2,754 research outputs found

    Spike-based control monitoring and analysis with Address Event Representation

    Get PDF
    Neuromorphic engineering tries to mimic biological information processing. Address-Event Representation (AER) is a neuromorphic communication protocol for spiking neurons between different chips. We present a new way to drive robotic platforms using spiking neurons. We have simulated spiking control models for DC motors, and developed a mobile robot (Eddie) controlled only by spikes. We apply AER to the robot control, monitoring and measuring the spike activity inside the robot. The mobile robot is controlled by the AER-Robot tool, and the AER information is sent to a PC using the USBAERmini2 interface.Junta de Andalucía P06-TIC-01417Ministerio de Educación y Ciencia TEC2006-11730-C03-0

    FPGA-based module for SURF extraction

    Get PDF
    We present a complete hardware and software solution of an FPGA-based computer vision embedded module capable of carrying out SURF image features extraction algorithm. Aside from image analysis, the module embeds a Linux distribution that allows to run programs specifically tailored for particular applications. The module is based on a Virtex-5 FXT FPGA which features powerful configurable logic and an embedded PowerPC processor. We describe the module hardware as well as the custom FPGA image processing cores that implement the algorithm's most computationally expensive process, the interest point detection. The module's overall performance is evaluated and compared to CPU and GPU based solutions. Results show that the embedded module achieves comparable disctinctiveness to the SURF software implementation running in a standard CPU while being faster and consuming significantly less power and space. Thus, it allows to use the SURF algorithm in applications with power and spatial constraints, such as autonomous navigation of small mobile robots

    Computer vision based two-wheel self-balancing Rover featuring Arduino and Raspberry Pi

    Get PDF
    Holistic control system for a self-balancing robot with two wheels with several functionalities added to it, such as remote terminal control, and computer vision based algorithms

    E-Learning: Case Studies in Web-Controlled Devices and Remote Manipulation

    Get PDF
    Chances are that distance learning will transparently extend colleges and institutes of education and could plausibly overtake and turn into a preferred choice of higher education, especially for adult and working students. The main idea in e-learning is to build adequate solutions that can assure educational training over the Internet, without requiring a personal presence at the degree offering institution. The advantages are immediate and of unique importance, to enumerate a few: Education costs can be reduced dramatically, both from a student's perspective and the institution's (no need for room and board, for example); The tedious immigration and naturalization issues common with international students are eliminated; The limited campus facilities, faculty members and course schedules an institution can offer are no longer a boundary; Working adults can consider upgrading skills without changing their lifestyles We are presenting through this material a sequence of projects developed at University of Bridgeport and than can serve well in distance learning education ranging from simple "hobby" style training to professional guidance material. The projects have an engineering / laboratory flavor and are being presented in an arbitrary order, topics ranging from vision and sensing to engineering design, scheduling, remote control and operation

    Case Studies in Web-Controlled Devices and Remote Manipulation

    Get PDF
    The concept of distance learning has been more and more articulated during the past few years and is expected to shortly turn into a practical education system within current high level learning institutions. The chances are that distance learning would transparently extend colleges and institutes of education, and could plausibly overtake and turn into a preferred choice of higher education, especially for adult and working students. The concept would be unachievable without the current technology, for example, the impressive worldwide accessibility of the Internet. The main idea in e-learning is to build adequate solutions that could assure educational training over the Internet, without requiring a personal presence at the degree offering institution. For example, being able to obtain a Bachelor’s degree in Computer Engineering from an accredited institution while residing thousands of miles away from it and actually never seeing it, except maybe for the graduation ceremony. The advantages are immediate and of unique importance, to enumerate a few: Scholarship / education costs can be reduced dramatically, both from a student’s perspective and the institution’s (no need for room and board, for example); The usually tedious immigration and naturalization issues that are common with international students are eliminated; The limited campus facilities, faculty members and course schedules an institution can offer are no longer a boundary; Working adults can consider upgrading skills without changing their lifestyle

    A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    Get PDF
    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.The research leading to these results has received funding from the Spanish Government and European FEDER funds (DPI2012-32390), the Valencia Regional Government (PROMETEO/2013/085) and the University of Alicante (GRE12-17)

    An initial performance review of software components for a heterogeneous computing platform

    Full text link
    The design of embedded systems is a complex activity that involves a lot of decisions. With high performance demands of present day usage scenarios and software, they often involve energy hungry state-of-the-art computing units. While focusing on power consumption of computing units, the physical properties of software are often ignored. Recently, there has been a growing interest to quantify and model the physical footprint of software (e.g. consumed power, generated heat, execution time, etc.), and a component based approach facilitates methods for describing such properties. Based on these, software architects can make energy-efficient software design solutions. This paper presents power consumption and execution time profiling of a component software that can be allocated on heterogeneous computing units (CPU, GPU, FPGA) of a tracked robot

    Controlling a remotely located Robot using Hand Gestures in real time: A DSP implementation

    Full text link
    Telepresence is a necessity for present time as we can't reach everywhere and also it is useful in saving human life at dangerous places. A robot, which could be controlled from a distant location, can solve these problems. This could be via communication waves or networking methods. Also controlling should be in real time and smooth so that it can actuate on every minor signal in an effective way. This paper discusses a method to control a robot over the network from a distant location. The robot was controlled by hand gestures which were captured by the live camera. A DSP board TMS320DM642EVM was used to implement image pre-processing and fastening the whole system. PCA was used for gesture classification and robot actuation was done according to predefined procedures. Classification information was sent over the network in the experiment. This method is robust and could be used to control any kind of robot over distance

    Machine Vision for intelligent Semi-Autonomous Transport (MV-iSAT)

    Get PDF
    AbstractThe primary focus was to develop a vision-based system suitable for the navigation and mapping of an indoor, single-floor environment. Devices incorporating an iSAT system could be used as ‘self-propelled’ shopping carts in high-end retail stores or as automated luggage routing systems in airports. The primary design feature of this system is its Field Programmable Gate Array (FPGA) core, chosen for its strengths in parallelism and pipelining. Image processing has been successfully demonstrated in real-time using FPGA hardware. Remote feedback and monitoring was broadcasted to a host computer via a local area network. Deadlines as short as 40ns have been met by a custom built memory-based arbitration scheme. It is hoped that the iSAT platform will provide the basis for future work on advanced FPGA-based machine-vision algorithms for mobile robotics
    corecore