25 research outputs found

    Simple ultraviolet-based soft-lithography process for fabrication of low-loss polymer polysiloxanes-based waveguides

    Get PDF
    A simple ultraviolet (UV)-based soft-lithography process is used for fabrication of polymer polysiloxanes (PSQ-L) waveguides. The imprint process is first done on the cladding PSQ-LL layer and is followed by a spin-coating step to fill the imprinted features with core PSQ-LH layer material. The optical loss of the straight PSQ-L waveguides is characterised by the Fabry-Perot method for the first time. Even with non-polished facet of the waveguide, the Fabry-Perot resonance spectrum is obtained. An upper limit scattering loss of the waveguide is extracted to be less than 0.8 +/- 0.2 dB/cm for TE mode and 1.3 +/- 0.2 dB/cm for TM mode at 1550 nm. The fully transferred pattern and low scattering loss proves it to be an effective way to replicate low-loss polymer PSQ-L-based waveguides

    Low loss high index contrast nanoimprinted polysiloxane waveguides

    Get PDF
    Nanoimprint lithography is gaining rapid acceptance in fields as diverse as microelectronics and microfluidics due to its simplicity high resolution and low cost. These properties are critically important for the fabrication of photonic devices, where cost is often the major inhibiting deployment factor for high volume applications. We report here on the use of nanoimprint technology to fabricate low loss broadband high index contrast waveguides in a Polysiloxane polymer system for the first time

    Development of microfabricated optical chemical sensor platforms using polymer processing technology

    Get PDF
    This work describes the design and fabrication of enhanced polymer waveguide platforms for absorption-based optical chemical sensors and the use of soft lithographic techniques for the fabrication of optical sensor chips. The design of the enhanced polymer waveguide platforms was based on a previously reported theoretical model that was verified experimentally in this work. The platforms were fabricated by micro-injection moulding and subsequently coated with sol-gelderived sensing layers doped with a colorimetric indicator compound. The sensor response to both gaseous ammonia and solution pH was examined using a LEDbased prototype sensor head. Soft lithographic patterning techniques, based on the use of a poly(dimethylsiloxane) (PDMS) patterning element, were employed to produce a variety of sol-gel-based structures with applications in optical sensing. These included discrete sensor spots, surface corrugation grating couplers and ridge waveguides. As a proof of principle, these techniques were applied to the development of an integrated optical oxygen sensor based on the quenching of fluorescence from a sol-gel-encapsulated ruthenium complex that was deposited as a sensor spot onto a ridge waveguide. This work highlights the feasibility of using rapid prototyping technology to fabricate sensitive, mass-producible sensor platforms that employ generic configurations, thereby facilitating their use in a broad range of applications

    Development of a generic multi-analyte optical sensor platform for fluorescence-based sensing

    Get PDF
    This work describes the development of two advanced sensor platforms based on different spectroscopic techniques. The first, and the primary focus of this work, is an enhanced generic multi-analyte sensor platform for fluorescence-based sensors and the second is an absorbance-based portable sensor for the detection of nitrates in groundwater. A generic multi-analyte sensor platform can be applied to a broad range of areas such as food packaging and blood gas analysis. A multi-analyte optical sensor platform for enhanced capture of fluorescence was modelled, designed and fabricated. The sensor platform was developed using a range of microfabrication techniques. Films sensitive to oxygen, relative humidity and carbon dioxide respectively were developed for the context of indoor air-quality monitoring. Deposition methods for printing the sensor solutions onto the sensor platforms were also investigated. The sensor films and platforms were integrated into a working sensor chip with both a fluorescence intensity and phase fluorometric detection system. An absorbance-based portable sensor for the detection of nitrates in groundwater was also developed. This was based on the direct absorbance of UV-light by the nitrate ion. Other contaminants, which could be found in groundwater and interfere with the nitrate detection, such as humic acid and chlorides, were investigated and compensated for

    Integrated polymer photonics : fabrication, design, characterization and applications

    Get PDF
    [no abstract

    Optically pumped planar waveguide lasers, part I: fundamentals and fabrication techniques

    No full text
    The tremendous interest in the field of waveguide lasers in the past two decades is largely attributed to the geometry of the gain medium, which provides the possibility to store optical energy on a very small dimension in the form of an optical mode. This allows for realization of sources with enhanced optical gain, low lasing threshold, and small footprint and opens up exciting possibilities in the area of integrated optics by facilitating their on-chip integration with different functionalities and highly compact photonic circuits. Moreover, this geometrical concept is compatible with high-power diode pumping schemes as it provides exceptional thermal management, minimizing the impact of thermal loading on laser performance. The proliferation of techniques for fabrication and processing capable of producing high optical quality waveguides has greatly contributed to the growth of waveguide lasers from a topic of fundamental research to an area that encompasses a variety of practical applications. In this first part of the review on optically pumped waveguide lasers the properties that distinguish these sources from other classes of lasers will be discussed. Furthermore, the current state-of-the art in terms of fabrication tools used for producing waveguide lasers is reviewed from the aspects of the processes and the materials involved

    Photolithographic and replication techniques for nanofabrication and photonics

    Get PDF
    In the pursuit of economical and rapid fabrication solutions on the micro and nano scale, polymer replication has proven itself to be a formidable technique, which despite zealous development by the research community, remains full of promise. This thesis explores the potential of elastomers in what is a distinctly multidisciplinary field. The focus is on developing innovative fabrication solutions for planar photonic devices and for nanoscale devices in general. Innovations are derived from treatments of master structures, imprintable substrates and device applications. Major contributions made by this work include fully replicated planar integrated optical devices, nanoscale applications for photolithographic standing wave corrugations (SWC), and a biologically templated, optical fiber based, surface-enhanced Raman scattering (SERS) sensor. The planar devices take the form of dielectric rib waveguides which for the first time, have been integrated with long-period gratings by replication. The heretofore unemployed SWC is used to demonstrate two innovations. The first is a novel demonstration of elastomeric sidewall photolithographic mask, which exploits the capacity of elastomers to cast undercut structures. The second demonstrates that the corrugations themselves in the absence of elastomers, can be employed as shadow masks in a directional flux to produce vertical stacks of straight lines and circles of nanowires and nanoribbons. The thesis then closes by conceptually combining the preceding demonstrations of waveguides and nanostructures. An optical fiber endface is em ployed for the first time as a substrate for patterning by replication, wherein the pattern is a nanostructure derived from a biological template. This replicated nanostructure is used to impart a SERS capability to the optical fiber, demonstrating an ultra-sensitive, integrated photonic device realized at great economy of both time and money, with very real potential for mass fabrication

    Nanoimprint Lithography Technology and Applications

    Get PDF
    Nanoimprint Lithography (NIL) has been an interesting and growing field in recent years since its beginnings in the mid-1990s. During that time, nanoimprinting has undergone significant changes and developments and nowadays is a technology used in R&D labs and industrial production processes around the world. One of the exciting things about nanoimprinting process is its remarkable versatility and the broad range of applications. This reprint includes ten articles, which represent a small glimpse of the challenges and possibilities of this technology. Six contributions deal with nanoimprint processes aiming at specific applications, while the other four papers focus on more general aspects of nanoimprint processes or present novel materials. Several different types of nanoimprint processes are used: plate-to-plate, roll-to-plate, and roll-to-roll. Plate-to-plate NIL here also includes the use of soft and flexible stamps. The application fields in this reprint are broad and can be identified as plasmonics, superhydrophibicity, biomimetics, optics/datacom, and life sciences, showing the broad applicability of nanoimprinting. The sections on the nanoimprint process discuss filling and wetting aspects during nanoimprinting as well as materials for stamps and imprinting
    corecore