193 research outputs found

    SPICE²: A Spatial, Parallel Architecture for Accelerating the Spice Circuit Simulator

    Get PDF
    Spatial processing of sparse, irregular floating-point computation using a single FPGA enables up to an order of magnitude speedup (mean 2.8X speedup) over a conventional microprocessor for the SPICE circuit simulator. We deliver this speedup using a hybrid parallel architecture that spatially implements the heterogeneous forms of parallelism available in SPICE. We decompose SPICE into its three constituent phases: Model-Evaluation, Sparse Matrix-Solve, and Iteration Control and parallelize each phase independently. We exploit data-parallel device evaluations in the Model-Evaluation phase, sparse dataflow parallelism in the Sparse Matrix-Solve phase and compose the complete design in streaming fashion. We name our parallel architecture SPICE²: Spatial Processors Interconnected for Concurrent Execution for accelerating the SPICE circuit simulator. We program the parallel architecture with a high-level, domain-specific framework that identifies, exposes and exploits parallelism available in the SPICE circuit simulator. This design is optimized with an auto-tuner that can scale the design to use larger FPGA capacities without expert intervention and can even target other parallel architectures with the assistance of automated code-generation. This FPGA architecture is able to outperform conventional processors due to a combination of factors including high utilization of statically-scheduled resources, low-overhead dataflow scheduling of fine-grained tasks, and overlapped processing of the control algorithms. We demonstrate that we can independently accelerate Model-Evaluation by a mean factor of 6.5X(1.4--23X) across a range of non-linear device models and Matrix-Solve by 2.4X(0.6--13X) across various benchmark matrices while delivering a mean combined speedup of 2.8X(0.2--11X) for the two together when comparing a Xilinx Virtex-6 LX760 (40nm) with an Intel Core i7 965 (45nm). With our high-level framework, we can also accelerate Single-Precision Model-Evaluation on NVIDIA GPUs, ATI GPUs, IBM Cell, and Sun Niagara 2 architectures. We expect approaches based on exploiting spatial parallelism to become important as frequency scaling slows down and modern processing architectures turn to parallelism (\eg multi-core, GPUs) due to constraints of power consumption. This thesis shows how to express, exploit and optimize spatial parallelism for an important class of problems that are challenging to parallelize.</p

    Performance and area evaluations of processor-based benchmarks on FPGA devices

    Get PDF
    The computing system on SoCs is being long-term research since the FPGA technology has emerged due to its personality of re-programmable fabric, reconfigurable computing, and fast development time to market. During the last decade, uni-processor in a SoC is no longer to deal with the high growing market for complex applications such as Mobile Phones audio and video encoding, image and network processing. Due to the number of transistors on a silicon wafer is increasing, the recent FPGAs or embedded systems are advancing toward multi-processor-based design to meet tremendous performance and benefit this kind of systems are possible. Therefore, is an upcoming age of the MPSoC. In addition, most of the embedded processors are soft-cores, because they are flexible and reconfigurable for specific software functions and easy to build homogenous multi-processor systems for parallel programming. Moreover, behavioural synthesis tools are becoming a lot more powerful and enable to create datapath of logic units from high-level algorithms such as C to HDL and available for partitioning a HW/SW concurrent methodology. A range of embedded processors is able to implement on a FPGA-based prototyping to integrate the CPUs on a programmable device. This research is, firstly represent different types of computer architectures in modern embedded processors that are followed in different type of software applications (eg. Multi-threading Operations or Complex Functions) on FPGA-based SoCs; and secondly investigate their capability by executing a wide-range of multimedia software codes (Integer-algometric only) in different models of the processor-systems (uni-processor or multi-processor or Co-design), and finally compare those results in terms of the benchmarks and resource utilizations within FPGAs. All the examined programs were written in standard C and executed in a variety numbers of soft-core processors or hardware units to obtain the execution times. However, the number of processors and their customizable configuration or hardware datapath being generated are limited by a target FPGA resource, and designers need to understand the FPGA-based tradeoffs that have been considered - Speed versus Area. For this experimental purpose, I defined benchmarks into DLP / HLS catalogues, which are "data" and "function" intensive respectively. The programs of DLP will be executed in LEON3 MP and LE1 CMP multi-processor systems and the programs of HLS in the LegUp Co-design system on target FPGAs. In preliminary, the performance of the soft-core processors will be examined by executing all the benchmarks. The whole story of this thesis work centres on the issue of the execute times or the speed-up and area breakdown on FPGA devices in terms of different programs

    An FPGA implementation of an investigative many-core processor, Fynbos : in support of a Fortran autoparallelising software pipeline

    Get PDF
    Includes bibliographical references.In light of the power, memory, ILP, and utilisation walls facing the computing industry, this work examines the hypothetical many-core approach to finding greater compute performance and efficiency. In order to achieve greater efficiency in an environment in which Moore’s law continues but TDP has been capped, a means of deriving performance from dark and dim silicon is needed. The many-core hypothesis is one approach to exploiting these available transistors efficiently. As understood in this work, it involves trading in hardware control complexity for hundreds to thousands of parallel simple processing elements, and operating at a clock speed sufficiently low as to allow the efficiency gains of near threshold voltage operation. Performance is there- fore dependant on exploiting a new degree of fine-grained parallelism such as is currently only found in GPGPUs, but in a manner that is not as restrictive in application domain range. While removing the complex control hardware of traditional CPUs provides space for more arithmetic hardware, a basic level of control is still required. For a number of reasons this work chooses to replace this control largely with static scheduling. This pushes the burden of control primarily to the software and specifically the compiler, rather not to the programmer or to an application specific means of control simplification. An existing legacy tool chain capable of autoparallelising sequential Fortran code to the degree of parallelism necessary for many-core exists. This work implements a many-core architecture to match it. Prototyping the design on an FPGA, it is possible to examine the real world performance of the compiler-architecture system to a greater degree than simulation only would allow. Comparing theoretical peak performance and real performance in a case study application, the system is found to be more efficient than any other reviewed, but to also significantly under perform relative to current competing architectures. This failing is apportioned to taking the need for simple hardware too far, and an inability to implement static scheduling mitigating tactics due to lack of support for such in the compiler

    VThreads: A novel VLIW chip multiprocessor with hardware-assisted PThreads

    Get PDF
    We discuss VThreads, a novel VLIW CMP with hardware-assisted shared-memory Thread support. VThreads supports Instruction Level Parallelism via static multiple-issue and Thread Level Parallelism via hardware-assisted POSIX Threads along with extensive customization. It allows the instantiation of tightlycoupled streaming accelerators and supports up to 7-address Multiple-Input, Multiple-Output instruction extensions. VThreads is designed in technology-independent Register-Transfer-Level VHDL and prototyped on 40 nm and 28 nm Field-Programmable gate arrays. It was evaluated against a PThreads-based multiprocessor based on the Sparc-V8 ISA. On a 65 nm ASIC implementation VThreads achieves up to x7.2 performance increase on synthetic benchmarks, x5 on a parallel Mandelbrot implementation, 66% better on a threaded JPEG implementation, 79% better on an edge-detection benchmark and ~13% improvement on DES compared to the Leon3MP CMP. In the range of 2 to 8 cores VThreads demonstrates a post-route (statistical) power reduction between 65% to 57% at an area increase of 1.2%-10% for 1-8 cores, compared to a similarly-configured Leon3MP CMP. This combination of micro-architectural features, scalability, extensibility, hardware support for low-latency PThreads, power efficiency and area make the processor an attractive proposition for low-power, deeply-embedded applications requiring minimum OS support

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    Accuracy-Guaranteed Fixed-Point Optimization in Hardware Synthesis and Processor Customization

    Get PDF
    RÉSUMÉ De nos jours, le calcul avec des nombres fractionnaires est essentiel dans une vaste gamme d’applications de traitement de signal et d’image. Pour le calcul numérique, un nombre fractionnaire peut être représenté à l’aide de l’arithmétique en virgule fixe ou en virgule flottante. L’arithmétique en virgule fixe est largement considérée préférable à celle en virgule flottante pour les architectures matérielles dédiées en raison de sa plus faible complexité d’implémentation. Dans la mise en œuvre du matériel, la largeur de mot attribuée à différents signaux a un impact significatif sur des métriques telles que les ressources (transistors), la vitesse et la consommation d'énergie. L'optimisation de longueur de mot (WLO) en virgule fixe est un domaine de recherche bien connu qui vise à optimiser les chemins de données par l'ajustement des longueurs de mots attribuées aux signaux. Un nombre en virgule fixe est composé d’une partie entière et d’une partie fractionnaire. Il y a une limite inférieure au nombre de bits alloués à la partie entière, de façon à prévenir les débordements pour chaque signal. Cette limite dépend de la gamme de valeurs que peut prendre le signal. Le nombre de bits de la partie fractionnaire, quant à lui, détermine la taille de l'erreur de précision finie qui est introduite dans les calculs. Il existe un compromis entre la précision et l'efficacité du matériel dans la sélection du nombre de bits de la partie fractionnaire. Le processus d'attribution du nombre de bits de la partie fractionnaire comporte deux procédures importantes: la modélisation de l'erreur de quantification et la sélection de la taille de la partie fractionnaire. Les travaux existants sur la WLO ont porté sur des circuits spécialisés comme plate-forme cible. Dans cette thèse, nous introduisons de nouvelles méthodologies, techniques et algorithmes pour améliorer l’implémentation de calculs en virgule fixe dans des circuits et processeurs spécialisés. La thèse propose une approche améliorée de modélisation d’erreur, basée sur l'arithmétique affine, qui aborde certains problèmes des méthodes existantes et améliore leur précision. La thèse introduit également une technique d'accélération et deux algorithmes semi-analytiques pour la sélection de la largeur de la partie fractionnaire pour la conception de circuits spécialisés. Alors que le premier algorithme suit une stratégie de recherche progressive, le second utilise une méthode de recherche en forme d'arbre pour l'optimisation de la largeur fractionnaire. Les algorithmes offrent deux options de compromis entre la complexité de calcul et le coût résultant. Le premier algorithme a une complexité polynomiale et obtient des résultats comparables avec des approches heuristiques existantes. Le second algorithme a une complexité exponentielle, mais il donne des résultats quasi-optimaux par rapport à une recherche exhaustive. Cette thèse propose également une méthode pour combiner l'optimisation de la longueur des mots dans un contexte de conception de processeurs configurables. La largeur et la profondeur des blocs de registres et l'architecture des unités fonctionnelles sont les principaux objectifs ciblés par cette optimisation. Un nouvel algorithme d'optimisation a été développé pour trouver la meilleure combinaison de longueurs de mots et d'autres paramètres configurables dans la méthode proposée. Les exigences de précision, définies comme l'erreur pire cas, doivent être respectées par toute solution. Pour faciliter l'évaluation et la mise en œuvre des solutions retenues, un nouvel environnement de conception de processeur a également été développé. Cet environnement, qui est appelé PolyCuSP, supporte une large gamme de paramètres, y compris ceux qui sont nécessaires pour évaluer les solutions proposées par l'algorithme d'optimisation. L’environnement PolyCuSP soutient l’exploration rapide de l'espace de solution et la capacité de modéliser différents jeux d'instructions pour permettre des comparaisons efficaces.----------ABSTRACT Fixed-point arithmetic is broadly preferred to floating-point in hardware development due to the reduced hardware complexity of fixed-point circuits. In hardware implementation, the bitwidth allocated to the data elements has significant impact on efficiency metrics for the circuits including area usage, speed and power consumption. Fixed-point word-length optimization (WLO) is a well-known research area. It aims to optimize fixed-point computational circuits through the adjustment of the allocated bitwidths of their internal and output signals. A fixed-point number is composed of an integer part and a fractional part. There is a minimum number of bits for the integer part that guarantees overflow and underflow avoidance in each signal. This value depends on the range of values that the signal may take. The fractional word-length determines the amount of finite-precision error that is introduced in the computations. There is a trade-off between accuracy and hardware cost in fractional word-length selection. The process of allocating the fractional word-length requires two important procedures: finite-precision error modeling and fractional word-length selection. Existing works on WLO have focused on hardwired circuits as the target implementation platform. In this thesis, we introduce new methodologies, techniques and algorithms to improve the hardware realization of fixed-point computations in hardwired circuits and customizable processors. The thesis proposes an enhanced error modeling approach based on affine arithmetic that addresses some shortcomings of the existing methods and improves their accuracy. The thesis also introduces an acceleration technique and two semi-analytical fractional bitwidth selection algorithms for WLO in hardwired circuit design. While the first algorithm follows a progressive search strategy, the second one uses a tree-shaped search method for fractional width optimization. The algorithms offer two different time-complexity/cost efficiency trade-off options. The first algorithm has polynomial complexity and achieves comparable results with existing heuristic approaches. The second algorithm has exponential complexity but achieves near-optimal results compared to an exhaustive search. The thesis further proposes a method to combine word-length optimization with application-specific processor customization. The supported datatype word-length, the size of register-files and the architecture of the functional units are the main target objectives to be optimized. A new optimization algorithm is developed to find the best combination of word-length and other customizable parameters in the proposed method. Accuracy requirements, defined as the worst-case error bound, are the key consideration that must be met by any solution. To facilitate evaluation and implementation of the selected solutions, a new processor design environment was developed. This environment, which is called PolyCuSP, supports necessary customization flexibility to realize and evaluate the solutions given by the optimization algorithm. PolyCuSP supports rapid design space exploration and capability to model different instruction-set architectures to enable effective compari
    • …
    corecore