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High Precision Human Detection and Tracking

using Millimetre-Wave Radars
Han Cui and Naim Dahnoun

Abstract

Millimetre-wave (mmWave) radar, as an emerging technique, is increasing in popularity for human

activity recognition. In contrast to traditional sensors and radars, mmWave radars give detailed information

on objects from the range domain to the Doppler domain. The short wavelength allows mmWave radars

to achieve a high resolution and a small antenna size, but also makes them prone to noise. In this paper,

we present a system framework for human detection and tracking using mmWave radars. We show that

mmWave radars have good performance in indoor environments with over 90% sensitivity. We show that

using a single radar can raise a large number of false alarms due to unstable results and noise, but with

two radars the precision of the system can be improved significantly.

Index Terms

millimetre-wave radar, human detection, human tracking

I. INTRODUCTION

Human Activity Recognition (HAR) is one of the most popular research topics in the world. With the

recent development of sensor technologies and machine learning techniques, many HAR systems have

been proposed and developed. Such systems often use one of cameras, sensors, and wearable devices

or a mixture of them to analyse human behaviour [13, 24]. Camera based methods have been shown to

achieve outstanding performance for various tasks, from gesture recognition [18] to posture recognition

[7]. However, cameras are intrusive, and many people would be concerned about privacy. Various types

of sensors, like radio frequency signal transceivers and environmental sensors, are also a popular choice

for HAR. Sensors monitor and detect changes in the environment caused by human subjects, where the

information can be analysed to recognise the corresponding human activity. For example, researchers have

proposed the use of ultrasonic sensors for gait estimation[16] and WiFi sensors for human localising[23].
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Most of these techniques are designed for particular use cases and only work under certain environments.

This paper investigates the potential use of millimetre-wave (mmWave) radars for HAR. In particular,

we have selected the FMCW (Frequency Modulated Continuous Wave) mmWave radars made by Texas

Instruments (TI) to carry out our experiments.

Typical mmWave sensors use frequencies from 76 to 81 GHz for automotive applications [8], or

frequencies at around 60 GHz (e.g. 57 to 64 GHz following the European regulation [6]) as general

purpose short range radars. The mmWave radars we selected from TI operate at 76 to 81 GHz and have

a maximum of 4 GHz available bandwidth. With FMCW techniques, the high bandwidth allows object

detection at a high resolution of around 4 cm. mmWave radars are non-intrusive and are able to sense

in various conditions including darkness, smoke and fog, which are crucial in many applications. They

also have a relatively low cost in comparison to many of the other sensors or wearable devices. Although

mmWave radars do not provide dense information as a camera would, they provide high-resolution in

distance, velocity and angle estimation of the objects in the scene, which can be potentially very useful

for understanding their status and motion, as well as distinguishing the object of interest from background

clutter. However, mmWave radar signals attenuate fast through the air and are prone to the effects of noise.

Therefore, although existing work on mmWave radars has shown success in automotive applications, few

researchers have investigated its ability in HAR.

In this paper, we present a real-time human detection and tracking system using the TI mmWave

radars. We present a software framework capable of communicating with multiple radars and applying

a customised data processing chain. The processing is performed on a general purpose CPU (central

processing unit) at 25 frames per second (fps). The system achieves constantly over 90.4% sensitivity on

human detection in an indoor environment. We show that using a single mmWave radar would result in

a high false-alarm rate on human detection, but the precision can be improved significantly with the use

of two radars. The contribution of this paper can be summarised as follows:

• We present a novel framework for human detection and tracking using mmWave radars, as an

alternative technique to the traditional camera and sensor based methods.

• We present a fast, configurable and scalable algorithm for using the radars in different applications.

• We show that the chance of interference is low when using multiple radars concurrently.

• We show how data from multiple radars can be fused to improve the precision of the detection

system significantly, from 46.9% to 98.6%.

The paper is structured as follows. Section II discusses related work on HAR in the literature. Section III

discusses some of the preliminary knowledge of the FMCW mmWave radar we used. Section IV
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introduces the software framework we designed and implemented. Section V shows our experimental

setup and Section VI shows the results evaluation. Section VII concludes the work.

II. RELATED WORK

HAR has been studied in depth and many systems have been proposed in the literature, especially

during the past decade with the rapid development of micro-processors and computing techniques. HAR

problems include, but are not limited to, detecting and recognising the presence of humans, locating and

tracking human motion, posture recognition, activity classification and abnormal activity detection. The

main hardware required for data collection in a HAR system can be categorised as cameras, sensors and

wearable devices.

Camera-based HAR has been studied in depth in the computer vision field, as reviewed by Poppe [15]

and Kong and Fu [12]. For example, Dalal and Triggs [5] applied SVM (support vector machine) on

HOG (histogram of oriented gradients) features for human detection. The rapid development of neural

network techniques has allowed more complex tasks to be performed by computers, such as posture

estimation [7]. Depth cameras, also known as 3D cameras, are specialised cameras that provide distance

information from the camera to the object, in addition to the normal image. The 3D information captured

by the depth cameras led to the study of 3D point-cloud-based HAR Aggarwal and Xia [1].

Sensors capture other information from the environment beyond vision. One major difference between

these data and the vision data is that, while the temporal dimension in the vision data is supplementary, it

has to be considered in the sensor data for a sensible interpretation. Doppler radars use various frequencies

for different applications to detect the Doppler motion of objects. Researchers have used Doppler radars

on many tasks, such as action classification [21] and motion detection [3]. Ultrasonic sensors detect

human activities through ultrasound. For example, Qi et al. [16] presented a gait analysis system that

uses a few passive ultrasonic sensors to determine the location of moving humans. Radio frequency

sensors sense the environment with radio frequency (RF) signals at certain frequencies, such as the WiFi

signal at around 2.4 GHz. One common approach with WiFi sensors is to set up a few WLAN signal

transceivers at different locations with varying signal signatures. A human presence in the environment

will reflect signals with different strengths based on the distance to the transceivers. A combination of

these signals gives an estimation of the location of the human [25]. Recent work has also shown the

possibility of detecting the human pose [28] based on RF signals.

While sensors have to be fixed at the point of interest, have a certain range of view and do not provide

any information if the human is out of the region, wearable devices are attached to the human and provide

continuous information about their activity. They often require wireless transceivers to transfer the data
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to a central processor, or have an embedded processor for processing the data and providing real-time

feedback to the user. The processing power of embedded platforms is often constrained by the power

consumption and the thermal dissipation. Accelerometers and gyroscopes measure the acceleration and

the orientation of the device in the x-y-z dimension. A combination of the two is also referred to as an

inertial measurement unit (IMU). These sensors have shown success on various tasks, such as movement

detection [20] and activities classification [2]. GPS sensors measure the geometric position of a human.

Commercial GPS sensors can estimate the location of a human with a resolution of a few metres and

are often used in addition to other sensors. For example, the fall detection system designed by Wu et al.

[26] uses accelerometers for fall detection and GPS for the location of the fall. While each type of

hardware gives certain information on certain aspects, fusing them together enables the full potential of

HAR systems to be explored. To give a few examples, Kantoch [11] proposed a health monitoring system

using a mixture of ECG sensors, temperature sensors and accelerometers, for monitoring physiological

data during different activities. Brdiczka et al. [4] used cameras, a set of audio sensors and the Hidden

Markov Model for HAR at home. Huang et al. [9] fused mmWave radars and cameras for tracking

moving objects.

While cameras provide the most detailed spatial information and are capable of very complex tasks,

such as face recognition and posture recognition, their intrusive nature makes privacy a concern. Without

the use of cameras, HAR requires a lot of data fusion between sensors for complex tasks, which increases

the cost and the setup complexity of the system. Although the use of mmWave radars has been mentioned,

they are only used as Doppler radars and their advantages of high bandwidth and short wavelength are

not fully explored.

The use of mmWave is becoming increasingly popular in HAR. Yang et al. [27] used mmWave signals

to detect the heart rate and the breath pattern of a human by analysing the signal’s RSS (received signal

strength). Lien et al. [14] uses mmWave radars for hand gesture recognition at a close distance. Björklund

et al. [3] used mmWave radar as a Doppler radar to detect and classify human movement. While most of

the work uses mmWave radars as regular radio frequency radars, only a few researchers, such as Zhao

et al. [29] and Singh et al. [22], use mmWave radars as 3D sensors and use neural networks for HAR

and human identification. By contrast, our system focuses on the detection of a human in the scene.

Since the radar image is often unstable and is prone to noise, we discuss the problem of the high false

alarm rate when using a mmWave radar for human detection, and propose using two radars concurrently

to address the problem.
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III. MMWAVE RADAR PRELIMINARIES

This section gives a brief introduction to the theory of the mmWave radar. A more detailed explanation

can be found in [10]. In this paper, we used the TI IWR1443 FMCW mmWave radars with a frequency

of 76 - 81 GHz. The radar has one chip consisting of three transmitters and four receivers operating con-

currently, as well as integrated circuits and hardware accelerators for a complete on-chip data processing

chain. The transmitters send chirp signals Stx (a signal with the frequency increasing linearly with time)

to detect any objects in front of the radar. When Stx is reflected by the objects, the signal is received as

Srx. The radar combines the two signals Stx and Srx with a mixer and a low pass filter to produce a

mixed Intermediate Frequency (IF) signal. The IF signal will have a frequency and phase that is equal to

the difference between the transmitted signal Stx and the received signal Srx. A data processing chain

is then performed over the IF signal to determine the presence of any objects, including the three fast

Fourier transforms (FFTs) on the range, velocity and angle domain, and the CFAR (Constant False Alarm

Rate) algorithm to detect peaks from the FFT output, as shown in Figure 1.

Fig. 1. Data processing chain of the TI mmWave radar.

A. Distance Calculation

For one object, the frequency difference between the transmitted signal and received signal will be a

constant value. This frequency is equal to S× τ , where S is the slope rate of the chirp and τ is the time

of flight. We use d to denote the distance between the radar and the objects, and the time of flight can

be expressed as τ = 2d/c. Therefore, we can estimate d as:

d =
(f1 − f2)c

2S
(1)

According to the Fourier Transform Theory, in order to separate two close frequencies, we need to have

f1− f2 > 1
T , where f1 and f2 are the frequencies of the two IF signals representing the two objects and

T is the length of IF signal. Therefore, the distance resolution is defined by:

d >
c

2ST
(2)
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where d is the minimal distance required to distinguish two objects, and ST is the total bandwidth of the

chirp signal. In practice, mmWave radars often use a 3 - 4 GHz bandwidth and have a distance resolution

of around 4 cm.

B. Angle Calculation

The angular position of the object can be calculated by comparing phase differences between neigh-

bouring receivers. Given that the phase of any sine wave after travelling along a distance d is 2π · dλ , the

phase of the IF signal at any receiver will be 4π · dλ . Assuming there are a number of receivers separated

by a distance of l = λ/2, we can calculate the angle-of-arrival of a signal through a trigonometric

approximation as:

θ =
λ4φ
2πl

(3)

Signals from subsequent antennas will form a linear progression in terms of phase, and an estimation

of θ can be made with another FFT (known as the angle-FFT). The angular resolution depends on the

number of samples we have for the angle-FFT, which is determined by the number of antennas. With Ntx

TX and Nrx RX antennas, we can generate a virtual antenna array of Ntx×Nrx with MIMO techniques

[17], and the angular resolution can be written as:

θres =
λ

l · cos(θ) ·Nrx ·Ntx
(4)

The IWR1443 radar we used has three transmitters arranged in a triangular layout. Therefore, it is able

to differentiate objects both horizontally and vertically.

C. Velocity Calculation

In order to measure velocity, the radar transmits two chirps separated by time Tc and compares the phase

difference between the two received signals. If the object is moving at velocity v, it can be calculated

from the phase difference:

4φ = 2π
2 · Tc · v

λ
=⇒ v =

λ4φ
4πTc

(5)

To get an accurate velocity estimation, the radar sends multiple successive chirps to form a chirp frame,

and performs a Doppler-FFT over the phases received from these chirps to find the velocity.

D. Data Format

There are two ways to read data from a radar: reading raw data directly from the ADC or reading the

processed data from the serial port. The on-chip hardware processor on the radar provides a complete
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data processing chain to process the ADC data, and therefore it is much easier for the user to use the

on-chip processors and only capture the processed data. Communication to the radar is made through

the use of two serial ports - one configuration port and one data port. The configuration port allows the

PC to interact with the radar and send commands, such as configuring the antennas and switching on/off

the radar. The data port is read-only from the PC side, where the radar will start dumping the processed

data to this port once it starts operating.

The on-chip data processing chain is user-programmable, and, by using the out-of-box image provided

by TI, the processed data can be captured in the form of data messages. The most important data packets

are those stating the presence of any object in front of the radar, which will be reported with its x-y-z

coordinates, its velocity and signal strength. We use the term “frame” throughout the rest of the paper

to define the collection of data points (or data cloud) detected by one or multiple radars.

E. Radar and Antenna Configuration

With the mmWave SDK (software development kit) provided by TI, the user can configure the chirp

signal of the radar to fit their use cases. The configuration is defined in the form of configuration files.

The file will be transferred to the radar and processed by the on-chip ARM processors upon startup,

and the processors will configure the radar subsystem accordingly. The main properties that need to be

configured include the number of transmitters and receivers to use, the characterisation of the chirp signal,

and parameters of the post-processing algorithms.

Throughout our experiment, we used a radar configuration tuned for indoor environments, with a

maximum range of 8 m, a range resolution of 4 cm, a maximum velocity of 1 m/s and a velocity

resolution of 0.1 m/s. The time of each chirp is 125 us, with 10 us idle time (for resetting the chirp)

and 115 us chirp ramp time. With a slope rate of 35 MHz/us, we utilise the full 4 GHz bandwidth

available for the radar. As our target use case is human activity recognition, we set the CFAR threshold

to a relatively low value so that we can receive enough data for post-processing.

IV. SOFTWARE FRAMEWORK

We implemented a new software framework for managing the radar and performing post-processing

to the data. The system is written in Python and has the following main modules:

• Radar Handler: connects to the radar through the serial ports, loads and sends the configuration

files, receives detection results and packs them into data matrices.

• Frame Processor: takes data matrices as input, performs customised data processing tasks and

outputs data matrices with the same format.
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• Visualiser: manages a number of frame processors for a data processing chain, and displays the

final output in 2D or 3D formats. The module allows cameras to be connected to the system and to

interact with the frame processors, which will be discussed in Section VI-A.

Through the configuration file, the user can specify the number of radars, the model of each radar, the

serial port number and the antenna configuration. The framework utilises a multi-threaded environment.

A number of threads will be spawned at startup. Each radar in use will have an independent thread

spawned. These threads will each execute a Radar Handler module, connect to the serial ports and

handle the communication between the host and the radar. In addition, one visualisation thread will

be spawned with a Visualiser module, and a number of Frame Processors to achieve the customised

post-processing on the received data. A number of data queues will be created for each of the radar

threads and be shared with the visualisation thread. The radar threads read data from the serial ports

continuously and parse them into an appropriate format, but only push the result into the shared queue if

the queue is empty. The visualisation thread fetches the data from each queue, performs the user-defined

post-processing tasks on each one of them, displays the combined results and then fetches the next batch

of data. The system is designed in a way such that the radar threads only push data once the visualisation

thread has finished the last frame, to avoid out-of-synchronisation caused by different processing speeds

of threads. The performance bottleneck of the system will be either the transmitting speed of the radars

or the processing speed of all the frame processors, whichever is slower. An overview of the software

framework is shown in Figure 2.

The system works best on multi-core CPUs when each thread can utilise one physical CPU core, but

it can also work on single core machines with reduced performance. The following sections provide a

detailed discussion of each module.

A. Radar Handler

As discussed in Section III-D, the radar has two serial ports that can be accessed by the PC, one for

configuring the radar and the other for transmitting the results. The Radar Handler does the following

tasks: opens up the two serial ports as specified by the system configuration file, loads the commands

from the antenna configuration file, writes the commands to the configuration port, checks the response

of each command and starts listening to the data port upon success. When decoding data from the data

port, the radar first searches for the data packet header, filters out the unused packets and extracts the

detected object in the frame. The data will be re-arranged into an N by 3 matrix, where N is the number

of detected objects and 3 is the x-y-z coordinates. The thread then checks the status of the shared queue,

pushes the matrix into the queue if it is empty, and continues searching for the next data packet.
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Fig. 2. Software framework for managing multiple radars and applying customised processing chain.

B. Visualiser

The Visualiser is responsible for loading the data matrices from all the radar threads, applying user-

defined Frame Processors, combining them into a single frame and displaying the final output. While

combining the data, it applies appropriate rotation and translation to the coordinates from different radars,

so that radars at different locations will have a consistent view of the scene. The display can be configured

to be 2D or 3D or both and provides a convenient way for interpreting the result.

C. Frame Processor

Frame Processors define the operations to be performed on each radar frame. In this paper, we introduce

three types of Frame Processors.

• FIFO Queue: This module stores the frames using a FIFO (First In First Out) queue. During

experiments, we found that stacking data in the temporal domain can help to stabilise detection, as

data points from real objects will be emphasised but the noise will not.

• Clustering: This module groups data points in one frame into clusters according to their distance

and filters out small clusters with low numbers of points. We use the DBSCAN (density-based

spatial clustering of applications with noise) algorithm for clustering, which does not require prior
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Fig. 3. Hardware setup of the two radars for human detection.

knowledge of the scene and can extract all qualified clusters. This module helps significantly in

reducing the noise.

• Foreground Extraction: This module attempts to learn the environment during the first few frames

(e.g. frames collected during the first minute when the system starts). Once the collection is finished,

it performs the DBSCAN clustering algorithm on these frames and records the detected objects in a

local database as clutter. Then for new frames, the module will compare any new clusters with the

clutter in the database and filter out those with similar size and location. This module can be useful

when irrelevant static objects are presented in the area and should be removed.

The Frame Processor module provides a standard interface also for any other customised operations.

All modules work independently and can be loaded as per user requirement, and additional functionality

can be easily integrated into the system with new modules, which allows the system to be adapted and

deployed for different use cases.

V. HUMAN DETECTION SYSTEM

A. System Setup

We built a novel system for locating a human in a room using the two mmWave radars. The hardware

setup of our system is shown in Figure 3. We put two radars at different perspectives and put the camera

on the top of one radar. The camera is used only to provide the ground truth for the system and is not

involved in the detection process. Both of the radars are the IWR1443 model with the same antenna

configuration, and the detection area is defined as the intersection area in the sight of both radars.

The radars are calibrated offline, where a rotation matrix and a translation matrix are generated for

each radar based on their orientations and locations. The metrics are recorded in a configuration file.
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They will be loaded into the Frame Manager module at runtime and be used to translate the detection

results into one coordinate system.

B. Human Detection and Tracking

The full detection and tracking procedure can be divided into three stages: the two radars sense the

scene independently and pass the data to a central processor on a computer; the central processor fuses the

data from the two radars and detects the presence of people; the processor invokes the tracking module

to verify the detection and refine the results.

1) Individual Detection: As introduced in Section III, the radar has a complete on-chip data processing

chain to process the analogue mmWave signal and output objects in the form of a data cloud with x-

y-z coordinates. This data will be transmitted to the central processor and be processed by the Frame

Processor module independently. The frames will be stacked along the temporal domain using the FIFO

queue module. We stacked 10 frames every time which gives a few hundreds points for each subject, at

a cost of around 0.4 s processing delay. The data will then be clustered using the DBSCAN algorithm,

which examines all the detected points and groups them based on their Euclidean distances between each

other, where points within 15 cm will be classified into one cluster. Clusters with a low population will

be treated as noise and be discarded. The foreground extraction module can be loaded here to remove

static objects in the area. It is considered as an optional module depending on the environment. The

resulting clusters from each radar will then be passed to the Central Frame Processor for data fusion.

2) Data Fusion: The Central Frame Processor will be triggered once both radar results are ready. It

will first transform all the data into one coordinate system by using the calibration parameters. Then,

based on the size and the location of the clusters, it will calculate the eigenvectors of each cluster, estimate

the distance and the overlapping region between every pair of the clusters and only keep them if their

centroids are close and the majority of the areas overlap. An illustration of the procedure is shown in

Figure 4. The raw data from the two radars can be clustered into six candidate subjects ( 1©- 6©), but only

2© and 6© are overlapping and are considered as one candidate.

A candidate human model will be constructed based on each verified cluster pair and the underlying

point cloud data, which contains the estimation of the person’s position, height and volume. While these

properties are not expected to be an accurate representation of the real subject, they provide essential

information for these candidates to be compared and distinguished. These candidates will be passed to

the tracking module to be correlated with previous frames.

3) Tracking: The tracking module records all the candidates at each timestamp and exploits the

temporal relationship between them. The concept is similar to a Kalman filter, where we use prior
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Fig. 4. Workflow of the human detection system, with one person presenting in the area (top-down view).

information about an object to estimate the probability distribution of its new position and then verify

it. The system will take a 25-frame temporal window, compare the new candidate with each detected

object from the previous frames and look for the best match using the candidate properties. If a match

is found, i.e. the new candidate is close to a detected object and has a similar size, then it is considered

to be the same object being detected again. The decision thresholds are learned during a training stage

with a person moving at different speeds and along different paths, to model the possible variation of

the parameters. If a match is not found, then the candidate is recorded as a potential new subject and the

module waits for further frames to verify it.

The module keeps records of the live time of each detected subject and will only report the presence

of a subject if the presence has lasted for more than a second, to avoid any phantom effect caused by

signal noises. Meanwhile, the position of the subject will be smoothed over the past second to provide a

more accurate estimation and reduce outlier effects, taking the assumption that the person will not move

at a high speed in an indoor environment and the position should not vary too much within a second.

The system is able to resolve multiple people in the area, as the detection process for each subject is

independent. An example detection is shown in Figure 5 where two people are presented in the scene and

have been detected successfully. An example of human tracking is shown in Figure 6. The current system

uses the estimated properties of the human subject (the position, height and volume) only to correlate

them in the temporal domain. However, it is possible that this information can be further exploited for
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Fig. 5. Example detection when two people are present in the area, from a top-down view (left) and a 3D view (right).

other tasks, such as object classification, human identification and posture analyse, which we leave for

future work.

The system requires a low memory usage and has a low computational cost, allowing the entire process

to be performed in real-time. When running on an Intel i7-6700 CPU, the system can achieve 25 fps

with only 10% average CPU utilisation. The processing speed is only limited by the data processing and

transmission speed of the radar. We avoided computationally expensive algorithms, like neural networks

on vision based methods, which would require additional graphic processing units (GPUs) and a much

higher cost and power-consumption. Therefore, it is possible to port the proposed system onto low power

consumption platforms and embedded processors. The system also benefits from its high configurability

due to the Frame Processor module, which allows customised functionality to be incorporated into the

system based on the use case. For example, the foreground extraction module would be useful when the

monitored area has clutter that needs to be removed prior to performing human detection. When using

multiple radars, the independent detection stage and the calibration stage mean that the system does not

have any restriction on the position or the orientation of the radars, nor the number of radars being used.

While in this paper we used two radars in a short area, it would be possible to extend the range of view

by using more radars without modifying the framework.

C. Signal Interference between Multiple Radars

When using multiple radars, it is important to ensure that they do not interfere with each other.

Assuming that we are measuring a maximum distance of 6 m, then the time-of-flight of a round trip
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Fig. 6. Example of human tracking. Left: room setup and the movement of the human. Right: human location tracked by the

radars.

Fig. 7. Transmitted and received signals when detecting an object at 6 m.

would be 0.04 us. With a 35 MHz/us slope rate, this time period gives a frequency change of around

1.4 MHz, as shown in Figure 7. Assuming that there are two radars working simultaneously, we can

represent the transmitter signal and the receiver signal of the two radars in Equation (6) to Equation (9)

respectively (the amplitude and the phase of the signal can be ignored in this session):

Stx1(t) = sin(2πf1t) (6)

Srx1(t) = sin(2π(f1 − 1.4)t) (7)

Stx2(t) = sin(2πf2t) (8)

Srx2(t) = sin(2π(f2 − 1.4)t) (9)
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Assuming the signals Stx2(t) and Srx2(t) are also detected by the first radar, then the mixer will produce

a combination of sinusoidal signals with six different frequency components:

Smix(t) =sin(2π · 1.4t) + sin(2π|2 · f1 − 1.4|t) + sin(2π|f1 + f2|t)+

sin(2π|f1 − f2|t) + sin(2π|f1 + f2 − 1.4|t) + sin(2π|f1 − f2 + 1.4|t)
(10)

Since both f1 and f2 are within 77 GHz to 81 GHz, the summation frequencies will be very high and

therefore will be filtered out by the low-pass filter, leaving the other three terms:

Sfiltered(t) =sin(2π · 1.4t) + sin(2π|f1 − f2|t) + sin(2π|f1 − f2 + 1.4|t) (11)

The first term is the desired result, whereas the other two are the possible interference signals. By

configuring the ADC sampling rate and with the help of the built-in digital filter, frequencies beyond

1.4 MHz could be filtered out. In other words, the radar will only keep the detection within the 0.04 us

period (the 6-metre range). Assuming the cut-off frequency of the radar is set to 1.4 MHz, then the two

extra terms in Equation (11) will only stay if |f1− f2| < 1.4 MHz or |f1− f2 +1.4| < 1.4 MHz, which

evaluates to:

− 2.8MHz < f1 − f2 < 1.4MHz (12)

This means that the two radars will only interfere with each other if their frequency difference falls into

the 4.2 MHz range. With a 4 GHz bandwidth, this is a probability of around 0.1%, assuming that the

radars are switched on at a random time.

As an experiment, we placed two radars at a close distance and pointed them towards the same scene

from different angles, kept one of them switched on (referred to as the main radar) and kept switching

on/off the other one periodically (referred to as the interference radar). The scene is set up with static

objects placed between 0.5 m and 5 m and kept unchanged at all times. We recorded and analysed the

FFT results in the range domain from the main radar.

The experiment was carried out multiple times with different radar locations and lengths of recording.

The average variances of the main radar’s detection results were recorded and are shown in Table I. It

can be shown that, in all cases, the variances are very similar for the entire scene within the 6 m range,

regardless of the status of the interference radar. When paying particular attention to the detection within

3 m (in line with our experimental setup), or the detection with signal strength greater than -3 dB (when

the signals are strong enough to be identified), the variances are even lower. Therefore, we conclude that

the probability of interference is very low when using two radars concurrently.

One example of the experiment results is shown in Figure 8. The red plot shows the detection result

of the main radar when the interference radar was switched off, and the blue plot shows the result when
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Fig. 8. Received signal strength (and the standard deviation represented by the coloured area) at zero-Doppler domain from the

main radar, when the interference radar is placed at a close distance.

TABLE I

AVERAGE VARIANCES OF THE MAIN RADAR’S DETECTION ON STATIC OBJECTS.

Interference radar

active

Interference radar

inactive

All detection 0.23 0.20

Detection within 3-metre 0.08 0.07

Detection with

signal strength >-3 dB
0.06 0.07

the interference radar was switched on/off every three seconds. The results shown were recorded and

averaged over a 5-minute period (3000 frames). It can be seen that, as the two plots are overlapping,

they do not have any significant differences and the variances are low most of the time.

The chance of interference can increase if we plan to use more than two radars. When having N

radars picking random 4.2 MHz frequency bands in the 4 GHz band, the probability of interference is

the probability that any two of the radars pick the same frequency, which is

P (N) = 1−
N∏
i=1

4000− 4.2 · (i− 1)

4000
(13)

The probability of interference is generally low (less than 1% with four radars and less than 5% with

ten radars). This figure will be higher with more than ten radars, which will then require explicit

synchronisation between radars or an interference detection algorithm.



17

VI. SYSTEM EVALUATION

A. Ground Truth from Cameras

In order to evaluate the performance of our system, we need to have an accurate ground truth on the

presence of a human. Since camera-based human recognition has been studied in depth and a lot of

successful systems have been developed, we can use them for calculating the ground truth and providing

a baseline for evaluation. We used the Yolo-v3 model [19] for human detection.

When the system starts, the Visualizer thread reads in the camera data, applies the neural network to

the image, obtains the coordinates of the bounding boxes around the humans and approximates the 3D

areas accordingly. Meanwhile, the radar frame is clustered by the Frame Processors and each cluster is

verified with the 3D areas. The 3D areas are estimated using trigonometry and have sector-shapes, and

the system will validate a radar-detected-object only if it fits closely in the sector. More specifically, the

centroid of the radar detection and the camera detection needs to be within 0.25 metres and have at least

70% overlapping area. This provides a low-cost and real-time approach for verifying radar detection and

has the potential to allow more complex data labelling for future work.

B. Evaluation Result

We use the following metrics for evaluating our human detection system.

• Positives (P): humans presented in the detection area.

• True Positives (TP): humans in the detection area that are successfully detected by the radar, with

the position verified by the camera detection.

• False Positives (FP): noise or other objects in the detection area that are falsely detected as human,

or if the detection is too far from the camera detection.

• Sensitivity (TP/P): the ability to detect humans when they are presented in the detection area.

• Precision (TP/(TP+FP)): the ability to distinguish humans from false detection.

An ideal system should have both a high sensitivity and a high precision. All the experiments were

carried out in a 2.4 meters by 2.4 meters region in our laboratory under daily conditions. The system was

run for two days and data was collected when at least one human was present in the area. During 56.8%

of the time there was only one person in the area, 12.1% with two people, 19.6% with three people and

the rest with more than three people. The results are shown in Table II.

The high sensitivity in both cases indicates that, whenever a human is present in the area, the system

has a very high probability of detecting it. However, with one radar, the 46.9% precision indicates that

more than half of the detections would be false detections. With two radars, the system sensitivity was
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TABLE II

PERFORMANCE EVALUATION OF THE SYSTEM

Sensitivity Precision

One Radar 96.4% 46.9%

Two Radars 90.4% 98.6%

reduced slightly, but the precision improved significantly to 98.6%. In other words, when the one-radar

setup detects an object, there is over half the chance that it is a false detection, whereas with two radars

the system can be very confident in its detection.

When detecting with one radar, the system reports a large number of false alarms due to noise and

flicking of the results. The flicking is observed because of the FFT process and the peak detection

algorithm, where a small change in the signal, once it comes through the FFT, can result in a change

in the FFT bins and hence a few centimetres displacement on the object coordinates. This effect will be

enlarged when carried over to the angle-FFT, where a displacement in the angle will result in a much

larger displacement in the 3D space. On the other hand, when using two radars, the system has access

to two independent detections and can verify the results from each other. As a result, the false alarm

rate was reduced significantly (represented by the rise in precision) with only a tiny reduction in the

sensitivity.

One limitation of our system is the ability to distinguish multiple people at short distances. The issue

is not significant under daily conditions when people are often separated by more than a metre. However,

the performance of the system will drop in certain situations, such as counting people in a queue. When

there are three or more people and people are occluded by others, the system can only confidently report

people in the front, which results in a loss of sensitivity. The occlusion can potentially be solved by using

more radars to cover the scene from more angles. As discussed in Section V-B and Section V-C, it is

possible to adapt more radars into the system without modifying it much. Therefore, the system can be

easily adapted to fit different use cases if necessary. Similarly, although we carried out all experiments

in a 2.4 metres by 2.4 metres region, as we found that the radar’s sensitivity to stationary target drops

significantly beyond 2.5 metres, the range of detection can also be extended by incorporating more radars

into the system. We leave the study of using a different number of radars or radar arrays for future work.

VII. CONCLUSION

In this paper, we have presented a real-time human detection and tracking system using two mmWave

radars. We selected the mmWave radars due to their high resolution, non-intrusive nature and ability
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to sense in various view conditions. We introduced preliminary knowledge of mmWave radars in the

context of human detection and the typical data processing chain of processing radar data. We presented

our software framework for managing multiple radars in a multi-threaded environment and applied a

customised detection and tracking algorithm. We used lightweight algorithms for real-time processing at

25 fps on a general purpose CPU, making it possible to port the system onto low power-consumption

platforms. We showed that our system is able to detect humans in indoor environments with over

90% sensitivity. We have discussed the problems of high false alarm rates with a single radar and

showed that the precision can be improved from 46.9% to 98.6% with a two-radar setup. We have

shown mathematically and empirically that using two mmWave radars will have a very low chance of

interference. Since the system is highly configurable, it is possible to incorporate more radars into the

system if the application requires a higher detection range or to resolve occlusion. The success in human

detection and tracking opens future research opportunities on more complex HAR tasks using mmWave

radars.
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