing units and memory would be required. Therefore, it is beneficial to

study the relationship between the antenna layout and the output quality and find the optimal

trade-off for an application.

Common commercial mmWave radars use up to three transmitters and up to four receivers,

giving up to twelve virtual receivers as a receiving array. Some radar models are designed

for automotive applications and prioritize the azimuth direction, while others are designed for

general purpose applications and have a similar resolution in both the azimuth and elevation

directions. In this section, common antenna layouts implemented on the TI radars are evaluated

and compared, as well as a few square-shape antenna layouts that are more common in research

projects, as listed in Figure 4.9. The same radar configuration and scene setup in Section 4.4.2

were used. The experiment compares the antenna layouts using the DPC1-MUSIC-2D algorithm

(the best performing algorithm) to fully exploit the potential of the antennas. The result is shown

in Table 4.8 and Figure 4.10.

It can be seen that most antenna layouts had similar performance, except the layout (g)
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Figure 4.10: Examples of the radar detection using the different antenna layouts, when using a
4×4 antenna array and a subject velocity of 0.05 m/s.

which had a worse performance as it is designed for automotive applications. The layout (e)

has a non-uniform antenna distribution that slightly affected its performance. All other layouts

showed a similar performance regardless of the antenna size. Therefore, considering the increased

hardware cost and computational cost of increasing the number of antennas, a small antenna

size can be preferable for 3D sensing applications.

4.4.6 Chirp Configuration

The chirp configuration can have various effects on the distance detection and velocity detection,

as discussed in Chapter 3. These factors can indirectly affect the quality of the final point cloud.

In this section, three different chirp configurations are tested and compared against the baseline

configuration in Section 4.4.2. The details of the three configurations (named A, B and C) and

the performance are shown in Table 4.9. Each configuration has certain parameter cut to 80% to

evaluate the effect on the output. Configuration A had an 80% reduced chirp slope and, hence, a

reduced effective bandwidth from 4 GHz to 3.2 GHz. Configuration B had an 80% reduced ADC

sampling rate that reduced the samples per chirp from 1500 to 1200. Configuration C had an

80% reduced number of chirps per frame, from 50 to 40. All other parameters were kept the same

as the baseline with the DPC1-MUSIC-2D algorithm.

The result shows that the performance can be strongly affected by the effective bandwidth

and the number of chirps. The former affects the distance resolution of the detection, and the

latter affects the Doppler resolution. Reducing either of these parameters reduces the accuracy

of the range-Doppler heatmap and the estimation of the covariance matrix. On the other hand,

the effect of reducing the ADC sampling rate and the number of samples per chirp is much less

significant.
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Table 4.9: FMI (standard deviation in parentheses) comparison between four chirp configurations
using the DPC1-MUSIC-2D algorithm.

Chirp Configuration Baseline A B C
Slope of the chirp 40 MHz/us 32 MHz/us 40 MHz/us 40 MHz/us

ADC sampling rate 15 MHz 15 MHz 12 MHz 15 MHz
Chirps per frame 50 50 50 40

FMI in % 77.0 (6.2) 71.1 (6.8) 76.5 (6.0) 70.2 (6.0)

(a) Points detected without SRPC. (b) Points detected with SRPC.

Figure 4.11: Using SRPC algorithm to improve the resolution and distribution of the data.

4.5 Super-resolution Point Cloud Construction Algorithm

It can be seen from Figure 4.6 and Figure 4.8 that the constructed point clouds can be noisy

and the distribution of the points can be imbalance. One major reason is that the point cloud

construction relies on the peak detection result over the range-Doppler-FFT spectrum, so the

distribution of the points will be limited by the resolution of the FFT, and the points will have a

discrete distribution in the range domain (as the curve-like data from the left view). Although

it is possible to improve this resolution, such as zero padding the data before applying the FFT,

it would also increase the computational cost and memory consumption. Meanwhile, there are

false detected points due to the outliers from the peak detection stage. To address the mentioned

issue and improve the quality of the constructed point cloud, a novel super-resolution point cloud

construction (SRPC) algorithm is proposed.

The SRPC algorithm aims to improve the distribution of the point cloud and make it span

more naturally in the spatial space. The rationale of the algorithm is shown in Figure 4.11. When

detecting peaks in a range-Doppler spectrum or an angle spectrum, a common approach is taking

all points above a static or dynamic threshold, where the distribution of the points is limited by

the resolution of the original data. An example of this effect is shown in Figure 4.11a, where the

grid represents the resolution of the data and all the detected points must fall on the grid. The
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SRPC algorithm aims to return a set of points that have a higher resolution than the original

data and fall more naturally on the distribution curve, as shown in Figure 4.11b.

The algorithm can be broken down into the following steps. First, the power spectrum is

upsampled into the desired resolution using linear interpolation. Then, for each of the originally

detected points i, the algorithm randomly samples ni points around it with a probability dis-

tribution being the amplitude of the upsampled power spectrum. The value of ni is calculated

as:

ni = pi ·αSRPC

th
(4.3)

where pi is the power of the point, th is the threshold of the peak detection algorithm, and

αSRPC is a global hyperparameter that controls the aggressiveness of the algorithm. The term pi

ensures that a point with higher power will be sampled into more points, as the power indicates

the confidence that a point can represent a real signal source. The parameter αSRPC amplifies

the importance of pi, where a higher αSRPC pushes the distribution of the points towards the

peak of the spectrum and gives a more dense distribution. The sampling process is repeated for

each point i to form a new point list. Finally, a number of points of the length of the original

detection are randomly selected from the new point list, so that the total number of detected

points is kept the same and the computational cost of the rest of the system is not affected. Since

the algorithm tends to sample more points at higher power, the distribution of the final points

will also tend to be around higher powers, and, hence, gives a more natural distribution regarding

the power spectrum and overcomes the limitation of the original data resolution.

When constructing the point cloud, the SRPC is applied when detecting peaks from the range-

FFT spectrum and detecting peaks from the angle spectrum in the AoA estimation step. The

former improves the data distribution in the range domain and eliminates the curve-like effect

when looking at the point cloud from the left view. The latter improves the data distribution in

the angle domain so that the points tend to span into the space rather than appearing as a dense

cluster. Meanwhile, since the points will be distributed around higher powers, the probability of

outliers will be reduced.

To evaluate the proposed SRPC algorithm, it has been inserted into the DPC1-FFT-1D and

DPC1-MUSIC-2D methods mentioned in Section 4.4.2 when using the baseline setup. The two

methods are chosen as they represent the most lightweight algorithm and the most accurate

algorithm, respectively. Since the SRPC is likely to produce point clouds with different sizes and

to ensure a fair comparison, a fixed number of 512 points will be randomly taken from the point

cloud generated by each algorithm for the evaluation. The result is shown in Figure 4.12. After

applying the SRPC algorithm, the distribution of the point cloud appears to be more natural and

better distributed around the ground truth, and the outliers in the original detection have been

reduced. The result of a quantitive evaluation is shown in Table 4.10. The performance without

SRPC drops slightly when compared with Table 4.1 because the output size has been forced to be

512, but both metrics have improved after applying SRPC. Therefore, it is shown that the SRPC
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Figure 4.12: Examples of point clouds constructed with and without the SRPC algorithm.

Table 4.10: Performance comparison of two algorithms with and without SRPC.

DPC1-FFT-1D DPC1-MUSIC-2D
FMI IoU FMI IoU

Without SRPC 64.9 20.2 72.1 22.9
With SRPC 69.5 23.6 72.9 25.9

algorithm successfully improves the data point distribution, reduces the outliers and produces a

more natural point cloud that can be potentially preferable for higher-level applications. Future

work of this research includes an efficient hardware implementation of this algorithm using the

radar on-chip processors so that it can be further verified in real-world scenarios, as well as an

evaluation on its effectiveness in higher-level applications like posture estimation.

4.6 Conclusion

In this chapter, a mmWave radar simulator is presented. The system is used to evaluate the ability

of the mmWave radar as a 3D imaging sensor. A mmWave radar dataset is constructed using the

FAUST dataset as the ground truth to provide 3D mesh models of human subjects, from which

mmWave radar IF signals are simulated and used to evaluate different point cloud construction

algorithms. The FMI and IoU metrics are defined to evaluate the quality of the generated point

cloud. The evaluation is performed regarding a set of different factors, including the DPCs, AoA

estimation algorithms, subject velocity, SNR, antenna layout and chirp configuration. It was

found that the DPC combining a range-Doppler-FFT and a single-snapshot AoA estimation
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algorithm gives better performance. Among all the AoA estimation algorithms, the angle-FFT

method gives a good trade-off between high performance and low computational cost, whereas the

more advanced AoA estimation algorithms, like MVDR and MUSIC, give the best performance at

up to 9x higher computational time. The velocity of the subject helps significantly in the detection,

as the algorithms are better at detecting a moving subject than a stationary object. When

comparing common antenna layouts, large square antenna arrays give the best performance, but

the advantage is not significant in a 3D sensing application when the data sources are spatially

close and continuous. It is shown that the performance of the point cloud detection benefits from

higher effective bandwidth and a higher number of chirps per frame. Finally, a novel SRPC

algorithm has been proposed for improving the resolution and distribution of the point cloud

and reducing the probability of outliers. The algorithm applies to the range-Doppler-FFT peak

detection stage and the AoA estimation stage and detects points at a higher resolution that fits

the power spectrum better. When evaluating the algorithm using the simulation system, it has

been shown that the algorithm can successfully improve the data distribution and produces a

more natural point cloud.
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5
HUMAN DETECTION AND TRACKING

In this chapter, a novel human detection and tracking system using mmWave radars is

presented. It uses two radars from different perspectives to detect the presence of people in

an office environment and track their locations. The system achieves 90.4% sensitivity and

98.6% precision when detecting up to four people in the room. The content of this chapter has

been published in the IEEE Aerospace and Electronic Systems Magazine [20] 1 and in a patent

application [23].

The rest of the chapter is organized as follows. Section 5.1 gives an overview of this work.

Section 5.2 presents the experimental setup of the system. Section 5.3 presents a real-time

software framework for operating the radars and implementing the data processing algorithms.

Section 5.4 presents a study on the possible signal interference when operating multiple radars

simultaneously. Section 5.5 presents the human detection and tracking algorithm. Section 5.6

shows the evaluation result of the system and a comparison to the state-of-the-art systems.

Section 5.7 concludes the chapter.

5.1 Overview

In HAR, human detection and tracking is often an implicit requirement of many applications. For

example, advanced tasks like posture estimation or identification are often triggered only when a

person has been detected and the data corresponding to the subject has been captured, and a

continuous operation requires the position of the person to be tracked over time. The performance

of these tasks can be largely affected by the accuracy of the detection and tracking system.

12021 IEEE. Reprinted, with permission, from H. Cui and N. Dahnoun, “High precision human detection and
tracking using millimeter-wave radars,” IEEE Aerospace and Electronic Systems Magazine, vol. 36, no. 1, pp. 22–32,
2021.
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As discussed in Chapter 4, mmWave radars can capture high-resolution information about

the subject in the scene, but the quality of the detection can depend on a lot of factors, such as

the velocity of the person and the noise in the environment. Even in an optimal situation, the

accuracy of the detected point cloud is still far from camera systems or LIDAR systems, and there

can be a significant amount of false detection that falls around the real location of the subject.

Therefore, it is essential to quantitively evaluate the capability of mmWave radars in detecting

the presence of people in a scene and continuously tracking their location.

This chapter presents a novel human detection and tracking system using mmWave radars.

A novel data processing chain is proposed to filter out the noise and determine the presence

of any people in the scene, and a tracking module is designed to track the status of the people

over time. It will show that mmWave radars can have a high detection sensitivity when people

enter the scene. However, using a single radar can raise a high number of false alarms, but the

precision could be improved significantly with the use of two radars. It will show that the system

outperforms RFID and WiFi-based systems and achieves similar performance as other UWB or

mmWave systems.

5.2 Experimental Setup

Throughout the experiments, a radar configuration tuned for indoor environments was used,

with a maximum range of 8 m, a range resolution of 4 cm, a maximum velocity of 1 m/s and a

velocity resolution of 0.1 m/s. The time of each chirp is 125 us, with 10 us idle time (for resetting

the chirp) and 115 us chirp ramp time. With a slope rate of 35 MHz/us, the full 4 GHz bandwidth

available for the radar was utilized. As the target use case is human activity recognition, the

CFAR threshold was set to a relatively low value so that enough data can be received for post-

processing.

The hardware setup of the system is shown in Figure 5.1. Two radars were placed at different

perspectives and the camera was placed on the top of one radar. The camera is used only to

provide the ground truth for evaluating the system and is not involved in the detection process.

Both of the radars are the IWR1443 model with the same antenna configuration (as shown

in Figure 3.5), and the detection area is defined as the intersection area in the sight of both

radars. The radars are calibrated offline, where a rotation matrix and a translation matrix are

generated for each radar based on their orientations and locations. The metrics are recorded in a

configuration file. They will be loaded into the Frame Manager module at runtime and be used to

translate the detection results into one coordinate system.

5.3 Real-Time Software Framework

For real-time data streaming and processing, a multithreaded software framework for managing

the radar and processing the radar data has been designed and implemented. It can process
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Figure 5.1: Hardware setup of the two radars for human detection.

either the raw IF signal or the point cloud data. In this section, the point cloud data processing is

discussed.

The framework is capable of managing multiple radars simultaneously. An overview of

the software framework is shown in Figure 5.2. It uses one thread per radar to manage the

communication to the radar and the data transmission, and one thread to fuse and process the

data. First, The data processing consists of two stages: the first stage applies to the point cloud

received by each radar independently, and the second stage applies to the fused data from all the

radars. The system is written in Python and has the following main modules:

Radar Handler (RH): connects to the radar through the serial ports, loads the configuration

files, sends them to the radars, receives detection results, packs them into data matrices and

applies the first stage of the data processing. The data matrices containing the point cloud are

referred to as one frame.

Frame Processor (FP): takes one frame of data as input, performs customized data pro-

cessing tasks and outputs data in the same format. A customized DPC can be formed by using a

sequence of FPs.

Visualizer: manages the DPC composed of FPs and the visualization of the data in 2D or 3D.

It also allows cameras or other peripherals to connect to the system and interact with the FPs.

Through the use of a configuration file, the user can specify the number of radars and each

radar’s model, serial port number, the antenna and chirp configuration, and the relative position

in the form of a rotation and translation matrix. When the system starts, one independent

thread will be spawned for each radar, referred to as the radar threads. These threads will

each execute an RH module, connect to the serial ports and handle the communication between
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Figure 5.2: Software framework for managing multiple radars and applying customized processing
chain.

the host and the radar. In addition, one visualizer thread will be spawned with a Visualizer

module. The visualizer thread manages a number of FPs to achieve a customized post-processing

chain on the received data. These FPs include individual FPs that are applied independently to

each radar’s data, and central FPs that are applied to the fused data from all radars. One data

queue (first-in-first-out) will be created for each radar thread and shared with the visualization

thread. The radar threads will read data from the serial ports continuously, parse them into an

appropriate matrix format, and push the result into the shared queue. Any old data in the queue

that has not been read will be replaced by the new data, so that the visualizer thread will always

have the latest frame from the radar. This design minimizes the effect of out-of-synchronization

caused by inconsistent processing speed between the radar threads. The visualizer thread will

fetch the data from each queue, perform the user-defined post-processing chain, display the result

and fetch the next batch of data. The system operates in real-time from data collection to result

visualization. The performance bottleneck of the system will be either the transmitting speed of

radars or the processing speed of all FPs, whichever is slower. The system works best on multicore

CPUs when each thread can utilize one physical CPU core, but it can also work on single-core

machines with reduced performance. The following sections provide a more detailed discussion of

each module.
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5.3.1 Radar Handler

As discussed in Section 3.3.4.2, a radar has two serial ports that can be accessed by the PC,

one for configuring the radar and the other for transmitting the data. The RH performs the

following tasks: opens up the two serial ports as specified by the system configuration file, loads

the commands from the antenna configuration file, writes the commands to the configuration

port, checks the response of each command and starts listening to the data port upon success.

When decoding data from the data port, it searches the packet header containing the point

cloud (as shown in Figure 3.11), parses the packet and extracts the point cloud. The data will be

re-arranged into an N ×3 matrix, where N is the number of detected points and 3 is the x-y-z

coordinates. The thread will then push the matrix into the queue and continue listening to the

port for the next data packet.

5.3.2 Frame Processor

FPs define the data processing algorithms to be performed on each frame of data. The three types

of FPs used throughout this research are listed below:

Temporal Stacking: This module stores the frames at each timestamp using a fixed-length

first-in-first-out queue. The output of this module is the sum of all the point clouds in the queue.

During experiments, it was found that stacking data in the temporal domain can help to stabilize

detection, as data points from real objects will be emphasized, but the noise will not.

Clustering: This module groups data points in one frame into clusters according to their

Euclidean distances between each other, and filters out small clusters with low numbers of points.

The DBSCAN (density-based spatial clustering of applications with noise) algorithm is used for

clustering, which does not require prior knowledge of the scene and can extract all qualified

clusters. This module shows a significant effect in reducing noise.

Background Subtraction: This module attempts to learn the environment during the

first few frames (e.g. one minute). It collects the data in these frames, performs the DBSCAN

clustering algorithm, and records the detected objects in a local database as clutter. Then, for new

frames, the module will compare each new cluster with the clutter in the database and filter out

those with a similar size and location. This module can be useful when irrelevant static objects

are presented in the area and should be removed.

The Temporal Stacking module is applied individually to each radar frame, whereas the other

two modules are applied to the fused frame. The FP module provides a standard interface for

any other customized operations, such as the neural network module that will be discussed in

Chapter 6. All modules work independently and can be loaded as per user requirement, and

additional functionality can be easily integrated into the system with new modules, which allows

the system to be adapted and deployed for different use cases.
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5.3.3 Visualizer

The Visualizer is responsible for receiving the data matrices from the shared queues, applying

the individual FPs, combining the result into a single matrix, applying the central FPs and

visualizing the final result in a graphical user interface (GUI). The Visualizer shares a data

queue with each of the RH modules. Since the RH modules always push the latest frame into

the queue, the Visualizer always has access to the latest frame from each radar and can query

the data as soon as it finishes the last frame. In other words, data from different devices are

implicitly synchronized based on their arrival time at the Visualizer. It is also responsible for

saving the data to the local drive if an offline dataset needs to be established. While combining

the data from different radars, it applies a pre-defined rotation and translation to the point cloud

according to their relative positions and perspectives, so that a consistent coordinate system can

be established between all devices.

5.3.4 Peripherals

The framework allows peripheral devices to be incorporated into the Visualizer. For example, an

optical camera can be connected to the PC and loaded into the system as a peripheral device, to

provide visual information or serve as the ground truth during data collection. Another important

peripheral device that will be used is the heart rate monitor, as will be discussed in Chapter 7. A

separate thread will be spawned for each peripheral device to manage the device operation and

data transmission, similar to an RH module.

5.4 Signal Interference between Multiple Radars

When using multiple radars, it is important to ensure that they do not interfere with each other.

In this section, it will be shown that the probability of interference between multiple radars is

very low even without any explicit synchronization.

Assuming that a maximum distance of 6 m is being measured, then the time-of-flight of a

round trip would be 0.04 us. With a 35 MHz/us slope (as used in this work), this time period gives

a frequency change of around 1.4 MHz, as shown in Figure 5.3. Assuming that two radars are

working simultaneously, based on Equation (3.2) and Equation (3.3), the transmitter signal and

the receiver signal of the two radars can be represented as Equation (5.1) to Equation (5.4) (the

amplitude term has been omitted as they are not important for this section):

Stx1(t)= cos(2π f0t+πSt2) (5.1)

Srx1(t)= cos(2π f0(t−τ)+πS(t−τ)2) (5.2)

Stx2(t)= cos(2π f0|t− td|+πS(t− td)2) (5.3)

Srx2(t)= cos(2π f0|t− td −τ|+πS(t− td −τ)2)) (5.4)
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Figure 5.3: Transmitted and received signals when detecting an object at 6 m.

where f0 is the starting frequency of the chirp 77 GHz, τ is the time-of-flight 4 us, and td is the

difference of the starting time of the two transmitters and can be either positive or negative.

Assuming the signals Stx2(t) and Srx2(t) are also detected by the first radar, then the mixer will

multiply the signals as Stx1(t) · (Srx1(t)+Stx2(t)+Srx2(t)), which, similar to Equation (3.8), can be

derived to:

Stx1(t) · (Srx1(t)+Stx2(t)+Srx2(t))=cos(2π(Sτ)t)+2π f0τ)

+ cos(2πS|td|t)+2π f0|td|)
+ cos(2πS|τ+ td|t)+2π f0|τ+ td|)

(5.5)

The mixed signal can be viewed as the sum of three sinusoids with three different frequencies, Sτ,

|Std|, and |S(τ+ td)|. The first term is the desired signal, whereas the other two are the possible

interference signals. By configuring the ADC sampling rate and with the help of the built-in

digital filter, frequencies beyond 1.4 MHz could be filtered out. In other words, the radar will only

keep the detection within the 0.04 us period (the 6 m range). Assuming the cut-off frequency of

the radar is set to 1.4 MHz, then the two extra frequency terms will only stay if |Std| < 1.4 MHz

or |S(τ+ td)| < 1.4 MHz, which evaluates to:

−2.8 MHz< Std < 1.4 MHz (5.6)

This means that the two radars will only interfere with each other if their frequency difference

falls into the 4.2 MHz range, i.e. if the two radars are switched on within 0.12 us. With a 4 GHz

bandwidth, this is a probability of around 0.1%, assuming that the radars are switched on at a

random time.

As an experiment, two radars were placed at a close distance and pointed towards the same

scene from different perspectives, one of them was kept switched on (referred to as the main

radar) and the other one was switched on and off periodically and randomly (referred to as the

interference radar). The scene is set up with static objects placed between 0.5 m to 5 m and kept
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Table 5.1: Average variances of the main radar’s detection on static objects.

Interference radar
active

Interference radar
inactive

All detection 0.23 0.20
Detection within 3-metre 0.08 0.07

Detection with
signal strength >-3 dB

0.06 0.07

Figure 5.4: Received signal strength (and the standard deviation represented by the coloured
area) at zero-Doppler domain from the main radar, when the interference radar is placed at a
close distance.

unchanged at all times. The FFT results in the range domain from the main radar were recorded

and analysed.

The experiment was carried out multiple times with different radar locations and lengths

of recording. The average variances of the main radar’s detection results were recorded and are

shown in Table 5.1. It can be shown that, in all cases, the variances are very similar for the

entire scene within the 6 m range, regardless of the status of the interference radar. When paying

particular attention to the detection within 3 m (the main region-of-interest of this research), or

the detection with signal strength greater than −3 dB (when the signals are strong enough to

be identified), the variances are even lower. Therefore, it was concluded that the probability of

interference is very low when using two radars concurrently.

One example of the experiment results is shown in Figure 5.4. The red solid line shows the

detection result of the main radar when the interference radar was switched off, and the blue

dashed line shows the result when the interference radar was switched on/off every three seconds.
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The results shown were recorded and averaged over a 5-minute period (3000 frames). It can be

seen that, as the two plots are overlapping, they do not have any significant differences and the

variances are low most of the time.

The chance of interference can increase if more than two radars are used. When having N

radars picking random 4.2 MHz frequency bands in the 4 GHz band, the probability of interference

is the probability that any two of the radars pick the same frequency, which is

P(N)= 1−
N∏

i=1

4000−4.2 · (i−1)
4000

(5.7)

The probability of interference is generally low (less than 1% with four radars and less than 5%

with ten radars). This figure will be higher with more than ten radars, which will then require

explicit synchronization between radars or an interference detection algorithm.

5.5 Detection and Tracking Algorithm

The detection and tracking procedure can be divided into three stages: the two radars sense the

scene independently and pass the data to a central processor on a computer; the central processor

fuses the data from the two radars and detects the presence of people; the processor invokes the

tracking module to verify the detection and refine the results. The full algorithm is shown in

Algorithm 1. In the next sections, each part of the algorithm will be discussed respectively.

Algorithm 1 Human detection algorithm using two radars.
Input: Two radar modules r1 and r2.
Output: A set of detection D representing the detected people.

1: D ←∅
2: while True do
3: for r i ∈ {r1, r2} do
4: Pi ← r i.detect() ▷ Get individual detection from each radar
5: for f i ∈ {FrameProcessors} do
6: Pi ← f i(Pi) ▷ Apply individual Frame Processors
7: O ← P0 ∩P1 ▷ Combine the two radars’ detection
8: for oi ∈O do ▷ Iterate through each detection
9: if oi ∈ D then ▷ Check if it matches a previous detection

10: D ← update(D, oi) ▷ Update the database
11: else
12: D ← D∪ oi ▷ Add it to the database
13: for di ∈ D do ▷ Remove inactive detections in the database
14: if ¬live(di) then
15: D ← D \ di
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5.5.1 Individual Detection

As discussed in Chapter 3, the radar has a complete on-chip data processing chain to process the

analogue mmWave signal and output objects in the form of a data cloud with x-y-z coordinates.

This data will be transmitted to the central processor and be processed by the Frame Processor

module independently. The frames will be stacked along the temporal domain using the first in

first out (FIFO) queue module. A window of 10 frames is used to generate one stacked frame,

which gives a few hundred points for each subject, at a cost of around 0.4 s processing delay.

The data will then be clustered using the DBSCAN algorithm, which examines all the detected

points and groups them based on their Euclidean distances between each other, where points

within 15 cm will be classified into one cluster. The DBSCAN algorithm is selected as it has a

low computational cost and does not rely on prior knowledge of the scene. Clusters with a low

population will be treated as noise and discarded. The foreground extraction module can be

loaded here to remove static objects in the area. It is considered as an optional module depending

on the amount of clutter in the environment. The resulting clusters from each radar will then be

passed to the Central Frame Processor for data fusion.

5.5.2 Data Fusion

The Central Frame Processor will be triggered once both radar results are ready. It will first

transform all the data into one coordinate system by using the calibration parameters. Then,

based on the size and the location of the clusters, it will calculate the eigenvectors of each cluster,

estimate the distance and the overlapping region between every pair of the clusters and only

keep them if their centroids are close and the majority of the areas overlap, where the threshold

can be adjusted to provide a trade-off between high sensitivity and high precision. An illustration

of the procedure is shown in Figure 5.5. The raw data from the two radars can be clustered into

six candidate subjects ( 1 - 6 ), among which only 2 and 6 are overlapping and are considered

as one candidate. The rest of the clusters are treated as noise that can come from various sources,

such as the error in the DPC and the signal multi-path effect.

A candidate human model will be constructed based on each verified cluster pair and the

underlying point cloud data, which contains the estimation of the person’s position, height, and

volume. While these properties are not expected to be an accurate representation of the real

subject, they provide essential information for these candidates to be compared and distinguished.

These candidates will be passed to the tracking module to be correlated with previous frames.

5.5.3 Tracking

The tracking module records all the candidates at each timestamp and exploits the temporal

relationship between them. The concept is similar to a Kalman filter, where prior information

about the object is used to estimate the probability distribution of its new position. The system
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Figure 5.5: Workflow of the human detection system, with one person present in the area (top-
down view).

will take a 25-frame temporal window, compare the new candidate with each detected object

from the previous frames, and look for the best match using the candidate properties. If a match

is found, i.e. the new candidate is close to a detected object and has a similar size, then it is

considered to be the same object being detected again. The decision thresholds are learned during

a training stage with a person moving at different speeds and along different paths, to model the

possible variation of the parameters. If a match is not found, then the candidate is recorded as a

potential new subject and the module waits for further frames to verify it.

The module keeps records of the live time of each detected subject and will only report the

presence of a subject if the presence has lasted for more than a second, to avoid any phantom

effect caused by signal noises. Meanwhile, the position of the subject will be smoothed over

the past seconds to provide a more accurate estimation and reduce outlier effects, taking the

assumption that the person will not move at a high speed in an indoor environment and the

position should not vary too much within a second. The system is able to resolve multiple people in

the area, as the detection process for each subject is independent. An example detection is shown

in Figure 5.6 where two people are presented in the scene and have been detected successfully.

An example of human tracking is shown in Figure 5.7. The current system uses the estimated

properties of the human subject (the position, height, and volume) only to correlate them in the

temporal domain. However, it is possible that this information can be further exploited for other
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(a) The top view of the radar detection. (b) The 3D view of the radar detection.

Figure 5.6: Example detection when two people are present in the area, from a top-down view
(left) and a 3D view (right).

tasks, like human identification, which is left for future work.

The system requires a low memory usage and has a low computational cost, allowing the

entire process to be performed in real-time. When running on an Intel i7-6700 CPU, the system

can achieve 25 fps with only 10% average CPU utilization. The processing speed is only limited by

the data processing and transmission speed of the radar. Computationally expensive algorithms,

like neural networks on vision-based methods, were avoided, as they would require additional

GPUs and a much higher cost and power consumption. Therefore, it is possible to port the

proposed system onto low power consumption platforms and embedded processors. The system

also benefits from its high configurability due to the Frame Processor module, which allows

customized functions to be incorporated into the system based on the use case. For example, the

foreground extraction module would be useful when the monitored area has clutter that needs to

be removed prior to performing human detection. When using multiple radars, the independent

detection stage and the calibration stage mean that the system does not have any restriction on

the position or the orientation of the radars, nor the number of radars being used. While in this

research two radars were used in a short area, it would be possible to extend the range of view by

using more radars without modifying the framework.
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(a) Room setup and the motion path of the person. (b) Radar detected path.

Figure 5.7: Example of human tracking.

5.6 System Evaluation

5.6.1 Ground Truth from Cameras

In order to evaluate the performance of the system, an accurate ground truth on the presence of

people is necessary. Since camera-based human recognition has been studied in depth and a lot of

successful systems have been developed, They can be used for calculating the ground truth and

providing a baseline for evaluation. The camera is calibrated using markers on the floor so that a

2D coordinate in the camera image can be projected into the 3D coordinate system used by the

radar. The Yolo-v3 neural network model [180] for human detection was used in this research.

When the system starts, the Visualizer thread reads in the camera data, applies the neural

network to the image, obtains the coordinates of the bounding boxes around the people and

approximates the 3D areas accordingly. Meanwhile, the radar frame is clustered by the Frame

Processors and each cluster is verified with the 3D areas. The 3D areas are estimated using

trigonometry and have sector-shapes, and the system will validate a radar-detected object only if

it fits closely in the sector. More specifically, the centroid of the radar detection and the camera

detection need to be within 25 cm and have at least 70% overlapping area. For evaluating the

tracking performance, a person walked into the region following several pre-defined paths, and a

mean localization error is calculated based on the Euclidean distance between the radar detected

location and the ground truth path. This provides a low-cost and real-time approach for verifying

radar detection, and has the potential to allow more complex data labelling for other applications.

5.6.2 Evaluation Result

The following metrics were used for evaluating the human detection system.
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• Positives (P): Number of people presented in the detection area.

• True Positives (TP): Number of people in the detection area that are successfully detected

by the radar, with the position verified by the camera detection.

• False Positives (FP): Noise or other objects in the detection area that are falsely detected

as a person, or if the detection is too far from the camera detection.

• Sensitivity (TP/P): The ability to detect a person when they are presented in the detection

area.

• Precision (TP/(TP+FP)): The ability to distinguish a person from a false detection.

An ideal system should have both high sensitivity and a high precision. All the experiments were

carried out in a 2.4 m by 2.4 m region in a laboratory under daily conditions. The system was run

for two days and data was collected when at least one human was present in the area. During

56.8% of the time, there was only one person in the area, 12.1% with two people, 19.6% with

three people and the rest with more than three people. The results are shown in Table 5.2.

Table 5.2: Performance evaluation of the system

Sensitivity Precision
One Radar 96.4% 46.9%
Two Radars 90.4% 98.6%

The high sensitivity in both cases indicates that, whenever a person is present in the area, the

system has a very high probability of detecting it. However, with one radar, the 46.9% precision

indicates that more than half of the detections would be false detections. With two radars, the

system sensitivity was reduced slightly, but the precision improved significantly to 98.6%. In

other words, when the one-radar setup detects an object, there is over half the chance that it is a

false detection, whereas with two radars the system can be very confident in its detection.

When detecting with one radar, the system reports a large number of false alarms due to

noise and flickering of the results. The flickering is observed because of the FFT process and

the peak detection algorithm, where a small change in the signal, once it comes through the

FFT, can result in a change in the FFT bins and hence a few centimetres’ displacement on the

object coordinates. This effect will be enlarged when carried over to the angle-FFT, where a

displacement in the angle will result in a much larger displacement in the 3D space. On the

other hand, when using two radars, the system has access to two independent detections and

can verify the results from each other. As a result, the false alarm rate was reduced significantly

(represented by the rise in precision) with only a slight reduction in the sensitivity.

Table 5.3 shows a comparison of the tracking performance between proposed system and

several state-of-the-art RF-based tracking systems. The proposed system achieves a low mean

localization error of (5.6±4.2) cm, outperforming all other systems. The table shows a general
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Table 5.3: Tracking performance comparison between the proposed system and the literature.

Method Frequency (GHz) Bandwidth (MHz) Error (cm)
Ours mmWave 77 4000 6

Ruan et al. [181] RFID 0.86 90 64
Qian et al. [182] WiFi 5 20 38

Li et al. [183] WiFi 5 20 35
Nguyen and Pyun [184] UWB 3.8 2500 22

Will et al. [185] UWB 24 200 20
Zhao et al. [156] mmWave 77 4000 16
Wu et al. [186] mmWave 60 3520 10

trend that systems with higher frequency and bandwidth tend to have a better performance due

to the reduced signal interference and larger amount of information, especially with mmWave

radars when the bandwidth can reach up to 4 GHz. when compared with the other mmWave

systems, the localization error of the proposed system has been reduced further due to the use

of two radars. Meanwhile, the proposed system has other advantages, including a real-time

processing time and the ability to detect multiple people at the same time, which were not

presented in the mentioned work.

One limitation of the system is the ability to distinguish multiple people at short distances.

The DBSCAN clustering algorithm used in this work cluster points within 15 cm as one subject.

Given that the radar detection can be noisy (as shown in Chapter 4), experiments found that

two people within 0.5 m have a high probability to be recognized as one subject. Therefore, the

performance of the system will drop in certain situations, such as counting people in a queue.

When there are three or more people and people are occluded by others, the system can only

confidently report people in the front, which results in a loss of sensitivity. The occlusion can

potentially be solved by using more radars to cover the scene from more angles. As discussed in

Section 5.4 and Section 5.3, it is possible to adapt more radars into the system without modifying

it much. Therefore, the system can be easily adapted to fit different use cases if necessary.

Similarly, although all experiments were carried out in a 2.4 m by 2.4 m region, as the radar’s

sensitivity to stationary targets would drop significantly beyond 2.5 m, the range of detection can

also be extended by incorporating more radars into the system.

5.7 Conclusion

In this chapter, a real-time human detection and tracking system using two mmWave radars has

been presented. Lightweight algorithms were used that can achieve real-time processing at 25

fps with a low CPU utilization, making it possible to port the system onto low power-consumption

platforms. It is shown that the system is able to detect people in indoor environments with over

90% sensitivity. The problem of high false alarm rates with a single radar has been discussed,
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and it has been shown that the precision can be improved from 46.9% to 98.6% with a two-radar

setup. The system is able to track the path of people walking in the region with a low mean

localization error of 5.6 cm.
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6
HUMAN POSTURE ESTIMATION

In this chapter, a novel human posture estimation system using mmWave radars is presented.

The system uses two radars to capture the posture information of the subject in the form

of point clouds, and uses a neural network model to estimate the position of the key joints.

The system achieved an average precision of 71.3% when detecting common human postures in

an indoor environment. The content of this chapter has been published in the MECO conference

[25] 1 and the IEEE Sensors Journal [21] 2, and the patent with the tracking system [187].

The rest of the chapter is organized as follows. Section 6.1 gives the background of this work.

Section 6.2 presents the experimental setup of the system. Section 6.3 presents the architecture of

the proposed neural network model. Section 6.4 presents a novel temporal correlation algorithm

for improving the smoothness of the prediction during real-time operation. Section 6.5 shows

the evaluation result of the system and a comparison to the state-of-the-art systems. Section 6.6

shows how the posture estimation system can be integrated into the framework presented in the

last chapter to achieve real-time operation. Section 6.7 discusses the feasibility of porting the

system to an embedded system as future work. Section 6.8 concludes the chapter.

6.1 Overview

Human posture analysis has become a popular topic in computer vision. Being able to obtain an

accurate estimate of a person’s posture enables computers to understand human behaviours and

provide appropriate assistance or interaction, which can be beneficial in many applications, such

1©2020 IEEE. Reprinted, with permission, from H. Cui and N. Dahnoun, “Human posture capturing with
millimetre wave radars,” in 2020 9th Mediterranean Conference on Embedded Computing (MECO), 2020.

2©2022 IEEE. Reprinted, with permission, from H. Cui and N. Dahnoun, “Real-time short-range human posture
estimation using mmWave radars and neural networks,” IEEE Sensors Journal, vol. 22, no. 1, pp. 535-543, 2022.
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as health care, security, and gaming. While camera-based methods have shown an impressive

accuracy on optical images [66, 112], their intrusive nature makes them unsuitable for certain

applications. Posture analysis using RF signals and radars has been an emerging area, among

which mmWave sensing has received a great popularity due to its ability of capturing high-

resolution information of the subject. Although there are some researchers using mmWave radars

for posture estimation, such as [116, 119], few have achieved a satisfactory performance in terms

of the accuracy, processing speed and complexity of the postures. Accurate posture estimation

using non-intrusive devices is still a challenge.

In this chapter, a real-time posture estimation system is presented. The system detects people

with arbitrary postures in indoor environments at close distances (within two metres), and

estimates the posture by localizing the key joints. Two mmWave radars are used to capture the

scene and a neural network model is used to estimate the posture. The model consists of two

parts: a part detector model that provides an initial estimate of the person’s key joint positions,

and a spatial model that learns the position relationship between these joints and refines the

estimate. The position of the joints forms a concrete representation of the entire body posture.

During real-time operation, the temporal correlation of the joints between timestamps has been

exploited to improve the smoothness of the estimate. The system can provide an accurate posture

estimate of the person in real-time at 20 fps, with a mean localization error of 12.2 cm and an

average precision of 71.3%.

In contrast to much existing research that only focuses on standing postures, this work is the

first mmWave radar-based system that can accurately estimate a rich set of postures that are

commonly seen in an office environment, while having real-time processing speed and a low cost.

The posture provides a fine-grained description of the person’s activity and allows higher-level

applications to be developed, such as security and health monitoring.

6.2 Experimental Setup

The same radar configuration and the software framework mentioned in Chapter 5 are used,

but with a different radar layout. It was found that the angle-of-view (AoV) of one radar is not

sufficient to cover the body area of an adult, so two radars are used as a vertical radar array to

increase the vertical AoV.

6.2.1 Single Radar Angle-of-view

Human posture analysis requires high-resolution detection across the vertical plane around the

person, where the quality of the detection is determined by the antenna radiation pattern of the

radar. The receivers on the IWR1443 radar module can receive signals from both the horizontal

plane and the vertical plane. However, the horizontal AoV is designed to be much larger than the
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Figure 6.1: Radar vertical AoV at various distance when pointing to a flat wall.

vertical one. The radar will receive an attenuation of -6 dB (1/4) on the signal when detecting

objects at ±50° horizontally or ±20° vertically, as discussed earlier in Section 3.2.4.5.

While the antenna radiation pattern could work well in autonomous driving, the situation in

human posture analysis is different, as the vertical AoV becomes equally important. For indoor

environments, when the person is close to the radar, the limited vertical beam-width will make

the radar only be able to sense a part of the person, and might not have enough features for

advanced analysis.

In order to investigate this effect in real-world applications, a set of experiments was per-

formed to test the radiation pattern with a focus on the vertical AoV. The radar was placed

at 1.2 m high and was pointed at a flat wall at various distances between 0.3 m to 2 m, and

the detected frames were recorded. At each distance, the amount of and the distribution of the

detected points were analysed and the effective AoV was calculated to be the 95% confidence

interval range. In other words, the radar is considered to have a Vlow to Vhigh vertical AoV if 95%

of the detected points are above Vlow and below Vhigh, to exclude any outliers. The results are

shown in Figure 6.1. The red dots in the figure are the Vlow to Vhigh values at each distance, and

the highlighted area is the estimated AoV region, fitted as a quadratic polynomial function. It can

be seen that the AoV increases near-linearly with the distance. The detectable range was around

30 cm to 45 cm at close distances (0.3 m to 0.5 m) and increased to 87 cm at 2 m. The angular AoV

was approximately 15° to 20°, conforming to the −3 dB to −6 dB range in Table 3.2.

The same experiment was also carried out with a person being the subject. The radar was

set at 1 m high. The detectable range was calculated using the same method, and the results

are shown in Figure 6.2. The AoV region follows a lobe shape, similar to the standard radiation

pattern of a general antenna. The radar has a limited AoV of around 50 cm at close distances,

where the antennas can hardly receive signals beyond 35°. The AoV increases with the distance

and reaches a peak of 98 cm at 1.4 m. When the person moves further away, the signal attenuates.
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Figure 6.2: Radar vertical AoV at various distance when pointing to a person.

Figure 6.3: Radar vertical AoV when detecting human-size subjects. Top: Only a limited area of
the person can be detected with one radar. Bottom: The detection results and their distribution
at various distances.

Although the radar can still detect the presence of the person, the number of detected points drops

dramatically and the result does not carry sufficient information for determining the posture.

Figure 6.3 shows an illustration of this problem when detecting human postures at an adult-

scale. It shows some detection results and a histogram of their distribution at 0.5 m, 1.4 m, and

2 m. Based on the experiments, the best AoV can be obtained at around 1.4 m with a 98 cm

coverage. Therefore, this distance is considered to be the best distance for posture capturing due
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Figure 6.4: Two radars vertical AoV at various distances when pointing to a person.

to the wide AoV and a sufficient amount of data.

6.2.2 Radar Array Angle-of-view

In order to address the problem, at least two radars are required as a vertical radar array to

cover the entire height of an adult. A radar array was constructed by placing two identical radars

at the same vertical axis and pointing them forward at the same angle, one at 0.7 m high and the

other at 1.3 m high. The setup is found to provide a consistent vertical coverage across different

distances. As shown in Figure 6.4, using two radars can significantly extend the vertical AoV

at all distances. In comparison to using only one radar, the average detectable range at close

distances (around 0.5 m) has increased from 70 cm to 110 cm, and the peak range (at around

1.4 m) has increased from 98 cm to over 140 cm. The average improvement from all distances is

around 55%. The variance in the coverage is much smaller than one radar. Figure 6.5 shows the

detection results and their distribution at 0.5 m and 1.4 m. The two peaks from the two radars

are still observable at close distances, but the overlapping region is receiving more data and,

hence, could contain more useful data. The distribution is much smoother at larger distances,

and the two detection results are no longer separable. In both cases, the radar array can detect

over 100 points at each height bin and can capture useful shape information from the scene and

the human body-parts.

6.2.3 Radar Array Posture Capturing

As shown in Figure 6.6, the two radars are placed at 0.7 m and 1.3 m height respectively above

the ground level and in the same orientation, with an optical camera in the middle to provide

the ground truth of the person’s posture. It was found that the resolution of the detection will

decrease dramatically along the distance, and the radar is only able to obtain enough information
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Figure 6.5: Detection results and their distribution using two radars.

Figure 6.6: Experimental setup of the system.
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Figure 6.7: Radar array vertical AoV at various distances when pointing to a person. Top-left:
Standing still. Top-right: Bowing. Bottom-left: Standing and holding one arm. Bottom-right:
Sitting.

for posture estimation at a short distance within two metres. Therefore, the detection area of this

research was restricted to a (2 m×1.5 m×1 m) region to ensure the quantity and accuracy of the

received data. As the angle estimation algorithm used by the radar can have a decreased accuracy

at a larger angle of incidence, the two radars are placed to have an overlapped detection region

in the middle to complement each other. Figure 6.7 shows some example data captured when the

person was holding different postures. It can be seen that the radar array successfully captured a

complete view of the subject, and the data contained distinguishable features corresponding to

the postures.

It is worth noting that the captured image did not have any data close to the floor, i.e. from

0 cm to 25 cm. The hypothesis is that the lower body parts of a person have a close distance to the

floor and have a small area, which makes them hard to identify using the CFAR peak detection

algorithm. Therefore, they are not reported by the radar as real objects. This issue should not

have a big effect on posture analysis, as the lower body parts, like feet, are often less important

than the other body parts like limbs, and this is left as a future research topic.

The radars are configured to use a 4 GHz bandwidth, have a 4 cm range resolution and operate

at 25 fps, which is the same configuration as for the human tracking system. The two radars

operate concurrently and independently using the software framework mentioned in Section 5.3,

where a computer is used to read the data from the two radars simultaneously, align the data
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packets into frames based on their arrival time and concatenate the data at each frame. The

posture estimation system can also work as a standalone module and can be incorporated into

any other mmWave radar system.

6.2.4 Data Collection and Pre-processing

The radar outputs a 3D point cloud in arbitrary sizes, representing the geometric information

about any subject in front of it. As the radar obtains the point cloud in one scan and relies on

the signal reflected from the surface of the subject, the x-y position of the obtained point cloud is

found to be more accurate than the depth. Therefore, to transform a point cloud into a fixed-size

data format as required by a typical CNN model, the point cloud is projected to a 2D image from

the front view through trigonometry, aiming to retain the most essential spatial information for

determining the posture of a person. The projection is calculated from a virtual viewing point

that is defined to be the middle of the two radars, which is also the position of the camera shown

in Figure 6.6, so that the projected radar image will share the same coordinate system as the

vision images captured by the camera.

Once the point cloud data from the two radars has been transmitted to the computer, the

data processing chain described in Section 5.5 is used as a pre-processing technique, to locate the

point cloud representing the person and filter out clutter. Other human detection system can also

be used as a pre-processing stage to prepare the data for posture estimation. The filtered point

cloud is projected to a 200×150 grayscale image I, where the intensity of the pixels represents

the projected position of the subject (see the leftmost image in Figure 6.8). The cropped space is

found to be sufficient to cover most types of postures, and the projected image has a resolution of

1 cm/pixel that retains enough detail in the 3D space.

The goal of the neural network is, based on the input image I, to estimate 9 heatmaps Pv∈{1...9}

of size 45×32 for 9 joints of a person: the head, left and right shoulders, hips, elbows, and

knees. The wrists and ankles were ignored, as the mmWave signal reflection from these joints

is relatively weaker and less important in estimating the overall body posture. Each heatmap

Pv is a 2D image where each pixel value has an intensity between 0 and 1 that denotes the

probability of joint v being at that location. The position of the maximum intensity in a heatmap

Pv represents the most likely position of joint v. Since the number of parameters and operations of

the network will increase proportionally with the size of the heatmap, and since it is targeted for

real-time operation, a relatively low output resolution was used and the result was interpolated

to a higher resolution for visualization only. Meanwhile, considering that the range resolution of

the radar is around 4 cm, a higher output resolution will not provide a significant improvement to

the system. Therefore, the size of the heatmap is chosen to be 45×32, where each pixel represents

approximately 4 cm×4 cm.

The ground truth of the posture is generated using a standard optical camera and the HRNet

algorithm [66], a state-of-the-art algorithm for human posture estimation on optical images.
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Figure 6.8: The architecture of the part detector model.

The camera is placed in the middle of the two radars pointing towards the scene and is set to

operate at the same speed as the radars. Images captured by the camera are cropped according

to the detection area, timestamped and associated with each frame of the radar data. The HRNet

algorithm takes the camera image as the input and outputs the position of the 9 selected joints of

the person. A heatmap is generated for each joint by placing a 9×9 Gaussian kernel on the joint’s

true location, which determines the error-tolerance of the neural network in the training stage

and improves the training speed and robustness of the neural network. The generated heatmaps

are cut according to the detection area and are resized to 45×32 to serve as the ground truth for

the radar data.

During the data collection, the person stayed in the specified detection area at around 1 m to

2 m from the radars and the camera, and performed arbitrary postures that are commonly seen

in an office environment. More specifically, the postures include standing, walking, and sitting

in different directions and angles with arbitrary hand and arm positions. The training data

and the test data are collected separately to reduce any potential correlation between the two

datasets and improve the generalizability of the model. Before feeding into the neural network,

the training data is shuffled randomly and augmented with random rotations and translations,

to increase the robustness of the model and avoid overfitting. The final dataset has 24k training

data instances and 2.6k test data instances.

6.3 Neural Network

The proposed neural network consists of two parts: a part detector and a spatial model. The part

detector consists of a few standard convolutional layers and dense layers. It is applied directly

to the input point cloud and produces heatmaps as an initial estimate of the position of the 9

joints. The spatial model is a customized layer that models the correlation between the joints and

refines the heatmaps.

6.3.1 Part Detector

The structure of the part detector model is shown in Figure 6.8. The model has four convolutional

layers to extract the initial features from the input, where the numbers of channels are set to

8, 32, 64, and 9, respectively. The nine channels of the final convolutional layer are designed to
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correspond to the nine joints considered in this work, which are followed by nine independent

dense layers to estimate the location of each joint. Two max-pooling layers are used with the

first two convolutional layers to emphasize the features. Batch normalization layers and dropout

layers are used between each pair of the convolutional layers to reduce the variance in the

training data and avoid overfitting. All the intermediate layers use the rectified linear unit

(ReLU) activation function, and the last dense layer uses the Softmax function to generate the

heatmap. The model takes a 200×150 image I as the input containing the projected point clouds

and outputs 9 heatmaps Pv∈{1...9} of size 45×32 as the position estimate of all the nine joints. The

model has around 107M multiply-accumulate (MAC) operations and 19M parameters.

6.3.2 Spatial Model

The part detector can provide a rough estimate of the joint positions. However, since the regression

process of each joint is independent, the model does not consider the relative position between

the joints, which sometimes leads to anatomically incorrect postures. To address this issue, and

inspired by [113], a spatial model was added into the system. In [113], the authors proposed an

MRF model to formulate the spatial relationship between the joints. This model was adapted

into the system by designing a new dependency graph, which refines the joint positions using

Equation (6.1):

P̂v∈{1...9} = exp(
1

|Cv|
∑

c∈Cv

log(Wc→v ∗Pc +bc→v)) (6.1)

where Cv is the set of joints that will contribute to the position estimation of joint v, including v

itself; |Cv| is the cardinality of Cv and 1
|Cv| is the normalization term used to scale the calculation

with respect to the number of joints involved; Pv∈{1...9} and Pc∈Cv are the heatmap output from the

part detector for joint v and c respectively; P̂v is the refined heatmap output of the spatial model;

Wc−>v and bc−>v are the weight and bias terms that model the spatial relationship between joints

c and v.

The architecture of the spatial model is shown in Figure 6.9. The MRF operation is imple-

mented as a convolution operation (the MRF Conv block in Figure 6.9), where Wc→v is defined

as the convolution kernel and bc→v is the matrix containing the bias term. The convolution

operation models how the estimate of joint c contributes to the estimate of joint v. The ReLU

function is applied to the heatmaps (P) and the convolution kernels (W) before performing the

convolution to ensure non-negative values and improve the stability of the network.

Five of the nine joints, the head, the left and right shoulders and hips, were defined to be the

primary joints. These joints are chosen because they have a relatively larger size and produce

a stronger reflection of the mmWave signal, when compared with the elbows and the knees.

Meanwhile, the position of these joints are more important in understanding the overall posture

of the person, and their relative positions regarding each other have a more regular pattern.

Therefore, the primary joints are set to have a bidirectional pair-wise dependency among them,
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Figure 6.9: The architecture of the spatial model, showing the head and the hip as an example.

Figure 6.10: Dependency graph of the left shoulder and left hip.

i.e. the position of any primary joint will contribute to the prediction of other primary joints. The

other joints, the left and right elbows and knees, can have more random motions and reflect less

signal. The prediction of the secondary joints is set to be dependent on the neighbouring primary

joints and the head. For example, when predicting the position of the left elbow, the network will

refer to the position of the head, the left shoulder and the left waist. As an example, Figure 6.10

shows the dependency graph of the left shoulder and left hip. A double arrow indicates that the

two joints are dependent on each other, and a single arrow indicates a one-way dependency.

The convolution kernels W are set to be twice the size of a heatmap along each dimension,

i.e. 90×64 pixels, because the position dependency can be from any direction. Since the kernels

are supposed to encode the prior knowledge of the joints’ spatial relationship, the weight of

the kernels was initialized by collecting the pairwise position dependency between each pair of
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Figure 6.11: Example of how prior knowledge helps predict a joint’s position. Left: the likely
position of the left and right shoulders given the position of the head. Right: the likely position of
the knees given the position of the hips.

the joints from the training dataset. Figure 6.11 gives an example of how the prior knowledge

encodes the relationship between the joints. The left figure shows, given the position of the head

(represented by the red cross at the centre), the likely position of the left and right shoulders, in

red and green respectively. In other words, assuming that the position of the head is known at

the centre, the red region is the likely position of the left shoulder where the intensity shows the

corresponding probability, and the green region is the likely position of the right shoulder. The

yellow region indicates the intersection between the two probability distributions. Similarly, the

right figure shows the likely position of the left and right knees given the position of the hips.

The spatial model has 32 dependencies between all the joints, which requires 32 convolutions,

265M MAC operations and 0.3M trainable parameters. The spatial model is appended at the end

of the part detector model. It takes the heatmap output from the part detector and generates

a refined heatmap of the same size, as shown in Figure 6.9. The spatial model can improve the

accuracy and the robustness of the network, as will be shown in Section 6.5.

6.3.3 Model Training

A block diagram of the training procedure is shown in Figure 6.12. The two parts of the model

were trained separately in two phases. In the first phase, the part detector was trained on its

own. In the second phase, the parameters in the part detector were frozen, and the spatial model

was trained. The Adam optimizer was used with a dynamic learning rate between 10−2 and 10−5.

The cross-entropy loss was used to compute the difference between the estimated heatmap and

the ground truth. The full model has 372M MAC operations and 19M parameters.
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Figure 6.12: The training procedure of the proposed neural network model.

6.4 Temporal Correlation

The neural network model estimates the position of the joints independently at each timestamp.

However, as the radar is prone to noise and the point cloud can sometimes be inaccurate, the

estimate can be further refined by exploiting the temporal correlation between frames, following

the assumption that the joints will not move much over one timestamp.

The estimate at each timestamp is recorded and analysed. Two parameters were used to

evaluate the smoothness of the estimate in the temporal domain: the confidence of the neural

network’s estimate (C) and the speed of the joints’ motion (M). The confidence of an estimate

is inherited in the heatmap, represented by the intensity distribution from the Softmax layer.

A sharp and dense distribution indicates that the network is confident in the joint position, as

opposed to a sparse and flat distribution. The value of C is calculated by taking the peak values

of the heatmaps and averaging across all the 9 joints, as shown in Equation (6.2).

C =
∑

v∈{1...9} max(P̂v)
9

(6.2)

The second parameter, M, examines the speed of the joint’s motion, i.e. the rate of change of the

joint position across timestamps. Once the neural network has predicted the heatmaps for the

joints, the position of the maximum intensity within each heatmap is taken as the estimated

position of that joint. If a joint v was at (xv,t0 , yv,t0) at timestamp t0 and (xv,t1 , yv,t1) at timestamp

t1, then the speed of motion could be calculated from the Euclidean distance between them asp
((xv,t1 − xv,t0)2 + (yv,t1 − yv,t0)2). The value of M (at timestamp t1) is calculated by taking the

average of this distance across all the 9 joints, as shown in Equation (6.3).

M =
∑

v∈{1...9}

√
(xv,t1 − xv,t0)2 + (yv,t1 − yv,t0)2

9
(6.3)
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Figure 6.13: An example of 400 continuous frames, showing that the stability of the estimation
can be improved by assessing and correlating C and M in the temporal domain.

The two variables, C and M, are recorded as the system operates. The mean values and

the variances of C and M are calculated across a 5-frame time window (approximately 0.25 s),

to assess the stability of the estimate. An estimate will be determined as unstable if either C

or M has fluctuated over 5% regarding their mean; for example, if the confidence has dropped

significantly, or if a new estimate greatly differs from the last one. It should be noted that the

comparison is made against the mean value of C and M in the 5-frame time window. Therefore, a

constant low C or a constant high M will not be treated as unstable. An unstable estimate will not

be accepted as an output. Instead, only the horizontal position of the estimate will be recorded,

and the estimate from the last frame will be used and shifted as the output. The estimate will be

treated as stable again if the variances of both C and M fall within 15% of their mean values,

i.e. when the last 5 estimates have a similar C and M. The thresholds used here provide a

trade-off between a higher error tolerance to noisy data and a higher sensitivity to posture

changes, which can be configured for the application. Figure 6.13 shows an example consisting

of 400 continuous frames. The OKS (object keypoint similarity) metric in the figure measures

the similarity between an estimate and the ground truth, which will be explained in Section 6.5.

Occasionally, due to the noisy radar data, the confidence C of the neural network will drop

dramatically and the motion term M will increase, indicating that the system might be making a
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Figure 6.14: An example of how an estimate can be improved by restricting the maximum
displacement of the joints.

mistakenly aggressive estimate. Such estimates are detected and corrected automatically through

the temporal correlation step.

In addition, it is assumed that the joints will not move much between frames and a restriction

on the maximum distance that each joint could move was set. Given the x-y coordinates (xv,t0 , yv,t0 )

of a joint v at timestamp t0, then for the next timestamp t1, the estimate (xv,t1 , yv,t1 ) will be forced

to be within a certain distance of (xv,t0 , yv,t0 ), as shown in Figure 6.14. The threshold is set to be 2

pixels in this system (approximately 8 cm), which is a rather loose criterion considering that the

time between two frames is only 5 ms.

The temporal correlation step aims to reject any outlier estimate caused by any instability

within the data, and hence improves the smoothness in the time domain. It is found to improve

the stability of the estimation and reduce the variance, as will be shown in Section 6.5.
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(a) Comparison between each type of joint. (b) Comparison between all joints, the primary
joints and secondary joints.

Figure 6.15: The cumulative distribution function of the localization error.

6.5 System Evaluation

The output from the proposed system was evaluated against the ground truth generated by the

camera system. The first metric is the localization error of each joint. The localization error is

calculated from the Euclidean distance between the estimated position and the ground truth

position of the joints. Given that the 45×32 heatmap is supposed to project a 2 m×1.5 m area at

1.5 m to 2 m, each pixel will represent approximately 4 cm. The mean localization error of all the

9 joints is (12.2±5.2) cm. The cumulative distribution function of the localization error of the full

system is given in Figure 6.15. Figure 6.15a shows the localization error of each joint (or the mean

localization error for paired joints). Figure 6.15b compares the mean localization error between

all joints, primary joints and secondary joints. Both figures indicate that the system achieves a

higher accuracy on the primary joints (the head, shoulders, and waist) over the secondary joints.

During the experiment, it was found that the mmWave signal reflected from the legs and the feet

is noisy due to a large amount of background reflection from the floor, which affects the system’s

ability to determine the position of the knees.

The average precision (AP) of the system using the OKS metric is also reported, as commonly

used in computer vision [188]. The OKS measures how close an estimate is in comparison to the

ground truth. The calculation of the OKS considers the relative size of different joints concerning

the subject scale, as shown in Equation (6.4):

OKS = ∑
v∈{1...9}

(e
− d2

v
2s2k2

v )/9 (6.4)

where dv is the Euclidean distance between the joint’s estimated position and the ground truth;
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Table 6.1: AP (using OKS) and mean localization error (MLE) of the system, and a comparison to
the literature.

Method
AP

(OKS=0.5)
AP (OKS=

0.5:0.95:0.05)
MLE
(cm)

This research mmWave 0.959 0.713 12.2
HRNet [66] Camera 0.928 0.782 NA

UDP-Pose [189] Camera 0.949 0.808 NA
RF-Pose2D [76] RF 0.933 0.624 NA
RF-Pose3D [115] RF NA NA 4.0-4.9
mm-Pose [116] mmWave NA NA 2.7-7.5
CLGNet [119] mmWave NA NA 27.9

s is the size of the subject to detect; kv is a constant that controls the weight of joint v, which

is pre-calculated based on the average size of the joints as in the optical images. The rationale

behind the OKS metric is that a larger joint (e.g. a head) should have a higher error tolerance

than a smaller joint (e.g. an elbow). A more accurate estimate will give a higher OKS, and an

exact match will give an OKS of 1. The AP over the dataset is then calculated as the percentage

of correct estimates from all frames, where an estimate is considered correct if its OKS value

is higher than a certain threshold. For example, AP at OKS=0.5 is a loose metric that accepts

an estimate if its OKS is greater than 0.5, whereas OKS=0.5:0.95:0.05 is a stricter metric that

calculates the AP over 10 OKS thresholds from 0.5 to 0.95. A more detailed explanation of the

AP+OKS metric can be found in [188]. The evaluation result of the system and a quantitative

comparison between this research and the literature are shown in Table 6.1.

It should be noted that the performance figures of the research being compared are taken

from the referenced papers rather than reproduced on the dataset developed for this research,

since they are based on different methods and are designed with different setups, including the

equipment used, types of postures involved, data format, training procedures, etc. Therefore,

due to the lack of a common benchmark, it is difficult to carry out a strict comparison between

these systems. Computer vision datasets are generally collected by an optical camera at different

distances and scales, where the 3D geometrical information is not available. Therefore, the

AP+OKS indicator is often used. In contrast, 3D datasets often use dedicated systems to collect

the geometrical information (e.g. the 12-camera system in RF-Pose3D), which can be better

evaluated through the localization error rather than the AP.

The result indicates that the system can effectively extract spatial features from the radar

data and determines a person’s posture, at a competitive performance to the state-of-the-art

systems in both the computer vision field and the sensor field. The work by Sun et al. [66] and

Huang et al. [189] are two of the state-of-the-art computer vision systems for posture estimation.

They both used multiscale convolutional blocks to capture information from the images at

different resolutions, and have achieved the top performance in 2D posture estimation due to the

high amount of details in images. However, they are constrained by intrusiveness and lighting
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Figure 6.16: Example posture estimation results from the full system.

Table 6.2: Mean localization error at different stages.

PD PD+SM PD+SM+TC
Mean (cm) 14.2 12.7 12.2
STD (cm) 6.8 6.5 5.2

conditions. Zhao et al. [76] and Zhao et al. [115] used a complex RF antenna array to scan the

scene and obtain a signal heatmap, from which a neural network is applied to predict the joint

position. The work by Sengupta et al. [116] and Wang et al. [119] are the most similar to this

research. They both used mmWave radars to capture a point cloud that represents the spatial

shape of the subject, and trained different CNN models for posture estimation. Although the

localization errors in [115] and [116] are lower than found in this research, it still has its unique

advantage. The research in [115] used a time window of 3 s for one input and used a large

neural network (0.4 s processing time on a high-end GPU), whereas this system can process

real-time radar data at 20 fps (more details in Section 6.6). The research in [116] contained only

a few motions (walking and standing with arms swing) and the variation of certain joints is

not significant, whereas this system is more generalizable and is capable of more complex and

arbitrary postures. Therefore, this system provides a competitive solution for potential real-world

applications. A visualization of some results from the system is given in Figure 6.16.

In order to evaluate the effectiveness of the spatial model and the temporal correlation step

of the system, the localization error of the system was compared at different stages in Figure 6.17

and Table 6.2 (PD = part detector, SM = spatial model, TC = temporal correlation). While both

the spatial model and temporal correlation have improved the performance of the system, the
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Figure 6.17: The cumulative distribution function of the localization error at different stages.

former improves more on the overall localization accuracy, whereas the latter is more effective at

rejecting outliers and reducing the variance.

Figure 6.18 gives some examples that specifically compare the output between the part

detector and the spatial model. When the point cloud data is noisy or ambiguous, the prior

knowledge encoded in the spatial model can significantly improve the robustness of the model

and avoid anatomically incorrect postures.

6.6 Real-time System Integration

The neural network model proposed in this chapter has been integrated into the framework

mentioned in Section 5.3 to build a real-time posture estimation system. The system framework

contains two Radar Handler modules for managing the communication between the computer

and the two radars, two Frame Processor modules to process the data from the radar, and one

Central Frame Processor to fuse the data and invoke the neural network model. The neural

network model is initialized on the GPU when the system starts, including allocating memory,

constructing the computational graph and loading the pre-trained weights into the model. The

block diagram of the system framework is shown in Figure 6.19.

In the Frame Processor modules, a FIFO module was applied to stack data in the temporal

dimension and a DBSCAN clustering module was used to filter out noise, as discussed in

Section 5.5. The Central Frame Processor module synchronizes the output from individual

frame processors and fuses the data into one frame. It transforms the fused frame into 2D images,
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Figure 6.18: Some examples of the comparison between the part detector and the spatial model.
Left: data input from the radar. Middle: output from the part detector. Right: output from the
spatial model.
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Figure 6.19: The complete system framework. The posture estimation part is highlighted in red.

feeds it into the neural network model, receives the output and displays the interpolated result.

Since the size of a point cloud is always only a few hundred points, the time consumption of the

pre-processing is negligible in comparison to the neural network, which is around 49 ms on an

Nvidia RTX3070 GPU. Therefore, given that the bottleneck of the full system is at the neural

network, the system can operate in real-time at 20 fps.

6.7 Operating on Embedded Platforms

As the computational resource and processing power can be limited in certain applications, the

possibility of running the system on embedded platforms was evaluated. As neural networks on

mobile and embedded platforms are becoming more common, many manufacturers are making

dedicated systems for lightweight machine learning tasks. For example, TI provides the AM57x

SoC at around £30, with the C66x digital signal processors [190, 191] and the Embedded Vision

Engine (EVE) subsystems that are dedicated for accelerating neural network operations, with a

low power-consumption of around 5 W. Although it only supports 8-bit integer operation rather

than floating-point numbers like a GPU, it is possible to compress a network through quantization,

at the expense of lowering the precision. According to the TI deep learning framework [192],

the EVE unit can perform 16 8-bit MAC operations per clock cycle and it is typically clocked at

650 MHz, which is 10.4G MAC per second. TI has verified that the EVE unit can execute a few

small neural networks in real-time, such as the InceptionNetV1 network (1.5G MAC operations
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and 6.8M parameters [193]) in 785 ms [192].

Alternatively, the Nvidia Jetson GPU is a more powerful product series of embedded platforms.

For example, the Jetson Nano has a power consumption of 10 W and a performance of 472G

floating point operations per second, which can execute large state-of-the-art networks like the

InceptionNetV4 network (12G MAC operations and 43M parameters [194]) in 13 fps. The GPU

architecture, although more expensive, does not require further optimization like quantization

on the network, and therefore can retain a higher performance of the network.

The proposed neural network in this research has only around 373M MAC operations,

significantly less than the InceptionNetV1 (26%) and InceptionNetV4 (3%). The total number of

parameters is around 19M and can be easily fitted into the memory of an embedded platform.

Therefore, it is possible to port the network to either the AM57x SoC or the Jetson platform while

still operating in real-time.

6.8 Conclusion

In this chapter, a real-time human posture estimation system using commercial mmWave radars

has been shown. The system consists of a data pre-processing module to convert the radar point

cloud into 2D images, a neural network model to process the images and generate heatmaps of

joint positions, and a post-processing module to exploit the temporal correlation between time

frames and refine the estimate. The experimental setup focused particularly on short-range

detections within two metres. In contrast to many existing mmWave-based systems which mainly

focus on standing postures, this system can estimate arbitrary standing and sitting postures of a

person, with a mean localization error of 12.2 cm and an average precision of 71.3%, while still

maintaining a high processing speed and low cost. It was shown that the system can operate

in real-time at 20 fps, from data collection, data processing to result visualization. The system

provides a low-cost and non-intrusive monitoring solution as it only collects anonymous data

rather than sensitive visual information. Therefore, it can be of great interest in many real-world

applications where privacy is important, such as health monitoring and elderly care.
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HUMAN VITAL SIGN DETECTION

In this chapter, a novel human heart rate (HR) detection system using one mmWave radar

is presented. In contrast to many existing systems that focus on detecting the vital signs of

a stationary person, this system aims to detect the heart rate of a person while exercising

on a treadmill. A novel phase signal construction algorithm is presented for detecting the chest

displacement of the person, and a machine learning model is trained for predicting the trend

of HR change during exercise. It will be shown that the system can detect the person’s HR in a

complete exercise cycle with a low error rate of 5.4%. The phase signal construction algorithm

described in this chapter has been submitted in a patent application [27].

The rest of the chapter is organized as follows. Section 7.1 gives the background of this work.

Section 7.2 discusses the problem of phase ambiguity when measuring the heart rate using

radar and how it can be addressed. Section 7.3 presents the heart signal detection algorithm,

including the phase construction algorithm and the machine learning model. Section 7.4 shows

the evaluation result of the system when measuring an exercising person’s heart rate. Section 7.5

concludes the chapter.

7.1 Overview

Cardiovascular disease is one particularly important health problem around the world and is

one of the major threats for people in midlife and older ages. Regular monitoring of people’s HR

has been shown to be an effective way of assessing their cardiac health and early detection of

potential diseases [6]. Although some commercial products, like chest bands and smartwatches,

are available for long-term HR monitoring, it is often impractical to ask the subject to wear it

all the time, and there is a possibility that the device can be damaged, need calibration or be
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lost. These devices can also be expensive to people with a low income. Therefore, contactless

HR monitoring has been studied for decades as an alternative to contact sensors, among which

radars have received the greatest interest. However, the majority of the research assumes the

person being monitored is stationary or has restricted movement, which is often a too optimistic

assumption and is not suitable for daily use. Accurate HR monitoring under free body movement

remains a challenge [120, 121].

Generally, a person’s chest movement due to heartbeat is around 0.2 mm to 0.5 mm at 1 Hz to

1.34 Hz when at rest [195]. The phase information of radio-frequency signals emitted from the

radar and reflected from the person can be analysed to capture the chest displacement. There

is research on using mmWave radars to measure the HR [16, 123, 126, 196]. However, most of

them require the subject to sit or lie at a known distance, as any movement of the person would

be significantly higher than the chest displacement and make the detection much harder. Some

work measure the HR when the person is in limited motion, such as when walking in a straight

line at a low speed [131], but cannot deal with more complex motion.

In this paper, a mmWave radar-based system is proposed to detect a person’s HR while

exercising on a treadmill, as an attempt to solve the problem of HR estimation with free body

movement and provide insight for other applications in future work. The radar operates at

an extremely high frequency to capture the information of the scene at the highest possible

resolution. Then, a novel phase signal construction algorithm is presented that can track the

position of the person among all the noise signals, where the phase signal would encode the

displacement of the person’s chest. Finally, an HR tracking algorithm is proposed based on a

support vector machine (SVM), to continuously estimate the person’s HR during the exercise.

The principle of the mmWave radar has been introduced in Chapter 3. The radar sends a

chirp signal, receives the reflection, and generates an IF signal that encodes the distance between

the radar and the subject. The IF signal at any chirp can be expressed as Equation (7.1):

IF(t)= e j(ωt+φ) where ω= 2π ·Sτ, φ= 4πd
λ0

(7.1)

where S is the chirp slope, τ and d are the ToF and distance between the subject and the radar,

and λ0 is the signal wavelength at the chirp starting frequency. The radar sends chirp signals at

a high rate (5000 Hz in this research), where the chest displacement of the subject in front of the

radar will be embedded in the phase variation of the IF signal. Let φ0 = 4πd0
λ0

denote the initial

detected phase of the subject at chirp 0, then φc = 4π(d+∆dc)
λ0

denotes the phase at chirp c with a

displacement ∆dc. Collecting the phase φ for a number of chirps Nc gives a phase signal PS that

can be expressed as:

PS =
{4π(d0 +∆dc)

λ0
|c ∈ {1...Nc}

}
= 4πd0

λ0
+

{4π(∆dc)
λ0

|c ∈ {1...Nc}
} (7.2)
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where the constant term 4πd0
λ0

represents the initial position of the subject, and the second term

represents the displacement of the subject at each chirp.

HR detection can be achieved by analysing the phase signal PS and extracting the periodical

change of dc that corresponds to the HR. However, this is more challenging when the person is

not stationary. Equation (7.1) implicitly assumes that the distance between the person and the

radar does not change within the duration of a chirp. This assumption is mostly true when the

person is stationary or moving at a low speed. However, the accuracy of the estimation can drop

when the person is exercising. Assuming the person has an instantaneous speed of 1 m/s and the

chirp duration is 100 us, then the displacement within the chirp will be 0.1 mm and will give a

phase noise of around 0.1π. In addition, the movement of other body parts, like the limbs, can

make the IF signal much more noisy and make it harder to extract the correct frequency and

phase term corresponding to the chest. This research aims to solve the mentioned problem by

using a combination of the traditional frequency-based approach and a machine learning-based

HR tracking algorithm to estimate a person’s HR in exercise.

7.1.1 Raw Data Capturing

HR estimation requires raw IF signal of the radar to be transmitted to the PC for post-processing.

This can be performed by using a modified version of the framework discussed in Section 5.3,

with a DCA1000 data capturing card. The overview of the data flow is shown in Figure 7.1.

The framework uses a modified version of TI’s DCA1000EVM CLI software, a dedicated driver

designed for controlling the DCA1000 board and receiving the data [197]. The original version of

the software only supports dumping data to files, whereas the modified version support real-time

data streaming to the presented software framework through socket programming.

In addition to the modules discussed in the previous sections, the framework uses a DCA1000

Handler module to control the DCA1000 board. When the system starts, the DCA1000 board will

be configured and started through the DCA1000 Handler module and the DCA1000EVM CLI

software. A configuration file is used to specify the radar model, the data capturing mode and the

corresponding parameters. Then, the radar will be configured and started with LVDS streaming

enabled. Once the radar starts operation, it will dump raw IF signals through the LVDS lanes to

the DCA1000 board, which will then be transmitted to the PC through a gigabit Ethernet port.

The data will be received by the modified DCA1000EVM CLI software and be streamed to the

DCA1000 handler module. The DCA1000 handler module will decode the data, arrange it into an

appropriate matrix format and send it to the Visualizer for further processing.

While the point cloud data is sparse and only takes up to a few Kbps (kilobits per second)

bandwidth, the raw data is dense and requires significantly higher bandwidth. For example, the

proposed system in this chapter captures 5000 chirps per second and 1500 samples per chirp,

which corresponds to 240 Mbps (million bits per second) bandwidth per receiver. The DCA1000

board supports up to four LVDS lanes, and each lane supports up to 600 Mbps. However, the
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Figure 7.1: Software framework when capturing the raw data from a radar. 1) Configure the
DCA1000 board. 2) Configure the radar. 3) The radar starts dumping data to the DCA1000 board.
4) The data is received by the DCA1000EVM CLI software. 5) The data is transmitted to the
DCA1000 handler. 6) Process the data.

Figure 7.2: When a change in the phase is observed, the red and the yellow path show two
possible interpretations of the object’s motion.

Ethernet port supports up to only 706 Mbps [173] and becomes the bottleneck of the system.

Therefore, the bandwidth can become an important constraint when designing systems that

require raw data capturing from multiple receivers at a high data rate.
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7.2 Phase Ambiguity and Unwrapping

Since the phase of a signal has a range of [0,2π], it can become ambiguous when the subject

is moving fast. For example, as shown in Figure 7.2, when a change in the phase is observed,

there exists more than one possible interpretation of the object’s motion. Therefore, to avoid such

ambiguity, the sampling rate of the phase has to be greater than the motion of the object, so that

the maximum phase change will be within π:

∆φ<π (7.3)

where ∆φ= 4π∆d
λ0

(derived from Equation (7.2)) is the phase change between two successive chirps

due to the displacement ∆d of the object. Substituting this into Equation (7.3) gives:

4π∆d
λ0

<π

∆d < λ0

4

(7.4)

where λ0 is the wavelength of the signal at the chirp starting frequency (77 GHz) and corresponds

to a wavelength of 3.9 mm. Therefore, to avoid phase ambiguity, the displacement of the object

between each measurement has to be within 1 mm. In the experiment, the radar is configured

to operate at 5000 Hz (5000 chirps per second), so that it can measure a person moving at up

to 5 m/s without introducing any phase ambiguity. Taking this assumption to the example in

Figure 7.2, it can then be inferred that the red path is the correct one and the yellow path should

not happen.

By assuming that the phase changes between any two successive measurements would be

within π, the phase can be unwrapped to restore the original motion of the object. Taking a set of

phase measurements Φ, the phase difference between every measurement can be calculated and

any difference greater than π can be unwrapped, as shown in Algorithm 2. An example of how

phase unwrapping helps restore the object’s motion can be seen in Figure 7.3, where the yellow

points are the measured phase in the range [0,2π] and the blue points are the unwrapped phases

representing the actual motion (a sinusoidal oscillation). The phase unwrapping concept will be

applied during the processing of the phase signal in later stages.

Algorithm 2 Phase unwrapping algorithm.
Input: Raw phase signal Φ.
Output: Unwrapped phase signal Φ.

1: n = length(Φ) ▷ Get the signal length
2: for i in {1,n} do ▷ Iterate through each sample
3: if (Φi −Φi−1 >π) then ▷ If phase increases by over π
4: Φ[i : n]=Φ[i : n]−2π ▷ Shift signal downward
5: else if (Φi−1 −Φi >π) then ▷ If phase decreases by over π
6: Φ[i : n]=Φ[i : n]+2π ▷ Shift signal upward
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Figure 7.3: The motion of an object can be restored by unwrapping the phase signal.

Figure 7.4: The four stages of a common exercise cycle.

7.3 Heart Signal Detection

When exercising on a treadmill, a full exercise cycle can be defined with four stages: idling,

exercise starting, continuous exercising, and recovery, as shown in Figure 7.4. In stages one and

three, there is often a positive correlation between the motion level and the HR, and researchers

have designed systems to detect the person’s HR during these periods, such as [35]. However,

there are few researches considering stages two and four, where the motion level and the HR

might not be correlated. The system proposed in this research aims to track the HR of the person
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Figure 7.5: flowchart of the proposed algorithm.

during the complete exercise cycle.

The procedure of using mmWave radars for HR detection is shown in Figure 7.5. The system

operates following a sliding-window approach. It uses a time window of 5 s (referred to as one

frame) and a refresh rate of 1 Hz. Each second of data contains 5000 chirps. First, a range-FFT

is applied to the IF signal at each chirp to obtain its frequency spectrum, and a bin tracking

algorithm is used to find the bins corresponding to the person’s position across all the chirps.

Each range bin will have a corresponding phase, so a continuous path of range bins in the time

domain can form a phase signal of length 5000 per second. Then, based on the phase signal,

the system judges if the person is exercising or not, and applies the corresponding algorithm

to determine the HR. The system predicts the HR once per second, where the predictions are

smoothed with the previous predictions using a moving average approach, to ensure a stable

reading. The following sections explain each stage of the system.

7.3.1 Phase Signal Construction

The radar generates an IF signal at each chirp, as shown in Equation (7.1). A range-FFT is

applied to each IF signal to compute a frequency spectrum of length N∗
s , where N∗

s is the length

of the FFT and the peak in the spectrum corresponds to the frequency ωb. For all chirps in one

frame, a 2D range-time spectrum as a matrix of size TNc ×N∗
s can be constructed that encodes

the position of the person over time, where Nc = 5000 represents 5000 chirps per second, T = 5

represents the 5 s time window and TNc represents the total number of chirps in the time window.

Figure 7.6a shows an example of the 2D matrix where a person is walking back and forth for a

short distance.

To construct a phase signal of the person, the range bin at each chirp needs to be identified.

Ideally, the chosen range bin should reflect the motion of the subject’s chest. However, with the

assumption of free body movement, the range-FFT can become noisy and the location of the bin

can have a large variance. Therefore, a novel bin tracking and phase construction algorithm is
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(a) The 2D range-time spec-
trum obtained from the IF sig-
nal that encodes the motion of
the person over time.

(b) The range-time spectrum
after clutter removal and the
detected bin path.

(c) The extracted phase signal of the
person.

Figure 7.6: An example of the phase construction step.

proposed.

Let R(TNc×N∗
s ) denote the range-time spectrum from the range-FFT. First, a clutter removal

step is applied, where the averaged power from all chirps is subtracted from the spectrum and

the absolute value of the resulting spectrum is calculated. This step filters out the signal from

static objects that have a near-zero variance in the spectrum, as a person can hardly be absolutely

stationary. The clutter removed range-time spectrum is denoted as R̄(TNc×N∗
s ) and an example is

shown in Figure 7.6b. When the system starts, a range spectrum is generated by averaging the

magnitude of the spectrum (|R̄|) in the first 50 chirps, and the subject’s initial position s1 is found

by applying a CFAR peak detection algorithm on the range spectrum.

Given an initial range bin s1, the tracking algorithm attempts to determine the most possible

range bin in the subsequent chirps sc where c ∈ [2,TNc]. For each chirp c, it is assumed that

the new bin sc would fall within a certain range around the last bin sc−1, where the probability

distribution follows a Gaussian distribution. Therefore, a Gaussian distribution centred at sc−1

is established as GD(sc−1) and is multiplied by the range-FFT magnitude at chirp c, to produce a

spectrum R′
c of length N∗

s :

R′
c =GD(sc−1) · |R̄c,·| (7.5)

The position of the peak of the output spectrum R′
c is taken as the new bin sc and the algorithm

is applied iteratively to all chirps. The width of the Gaussian distribution controls the trade-off

between the sensitivity to motions and the stability of the tracked phase. A minimal score is

set empirically for accepting the bin index, so that the tracking process will terminate when no

person is detected or when the person has left the scene. An example of the tracking processing

is shown in Figure 7.7, where the red line is GD(sc−1), the green line is |R̄c,·| and the blue line is

R′
c.

Once the bins have been determined for all chirps, a bin path in the range-time spectrum
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Figure 7.7: Tracking the FFT bin index using a Gaussian distribution.

can be constructed as BP = {sc|c ∈ {1...TNc}} (as shown as the red line in Figure 7.6b). The bin

path represents correspondence of the person’s motion in the frequency domain. Then, the phase

signal of the person can be extracted from the range-time spectrum following the bin path:

PS = {∠R̄c,sc |c ∈ {1...TNc}} (7.6)

The phase signal PS represents the motion of the person with respect to the signal wavelength

and can achieve millimetre-level resolution, as described in Equation (7.2).

However, a phase signal extracted directly from the path bins will contain discontinuities

whenever there is a bin change. Therefore, to maintain the smoothness of the phase signal,

one additional processing step is introduced. First, a phase spectrum Φ(TNc×N∗
s ) =∠R̄(TNc×N∗

s )

is calculated for all chirps and range bins. For each range bin s, the phases of all chirps are

collected as a signal Φ·,s and are unwrapped (denoted as UΦ·,s) as described in Section 7.2. The

first-order derivative of UΦ·,s is then calculated as UΦ′·,s. Then, the bin path BP is smoothed

using a Gaussian kernel. The smoothed path would have non-integer bins that need to be

interpolated from neighbouring bins using the corresponding value in UΦ′·,s. For example, the

phase value of a non-integer bin 10.1 at a chirp c will be linearly interpolated from bin 10 and

11 as UΦ′
c,10.1 = (0.1UΦ′

c,10 +0.9UΦ′
c,11). Applying this procedure to all bins in BP gives a phase

signal PS′ as a smoothed first-order derivative of PS and allows a smooth phase signal to be
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re-constructed. An example of the tracked phase signal is shown in Figure 7.6c.

While the absolute phase values encode the position of the person, the changing of the phase

is more important in identifying the chest motion due to the heartbeat. Chest movement due to

heartbeats happens within a very short time (around 0.1 s), which will result in a rapid change in

the phase. Researchers (as in [16]) have shown the effectiveness of using the phase difference, or

more specifically the first-order derivative of the phase signal, in detecting the HR. Due to the

movement of the person, the unwrapped phase signal can vary from a few π to thousands of π,

whereas the phase derivative is limited to the range of [−π,π] and is easier to compute, given

the assumption that the measuring rate is high enough so that the displacement of the subject

between two chirps is small. Therefore, instead of reconstructing the raw phase signal PS, its

derivative PS′ can be used directly for the next stage.

Algorithm 3 Phase signal construction algorithm.

Input: A range-time spectrum R of size (TNc ×N∗
s ).

Output: The first order derivate of the phase signal, PS′, with length TNc.
1: for s in {1...N∗

s } do ▷ Clutter removal
2: R̄·,s = |R·,s −mean(R·,s)|
3: s1 = peak(mean(R̄1:50,·) ▷ Predict the initial bin
4: BP = {s1}
5: for c in {2...TNc} do ▷ Bin tracking
6: R′

c =GD(sc−1) · |R̄c,·|
7: BPc = peak(R′

c)

8: BP =Gaussian_filter(BP) ▷ Smooth the bin path
9: Φ=∠R̄ ▷ Calcualte the phase

10: for s in {1...N∗
s } do ▷ Unwrap and calcualte the derivative

11: UΦ·,s = unwrap(Φ·,s)
12: UΦ′·,s = derivative(UΦ·,s)

13: PS′ = 0
14: for c in {1...TNc} do ▷ Generate the phase signal
15: b f loat = BPc
16: bint = round(b f loat)
17: PS′(b)= interpolate(b f loat,UΦ′

c,bint
,UΦ′

c,bint+1)

7.3.2 Phase-FFT

When the subject is stationary, the displacement of the chest due to heartbeats can be considered

as a periodical signal with a certain frequency between 1 Hz to 3 Hz. Therefore, it is possible

to extract the signal by applying a bandpass filter over the desired frequency range and an

FFT on the filtered phase signal. For a stationary subject, the FFT spectrum will have minimal

interference from other sources of movement, making the HR distinguishable. However, as the

phase signal is highly sensitive to movement and the subject cannot stay absolutely stationary in
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(a) Phase signal of the person when stationary. (b) Phase FFT result.

Figure 7.8: Example of the phase signal and phase-FFT when a person is stationary.

(a) Phase signal of the person when exercising. (b) Phase FFT result.

Figure 7.9: Example of the phase signal and phase-FFT when a person is exercising.

practice, the FFT output will be sensitive to noise and have outliers. Two examples of the phase

signal and the phase-FFT spectrum are shown in Figure 7.8 and Figure 7.9, when the person is

stationary and exercising, respectively.

When the person is stationary, the amplitude of the phase signal is low and the FFT peak from

the HR is easier to detect. When the person is moving or exercising, the amplitude becomes much

more significant due to the body movement, and there could be a strong frequency component

from the movement that dominates the FFT spectrum. Although the HR is still visible from the

spectrum, it is much smaller and impractical to distinguish from the noise. Therefore, further

processing is required to identify the correct frequency component for the HR.
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7.3.3 Heart Rate Tracking

When the subject is exercising, the signal from the heartbeats will be small when compared with

the signal from the body movement, as the body movement will also be periodical but with a

much larger amplitude. To address the mentioned issue, a machine learning model that attempts

to model the relationship between the motion level and the HR is trained. Given a phase signal

PS′, the motion level of the subject is defined as the trimmed mean of |PS′| with a 20% cut-off

and denoted as M. When M is above a certain threshold, the HR tracking model will be triggered,

which takes several properties of the phase signal as the input and predicts the most possible HR

change in the frame.

First, an FFT is applied to the phase signal PS′ as described in Section 7.3.2. All local peaks

in the FFT spectrum are extracted as the candidate frequencies of the heartbeat. The candidates

are considered to have an equal probability regardless of their power, since the HR signal can

have a weak amplitude. Then, the problem of HR detection is transformed into a classification

problem: given certain properties of the phase signal and the last known heartbeat frequency,

the model needs to determine if the frequency will increase, decrease or stay at the same level.

Based on the model prediction, the system can then pick the corresponding frequency among all

the candidates.

Let Hlast denote the heartbeat frequency in the previous frame, and the two closest frequen-

cies in the candidate set of the current frame will be taken as Hhi and Hlo (Hhi > Hlo). Let Hmax

and Hmin denote the maximum and minimum HR to detect (3 Hz and 1 Hz in this research). A

normalization term HN is defined as 1
(Hmax−Hmin)2 . Then, the following variables are calculated as

the input to the machine learning classifier:

1. HN(Hlast −Hmax)2.

2. HN(Hlast −Hmin)2.

3. HN(Hlast −Hhi)2.

4. HN(Hlast −Hlo)2.

5. Mt: The current motion level.

6. Mt −mean(Mt−15:t−10): The difference between the current motion level and the average

motion level in the past 15 s to 10 s.

A linear SVM is used as a binary classifier, where a positive prediction corresponds to Hhi and

a negative prediction corresponds to Hlo. An example of this process is shown in Figure 7.10.

Given the last prediction is around 125, the two most possible HRs based on the phase-FFT result

would be the left and right peaks (120 and 127, respectively), where the SVM will be used to

select the result based on the described variables.
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Figure 7.10: Example of using an SVM to predict the HR based on the phase-FFT result.

When considering a complete exercise cycle, it is always assumed that the person starts from

the idle state, where the stationary HR estimation procedure is applied. Then, upon the detection

of a higher motion level, the machine learning model is applied to estimate the HR for the rest of

the time. In order to provide a smooth real-time reading, the estimation is performed once per

second and a moving average of the HR within a 30 s window is reported. Reporting the moving

average can strongly improve the system’s tolerance to outliers and relax the requirement on the

phase-FFT accuracy, which allows a small time window to be used when constructing the phase

signal.

7.4 Evaluation

7.4.1 Experimental Setup and Dataset

The experimental setup is shown in Figure 7.11. In the experiment, one IWR1843 radar is used

and configured as follows: The chirp frequency is 77 GHz to 81 GHz, the slope is 21 MHz/us, the

chirp duration is 180 us, the ADC sampling rate is 9 MHz, each frame is 50 ms with 250 chirps (i.e.

5000 chirps per second), and each chirp has 1500 samples. The radar is placed at approximately

the same height as the person’s chest and 1 m to 2 m away from the person. Only one pair of
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Figure 7.11: Experimental setup.

transmitter and receiver is used, as this research focuses on the HR estimation of only one person.

The software framework described in Section 7.1.1 is used for data collection and processing. The

ground truth HR is collected using a Polar H10 chest band, a portable ECG-based sensor that

have demonstrated reliable performance in the industry [198]. The H10 device is connected to

the PC using Bluetooth and is integrated into the framework using the standard Bluetooth Low

Energy protocol. It detects and reports the HR of the person approximately once per second. The

data from the H10 device and the radar data will be timestamped and synchronized based on

their arrival time to the PC. Since the update rate of the HR estimation system is set to one

update per second, explicit data synchronization at a higher rate is not required.

Two datasets were collected for evaluating the system. The first dataset contains the radar

signal when a person is either sitting, standing, walking back and forth, or exercising in front of

the radar, for a total of 72 minutes. The data were collected without a particular order, and the

HR ranged from 60 to 160 beats per minute (bpm). This dataset is used to evaluate the phase

signal construction algorithm and aims to show that the constructed signal can effectively encode

the heartbeat signal. The second dataset contains three data segments, where each of them

corresponds to one complete exercise cycle (as in Figure 7.4) and lasts 5 to 10 minutes. In each

run, the person stood in front of the radar for around one minute, exercised for several minutes,

and then stopped and rested for another one minute. One segment is used for training the SVM

model described in Section 7.3.3, and the other two are used for testing it. The HR distribution of

the two datasets is shown in Figure 7.12, both of them have a wide HR variability that ensures

the generalizability of the system.

The evaluation includes two parts. The first part aims to show that, although the heartbeat

frequency in the phase signal FFT spectrum can be hard to identify, the frequency always

exists in the spectrum. It examines the effectiveness of the phase construction stage so that the

heartbeat signal is embedded in the phase signal as expected. The second part evaluates the

overall accuracy of the system when predicting the HR of a person during a complete exercise
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(a) Heart rate distribution in dataset 1. (b) Heart rate distribution in dataset 2.

Figure 7.12: HR distribution of the two datasets.

cycle.

7.4.2 Phase Signal

The phase signal should ideally represent the chest displacement of the person. However, the

chest displacement can become less significant and hard to identify when the person is moving.

Therefore, it is important to make sure that the heartbeat signal can be captured by the phase

signal constructed using the algorithm proposed in Section 7.3.1. Ideally, the phase signal should

contain a frequency component that corresponds to the HR. This component should be present

when an FFT is applied to the phase signal, although it may not be the only peak in the FFT

spectrum due to the noise.

To verify this, the phase construction algorithm was applied to the first dataset to generate a

phase signal every second, followed by a phase-FFT. The closest peak to the ground truth was

found and the distance to the ground truth was recorded. The process was repeated using a 5 s

and 20 s time window, respectively. The result is shown in Figure 7.13. It shows that there was

always a peak around the ground truth regardless of the person’s status, where the error can be

up to ±20 bpm when using a 5 s time window, and up to ±5 bpm when using a 20 s time window. It

can be seen that a larger time window helps the FFT to identify the HR signal, and the frequency

corresponding to the HR is very likely to be present in the phase-FFT spectrum. Therefore, the

only question left is how well the system can identify this frequency among the noise.

7.4.3 Heart Rate Estimation

The system is evaluated using the dataset containing complete exercise cycles. The result, as well

as a comparison to the literature, is shown in Table 7.1 and Figure 7.14. The error is calculated as

the mean absolute error between the estimation and the ground truth (measured once per second)
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(a) Error with a 5 s time window. (b) Error with a 20 s time window.

Figure 7.13: The distribution of the error between the ground truth and the nearest peak in the
phase-FFT spectrum.

throughout the exercise cycles, which was (6.73±5.10) bpm (5.9% in relative to the ground truth)

when using a 5 s time window. The system is compared against research that focuses on the HR

detection involving some degrees of body movement. The state-of-the-art systems can achieve a

low error of below 5 bpm with various motions. However, one potential limitation of the systems

is the variation range of the HR, which was not given in the mentioned work. When the motion is

simple, like sitting or walking, the variation of the HR can be low, and the system may overfit to

a certain range of HR.

Although the proposed system does not outperform the state-of-the-art in the literature, it

has several advantages. It is one of the few research studies that targets the HR detection of

an exercising person and covers a wide range of possible HRs between 60 bpm to 180 bpm. The

research in [127] is the most similar to this research. It used a neural network to estimate the

HR of the person based on the motion level directly. However, the neural network requires much

longer data acquisition and processing time (30 s and 5 s) and requires a high-end GPU to execute

the network, so it has limitations in real-time applications. In addition, the research in [127] did

not discuss the second and fourth stages of the exercise cycle, where the relationship between the

HR and the motion level may fail. In contrast, the presented system uses a machine learning

model to learn the trend of the HR changes and combines it with the traditional FFT-based

method, to successfully track the HR during the entire exercise cycle. The presented system

works in real-time and uses a 5 s time window to achieve a fast response.

7.5 Conclusion

In this chapter, a real-time HR detection system using a mmWave radar has been shown. The

system is designed to monitor the HR during a complete exercise cycle, including the idling,
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Table 7.1: Result of the proposed system and a comparison to the literature.

Method Motion involved
Time window

(s)
Average

error rate
This research One complete exercise cycle 5 6.73 bpm / 5.4%

Gong et al. [127] Standing and exercising 30 5.57 bpm
Hu and Toda [131] Walking at 0.25 m/s 5 3.66 bpm
Mercuri et al. [128] Limb movements and desk work 20 3 bpm

Yang et al. [199] Siting and moving at 47.6 mm/s 5 0.87%
Jang et al. [200] Siting and moving at 53.4 mm/s 5 2.20%
Chen et al. [201] Eight motions 20 3%

(a) First run. (b) Second run.

Figure 7.14: HR estimation result using the proposed system.

exercise starting, continuous exercising and recovery phase. The system uses one mmWave radar

to detect the chest displacement of the person and extract the HR signal. A phase construction

algorithm is proposed to provide an accurate representation of the chest displacement under free

body movement, and an HR tracking algorithm using an SVM is proposed to estimate the trend of

the HR changes based on the person’s motion level. The evaluation shows that, although the HR

signal can be weak when compared with the motion signal, it can still be captured in the phase

signal. When combined with the HR tracking algorithm, the system can provide an accurate

estimation of the HR. The system can achieve a low error rate at 6.73 bpm when monitoring a

person exercising on a treadmill. This research provides a non-intrusive, low-cost and real-time

solution that helps people assess their health status without any professional medical equipment.
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CONCLUSION

In the past, the HAR field has been highly related to the computer vision field and has relied

on vision data. But as HAR systems become more common and practical, the problem of

privacy has become one of the main concerns of many people, which promotes the research

of radar-based HAR that only collects anonymous data. mmWave radars, due to their much higher

frequency and bandwidth than traditional radars, have demonstrated strong potential in HAR.

In addition to the non-intrusive nature, the high bandwidth allows mmWave radars to capture

the spatial features of the scene at a much higher resolution than traditional radar systems, and

the short wavelength enables them to have a small antenna size and makes them easy to deploy.

Along with the success in autonomous driving, researchers are starting to investigate the use of

mmWave radars in HAR, which has also motivated this research.

This research presents a comprehensive study of mmWave radars in HAR. First, it gives

a literature review of HAR and mmWave sensing techniques. HAR is inherently a machine

learning problem that uses experiences from observed data to predict human activity in future

scenarios. Therefore, most HAR systems adopt one or more machine learning algorithms to deal

with various tasks. For example, supervised learning trains a mathematical model that maps

the input to output using labelled data and can be used for classification or prediction, whereas

unsupervised learning models the features within the data and can be used for data clustering.

Machine learning forms an essential part of designing a HAR system and is used throughout this

research.

This research uses the mmWave radar models from TI. The radars use the FMCW radar model

that sends a chirp signal, receives its reflection and computes the IF signal, whose amplitude

and phase can be used to determine the distance, velocity, and AoA of the objects in the scene.

The performance of the range and velocity estimation relies on the chirp configuration, whereas
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the AoA estimation relies on the number of antennas and the AoA estimation algorithm. The

radars have on-chip processors that can be used for processing the radar signals, including the

range-FFT, Doppler-FFT, angle-FFT and CFAR peak detection. A combination of these techniques

forms a complete DPC that can construct a point cloud to represent objects in the scene. The

radars also have high-speed interfaces that allow the raw IF signal to be captured through a data

capturing card and transmitted to a PC for processing.

A mmWave radar simulation system is presented for efficient algorithm design and verifica-

tion. The system allows a customized scene to be set up using 3D models from public datasets

and simulates the radar signal as if the radar is placed in front of the scene. In this research, the

FAUST dataset is used to simulate the radar signal when pointing toward a person in different

postures, and a few DPCs and AoA estimation algorithms are evaluated. The algorithms provide

a trade-off between a low computational cost and a higher resolution. For example, the basic DPC

using a range-FFT, a Doppler-FFT and an angle-FFT is shown to be the most computationally

efficient, whereas a better result can be achieved by using an advanced AoA estimation algorithm

like MUSIC, but at an expense of a much higher processing time. The experiments show that the

quality of the radar detection depends on several factors and tends to be more accurate when

using a higher bandwidth and a higher number of chirps, as well as when detecting moving

subjects. However, it is shown that even in an optimal setup, the quality of the radar detection

can still be noisy and incomplete when compared with cameras or LIDARs, which can be the

major challenge when using mmWave radars for higher-level applications.

The problem of the data quality is further verified when using the radars for human detection

and tracking in a real-world scene. Locating the human is often considered the foundation for

more complex HAR tasks, which would otherwise be impossible. When using a single mmWave

radar to detect the presence of people in a room, the radar shows high sensitivity but also a high

false alarm rate. To address the problem, a novel system using two radars from two perspectives

is proposed, which uses information from both radars to verify each other’s detection and produces

a more robust solution. To implement the system, a software framework has been designed that

can connect to and synchronize multiple radars at the same time. The software framework utilizes

a multithreaded design to manage the data from the radars, ensures real-time performance and

allows customized DPC to be implemented based on the use case. The resulting system improved

the precision from 46.9% to 98.6% using two radars instead of one, while keeping the sensitivity

at over 90%. The system achieved a low localization error of 0.56 cm when tracking a person’s

motion and outperformed many state-of-the-art RF-based systems.

Then, a novel human posture estimation system is presented using the two radars as a

vertical array. The system identifies the key joint position of the person using a two-phase neural

network model. Experiments show that the system is able to estimate an arbitrary posture of a

person in an office environment at around two metres distance, with high accuracy at 71.3%. In

contrast to much research that targets either standing or sitting postures, this research is the
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first mmWave radar system that can detect a rich set of postures with a real-time processing

time.

Finally, a human vitals sign detection system is presented that is able to detect a person’s

heart rate while exercising on a treadmill. In contrast to many existing systems that often require

the subject to sit or lie at a known distance, the proposed system uses a novel phase signal

construction algorithm that can accurately measure the chest displacement of the subject, and a

machine learning model to predict the trends of the heart rate change based on the motion level

of the subject. Experiments show that the system is able to estimate a subject’s heart rate with a

low error rate of 5.4%. Although the system does not outperform the state-of-the-art systems in

HR detection, it is one of the few research studies that targets people with large body movement

and can estimate HR in a wide range.

This research provides the fundamentals for developing HAR systems using mmWave radars.

From the theoretical perspective, the thesis explains the principle of the mmWave radars,

identifies their advantages and disadvantages and discusses the design choices that can affect

the performance in real-world applications. From the practical perspective, a simulation system

is presented for fast application design and verification before investigating the hardware, and

a software framework is presented for managing the data communication of the radars and

efficient system implementation.

This research shows that, although the data from mmWave radars is not as accurate as

cameras and LIDARs, they can be used in several important fields in HAR with appropriate

DPC and machine learning algorithms. The thesis has presented three HAR systems that

have demonstrated competitive performances to traditional systems while having a real-time

processing time. The human detection and tracking system provides an effective solution to locate

a person in the field of view of the radar and can be used as the foundation for any other HAR

applications. Once the subject has been located, the human posture estimation system helps the

computer understand the underlying activity of the subject and potential provide interaction or

assistance. Although the accuracy of the system is less than the state-of-the-art camera-based

systems, it has the advantage of collecting only anonymous data and working in any lighting

conditions. The vital sign detection system can be used to determine the HR of the subject in

front of the radar, either standing, sitting, or exercising. The system is one of few research studies

that addresses the challenge of HR detection under large body movement and targets a wide

range of possible HRs. It helps the user to monitor their cardiovascular health conditions at home

or work environment, without the requirement of professional medical equipment. Meanwhile,

the proposed systems benefit from a low cost as the price of a radar chip can be below £10, which

can be affordable to people from all income levels. It is believed that mmWave radars will have

unique advantages and strong competitiveness in many industries that require HAR, including

health care, elderly care, security, home monitoring and gaming.
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CHAPTER 8. CONCLUSION

8.1 Future Work

This research opens many possible directions for future work. The SRPC algorithm presented

in Chapter 4 has demonstrated its effectiveness in improving the quality of the radar detection

using simulation data, and it would be necessary to verify its effectiveness in real applications.

For example, evaluating whether the posture estimation can perform better on the point cloud

generated with SRPC. The evaluation would require a hardware-efficient implementation so that

the real-time processing speed of the system can be retained.

Another research direction is porting the HAR systems to a single embedded platform. In

this research, most of the data processing is performed on a PC using a modern CPU or/and

GPU, which may not be available when targeting a low-cost HAR system. The radar models

have on-chip DSP processors that can be programmed for higher-level applications. Since the

effectiveness of the proposed HAR systems has been verified, the next step would be optimizing

the algorithms and porting them to the DSP processors, so that the cost and power consumption

of the final system would be kept low.

The framework and methodology presented in this research can also be used for similar

practical problems in HAR. One such problem is human identification, which is important when

there will be multiple people presenting in the environment and when the HAR information

needs to be linked to the person’s identity, such as in security and health care. The problem is

more challenging as identification often requires high accuracy and reliable information about the

person to be captured. Another possibility is gesture recognition. As mmWave radars provide high-

resolution motion information of the person, it might be possible to extract a region of interest

around the person’s hand and recognize the underlying gesture, allowing the user to provide

non-contact feedback to a computer system in certain applications. These research directions on

mmWave radars can greatly encourage the development of human-computer interaction systems

and contribute to a low-cost, non-intrusive and multifunctional HAR system.
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