111,593 research outputs found

    Algebraic observer design for PEM fuel cell system

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, the concept of the algebraic observer is applied to Proton Exchange Membrane Fuel Cell (PEMFC) system. The aim of the proposed observer is to reconstruct the oxygen excess ratio through estimation of their relevant states in real time from the measurement of the supply manifold air pressure. A robust differentiation method is adopted to estimate in finite-time the time derivative of the supply manifold air pressure. Then, the relevant states are reconstructed based on the output-state inversion model. The objective is to minimize the use of extra sensors in order to reduce the costs and enhance the system accuracy. The performance of the proposed observer is analyzed through simulations considering measurement noise and different stack-current variations. The results show that the algebraic observer estimates in finite time and robustly the oxygen-excess ratio.Peer ReviewedPostprint (author's final draft

    The fuel cell in space: Yesterday, today and tomorrow

    Get PDF
    The past, present, and future of space fuel cell power systems is reviewed, starting with the first practical fuel cell by F.T. Bacon which led to the 1.5 kW Apollo alkaline fuel cell. However, the first fuel cell to be used for space power was the Gemini 1.0 kW Acid IEM fuel cell. The successor to the Apollo fuel cell is today's 12 kW Orbiter alkaline fuel cell whose technology is considerably different and considerably better than that of its ancestor, the Bacon cell. And in terms of specific weight there has been a steady improvement from the past to the present, from the close to 200 lb/kW of Apollo to the 20 lb/kW of the orbiter. For NASA future Lunar and Martian surface power requirements the regenerative fuel cell (RFC) energy storage system is enabling technology, with the alkaline and the PEM the leading RFC candidate systems. The U.S. Air Force continues to support fuel cell high power density technology development for its future short duration applications

    Complete microbial fuel cell fabrication using additive layer manufacturing

    Get PDF
    Improving the efficiency of microbial fuel cell (MFC) technology by enhancing the system performance and reducing the production cost is essential for commercialisation. In this study, building an additive manufacturing (AM)-built MFC comprising all 3D printed components such as anode, cathode and chassis was attempted for the first time. 3D printed base structures were made of low-cost, biodegradable polylactic acid (PLA) filaments. For both anode and cathode, two surface modification methods using either graphite or nickel powder were tested. The best performing anode material, carbon-coated non-conductive PLA filament, was comparable to the control modified carbon veil with a peak power of 376.7 µW (7.5 W m−3) in week 3. However, PLA-based AM cathodes underperformed regardless of the coating method, which limited the overall performance. The membrane-less design produced more stable and higher power output levels (520−570 µW, 7.4−8.1 W m−3) compared to the ceramic membrane control MFCs. As the final design, four AM-made membrane-less MFCs connected in series successfully powered a digital weather station, which shows the current status of low-cost 3D printed MFC development

    Foaming-electrolyte fuel cell

    Get PDF
    Foam structure feeds fuel gas solution into electrolyte. Fuel gas reacts at static, three-phase interface between fuel gas, electrolyte, and electrode material. The foam forms an electrical contact between main body of electrolyte and the electrode, and aids in removal of by-products of the chemical reaction

    Silver-chlorine fuel cell: A concept

    Get PDF
    Fuel cell regenerated by photochemical reduction enables novel slurry system to transport particles of reduced silver between regenerator section and anode. Fundamental reactions which provide electrical power from the fuel cell are given

    Regenerative fuel cell combines high efficiency with low cost

    Get PDF
    Hydrogen/oxygen regenerative fuel cell stores electrical energy efficiently and inexpensively. The fuel cell has a high energy-to-weight ratio, and is adapted for a large number of cycles with deep discharge

    Unitized regenerative polymeric fuel cell modeling

    Get PDF
    The research's objective is to have a single machine to function as fuel cell and electrolyser based and needs, that is to say, unitized regenerative fuel cell (when fed to the machine with electric power and water flows will be obtained and H2 and O2 and conversely when the machine is fuelled with H2 and O2 will get water, heat and electricity) The study focuses on polymeric fuel cells and polymeric electrolysers. The development of this machine will make a very significant cost reduction (currently to use hydrogen as an energy store needed the electrolyser and fuel cell) as a single machine may replace the fuel cell and electrolyser. The achievement of the objective mentioned above, have been going by completing a series of stages. The stages addressed in this work are: ¿ A first stage, which will be studied in detail the polymeric fuel cells and polymeric electrolysers, in order to see the similarities between the machines and to design the unitized regenerative fuel cell. ¿ A second stage of simulation, which will develop models to show the behaviour of the unitized regenerative fuel cell and compare results with those obtained from the theoretical. ¿ A third stage of model verification generated polymer fuel cells and electrolyzers polymer on the market

    Development and experimental evaluation of the control system of a hybrid fuel cell vehicle

    Get PDF
    This work presents the development and experimental evaluation of a Fuel Cell Hybrid Vehicle, focusing on the control system. The main objective of this paper is to present a real vehicle which has been designed in order to demonstrate the feasibility of the use of hydrogen as an energy source for automotive applications. The paper describes the components that are integrated in the vehicle and presents several experimental results obtained during normal operation. A control system is designed and tested in order to perform all the operations related to the coordinated operation of the fuel cell, the intermediate electrical storage and the power train. Its main task is to compute the power that must be demanded to the fuel cell in real time. This computation is done in order to satisfy the power demand of the electric motor taking into account the state of charge of the batteries and the operating regime of the fuel cell. This is accomplished by manipulating the electronic converter which regulate the current that the fuel cell supplies to the batteries.Ministerio de Ciencia y Tecnología DPI2007-66718-C04-0

    Pembuatan Elektroda Fuel Cell dengan Metode Elektrodeposisi Menggunakan Katalis Pt-Cr/C dan Pt/C dan Karakterisasinya

    Full text link
    Telah dilakukan penelitian Pembuatan Elektroda Fuel Cell dengan Metode Elektrodeposisi Menggunakan Katalis Pt-Cr/C dan Pt/C yang dilanjutkan dengan karakterisasi konduktivitas dan massa terdeposisi. Penelitian diawali dengan membuat backing layer dari substrat karbon dengan pengikat teflon emulsion dengan perbandingan karbon dan teflon emulsion 1 : 1, kemudian dikarakterisasi konduktivitasnya. Elektroda Fuel Cell dibuat dengan melakukan elektrodeposisi larutan platina (H2PtCl6.6H2O) dan larutan krom (CrCl6.6H2O) pada backing layer dengan konsentrasi bervariasi pada beda potensial 7,5 Volt dan waktu 10 menit. Hasil pengamatan konduktivitas backing layer menunjukkan bahwa backing layer yang dibuat sudah memenuhi syarat sebagai backing layer fuel cell dengan konduktivitas rata-rata sebesar 1,8133.10−1 mhos untuk permukaan dan 2,397.10−2 mhos untuk konduktivitas penampangnya. Hasil elektrodeposisi Pt dan Cr pada backing layer untuk membuat elektroda Pt-Cr/C dan Pt pada backing layer untuk membuat elektroda Pt/C menunjukkan konduktivitas elektrik permukaan mengalami kenaikan, sementara konduktivitas penampangnya tidak mengalami kenaikan secara signifikan. Hasil elektrodeposisi juga menunjukkan bahwa massa katalis Pt dan Cr terdeposisi paling banyak dalam elektroda Pt-Cr/C diperoleh pada komposisi massa Pt : Cr = 40 : 60 dan massa katalis Pt terdeposisi paling banyak dalam elektroda Pt/C diperoleh pada massa Pt = 0,6 mg/cm2
    corecore