
UNIVERSITÉ DE MONTRÉAL

ACCURACY-GUARANTEED FIXED-POINT OPTIMIZATION

IN HARDWARE SYNTHESIS AND PROCESSOR CUSTOMIZATION

SHERVIN VAKILI

DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION

DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)

AOÛT 2014

© Shervin Vakili, 2014.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée:

ACCURACY-GUARANTEED FIXED-POINT OPTIMIZATION

IN HARDWARE SYNTHESIS AND PROCESSOR CUSTOMIZATION

présentée par : VAKILI Shervin

en vue de l’obtention du diplôme de : Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de:

Mme NICOLESCU Gabriela, Doct., présidente

M. LANGLOIS J.M. Pierre, Ph.D., membre et directeur de recherche

M. BOIS Guy, Ph.D., membre et codirecteur de recherche

M. DAVID Jean Pierre, Ph.D., membre

M. ABDI Samar, Ph.D., membre

iii

Dedicated to

my mother, Sima

and the memory of my father, Fariborz

iv

ACKNOWLEDGEMENT

I would like to express my sincere and greatest gratitude to my supervisors, Dr. Pierre Langlois

and Dr. Guy Bois. I am thankful for their constant support and encouragement and for their con-

structive advice and comments.

Special thanks to Mr. Gary Dare for helping to proof-read this thesis. I would also like to thank

the faculty, staff and students of the department who helped me to expand my knowledge and

expertise. I would also like to thank them for every bit of help they provided, each in their own

way.

My eternal gratitude to my family and friends for their unconditional encouragement and support.

v

RÉSUMÉ

De nos jours, le calcul avec des nombres fractionnaires est essentiel dans une vaste gamme

d’applications de traitement de signal et d’image. Pour le calcul numérique, un nombre fraction-

naire peut être représenté à l’aide de l’arithmétique en virgule fixe ou en virgule flottante.

L’arithmétique en virgule fixe est largement considérée préférable à celle en virgule flottante

pour les architectures matérielles dédiées en raison de sa plus faible complexité

d’implémentation. Dans la mise en œuvre du matériel, la largeur de mot attribuée à différents

signaux a un impact significatif sur des métriques telles que les ressources (transistors), la vi-

tesse et la consommation d'énergie. L'optimisation de longueur de mot (WLO) en virgule fixe est

un domaine de recherche bien connu qui vise à optimiser les chemins de données par l'ajuste-

ment des longueurs de mots attribuées aux signaux.

Un nombre en virgule fixe est composé d’une partie entière et d’une partie fractionnaire. Il y a

une limite inférieure au nombre de bits alloués à la partie entière, de façon à prévenir les débor-

dements pour chaque signal. Cette limite dépend de la gamme de valeurs que peut prendre le si-

gnal. Le nombre de bits de la partie fractionnaire, quant à lui, détermine la taille de l'erreur de

précision finie qui est introduite dans les calculs. Il existe un compromis entre la précision et l'ef-

ficacité du matériel dans la sélection du nombre de bits de la partie fractionnaire. Le processus

d'attribution du nombre de bits de la partie fractionnaire comporte deux procédures importantes:

la modélisation de l'erreur de quantification et la sélection de la taille de la partie fractionnaire.

Les travaux existants sur la WLO ont porté sur des circuits spécialisés comme plate-forme cible.

Dans cette thèse, nous introduisons de nouvelles méthodologies, techniques et algorithmes pour

améliorer l’implémentation de calculs en virgule fixe dans des circuits et processeurs spécialisés.

La thèse propose une approche améliorée de modélisation d’erreur, basée sur l'arithmétique af-

fine, qui aborde certains problèmes des méthodes existantes et améliore leur précision.

La thèse introduit également une technique d'accélération et deux algorithmes semi-analytiques

pour la sélection de la largeur de la partie fractionnaire pour la conception de circuits spécialisés.

Alors que le premier algorithme suit une stratégie de recherche progressive, le second utilise une

méthode de recherche en forme d'arbre pour l'optimisation de la largeur fractionnaire. Les algo-

rithmes offrent deux options de compromis entre la complexité de calcul et le coût résultant. Le

premier algorithme a une complexité polynomiale et obtient des résultats comparables avec des

vi

approches heuristiques existantes. Le second algorithme a une complexité exponentielle, mais il

donne des résultats quasi-optimaux par rapport à une recherche exhaustive.

Cette thèse propose également une méthode pour combiner l'optimisation de la longueur des mots

dans un contexte de conception de processeurs configurables. La largeur et la profondeur des

blocs de registres et l'architecture des unités fonctionnelles sont les principaux objectifs ciblés par

cette optimisation. Un nouvel algorithme d'optimisation a été développé pour trouver la meilleure

combinaison de longueurs de mots et d'autres paramètres configurables dans la méthode propo-

sée. Les exigences de précision, définies comme l'erreur pire cas, doivent être respectées par

toute solution.

 Pour faciliter l'évaluation et la mise en œuvre des solutions retenues, un nouvel environnement

de conception de processeur a également été développé. Cet environnement, qui est appelé Poly-

CuSP, supporte une large gamme de paramètres, y compris ceux qui sont nécessaires pour éva-

luer les solutions proposées par l'algorithme d'optimisation. L’environnement PolyCuSP soutient

l’exploration rapide de l'espace de solution et la capacité de modéliser différents jeux d'instruc-

tions pour permettre des comparaisons efficaces.

vii

ABSTRACT

Fixed-point arithmetic is broadly preferred to floating-point in hardware development due to the

reduced hardware complexity of fixed-point circuits. In hardware implementation, the bitwidth

allocated to the data elements has significant impact on efficiency metrics for the circuits includ-

ing area usage, speed and power consumption. Fixed-point word-length optimization (WLO) is a

well-known research area. It aims to optimize fixed-point computational circuits through the ad-

justment of the allocated bitwidths of their internal and output signals.

A fixed-point number is composed of an integer part and a fractional part. There is a minimum

number of bits for the integer part that guarantees overflow and underflow avoidance in each sig-

nal. This value depends on the range of values that the signal may take. The fractional word-

length determines the amount of finite-precision error that is introduced in the computations.

There is a trade-off between accuracy and hardware cost in fractional word-length selection. The

process of allocating the fractional word-length requires two important procedures: finite-

precision error modeling and fractional word-length selection. Existing works on WLO have fo-

cused on hardwired circuits as the target implementation platform.

In this thesis, we introduce new methodologies, techniques and algorithms to improve the hard-

ware realization of fixed-point computations in hardwired circuits and customizable processors.

The thesis proposes an enhanced error modeling approach based on affine arithmetic that ad-

dresses some shortcomings of the existing methods and improves their accuracy.

The thesis also introduces an acceleration technique and two semi-analytical fractional bitwidth

selection algorithms for WLO in hardwired circuit design. While the first algorithm follows a

progressive search strategy, the second one uses a tree-shaped search method for fractional width

optimization. The algorithms offer two different time-complexity/cost efficiency trade-off op-

tions. The first algorithm has polynomial complexity and achieves comparable results with exist-

ing heuristic approaches. The second algorithm has exponential complexity but achieves near-

optimal results compared to an exhaustive search.

The thesis further proposes a method to combine word-length optimization with application-

specific processor customization. The supported datatype word-length, the size of register-files

and the architecture of the functional units are the main target objectives to be optimized. A new

viii

optimization algorithm is developed to find the best combination of word-length and other cus-

tomizable parameters in the proposed method. Accuracy requirements, defined as the worst-case

error bound, are the key consideration that must be met by any solution.

To facilitate evaluation and implementation of the selected solutions, a new processor design

environment was developed. This environment, which is called PolyCuSP, supports necessary

customization flexibility to realize and evaluate the solutions given by the optimization algo-

rithm. PolyCuSP supports rapid design space exploration and capability to model different in-

struction-set architectures to enable effective comparisons.

ix

TABLE OF CONTENTS

DEDICATION .. III

ACKNOWLEDGEMENT ... IV

RÉSUMÉ .. V

ABSTRACT .. VII

TABLE OF CONTENTS .. IX

LIST OF TABLES ... XIII

LIST OF FIGURES .. XIV

LIST OF ABBREVIATIONS .. XVI

CHAPTER 1 INTRODUCTION ... 1

1.1 Overview and motivation .. 1

1.2 Problem statement ... 2

1.3 Objectives .. 4

1.4 Thesis organization .. 5

CHAPTER 2 LITERATURE REVIEW .. 6

2.1 Custom processor design ... 6

2.1.1 Customization categories ... 6

2.1.2 Existing methodologies .. 11

2.2 Fixed-point word-length optimization ... 14

2.2.1 IWL allocation ... 15

2.2.2 FWL allocation... 18

2.3 Conclusion ... 24

CHAPTER 3 POLYCUSP PROCESSOR DESIGN ENVIRONMENT 25

3.1 Introduction ... 25

x

3.2 Processor description method .. 27

3.3 Tunable parameters ... 31

3.4 Processor development process ... 33

3.4.1 Development environment ... 34

3.4.2 Processor verification ... 36

3.5 Experimental results .. 36

3.5.1 Experimental set-up ... 36

3.5.2 Comparing with Nios II ... 37

3.5.3 Processor customization techniques ... 40

3.5.4 Case study of HDR tone mapping .. 42

3.6 Conclusion ... 46

CHAPTER 4 FIXED-POINT ERROR MODELING METHOD .. 47

4.1 Introduction ... 47

4.2 Affine arithmetic ... 48

4.3 Existing error propagation method .. 50

4.4 Proposed approach .. 54

4.4.1 Postponed substitution ... 54

4.4.2 Propagation of conditional terms ... 55

4.5 Results and comparison ... 57

4.6 Conclusion ... 59

CHAPTER 5 WORD-LENGTH ALLOCATION FOR HARDWARE SYNTHESIS 60

5.1 Introduction ... 60

5.2 Implementation framework overview ... 61

5.3 FWL allocation .. 62

xi

5.3.1 Example design .. 62

5.3.2 Preliminary simplification technique ... 63

5.3.3 Hardware cost estimation model .. 68

5.3.4 Progressive Selection Algorithm (PSA) .. 68

5.3.5 Accelerated Tree-Based Search Algorithm (TBSA) .. 72

5.3.6 Time complexty of the PSA and TBSA algorithms ... 75

5.4 Experimental results and comparisons .. 80

5.4.1 Case studies .. 80

5.4.2 Coding limitations .. 81

5.4.3 Preliminary simplification technique ... 82

5.4.4 Comparing with UFB and Osborne’s method .. 84

5.4.5 Comparing with Menard et al. ... 85

5.4.6 Comparing with Exhaustive Search ... 87

5.5 Conclusion ... 89

CHAPTER 6 FIXED-POINT PROCESSOR CUSTOMIZATION ... 90

6.1 Introduction ... 90

6.2 Proposed methodology .. 93

6.2.1 Methodology objectives ... 93

6.2.2 Illustration of the objectives ... 94

6.3 Design flow integration ... 100

6.3.1 Overview .. 100

6.3.2 Custom processor design environment .. 101

6.4 Optimization algorithm ... 102

6.4.1 The first- and second-level genetic algorithms .. 102

xii

6.4.2 Architecture selection... 104

6.4.3 Fitness function .. 106

6.5 Experimental results .. 108

6.6 Conclusion ... 112

CHAPTER 7 CONCLUSION AND FUTURE WORK .. 113

7.1 Summary of the work .. 113

7.2 Summary of the contributions ... 114

7.3 Future works .. 116

REFERENCES .. 118

xiii

LIST OF TABLES

Table 2.1 Comparing previous works related to micro-architecture tuning 9

Table 2.2 Summary of combined WLO and HLS approaches. .. 24

Table 3.1 List of configurable elements in PolyCuSP ... 32

Table 3.2 Design complexity of LISA LTRISC and PolyCuSP processor 45

Table 4.1 Impacts of conditional term propagation on efficiency of the results 58

Table 5.1 Fractional width refinement of the example circuit of Figure 5.2 72

Table 5.2 Number of nodes eliminated from the TBSA using the acceleration technique 80

Table 5.3 Complexity of the case studies ... 81

Table 5.4 Complexity reduction using the preliminary simplification technique 82

Table 5.5 Efficiency of the proposed algorithms and previous works ... 85

Table 6.1 Hardware cost and performance results of the benchmark applications 109

xiv

LIST OF FIGURES

Figure 2.1 Taxonomy of ADLs ... 13

Figure 2.2 Simulation speed vs. abstraction levels. .. 15

Figure 2.3 Using scaling operations for fixed-point alignment in FIR filter example. 17

Figure 3.1 Overview of the proposed development process ... 27

Figure 3.2 Description of two major encoding formats of MIPS ISA .. 29

Figure 3.3 Description of Multiply and Accumulate (MAC) instruction. 31

Figure 3.4 Pipeline layout in (a) 5-stage, (b) 4-stage, (c) 3-stage configurations. 33

Figure 3.5 PolyCuSP design flow diagram. .. 35

Figure 3.6 Comparing Nios II with (a) PolyCuSP environment (b) SPREE environment. 39

Figure 3.7 Impact of microarchitectural parameters on performance ... 41

Figure 3.8 Selected CIs for the Sobel algorithm. .. 41

Figure 3.9 Performance-area trade-offs after ISA customization. .. 42

Figure 3.10 Comparing efficiency of PolyCuSP and the LISA-based ASIP design. 45

Figure 4.1 Example circuit with input range values shown in brackets. 50

Figure 4.2 Circuit that calculates 53

Figure 4.3 RGB-to-YCrCb example. .. 56

Figure 4.4 Hardware area savings for various polynomial degrees. ... 59

Figure 5.1 Overview of the proposed word length optimization framework. 63

Figure 5.2 Example circuit along with the range information in brackets. 64

Figure 5.3 A general subcircuit that calculates out=in1±in2±in3. .. 65

Figure 5.4 The proposed algorithm for preliminary simplification technique. 66

Figure 5.5 Applying the preliminary simplification algorithm to two example circuits. 67

Figure 5.6 The fractional width refinement algorithm PSA. ... 74

xv

Figure 5.7 The accelerated tree-based search algorithm (TBSA). .. 77

Figure 5.8 First four levels of the decision tree in processing Figure 5.2 circuit with TBSA. 78

Figure 5.9 Optimization time ratio of the original applications to the corresponding simplified

ones. .. 83

Figure 5.10 Hardware cost ratio without/with simplification technique. 83

Figure 5.11 Area cost reduction over the UFB approach. ... 87

Figure 5.12 Normalized optimization time relative to PSA method. .. 88

Figure 5.13 Comparing the proposed algorithms with the exhaustive search method. 88

Figure 6.1 Comparing customized processors via UWL and MWL approaches. 91

Figure 6.2 Example circuit .. 96

Figure 6.3 Time scheduling of two possible solutions with (a) single multiplier (b) double

multipliers. .. 99

Figure 6.4 The design flow in the proposed method. .. 100

Figure 6.5 The flow chart of the optimization algorithm .. 103

Figure 6.6 The multiplier selection algorithm ... 106

Figure 6.7 Run-time progress of the optimization algorithm in each generation of the GA1. ... 111

xvi

LIST OF ABBREVIATIONS

AA Affine Arithmetic

ADL Architecture Description Language

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction-set Processor

BER Bit Error Rate

CI Custom Instruction

DCT Discrete Cosine Transform

DFG Data Flow Graph

FFC Floating-point to Fixed-point Conversion

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FU Functional Unit

FWL Fractional Word-Length

GA Genetic Algorithm

HDL Hardware Description Language

HDR High Dynamic Range

IA Interval Arithmetic

IIR Infinite Impulse Response

ILP Instruction-Level Parallelism or Integer Linear Programming

IR Intermediate Representation

ISE Instruction Set Extension

IWL Integer Word-Length

xvii

LISA Language for Instruction-Set Architecture

MPSoC Multi-Processor System on Chip

MAC Multiply and Accumulate

MWL Multiple Word-Length

PSNR Peak Signal-Noise Ratio

QAA Quantized Affine Arithmetic

RTL Register Transfer Level

SA Simulated Annealing

SoC System on Chip

SPREE Soft Processor Rapid Exploration Environment

SQNR Signal-to-Quantization-Noise Ratio

TIE Tensilica Instruction Extension

TM Tone Mapping

UWL Uniform Word-Length

UFB Uniform Fractional Bit-width

VLIW Very Long Instruction Word

WLO Word-Length Optimization

1

CHAPTER 1 INTRODUCTION

1.1 Overview and motivation

Fractional computation is necessary in a vast amount of applications in the DSP and image pro-

cessing domains. In digital arithmetic, a fractional value can be represented in fixed-point or

floating-point. Arithmetic operators and their associated computational complexity are highly

different for these two representations. Using the same number of bits, the floating-point repre-

sentation supports a wider range of values compared to the fixed-point representation. However,

in a hardware implementation, the complexity of a fixed-point realization is normally far less

than the equivalent floating-point one [1]. As a result, a fixed-point computational circuit is usu-

ally more efficient than the corresponding floating-point circuit in terms of area, performance and

power consumption. Hence, the fixed-point representation is commonly preferred for hardware

implementation, particularly in embedded systems.

In a digital computational circuit, reducing the bitwidth of a signal can result in improvements in

efficiency. The quantity of this improvement depends on the hardware components which are

related to that signal, since the size of these components can be affected by the bitwidth reduc-

tion.

A fixed-point number is composed of integer bits and fractional bits. In a fixed-point-computing

circuit, a fixed number of bits are allocated to the integer and fractional parts of each signal. The

Integer Word-Length (IWL) of each signal must be wide enough to guarantee over-

flow/underflow avoidance. The minimum required width of the integer bits depends on the range

of values that the signal may take. The Fractional Word-Length (FWL) determines the accuracy

of the computations. A wider FWL means less introduced quantization error at the expense of

consuming more hardware resources. Finding the appropriate bitwidths to allocate to the integer

and fractional parts of the signal is a well-known research problem called word-length optimiza-

tion (WLO). The objective of a WLO method is to optimize the efficiency of the hardware im-

plementation while meeting the accuracy requirements of the application by adjusting the word-

length of the signals.

Fixed-point WLO consists of two main activities:

2

 IWL optimization, which aims to find the minimum number of bits for the integer part of

each signal that guarantees overflow/underflow avoidance. Range analysis is the usual

method for IWL optimization.

 FWL optimization, which aims to maximize the efficiency of the design through adjusting

the fractional word-lengths of the signals. Accuracy requirements must be met by the se-

lected fractional word-lengths. Finite-precision error modeling and FWL selection algo-

rithm are the main parts of this activity.

The WLO is the subject of numerous works in the literature. The objective of most of these

works is to optimize the efficiency of the fixed-point computational circuits by allocating the best

combination of word-lengths to the signals in the circuit. The signal word-lengths determine the

bitwidth of the arithmetic, control and logic operators in the hardware implementation. In this

field, research efforts normally focus on one of the three major components of any WLO ap-

proach: finite-precision error modeling, integer word-length selection algorithm and fractional

word-length selection algorithm. Almost all of these works have targeted the hardwired circuits

as the implementation platform. However, the WLO problem can be extended to other hardware

platforms such as microprocessors.

1.2 Problem statement

This thesis introduces new methods to enhance and optimize the hardware implementation of the

fixed-point computations in hardwired circuits and microprocessor. WLO for hardware synthesis

and microprocessor platforms form a major part of this thesis.

For hardwired circuit design, this thesis introduces new techniques and algorithms to improve

existing word-length allocation methods. There are a large number of related works in the litera-

ture that aim to improve different parts of the WLO. These works normally compete on efficien-

cy of the circuits that they produce and the execution time that they require. In this work, we in-

troduce a finite-precision error modeling approach that amends and promotes a widely-used Af-

fine-Arithmetic-based approach. The proposed modifications address a significant hazard in the

existing method and improve the error modeling accuracy. The latter improves the efficiency of

the FWL selection by increasing the error estimation accuracy while the former prevents false

3

FWL allocation. FWL selection is the other significant problem in WLO that was targeted in

many existing works. These works typically proposed heuristic search algorithms to solve this

NP-hard problem [2, 3]. In this work, we introduce an acceleration technique to reduce the

searching time of the FWL selection algorithms. Moreover, we present two new heuristic algo-

rithms to solve this problem more efficiently.

Microprocessors are the other platforms that are targeted in the contributions of this thesis. Over

the last few decades, microprocessors have been the most popular choice to implement computa-

tional algorithms. Programmability and high degree of flexibility are the main advantages of mi-

croprocessor-based designs. Processor-centric architectures are commonly used in embedded

systems, which is the largest production area of digital computers. However, general purpose

processors are not normally able to meet the high demand of computationally intensive real-time

applications in the multimedia, communication and signal processing domains. At the other ex-

treme, maximum feasible performance is offered by hardwired circuits widely known as ASICs

(Application-Specific Integrated Circuits). However, ASICs offer the lowest flexibility in terms

of programmability and reusability.

In the processor domain, this research introduces the idea of combining the fixed-point word-

length allocation with the processor customization, for the first time. This idea proposes use of

word-length determination in fixed-point custom processor design process in order to customize

the quantity and the format of the data types supported by the processor architecture. The objec-

tive is to improve the implementation efficiency (in terms of hardware cost, performance and

offered accuracy) of the processor architecture by customizing the bit-length of the processor

datapath and corresponding microarchitecture components. Based on this idea, we introduce a

method for accuracy-guaranteed optimization of the processor word-length for fixed-point point

applications.

Processors use functional units (FUs) to realize arithmetic functions. FUs are major performance

bottlenecks particularly in computation-intensive applications and they typically demand signifi-

cant hardware area. The complexity of each arithmetic function and the technique and architec-

ture employed to implement them determine the performance and hardware cost of the corre-

4

sponding FU. Selection of the appropriate architectures for the functional units forms a new op-

timization problem.

Signal and image processing is selected as the target application domain for this research. There-

fore, the developments and the evaluations will be accomplished based on selected applications

from this domain.

1.3 Objectives

The main objective of this research is to develop methodologies to enhance the word-length allo-

cation process for hardwired circuit design and to combine fixed-point optimization and proces-

sor customization into an integrated design environment. The processor customization environ-

ment will generate an optimized application-specific fixed-point processor as well as the corre-

sponding executable code based on the given application.

The following specific objectives are identified for this research plan:

 Developing a custom processor design environment, which provides enough capability to

implement and evaluate the ideas of the next objectives such as functional-unit architec-

ture selection and datapath word-length configuration.

 Introducing an enhanced finite-precision error modeling approach that addresses the prob-

lems in existing approaches and improves their accuracy.

 Introducing an acceleration technique and two new semi-analytical word-length selection

algorithms to improve fixed-point circuit design.

 Proposing an automatic word-length allocation methodology to be integrated into the cus-

tom processor design process. This methodology is based on design space exploration and

aims to optimize cost-accuracy trade-offs.

 Proposing a method to enhance processor efficiency through functional unit architecture

customization. This process is tightly connected to the word-length allocation solution

and, therefore, must be integrated in the word-length allocation process to form a compre-

hensive optimization algorithm.

5

1.4 Thesis organization

This thesis is divided into 7 chapters. Chapter 2 reviews the important background material and

related works that are used in this thesis. Chapter 3 describes a new processor design environ-

ment that is used to realize the processor customization method introduced in Chapter 6. Chapter

4 presents an improved finite-precision error modeling approach which is used in subsequent

chapters. Chapter 5 introduces new algorithms and techniques for WLO in hardware synthesis.

Chapter 6 presents a new method to customize the processor architectures based on fixed-point

word-length optimization. Chapter 7 concludes the thesis.

6

CHAPTER 2 LITERATURE REVIEW

In this chapter, we review the previous work that forms the background material of this thesis.

Two topics, which are relevant to our research, were selected for this literature review: applica-

tion-specific processor customization and fixed-point word-length optimization. First, we review

various existing custom processor design methodologies and important related works. Second, we

survey significant work in research areas related to fixed-point word-length optimization. This

includes a review of the important IWL and FWL optimization methods. In FWL optimization

section, we consider finite-precision error-modeling approaches and FWL selection techniques.

2.1 Custom processor design

The complexity of embedded SoC (System-on-Chip) designs has increased enormously in recent

years. Programmable processor cores are increasingly used in such systems to shrink the design

turnaround time through high-level language programming and high degree of code reusability

[4]. However, general purpose processors are not usually able to meet high computational re-

quirements of complex embedded applications in multimedia, communication systems, and sig-

nal processing domains. Application-specific processor customization is a well-known approach

that has emerged in the past few years to close the gap between programmable processors and

hardwired hardware implementation in ASICs (Application-Specific Integrated Circuits) [5-7].

The objective of processor customization is to enhance the efficiency of the processor by special-

izing specific elements of the processor architecture based on requirements of the target applica-

tions.

2.1.1 Customization categories

Processor customization approaches can be divided into two categories: micro-architectural tun-

ing and instruction-set customization. Important existing works in these two categories are re-

viewed in this section.

The objective of micro-architectural tuning is to find the most efficient trade-offs for datapath

elements such as pipeline depth, processor word-length and functional unit implementation. In

micro-architectural tuning, there are typically some configurable parameters related to the pro-

7

cessor architecture, which are influential in efficiency. The objective is to find the combination of

parameter values that represent the best trade-off among efficiency factors (i.e., performance,

hardware cost, and occasionally power consumption). Henkel [8] divided micro-architectural

tuning into two types of configurations: inclusion/exclusion of hardware functional units (e.g.,

hardware multiplier) and parameterization of components such as cache memories. Major exist-

ing works in this area that were reviewed for related parts of this thesis are summarized below.

Yiannacouras et al. [9, 10] developed a processor design environment, called SPREE, and used it

to explore the impact of microarchitecture tuning on efficiency metrics of the processor. Their

exploration covered four micro-architectural parameters: (1) optional hardware multiplication

support; (2) choice of shifter implementation; (3) pipeline depth; and (4) cycle latency of multi-

cycle paths. The presented results demonstrate significant impacts of microarchitectural tuning on

the efficiency of the processors. The results also confirm the capability of SPREE for rapid de-

sign space exploration.

Dimond et al. [11] presented a Field Programmable Gate Array (FPGA) implementation of a pa-

rameterizable core, named CUSTARD, supporting the following options: different number of

hardware threads and types, Custom Instructions (CI), branch delay slot, load delay slot, forward-

ing, and register file size. CUSTARD offers generation of single and multithread architectures.

Customizations must be performed manually in CUSTARD since no automatic search algorithm

was integrated in this tool.

Sheldon et al. [12] introduced a methodology for fast application specific customization of pa-

rameterized FPGA soft cores. In this work, two search approaches were considered for microar-

chitectural customization. One uses a traditional CAD approach that does an initial characteriza-

tion using synthesis to create an abstract problem model and then explores the solution space us-

ing a knapsack algorithm. The other uses a synthesis-in-the-loop exploration approach. The

methodology was evaluated on Xilinx MicroBlaze soft-core processors taking into account four

inclusion/exclusion and cache parameterization configurations. The results demonstrate that the

introduced approaches can generate customized processors that are 2× faster than the base soft-

core, reaching within 4% of the optimal. The execution time of these approaches is 1.5 hours on

average, compared to over 11 hours for the exhaustive search.

8

Padmanabhan et al. [13] formulated microarchitecture customization as a multi-objective nonlin-

ear optimization problem to find Pareto-optimal configuration for the LEON processor. This ap-

proach is linear in the number of reconfigurable parameters, with an assumption of parameter

independence. This assumption highly simplifies the optimization problem. The results show that

the approach was able to achieve a performance gain within 0.02% difference from the exhaus-

tive solution and with 1% reduction in LUTs (chip resource cost).

Saghir et al. [14] presented a new development tool to design and evaluate VLIW (Very Long

Instruction Word) architecture with a set of customizable microarchitectural parameters. They

compared the impacts of parameters on the efficiency factors of the design. The results show that

this method can achieve significant gains in efficiency over XILINX MicroBlaze using a combi-

nation of processor customization and instruction-level parallelism. Obviously, this method takes

advantage of the inherent superiority of the VLIW architectures in performance and, therefore, it

cannot be directly compared with most of the related works that only focus on single-instruction

architectures.

Automatic microarchitectural tuning is the other well-studied topic in literature. The related

works commonly propose integrated design flows that consist of a search algorithm to explore

the design space for the optimal microarchitectural configuration and a processor generation pro-

cess to realize the best-found solution. Diverse search algorithms were proposed for this purpose

in the literature. Hebert et al. [15] and Kuulusa et al. [16] adopted exhaustive search for the ex-

ploration of the architecture parameter space while Fitcher et al. [17] proposed heuristic ap-

proaches for this problem. Exhaustive search can usually yield the best possible results at the

expense of significantly slower execution. The methodology presented in [15] involves an analy-

sis of the resources of the processing core used by the target application. Then, a series of optimi-

zations based on the analysis results are performed on an optimizable model of the processor

core. The proposed exploration algorithm in [17] uses Pareto-dominance tests to prune non-

optimal parts of the design space. A VLIW template design is used as the base architecture and

obtained Pareto-optimal points for a number of DSP-like benchmark programs are presented.

Table 2.1 summarizes some of the major works mentioned in this section.

9

Table 2.1 Comparing previous works related to micro-architecture tuning

 Supported

architectures

Parameters Exploration

method

Yiannacouras

et al. [9, 10]

Simple pipeline

(based on MIPS I)

 Hardware vs. software multipli-

cation

 Shifter implementation

 Pipeline depth, organization,

and forwarding.

Manual

Dimond et al.

[11]

Hardware multi-

thread

 Multi-threading support: number

of threads, threading type

 Forwarding and interlock archi-

tecture: branch delay slot, load

delay slot, forwarding: ena-

ble/disable

 Register file: number of regis-

ters, number ports

Manual

Sheldon et al.

[12]

Simple pipeline

(Microblaze)

 Inclusion/exclusion of hardware

FUs for: multiplier, barrel shift-

er, divider, floating-point unit

 Data cache configuration

Automatic

 Knapsack

 Impacted or-

dered trees

Padmanabhan

et al. [13]

Simple pipeline

(LEON2)

 Data cache configuration

 Instruction cache configuration

 Integer Unit: multiplier, divider,

register window size, fast jump

Automatic

Integer Linear

Programming

Saghir et al.

[14]

VLIW Multiplier

 Data forwarding paths

 RAM block depth and word-

length

Manual

10

Instruction-set customization, which is also known as Application-Specific Instruction-set Pro-

cessor (ASIP), aims to adapt the processor’s instruction set to a given application to achieve im-

provement according to a chosen metric. Automatic instruction-set customization is defined as a

process to generate CIs from an application in order to improve intended efficiency metric(s).

This activity can be categorized into two main approaches [5].

The first approach offers complete customization in which the whole instruction-set is selected

based on application requirements [18]. The second approach is partial customization, also

known as instruction-set extension (ISE), which involves adding a limited number of CIs to a

pre-existing instruction-set architecture [19, 20]. The ISE process generally starts with the source

code of the target application written in a high-level programming language such as C. The pro-

cess typically consists of three significant steps [4]: (1) application profiling and characterization;

(2) automated ISE identification; (3) ISE realization.

Application profiling is used to identify the computational hotspot areas of the target application.

The objective of the ISE identification step is to find combinations of operations in hotspot areas,

which can be integrated into a single instruction aiming for improvement in performance. Finally,

the ISE realization step involves techniques to synthesize and add the selected custom instruc-

tions into the processor architecture.

Most of the research in this field has focused on automatic ISE identification. The introduced

methods are commonly based on data flow graph (DFG) analysis. The custom instruction selec-

tion process can be formulated as a convex sub-graph identification problem [21]. Each convex

sub-graph of a DFG is a potential CI. The selection process typically takes into account hardware

cost, architectural constraints and achievable improvements of the candidate CIs. Examples of

such constraints include limited bandwidth of custom functional units and general purpose regis-

ter file [4].

Various methodologies and algorithms have been proposed and employed for DFG-based custom

instruction identification. Kastner et al. [22] combined template matching and generation to iden-

tify sub-graphs based on recurring patterns. A novel algorithm was introduced in this work that

profiles a dataflow graph and iteratively clusters the nodes based on a method, called edge con-

traction, to create the templates. The paper investigated how to target the algorithm toward the

11

novel problem of instruction generation for hybrid reconfigurable systems. In particular, this

work targeted the Strategically Programmable System, which embeds complex computational

units such as ALUs, IP blocks, and so on into a configurable fabric.

Clark et al. [23] and Sun et al. [24] proposed heuristic approaches to solve this problem. The

methodology presented by Sun et al. [24], employs a two-stage process, wherein a limited num-

ber of promising instruction candidates are first short-listed using efficient selection criteria, and

then evaluated in more detail through cycle-accurate instruction set simulation and synthesis of

the corresponding hardware. Dynamic pruning techniques were also exploited to eliminate inferi-

or parts of the design space from consideration. In the methodology proposed by Pozzi et al. [25],

a binary tree search approach is employed to discover all potential CIs in a DFG first. Then the

candidates who do not meet the predefined constraints (e.g., hardware cost and register file access

bandwidth) are discarded to speed up the search process.

2.1.2 Existing methodologies

There are two basic trends in application-specific custom processor design: partial customization

of a configurable processor and designing from scratch. Tensilica Xtensa [26], MetaCore [27]

and SC Build [28] are some examples of partially customizable processor environments in which

the main body of the processor is fixed, while a limited number of elements or components are

left customizable. Xtensa is known as a configurable and extensible RISC processor core. Con-

figuration options include the number and width of registers, memories, inclusion/exclusion of

hardware units for some operations, etc. New instructions can be described using the Tensilica

Instruction Extension (TIE) language and added to the baseline core. A complete software toolkit

as well as synthesizable code can be generated automatically for Xtensa processors [26]. Moreo-

ver, automatic design space exploration for TIE-based instruction extension is offered by the pro-

vided development tools.

Architecture Description Languages (ADLs) such as PEAS III [18], LISA [29] and EXPRES-

SION [30] offer designing from scratch, which provides higher flexibility by allowing the de-

signers to define their own ISA and datapath at the expense of more design effort. An ADL is

normally accompanied by a corresponding tool-chain that allows automatic generation of the

software toolkit (including compiler, assembler, simulator, and debugger) and Register Transfer

12

Level (RTL) code generator for the ADL processor model. The objectives of different ADLs may

vary and their modeling complexity and generable outputs are not necessarily similar.

Mishra et al. [30] have classified existing ADLs according to two aspects: content and objective.

ADLs can be classified into four categories based on the contents: structural, behavioral, mixed

and partial. In structural ADLs, architecture of components and their connectivity must be explic-

itly defined. This category needs lowest abstraction level in modeling and consequently offers the

highest flexibility. MIMALO and UDL/I are two well-known structural ADLs. In contrast, be-

havioral ADLs explicitly specify the instruction semantics and ignore detailed hardware struc-

tures. This means that the micro-architecture of the processors is not modeled in this approach.

nML is one of the behavioral ADLs that captures instruction-set architecture and corresponding

functional description in a hierarchal scheme [31]. The required structural description is limited

to the information used by the instruction-set architecture (ISA). For example, memory and regis-

ter units should be defined since they are visible to the instruction-set. The timing model is not

supported for computations in nML. Sophisticated Instruction Level Parallelism (ILP) techniques

such as those presented in superscalar processors cannot be modeled by nML.

Mixed ADLs capture both architectural details and behavioral function description of the proces-

sors. EXPRESSION is a mixed-level ADL primarily designed to generate software toolkits from

the processor/memory description to enable compiler-in-loop design-space exploration [32].

Structural modeling in EXPRESSION includes three subsections: pipeline and data transfer path

description, component specification and memory subsystem. Similarly, the behavioral model is

composed of three subsections: operation specification, instruction description, and operation

mapping. The components can be multi-cycle or pipelined units for storage elements, ports, and

connections for which the timing behavior can also be specified. Automatic RTL generation from

an EXPRESSION model is not supported by the original tool chain. However, a restricted tem-

plate-based RTL generation method was proposed in [33]. LISA (Language for Instruction-Set

Architecture) is the other mixed-level ADL that offers complete tool chain along with optimal

RTL generation for design space exploration. LISA needs explicit modeling of the controlling

process in the designs. This feature enables LISA to model complex control paradigms at the

expense of a more complicated design process. However, LISA cannot model out-of-order-

execution found in superscalar processors [34].

13

Architecture Description Languages (ADLs)

Structural ADLs

(MIMOLA, UDL)

Mixed ADLs

(EXPRESSION, LISA)

Behavioral ADLs

(ISDL, nML)

Partial ADLs

(AIDL)

Synthesis

Oriented

Test

Oriented

Validation

Oriented

Simulation

Oriented

Compilation

Oriented

OS

Oriented

Figure 2.1 Taxonomy of ADLs

ADLs can also be classified into six categories based on their objectives: synthesis oriented, test

oriented, validation oriented, compilation oriented, simulation oriented and Operating System

(OS) oriented. Figure 2.1 demonstrates the taxonomy of ADLs based on the presented classifica-

tion. This figure is extracted from [30].

As a result of the increasing complexity of SoC designs, in recent years, synthesis-based design

space exploration has faced great challenges in search speed. An emerging trend to address this

issue is to move toward simulation-based exploration in higher levels of abstraction. This trend is

quickly becoming popular, particularly in Multiprocessor SoC (MPSoC) designs. Figure 2.2

compares the simulation speed of various abstraction levels of modeling.

Yiannacouras et al. [10] presented SPREE (Soft Processor Rapid Exploration Environment) that

facilitates the design and exploration process using a high-level format for ISA and datapath de-

scription. In this text-based description, each instruction is defined as a directed graph of basic

components provided as a library of available micro-operations, e.g., register files and instruction

fetch units. Although using these encapsulated components significantly simplifies the design

process, it also limits the describable architectures. For example, the internal structure of major

components such as register files and fetch units are predefined and making any modification to

these components entails direct HDL (Hardware Description Language) programming. Moreover,

datapath and ISA should be designed separately from scratch and the designer is in charge of the

consistency between datapath and ISA models. Yiannacouras et al. [9] employed the SPREE en-

vironment to explore the impacts of microarchitecture tuning on efficiency metrics of a soft-

processor and compared the results with the Altera Nios II processor [35].

14

Nurvitadhi [28] introduced a transactional specification framework (T-space) that allows descrip-

tion of a pipelined processor as a state machine with a set of transitions. In this approach, the de-

signer views the datapath as executing one transaction at a time, just like single-cycle designs.

The T-space description is converted into the pipeline model using a specific synthesizer, called

T-piper. The pipeline model allows concurrent execution of multiple overlapped transactions in

different pipeline stages. The objective of this work is to facilitate pipelined processor design by

automating the major parts of the design process such as pipeline parallelization and hazard pre-

vention.

Dimond et al. [11] presented the FPGA implementation of a parameterizable core, named CUS-

TARD, supporting the following configurable parameters: number of hardware threads, CI,

branch delay slot, load delay slot, forwarding paths and register file size.

Saghir et al. [14] presented a development tool to design and evaluate VLIW architectures with a

set of customizable micro-architectural parameters. They compared the impacts of parameters on

the efficiency factors of the design.

2.2 Fixed-point word-length optimization

For convenience in design and verification, most signal and image processing applications are

initially developed in floating-point arithmetic. The applications are converted into fixed-point

arithmetic for hardware implementation to achieve more efficient circuits. Fixed-point WLO is

used to perform this conversion, automatically.

A WLO method is composed of the IWL and FWL allocation processes that aim to find the opti-

mal values of IWL and FWL for each signal in the design. The efficiency of a word-length allo-

cation method is measured by its execution speed and the efficiency of the resulting circuit. For

complex designs, up to 50% of the design time may be needed for word-length allocation [1].

IWL and FWL allocation are naturally different problems while their complexity is categorized

as NP-hard [2]. There are a significant number of previous works that propose various methods

and algorithms to solve these problems. In the following subsections, we review some of the im-

portant existing works for each problem.

15

System

Verification

Architectural

Exploration &

Real-Time

Development

Pre-Silicon SW

Development &

Integration

Application

View

Cycle

Accurate

Cycle

Approximate

Functionality

Accurate

1-100 KIPS

1-10 MIPS

40-60 MIPS

80-150 MIPS

150+ MIPS

Figure 2.2 Simulation speed vs. abstraction levels.

2.2.1 IWL allocation

The allocated IWL to each signal of the circuit must be wide enough to guarantee over-

flow/underflow prevention during computation. There is an upper-bound in the range of values

that each signal may take. The minimum required IWL is determined from this range of values.

Hence, the main activity in IWL allocation is to find the range of values for each signal. A vast

number of approaches have been introduced in literature to perform this activity, which is also

known as range analysis. Range analysis approaches can be divided into two major categories:

simulation-based approaches and analytical approaches.

Simulation-based approaches feed various input data to the algorithm to find out the variation

range of each signal [36, 37]. These methods use statistical properties of the signals, such as the

mean and the variance, and the maximum and minimum peak values obtained during simulations.

Analytical approaches try to formulate the range analysis problem first and then employ appro-

16

priate methods to solve it [38]. Although the results of analytical approaches are commonly more

conservative, their higher speed makes them more popular for complex designs [2, 39].

The methods based on Interval Arithmetic (IA), as well as those based on forward and backward

propagation [40] usually overestimate scaling, while approaches based on multi-intervals [41]

and Affine Arithmetic (AA) [38] may achieve better results by reducing overestimation. The

methods based on AA and on the transfer function [42] are suitable for feedback systems. The

methods based on the transfer function, however, are not able to handle nonlinear systems. The

AA-based methods are modified in non-linear systems to reduce the computational complexity.

In addition to the fixed-point hardware design, the IWL allocation is also used for conversion of

software code from floating-point to fixed-point. This activity is sometimes called Floating-point

to Fixed-point Conversion (FFC) in the literature. The FFC commonly aims to convert a floating-

point sequential code to a corresponding fixed-point one in order to be eventually executed in an

embedded processor. Since fixed-point operators are the same as integer ones, integer arithmetic

and data types along with appropriate scaling operators (typically realized by a shift operation)

are adequate to implement a fixed-point application. Hence, a conventional integer processor is

able to execute fixed-point applications produced by the FFC process.

Since the word-length is usually constant in conventional processors, the IWL allocation is suffi-

cient for fixed point transformation. In literature, this scheme is also known as Uniform Word

Length (UWL). When the IWL has been determined, the remaining bits are simply allocated to

the fractional part. The output of this process is an integer code in which scaling operators are

used to correct the values of the signals that have been converted from a floating-point represen-

tation. Figure 2.3 demonstrates this modification process on a simple Finite Impulse Response

(FIR) filter. This example is highly extracted from [43]. In this figure, IWLi represents the binary-

point position in signal i from the left side. The dynamic range of the signals is identified by lim-

ited precision values. The original flow graph (Figure 2.3.a) illustrates that determining different

binary-point positions for the signals (based on their dynamic range) may lead to unaligned oper-

ands for a single operation. In the IWLu and the IWLacc signals, the point is placed after the first

and after the fourth bit, respectively. Thus, a scaling operation must be introduced between the

multiplication and the addition to align the binary-point position before the addition.

17

x[i-1]

z-1

x[i]

×

h[i]

u Acc

+

Acc

[-0.99 : 0.99]

IWLx=1 (sign bit)

[-0.99 : 0.99]

IWLx=1

[-0.19 : 0.98]

IWLh=1

[-6.26 : 6.26]

IWLAcc=4
[-0.97 : 0.97]

IWLu=1

IWLu=1 but

IWLAcc =4

[-6.26 : 6.26]

IWLAcc=4

x[i-1]

z-1

x[i]

×

h[i]

u2 Acc

+

Acc

[-0.99 : 0.99]

IWLx=1

[-0.99 : 0.99]

IWLx=1

[-0.19 : 0.98]

IWLh=1

[-6.26 : 6.26]

IWLAcc=4
[-0.97 : 0.97]

IWLu2=4

Now, IWLu2= IWLAcc =4

[-6.26 : 6.26]

IWLAcc=3

>>

u1

[-0.97 : 0.97]

IWLu1=1
Scaling operator (right shift

of 3 bits) to align the integer

bits of the operands of the

addition operation

(b)(a)

Figure 2.3 Using scaling operations for fixed-point alignment in FIR filter example.

Figure 2.3.b represents the DFG after the insertion of the scaling operation. u, u1 and u2 are in-

termediate signals. This example illustrates why scaling factors are necessary in fixed-point soft-

ware development using the example of an FIR filter.

Earlier works in this category mostly proposed code conversion methodologies for particular

DSP processors. In [44], a methodology which generates fixed-point code for the

TMS320C25/50 DSP is proposed. The output code cannot be used in other architectures. Auto-

matic tools to transform floating-point C source code into an ANSI code with integer data types

are proposed in [45] and [46]. These methods use control flow graph representations for their

analysis. Moreover, they apply an optimization process to minimize the number of required scal-

ing operators in the output code.

18

2.2.2 FWL allocation

FWL allocation is the other important part of WLO. The FWL of each signal determines the

amount of finite-precision error that it introduces in computations. This error can propagate

through the next stages of the operations and eventually show up at the output as the finite-

precision inaccuracy. Allocating wider FWLs results in more accurate computations at the ex-

pense of more hardware resources and higher latency.

FWL allocation aims to optimize the efficiency of hardwired hardware designs (on ASIC or

FPGA) by adjusting the bitwidth of the fractional part of the signals. The accuracy requirement is

the main consideration that must be satisfied by the FWL allocation solution. Since each opera-

tion in hardwired circuits can have a dedicated hardware unit, each intermediate signal can have a

different word-length. This scheme is known as Multiple Word Length (MWL) in the literature.

It is widely accepted that MWL is potentially able to lead to much more efficient implementa-

tions in terms of hardware cost compared to UWL in hardwired circuit design [47].

In both MWL and UWL approaches, the tolerable output inaccuracy of the design is normally

measured in terms of the worst-case output error bound or Signal-to-Quantization-Noise Ratio

(SQNR) for DSP systems. However, it can be also measured through other application specific

metrics, such as the Bit Error Rate (BER) or Peak Signal-Noise Ratio (PSNR) in wireless systems

and image/video processing designs, respectively. The quantization error must be estimated for

every point in the search space that is examined during FWL selection [48].

The FWL allocation process normally consists of two important parts: finite precision error mod-

eling and FWL selection algorithm. Each of these parts is the subject of a large number of re-

searches.

Finite-precision error modeling is used to estimate the amount of quantization noise that is intro-

duced at the outputs from the FWL of the input and intermediate signals. Analyzing the word-

length effects on the precision of the computation is sometimes called precision analysis in litera-

ture. IA is again a widely-used method for finite-precision error modeling [49]. One drawback of

IA is that it ignores the correlation among signals [50, 51]. AA is a preferable approach that ad-

dresses the correlation problem by taking into account the interdependency of the signals. In AA,

each signal is represented as a linear combination of certain primitive variables, which stand in

19

for sources of uncertainty. Fang et al. [51], Lee et al. [38] and Osborne et al. [52] introduced

word-length optimization methods based on AA. In Chapter 4 of this thesis, we introduce an en-

hanced AA-based error modeling approach. This method is used for the error estimation through-

out the thesis

FWL selection methods can be categorized into optimal and heuristic methods. The optimal

methods mainly employ exhaustive search or Integer Linear Programming (ILP). Both approach-

es are highly computational intensive. Heuristic methods aim to reach quasi-optimal result in a

more reasonable amount of time. Some of the proposed heuristic methods are based on gradient-

descent. These methods follow one of the following strategies to approach the optimal result: (1)

starting from an infeasible point (due to unacceptable precision) and improving the accuracy [53];

and (2) starting from a feasible point and reducing the cost by degrading the precision [54]. The

advantage of these methods is their relatively fast convergence. Their main drawback is their po-

tential to fall in local optima. Simulated Annealing (SA) is another algorithm used to solve the

word length selection problem [38]. SA-based approaches use stochastic properties of the search

space to find the solution. Since SA algorithms use random point selection and exploration, they

tend to be able to jump out of local optima.

Although the main objective of the word-length optimization process is to reduce the implemen-

tation cost (i.e. area, latency, power, etc.), many of the proposed methods do not take into account

hardware costs directly [55]. However, some of the recent methods embody cost estimation tech-

niques and consider the estimation result as the fitness value of the candidate solutions. These

latter methods typically obtain results closer to the optimum. Most of the previous works consid-

ered the hardware area as the cost value [42]. However, latency, power consumption, or a combi-

nation of these metrics is taken into account in some researches [56]. Some of the important re-

lated works in error modeling and FWL selection are reviewed below.

López et al. [57] introduced a new methodology to represent statistical parameters of the quanti-

zation noise using AA. In this method, each quantizer of the realization is first modeled by an

independent affine form. The constant value and the uncertainty factors are calculated as func-

tions of the mean and variance of the noise source. Afterwards, the noise models are propagated

using an AA-based simulation. The results show that, although this approach is more accurate

20

than analytical AA-based error modeling methods, it is still far slower in terms of computational

time.

Caffarena et al. [58] proposed an AA-based method to estimate SQNR. This method combines

the analytical AA calculations and simulation-based noise model parameterizations. The experi-

mental results show a significant speed-up compared to simulation-based methods, at the expense

of a negligible estimation error.

In another related work, López et al. [59] presented a non-linear adaptation of AA, called Quan-

tized Affine Arithmetic (QAA), that offers tighter interval estimation compared to the traditional

AA. In this method, only the uncertainty factors which are associated with the input signals ap-

pear in the affine representation of any signal of a design. In other words, QAA prevents intro-

duction of new uncertainty factors in the propagation process. This significantly reduces the

complexity of the affine expressions. However, the QAA fails to provide guaranteed worst-case

error bounds as in the traditional interval-based computations.

Kinsman et al. [60] used Satisfiability-Modulo Theories to refine the range results given by IA

and AA. The main drawback of this method is that its runtime grows rapidly with application

complexity.

Zhang et al. [61] employed Extreme Value Theory for both range and precision analysis. They

used a lightweight simulation to study the characteristics of extreme conditions. Although this

approach is significantly faster than fully simulation-based approaches, the reported results

demonstrate that it is still far slower than analytical methods particularly in large designs.

Boland et al. [62] recently introduced a polynomial algebraic approach using Handelman repre-

sentations. When calculating bounds, this approach takes into account dependencies within a pol-

ynomial representing the range of a signal. Although this approach has shown promising results,

it faces significant limitations in processing non-polynomial functions and scalability.

Cong et al. [50] made an extensive comparison of three significant static precision analysis meth-

ods using a set of experiments. The methods studied include AA, general interval arithmetic

(GIA) and automatic differentiation. Cantin et al. [63] compared some pre-existing word length

optimization algorithms through experimental evaluation with twelve DSP applications.

21

Le Gal et al. [64], Constantinides et al. [65] and Menard et al. combined the word length optimi-

zation and high-level synthesis (HLS) problems. These works propose new HLS methodologies

which take care of data word length in scheduling, allocation, and binding processes aiming at

optimizing the hardware implementation.

Menard et al. [66] introduced a grouping algorithm to optimize the resource sharing paradigm for

the operations. This process is followed by a WLO algorithm that optimizes the word length of

each signal group. The WLO algorithm is composed of a greedy and a Tabu search procedures.

Nguyen et al. [67] also proposed a word length selection algorithm based on Tabu search. Con-

trary to the widely-used greedy search algorithms that are mono-directional, this method allows

bidirectional movement in the solution space. To demonstrate applicability, the chapter provides

experimental comparisons with three related works.

Fiore et al. [68] derived closed-form expressions for efficient word length allocation. They

showed that these expressions can be effectively calculated in hardware. This allows the realiza-

tion of adaptive word lengths that change in real-time as a function of the data. This idea can be

particularly beneficial in specific applications such as adaptive filters.

Integer linear programming is a general optimization method that is believed to give optimal re-

sults for FWL selection problem. Due to the huge complexity of the ILP solving process, this

method is not practical for large designs. However, it has been used to generate reference results

for comparison [47, 69]. Custom heuristic methods [38, 52, 62] are the most widely used FWL

selection algorithms in existing works.

Some researches focused on word length optimization in specific applications. Pang et al. [70]

presented a technique for real-valued polynomial representation, such as Taylor series. This tech-

nique relies on arithmetic transforms and a branch-and-bound search algorithm for word-length

allocation. Lee et al. [71] proposed an optimization methodology for piecewise polynomial ap-

proximation of arithmetic functions. Nguyen et al. [72] designed an optimized fixed-point

WCDMA receiver using a combination of static and dynamic techniques.

The MWL word-length optimization can also be effectively used in High-Level Synthesis (HLS).

HLS is a digital design trend, which has been widely studied since its introduction in the early

22

1990s. The main objective of HLS is to offer methodologies to convert a high-level description of

an application to low-level RTL, automatically. HLS methods are mainly composed of three

phases: scheduling, resource allocation and resource binding. Scheduling identifies timing period

for the computation of each operation in the algorithm. Resource allocation involves the selection

and integration of hardware components to realize operations. These resources include functional

units, storage components, intercommunication circuits, and controlling logic. Resource binding

is the process of assigning a resource to each operation.

As mentioned before, the MWL approach is efficient for hardware synthesis of fixed-point de-

signs. It means that in such realizations, each variable in the algorithm may have a different

word-length and precision. Consequently, operators of the same type may have different word-

lengths. The resource allocation process is highly dependent on availability of a library of com-

ponents on the target hardware platform. The timing properties, hardware area and power con-

sumption of the components are normally provided in the library. These characteristics are used

by the resource allocation process to identify the appropriate set of required components. Obvi-

ously, considering different word-lengths for the operators significantly increases the size of the

component library. This leads to a vast growth in the complexity of the resource allocation pro-

cess.

Early methodologies used the UWL scheme to simplify the library and the exploration process.

However, MWL has been considered in more recent works. Contrary to the traditional approach-

es (i.e., UWL-based ones) which only consider the type of the resources in the allocation process,

MWL-based methods take into account both the type and word-length of the components. This

new model is based on the fact that an operation can be executed on a component only if its input

word-lengths are equal or smaller than the component word-lengths. More than 50% area reduc-

tions are reported with the MWL approach. There are a few research works which combined HLS

with MWL optimization [47, 65, 73-75]. Actual combination of these two processes provides a

more comprehensive design space exploration.

Wadekar et al. [73] published one of the earliest works in this field. In their methodology, re-

sources are fully shared among the operations of the same type. The word length selection looks

for the lower bound of area cost, considering the cost estimation of the results. This cost estima-

23

tion is accomplished by a simple model taking into account provided information about compo-

nent area of as well as their word-lengths. The latency of all FUs is assumed to be one cycle for

simplification.

The work introduced in [74] proposes a methodology in which the word-length assignment

(WLA) and HLS are carried out iteratively. The word-length optimization activity is preceded by

HLS in each iteration. HLS integrates functional units which can be grouped together and WLA

tries to reduce hardware cost by minimizing the word-length. This process is repeated until the

improvements finish. The paper suffers from insufficient experimental results and comparisons

with previous methods.

Constantinides et al. [65] proposed a new methodology in which a heuristic is employed to ad-

dress the scheduling problem with incomplete word-length information. This methodology actu-

ally combines the resource binding and word-length selection processes. The heuristic follows a

primary word-length selection step and aims to refine the word-length information regarding the

scheduling and resource binding decisions. The provided results represent up to 46% of area re-

duction even for modest problem sizes.

Caffarena et al. [75] proposed a new framework that combines word-length optimization and

FPGA-based synthesis. This method considers the embedded and logic-based multipliers in the

resources binding step. Moreover, variable latency resource models are used in this work. A sim-

ulated annealing-based approach for the combined scheduling, resource allocation and binding

tasks is presented. Compared to previous approaches, area improvements of up to 60% are re-

ported.

Caffarena et al. [47] employed mixed integer linear programming to formulate the combined

problem. Storage devices and control logic are not considered and FUs are assumed to have 1-

cycle latency in order to simplify the problem. Therefore, this work does not meet real-world

design criteria, completely. However, it is worthwhile to consider as initial research in this sub-

ject.

Table 2.2 summarizes the previous works on combined WLO and HLS problem. There are still

many opportunities for new research on this subject. However, WLO has not been considered in

custom processor designs so far.

24

Table 2.2 Summary of combined WLO and HLS approaches.

Approach Tasks Optimizations Comments

Wadekar and Parker

[73]

1. WLS
*
 (considering

hardware cost estima-

tion)

2. HLS

Heuristic 1-cycle FUs

Herve et al. [74] Loop:

1. Grouping the FUs

2. HLS

3. WLS

Heuristic Var. FU latencies

Constantinides et al.

[65]

Primary WLS

Loop:

HLS+WLS

Heuristic Var. FU latencies

Caffarena et al. [75] 1. WLS

2. HLS

Heuristic: Simu-

lated Annealing

Var. FU latencies

Caffarena et al. [47] WLS+HLS MILP
**

1-cycle FUs

* WLS: Word-length Selection **Mixed Integer Linear Programming

2.3 Conclusion

In this chapter, we reviewed important related works that form the background knowledge used

in this thesis. Some of the contributions of this thesis are built on the ideas introduced in these

works. Furthermore, some of these works are used for comparison in several parts of the thesis.

First, we reviewed important existing methodologies and environments for custom processor de-

sign. Then, we reviewed significant research on different analyses required in fixed-point WLO.

We saw that the final objective, of most existing works, in this area, is to generate an optimal

hardwired circuit for fixed-point computation. A smaller number of works focused on methods to

convert floating-point software code to fixed-point, efficiently. Using WLO for processor cus-

tomization, which is one of the new ideas proposed in this thesis, has not been considered in any

previous work.

25

CHAPTER 3 POLYCUSP PROCESSOR DESIGN ENVIRONMENT

In this chapter, we present the Polytechnique Customized Soft Processor (PolyCuSP) design en-

vironment, which is a new processor design environment that is used for fast and easy custom

processor generation. This thesis also introduces a new processor customization method for the

fixed-point applications. This customization method is presented in Chapter 5. The basic goal for

designing PolyCuSP was to have an environment that supports the required flexibility to realize

new customizations proposed in this thesis and facilitates design space exploration in a large de-

sign area. The large number of customizable elements in PolyCuSP enables the generation of

different processor architectures, which helps us to have more accurate comparisons with the

related works. This chapter focuses on the general characteristics and the design flow of the Pol-

yCuSP environment.

The contents of this chapter are largely extracted from our paper "Customised soft processor de-

sign: a compromise between architecture description languages and parameterisable processors,"

published in IET Computers & Digital Techniques in 2013 [76].

3.1 Introduction

Employing soft processors is increasingly becoming popular in FPGA-based embedded system

design, as they offer rapid design process and high flexibility [4, 7]. However, general purpose

processors are not usually able to meet the high computational requirements of complex embed-

ded applications, particularly in the multimedia, communications and signal processing domains.

Application-specific processor customization is a well-known approach to close the gap between

programmable processors and dedicated hardware implementation, while keeping post-

fabrication flexibility [6]. In recent years, a large body of research has focused on different as-

pects of employing processor customization in the soft processor domain. Processor customiza-

tion can be divided into micro-architectural tuning (or datapath customization) and instruction-set

customization. The objective of microarchitectural tuning is to find the most efficient trade-offs

for datapath elements such as pipeline depth, processor word-length and functional unit imple-

mentation. Instruction-set customization aims to adapt the processor’s instruction set to a given

application for achieving improvement according to a chosen metric. The application-specific

26

instruction-set customization is widely known as ASIP design, in literature. Design space explo-

ration is normally an essential part of a processor customization methodology. Rapid develop-

ment process and high performance efficiency measurement are highly demanded in design space

exploration [9].

Traditional RTL programming has proven to be inefficient for custom processor design mainly

due to its high development cost. ADLs aim to reduce the design complexity by offering higher-

level processor-specific description [30]. The main drawback of ADLs is their verbose format

that can significantly slow down the development process and, consequently, the design space

exploration. Moreover, the RTL generation capability in existing ADLs has shown poor quality

in terms of efficiency in hardware synthesis [9]. A third option consists of using parameterizable

and extensible processors. Such processors usually have a fixed core with a limited number of

tunable microarchitectural parameters, and an Instruction-Set Architecture (ISA) with some ex-

tension capability. This approach constrains the designer to a narrow range of possibilities, which

results in a smaller search space and faster design process. In general, it does not support specific

customization techniques such as ISA subsetting. Altera Nios II [35] and Xtensa [26] are two

well-known examples of parameterizable and extensible processors.

In this chapter, we explore a new area in the custom processor design space which lies between

ADLs and extensible processors such as Xtensa. We introduce a new customized soft processor

design environment, called PolyCuSP. The PolyCuSP environment combines the flexibility of the

ADLs with the easy customizability of parameterizable processors. It allows ISA description

from scratch for highest flexibility, while limiting datapath description to a predefined set of tun-

able parameters. This compromise follows from the observation that implementing usual micro-

architectural customizations does not normally require high flexibility and is one of the main

sources of design complexity in ADLs. In PolyCuSP, all microarchitectural elements are either

directly defined by the tunable parameters or inferred from the ISA description.

The main difference between PolyCuSP and extensible processors like Xtensa is that PolyCuSP

supports customization of the core processor datapath, which is normally fixed in extensible pro-

cessors [77]. For example, the Xtensa core processor comes with 80 fixed instructions. Major

datapath elements such as the processor word-length (bit-width of the registers and signals), in-

27

struction encoding formats and register-file size and access ports are fixed in the Xtensa core ar-

chitecture. Other customizable processors such as Nios II present similar characteristics. Howev-

er in PolyCuSP, the core processor datapath is mostly defined by the designer and hence, highly

flexible. This flexibility facilitates evaluation of significant processor design techniques. For ex-

ample, supporting multi-port memories enables PolyCuSP to realize related techniques such as

the one proposed by Panda et al. [78], in a rapid way.

3.2 Processor description method

The PolyCuSP environment offers automatic generation of synthesizable RT-level VHDL code,

assembler, and MATLAB simulation model from the given processor description. An overview

of the development process is shown in Figure 3.1.

Figure 3.1 Overview of the proposed development process

ISA Description
Microarchitectural

parameters

Architecture Description

PolyCuSP

Synthesizable

HDL

MATLAB

Simulation Model

HDL Simulator HDL Synthesizer
In-system

Simulation

- System-Level

 Verification
- Low-level

 validation

- Performance

 measurement

- Area and timing

 measurement

External

modules

Benchmarks

28

The processor description in PolyCuSP is partially parametric and partially programming-based

to allow design flexibility and rapid design exploration capabilities. The numeric parameters are

used to define the size and bit-length of the components, select among limited number of options,

and include or exclude specific elements. The datapath bit width, type of data memory (direct

memory or cache-based) and the inclusion of forwarding paths are some examples of numerically

defined elements in the processor description model.

Keeping the datapath description consistent with the intended ISA is a very complex task for

most existing ADLs and related environments such as SPREE [10]. In pipelined architectures,

designers are normally responsible for balancing stage latency by appropriate distribution of the

circuits among the stages. Improper distribution may lead to long critical paths and consequently

lower clock frequencies. In PolyCuSP, the datapath shape and component distribution is fixed

while the set of microarchitectural elements is customizable through numerically-tunable parame-

ters and ISA description. This idea is supported by the fact that almost all previous works on mi-

croarchitectural design space exploration have limited their search space to a few elements. So,

extensive flexibility provided by text-based datapath descriptions is not necessary for such lim-

ited explorations. Hence, compared to ADLs, the proposed method offers extremely low cost

microarchitectural exploration while covering most of the significant parameters such as instruc-

tion encoding format. On the other hand, for the instruction-set architecture, the PolyCuSP envi-

ronment offers full control to the designer. This allows the environment to realize different ISAs

and well-known customization techniques such as instruction-set extension and subsetting.

The instruction-set description has a hierarchal structure and is stored in an XML file. The de-

scription is composed of the following elements:

1. Definition of general and special purpose processor registers and register-file(s). The

identifier, depth and bit-width values must be indicated for each register.

2. Definition of instruction encoding formats.

3. Definition of instructions including assembly syntax, functional description and decoding

data (the data by which the instructions can be distinguished from each other, e.g., opcode

value in many ISAs).

29

Encoding formats are defined in two steps. First, the encoding fields and their corresponding bit-

length are defined within the Encoding XML element. Then, a new encoding format can be de-

fined by putting the appropriate set of fields together as an attribute within the Encode_format

element. The order of the fields in the format definition must be the same as their order in the

binary instruction word. Each encoding format has an identifier (ID) to enable easy connection to

the instructions.

Figure 3.2 presents the definition of two major encoding formats (R-type and I-type formats) in

MIPS ISA [79]. This convenient modeling approach allows the description of a wide variety of

encoding formats including variable-length ones.

Figure 3.2 Description of two major encoding formats of MIPS ISA

<Encoding>

 <field name="Opcode" bits="6" />

 <field name="Function" bits="6" />

 <field name="imm" bits="16" />

 <field name="Rs" bits="5" />

 <field name="Rt" bits="5" />

 <field name="Rd" bits="5" />

 <field name="sa" bits="5" />

</Encoding>

<Encode_format>

 <!-- Instruction Format Definition -->

 <!--R-Type-->

 <format ID= "3registers"

 format= "Opcode Rs Rt Rd sa Ext"

 />

 <!--I-Type-->

 <format ID= "2registers_imm"

 format= "Opcode Rs Rt imm"

 />

</Encode_format>

Opcode RdRs Rt sa Function

056101115162021252631

Opcode Rs Rt imm

015162021252631

R-Type (Register) Format

I-Type (Immidiate) Format

30

The functionality of ordinary functions can be described with code written in a simplified form of

the C language. Special techniques are employed to detect and resolve sequential assignment

conflicts in the hardware realization. In this approach, all variables assigned more than once are

converted to multiple renamed signals in the final RTL code. Hence, sequential assignments to a

single variable or port are supported in function descriptions.

More complex functions, such as multi-cycle and pipelined ones, can be modeled directly in

HDL. The HDL modules, which normally reside in an external library of components, can be

instantiated in the function description section of the instruction definition.

All temporary variables must be declared before being used inside the code. Two new data types

including bit and bitvec are offered to facilitate the declaration of arbitrary-length variables. All

identifiers declared for the registers and encoding fields are meaningful (and thus reserved words)

in function description code. As an example, Figure 3.3 demonstrates the description of a MAC

(Multiply and Accumulate) instruction.

One of the features of the PolyCuSP environment is its capability to automatically extract re-

quired interconnection signals (inputs and outputs of the components and their connections) from

the function description of the instruction-set. The number of input and output ports of the regis-

ter-file(s) and data memory is also identified automatically. For example, in a single-register-file

processor, if all instructions have one or two operands, then a dual read-port register-file unit will

be generated in the output RTL code and all interconnection signals (including pipeline buffers,

input ports of the EXE unit, etc.) will be configured accordingly. Now, if a three-operand instruc-

tion such as MAC (Figure 3.3) is added to the ISA, the PolyCuSP environment will replace the

register file(s) and all related interconnections to support triple concurrent operand reads. This

feature significantly simplifies the design process by exempting the designers from explicit decla-

ration of a large number of elements.

External modules can also be instantiated in function description code. This feature allows de-

signers to develop complex CIs and function evaluation algorithms in low-level RTL. In such

cases, direct RTL coding normally leads to more efficient designs. External modules can be sin-

gle- or multi-cycle. A specific handshaking mechanism is defined for control and data exchange

purposes.

31

Figure 3.3 Description of Multiply and Accumulate (MAC) instruction.

For efficient execution of multi-cycle instructions, a smart interlocking mechanism has been im-

plemented that checks data dependency between the instructions. When a multi-cycle instruction

is being executed in a functional unit, the pipeline can continue to work as long as there is no data

or resource dependency. Since the contents of external modules are unknown to the environment,

a simulation model of these modules cannot be generated automatically and must be provided.

The designers can also use encapsulated IP-cores as external modules in their designs.

3.3 Tunable parameters

This section summarizes tunable parameters currently supported in the PolyCuSP environment.

The extent of these elements determines the size of the search space in design space exploration.

A larger search space may lead to coverage of more meaningful design trade-offs at the cost of a

longer design time. Table 3.1 lists significant tunable parameters currently supported by Poly-

CuSP. These elements can be classified into microarchitectural parameters and the elements de-

termined by the ISA description.

a b c

×

+

c

<instruction name= "MAC"

 format= "3registers"

 syntax= "MAC Rd, Rs, Rt"

 doc= "Multiply and Accumulate operation"

 Function= "bitvec[32] temp;

 temp=reg_file(Rs)×reg_file(Rt);

 reg_file(Rd)=reg_file(Rd)+temp;" >

 <field name="Opcode" value="001000" />

</instruction>

MAC FU

Reg_file(Rt)

Reg_file(Rd)

Reg_file(Rd)Reg_file(Rs)

32

Table 3.1 List of configurable elements in PolyCuSP

Category Element Options

Microarchitectural

parameters

Pipeline depth 3, 4, 5

Processor word length Unlimited

Forwarding paths Enable/Disable

Pipeline interlock control Enable/Disable

Branch delay slot Enable/Disable

Program memory size 8K-16M Words

Data memory size 8K-16M Words

ISA Description

Number and functionality of

the instructions

-

Encoding formats -

Registers (number, size and

bit-length)

Unlimited

Pipeline depth is a customizable parameter which indicates the number of pipeline stages. This

parameter is realized by enabling or disabling pipeline buffers. Experimental results reported by

Yiannacouras et al. [9] demonstrate the inefficiency of two- and seven-stage pipelines while each

of the other examined intermediate options (including three, four and five stages) outperforms the

others in some applications. Based on a simple pipeline with MIPS I ISA, we have implemented

a similar architecture using PolyCuSP to obtain the results presented in this work. Hence, we

have only considered the three most promising options in this work. Figure 3.4 illustrates the lay-

out of these three options. This assumption is dependent to the target ISA and major datapath

features; if either of them changes, then other pipeline depths should also be considered in the

exploration process.

Processor word-length is the parameter that determines the size of the addressable words in data

memory. The selected value for this option is automatically assigned to the reserved Wordlength

macro which can be used as a number in the ISA description file. Forwarding paths and pipeline

interlocking are two well-known techniques for data hazard avoidance. Two parameters are de-

fined to allow designers to employ either of these techniques.

33

FE

DE

OR

EX/

MEM

WB

FE

DE/OR

EX/

MEM

WB

FE

DE/OR

EX/

MEM/

WB

(a) (b) (c)

FE: Fetch OR: Operand Read MEM: Memory read

EXE: Execute WB: Write Back

Figure 3.4 Pipeline layout in (a) 5-stage, (b) 4-stage, (c) 3-stage configurations.

When both parameters are disabled, the programmer is responsible for controlling the data hazard

in application code. The program and data memory sizes are the other important microarchitec-

tural parameters. They can be set to any power of two value between 2
13

 to 2
24

 words. Cache

memories are not considered in the present version of the PolyCuSP environment.

3.4 Processor development process

The development process is composed of the design and verification phases. An extensive toolset

was designed to facilitate these two phases. External CAD tools are also necessary for industry-

standard HDL simulation and synthesis.

The development environment and the adopted verification method are briefly described in the

following subsections.

34

3.4.1 Development environment

The development environment was implemented in MATLAB. The main reason of selecting

MATLAB is its extensive facilities for developing exhaustive and heuristic search algorithms.

Also, the main target application domain in this chapter is real-time embedded applications such

as DSP and image/video processing. MATLAB provides a comprehensive library of functions

and toolboxes which facilitate interfacing, monitoring and verification for such applications. Fig-

ure 3.5 illustrates the environment’s design flow. Various components of this process are de-

scribed as follows:

 The first step in a new design is to develop the ISA description and to define the microar-

chitectural parameters.

 The ISA description and the parameters are then fed to the environment where they are

analyzed by the internal engine to extract all necessary information to produce the proces-

sor. This information is defined either in the list of parameters or inferred from the ISA

description using specific procedures. The encoding formats that determine the decode

stage circuits and the number of input and output ports of the register-file(s) are examples

of elements that are obtained from the ISA description. Intermediate signals and pipeline

buffers that support inter-stage data movements is another example of such elements. The

obtained information in this step is passed to the HDL and simulation model generator

procedures. The assembler and disassembler are also generated according to the defined

assembly syntax of the instructions and the encoding format.

 The HDL generator creates the synthesizable HDL from the captured processor descrip-

tion. The output code can be directly simulated and synthesized by external tools.

 A stand-alone MATLAB simulation model can also be generated for the described pro-

cessor. This cycle-accurate model greatly facilitates verification and in-system simulation,

particularly when the application is initially developed in high-level MATLAB and in-

tended to be implemented on embedded hardware. This is a widely used process in DSP

and image/video processing designs. This feature enables performance and correctness

evaluation during step-by-step migration from high-level algorithm to implementation.

35

Figure 3.5 PolyCuSP design flow diagram.

 The application loader unit creates program and data memory content files from an input

file in assembly or binary file. These files can be loaded into the corresponding memories

during RTL and MATLAB simulations. Automatic high-level compiler generation (e.g.,

C compiler) for custom ISAs has not been supported in current version of PolyCuSP.

However, adding this capability using retargetable compilers would be a highly useful fu-

ture work.

 The development environment also provides a debugging tool to facilitate tracking and

validation of application development in target processor. This tool exploits the

MATLAB simulation model as the simulation engine.

Defining

Microarchitectural

Parameters

Processor

Description

Analysis

Synthesizable

HDL

MATLAB

Simulation

Model

HDL Simulator

(Modelsim)

HDL Synthesizer

(Synplify)

Debugging Tool

HDL Generation
MATLAB Model

Generation
Assembler &

Disassembler

Memory Loader

External tools

 ISA Description

Designer
PolyCuSP

Environment

36

3.4.2 Processor verification

The generated processors can be verified by examining functional correctness of the simulation

and RTL models in a debugging tool and the external HDL simulator, respectively. In the exper-

iments for this chapter, we employed Modelsim to observe RT-level tracing of the data and con-

trol signals. All instructions of the input ISA are examined one-by-one and pipeline controlling

circuits such as data hazard avoidance techniques are verified by appropriate instruction sequenc-

es in the test applications. Other test cases must be developed manually in the current version of

PolyCuSP. As a future work, an existing automatic test case generation method can be integrated

into PolyCuSP to reduce the verification time and enhance the reliability of the designs.

When modeling a standard ISA, the synthesis results are expected to be comparable with existing

implementations. This fact provides another useful verification approach particularly to validate

functionality of microarchitectural configurations.

3.5 Experimental results

This section evaluates and compares the PolyCuSP environment in terms of development effort

and efficiency of the soft processor it produces. It compares the design space and the design

complexity of PolyCuSP with those of Nios II, SPREE and the LISA ADL.

3.5.1 Experimental set-up

The framework generates synthesizable VHDL for the processors. This code is evaluated using

standard simulation and synthesis tools to quantify performance and hardware cost results. In this

chapter, we have used Synplify 9.0 and Xilinx ISE 13.2 for synthesis and Modelsim for simula-

tions. To enable meaningful comparison with previous works, we have synthesized the designs to

Altera Stratix EP1S40F780C5 and Xilinx XC5VLX30 FPGAs. We developed three well-known

image and video processing applications for the experiments: Sobel edge-detection operator, 3×3

convolution and Reinhard’s tone mapping algorithm. The first two are used in general evalua-

tions and trade-off explorations, while the latter serves as a case study. All applications were cod-

ed in assembly language. Despite different assembly syntax in other processors used for compari-

son, we tried to have the same code structure to ensure that the comparisons are fair.

37

3.5.2 Comparing with Nios II

We compared the processor generated by our environment with the commercial Altera Nios II

soft processor. Since Yiannacouras et al. [10] has also compared the SPREE generated processors

with Nios II, this allows a comparison between the PolyCuSP environment and SPREE. Howev-

er, this comparison is not exact due to the different experimental applications used to measure

their performance. The Sobel algorithm was adopted for performance measurements in this sec-

tion.

Three unparameterized variations of Nios II were evaluated in this chapter: Nios II/e, a small six-

cycle unpipelined architecture; Nios II/s, a five-stage pipeline with hardware multiplier; and Nios

II/f, a large six-stage pipeline architecture with single-cycle multiplier and shifter, and dynamic

branch prediction.

As mentioned in Section 4, we implemented the MIPS I ISA (except unaligned load and store

operations) which is very similar to the Nios instruction-set. We set similar parameters to identi-

cal values to ensure that the comparisons were as fair as possible. For instance, the size of the

data and instruction memories in all examined processors is identical and equal to 64 KB.

The Sobel application is small enough to reside in instruction cache memories used in Nios II/s

and Nios II/f. As a result, the instructions are presumably moved to the on-chip instruction cache

only once (for computation of the first pixel) while the same computation is repeated for all pix-

els of the input image. Hence, memory access time has negligible impacts on reported perfor-

mance of Nios II/s and Nios II/f and our processors. However, since Nios II/e does not support

cache memories, its performance results are subject to longer memory access time impacts. For

the present experiments with PolyCuSP, the applications reside in on-chip memory to have a con-

sistent comparison with SPREE and Nios II. Two 64-KB of RAM are used for separate instruc-

tion and data memories in both Nios II and PolyCuSP processors. The memories have not been

included in area measurements. Memory hierarchy exploration, which requires larger benchmark

applications, is out of scope of this thesis. Optional units such as JTAG interface and floating-

point unit have not been taken into account in Nios II measurements.

Figure 3.6.a compares processors generated by our tool and Nios II variations in performance-

area space. Differences among our processors are caused by changing micro-architectural param-

38

eters while the ISA is the same in all cases. The performance is represented by the wall clock

time needed to compute Sobel on a 512×512 image. The most effective factor on the performance

is the maximum clock frequency. While Nios II/s and Nios II/f achieve 128 and 136 MHz, re-

spectively, our generated processors reach at most 115 MHz. The result also show a reduction of

approximately 30 MHz in maximum frequency migrating from a 4-stage to a 3-stage (keeping

other parameters) the same. The IPC (instructions per clock) of our processors in the best case is

up to 52% higher than Nios II/s. Since the shift operation is widely used in Sobel algorithm, the

single-cycle LUT-based barrel shifter employed in our processors is one of the effective factors

on the IPC results.

Figure 3.6.b, which is borrowed from Yiannacouras’ paper [10], presents a comparison of SPREE

generated processors and Nios II variations. The performance is measured by calculating the av-

erage wall clock time of 20 embedded benchmarks. The processor of interest is an 80 MHz pro-

cessor which is 9% smaller and 11% faster than Nios II/s. The right vertical axes in Figure 3.6.a

and Figure 3.6.b illustrate normalized performance values based on Nios II/e as a common refer-

ence design. These axes facilitate the comparison between the design space of SPREE with Pol-

yCuSP. Comparing the two diagrams demonstrates that the PolyCuSP design space is more ori-

ented toward higher performance solutions. Furthermore, a precise look at the diagrams show that

PolyCuSP offers slightly more efficient solutions near the high performance design space in some

cases.

SPREE requires a description of both datapath and instruction-set. Each instruction is described

in terms of data dependence graphs of basic operations coded in C++. The datapath description is

composed of the list of the components (such as memories and arithmetic functions) and the in-

terconnections between their ports. Individual components are described by RTL coding. In the

open access MIPS I SPREE models [80], an average of 510 and 180 lines of C++ programs are

needed for instruction and datapath descriptions, respectively. The RTL description of the com-

ponents was not taken into account in this complexity assessment since they can be commonly

used in other processor developments. The similar instruction-set was described using approxi-

mately 430 lines of XML code in the PolyCuSP environment, including functional description of

the instructions. The microarchitectural parameters can be stored in fewer than 50 XML lines.

39

(a) PolyCuSP design space and Nios II variations running Sobel operator

(b) SPREE design space and Nios II variations [10]

Figure 3.6 Comparing Nios II with (a) PolyCuSP environment (b) SPREE environment.

40

Although a difference in benchmark applications prohibits a direct comparison with SPREE, the

fairly constant position of the Nios II variations in performance-area space helps to make a valid

assessment of the efficiency of the two environments. The results show that microarchitectural

configuration in PolyCuSP covers a relatively smaller area of the design space compared to

SPREE. This area is more oriented towards higher performance and more costly solutions. The

main reason is that we gave a higher priority to performance in PolyCuSP development. Based on

this priority, we eliminated the slower solutions from consideration. Moreover, the diversity of

the solutions is more limited in PolyCuSP due to supporting a smaller number of configuration

options. On the other hand, the efficiency of the PolyCuSP designs is comparable with the high-

est performance solutions of SPREE and NIOS II.

3.5.3 Processor customization techniques

Two customization techniques were evaluated in the PolyCuSP environment. In the first step, we

explored microarchitectural trade-offs of the generated processors for two target algorithms: a

Sobel edge detector and a 3×3 vector convolution. Pipeline depth, branch delay slot and data haz-

ard avoidance techniques were covered in these experiments. Figure 3.7 illustrates the perfor-

mance of possible trade-offs in terms of average instruction throughput of the two evaluated algo-

rithms. The results show that four-stage pipelines generally yield the highest performance mainly

due to the lower clock frequency in three-stage pipelines, and higher data dependency and branch

penalties in five-stage pipelines. Pipeline interlocking circuits impose significant delays on the

Operand Read stage. Hence, in the presence of the interlocking technique, the processor may

suffer a reduction in maximum achievable clock frequency. The best performance is offered by

four-stage pipeline with forwarding, and branch delay slot that yields more than 66 MIPS average

instruction throughput.

In the second step, we examined application-specific ISA customization techniques for the Sobel

algorithm. First, we applied an instruction subsetting technique through which all unused instruc-

tions were pruned from a default MIPS I instruction-set. Then, the pruned ISA was extended by

two new custom instructions selected after a manual analysis of the Sobel algorithm (Figure 3.8).

This operator is composed of two steps: a convolution of two 3×3 constant vectors and input im-

age (or video frame); and post-processing of the convolution results to calculate the output image.

41

*DS stands for branch delay slot

Figure 3.7 Impact of microarchitectural parameters on performance

Figure 3.8 Selected CIs for the Sobel algorithm.

Figure 3.9 presents performance-area trade-offs after deploying ISA customization techniques.

This diagram demonstrates significant improvement in both performance and area. The results

show that the described ISA customization techniques lead to an average improvement of 19%

and 35% in performance and hardware area, respectively.

In summary, the performance-to-cost ratio was improved by an average of 44% and 27% through

microarchitectural tuning and ISA customization, respectively, targeting the Sobel algorithm.

>>

+

in1 in2

out

>

in1 in2

out

255 0
CI1: CI2:

42

Figure 3.9 Performance-area trade-offs after ISA customization.

3.5.4 Case study of HDR tone mapping

This section evaluates the proposed environment through the implementation of a High Dynamic

Range (HDR) tone mapping algorithm. In a previous work, we developed an ASIP for this algo-

rithm using ISA extension [81]. The LISA ADL [29], was used for that research. In this section,

we follow the same design process using the PolyCuSP environment. The results can serve as a

source of comparison between our environment and a commercial ADL.

(HDR imaging can capture scenes commensurate with the real-world luminance, which is on the

order of 10
8
:1. However, the captured luminance values by this technique can be larger than the

range perceptible by the human eye and the range supported by some display technology. Ren-

dering HDR images on screens with reduced contrast while maintaining a reasonable perceptual

match with the real scene requires a special technique called Tone Mapping (TM) [82]. TM algo-

rithms usually impose high demands on computational resources. Customized processors are in-

43

teresting options for implementing these algorithms since they can provide a trade-off between

the efficiency of a dedicated solution and the flexibility of a programmable solution.

We have chosen a well-known TM algorithm proposed by Reinhard et al. [83] as the target appli-

cation.

In this method, the HDR image is first converted from RGB color space to scene-referred lumi-

nance (or world luminance) values as follows:

 . (3.1)

Analogous to photography practices, the scene’s key is identified by calculating the log-average

luminance value:

 .

∑ ()/, (3.2)

where is the number of pixels in the image and is a small value. Next, the initial scaling is

computed using (3.3), where the log-average is mapped to a desired value .

 (3.3)

Then, the compressed luminance is obtained by applying a linear mapping based on (3.4), as

follows:

 (

)

 (3.4)

where is the smallest luminance value to be mapped to pure white. By default, is

the maximum luminance value after the initial scaling. The final step is to recover the tone-

mapped color image.

 (3.5)

Three CI were selected through analyzing the computational flow graph of Reinhard’s algorithm.

The first CI, called LumCI, realizes Equation 3.1 using three multipliers and two adders. The se-

cond CI, LogCI, facilitates the calculation of the approximation technique adopted for evaluation

44

of the logarithm function. The last CI, MaxCI, accelerates the compare and store process required

for the calculation. We have provided detailed descriptions of these three CIs elsewhere

[81], where we employed the LISA language for ASIP development. In that work, we used

LTRISC As the target processor. LTRISC is a 32-bit RISC-like processor model provided with

Synopsys Processor Designer. Its Harvard architecture features 16 general-purpose registers and

four pipeline stages.

In the experiments presented here, the MIPS I was used as baseline ISA. Although MIPS I in-

cludes more instructions and a larger register-file, compared to LTRISC, the two processors are

still similar enough to ensure a fair comparison. To have compatible results, we synthesized the

designs for a Xilinx XC5VLX30 FPGA. Since Reinhard’s algorithm is based on fixed-point

computation, specific fixed-point division and multiplication instructions (obviously by the same

implementation) were added to the baseline processors before starting the experiments. These

two instructions are necessary for obtaining acceptable accuracy results.

Figure 3.10 compares performance-per-area results (in terms of frame rate per area) of the pro-

cessors generated by PolyCuSP with those obtained in our previous work [81]. The performance

results were measured for 256×192 video frames. To simplify the comparison, only the results

achieved by the fastest micro-architectural configuration are illustrated. According to the results,

the PolyCuSP processors yield an average of 38% higher performance-per-area compared to the

LTRISC ones. These results demonstrate the greater effectiveness of our RTL code generation,

compared to existing commercial solutions. Modern FPGAs have dedicated DSP and RAM

blocks for high performance realization of the memory elements and major arithmetic functions.

By default, synthesis tools map registers and multipliers into these dedicated resources when pos-

sible. To have a unique and illustrative metric for area usage measurement, we avoided utilization

of these dedicated resources in the experiments by adjusting the related settings in the synthesiz-

er.

Table 3.2 presents an assessment of development complexity in the two environments. In terms

of coding length, the LTRISC requires about 307% more programming. The ISA extension pro-

cess usually starts with finding the well-suited encoding format in the processor architecture

based on the input and output data of the intended CI.

45

Figure 3.10 Comparing efficiency of PolyCuSP and the LISA-based ASIP design.

Table 3.2 Design complexity of LISA LTRISC and PolyCuSP processor

Factor Development LTRISC [81] PolyCuSP

Number of lines

Baseline 1477 480

ISA Extension 181 144

ISA Subsetting 285 135

Development time

(hours)

Baseline - 26

ISA Extension ~7 ~6

ISA Subsetting ~6 <1

The LISA description is composed of several LISA operations. These operations are organized in

a tree-like structure. The functionality, coding and syntax of the instructions are distributed

among the operations. To figure out existing encoding formats in a given model, the designer

needs to process most of the functions manually. This process is notably easier in the PolyCuSP

environment, in which all encoding formats are defined by a few XML elements. Encoding data

determination (e.g., opcode value) and functional description form the next major steps of in-

46

struction-set extension. The complexity of these two steps is comparable in the two description

methods. Finally, due to the distributed structure of the instruction description in LISA, removing

a specific instruction usually entails manipulation of several operations. Accordingly, ISA subset-

ting is much more complex in LISA than in the PolyCuSP environment.

3.6 Conclusion

Application-specific customization of programmable processors is widely accepted as an effec-

tive approach to improve efficiency of processor centric designs. This chapter introduced a new

custom processor development environment, called PolyCuSP, that takes advantage of a novel

processor description method. Supporting a significant range of configurable microarchitectural

parameters, straightforward instruction-set description format, and automatic generation of RTL

along with cycle-accurate simulation models enable PolyCuSP to support rapid design space ex-

ploration.

Three image processing applications were used to evaluate the efficiency of the proposed envi-

ronment. Microarchitectural exploration and instruction-set extension were examined to deter-

mine efficient trade-offs. Reported results demonstrate the applicability and efficiency of the pro-

posed design environment.

47

CHAPTER 4 FIXED-POINT ERROR MODELING METHOD

In this chapter, we present an improved finite-precision error modeling approach that addresses a

common hazard of the existing AA-based approaches and offers enhanced accuracy. The error

modeling is an essential part of any fixed-point WLO method, which is one of the main subjects

of this thesis. The error modeling approach introduced in this chapter is used in Chapter 5 and 6

for WLO in hardware synthesis and microprocessor platforms, respectively.

The contents of this chapter are largely extracted from our paper "Finite-precision error modeling

using affine arithmetic," presented in IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP) in 2013 [84].

4.1 Introduction

Finite-precision error modeling is a key step in accuracy-aware fixed-point design. Error models

are essential for word-length optimization methodologies, which have been the subject of a large

body of research in the last decade. Accuracy and computational complexity are the main factors

for the evaluation of an error modeling approach.

Many simulation-based and analytical techniques have been introduced in the literature for error

modeling [51, 61, 62]. IA is a well-known analytical method which was originally invented to

find the range of signals in a computational circuit [85]. The main drawback of IA is that it ig-

nores the correlation among signals [50, 51]. AA is a preferable approach that addresses the cor-

relation problem by taking signal interdependency into account. In AA, each signal is represented

as a linear combination of certain primitive variables which stand in for sources of uncertainty.

Fang et al. [51] and Lee et al. [38] introduced AA-based error propagation methods for quantiza-

tion error modeling. Other works have tried to improve the AA-based method, but they typically

fail to cover all features of the basic method [59].

This chapter illustrates a common hazard in existing AA-based error modeling approaches and

proposes a solution to address it. The chapter also suggests a modification of the propagation

process which can effectively improve error model accuracy. Improvements are demonstrated

and quantified using a set of widely used case studies.

48

Section 4.2 briefly reviews necessary affine arithmetic concepts. Section 4.3 describes existing

error propagation models and their shortcomings. Section 4.4 presents our proposed solution.

Section 4.5 gives experimental results and comparisons, and Section 6 concludes the chapter.

4.2 Affine arithmetic

In affine arithmetic, the estimated value ̂ of a signal x is represented by the sum of a constant x0

and a finite set of n uncertainty terms xiεi, as follows:

 ̂ , -. (4.1)

Each element is an independent uncertainty factor of the total uncertainty of the signal. The

estimated value of a signal x with specified range , - is represented in affine form by

 ̂ , (4.2)

where

The affine form for addition-subtraction is calculated by adding-subtracting the affine expression

of the inputs. Multiplication is more complex due to the emergence of non-affine terms in the re-

sult expression. The widely used solution is to replace these terms with an affine approximation

that introduces a new uncertainty factor [38, 51, 52].

The range of each signal is calculated from its affine representation by finding the minimum and

maximum values when the uncertainty factors are replaced by -1 or 1.

In error modeling with AA, the quantization errors must be added to the affine forms. The quan-

tized value xq of a signal x is represented in affine form as

 , (4.3)

where

 {

 , -

49

The
 and

terms correspond to the quantization error and fractional word-length of the

quantized signal respectively. In Equation (4.3), we show two quantization approaches: trun-

cation and round to nearest. With FWL fractional bits, truncation and round to nearest cause a

maximum error of and , respectively. To keep consistency with existing works,

we use the round to nearest approach in the rest of this chapter. Equation (4.2) is a simplified

version of the affine representation that is sufficient for finite-precision error modeling. A more

detailed treatment can be found in [51].

Using the affine expression from (4.3), the quantization error from addition-subtraction is ob-

tained as follows:

 (4.4)

where

 {

 (

)

.

From (4.4), we see that the total error at the output of an addition is equal to sum of errors of its

operands added to the quantization error of the output signal. The δ is nonzero only when the

fractional part of the output is narrower than at least one operand.

For multiplication, the error is:

 (4.5)

where

 {

In a commonly used conservative approximation [38, 51], the x and y terms in (4.5) are replaced

by the maximum absolute values of the x and y inputs that can be inferred from the range values.

50

I1=[-1,1] I2=[-1,1]

_

×

_

y1

z

y2

Figure 4.1 Example circuit with input range values shown in brackets.

4.3 Existing error propagation method

To compute the finite-precision error of a computational flow which is composed of consecutive

elementary operations, an error propagation procedure is required.

Fang et al. [51], Lee et al. [38] and Pu et al. [86] presented the widely accepted reference

methods for AA-based error propagation. As a main contribution, this chapter identifies a com-

mon hazard that may arise in all error modeling approaches used in these works. We illustrate

this hazard by applying Lee’s error modeling approach [38] on the example shown in Figure 4.1.

The same problem emerges in Fang’s and Pu’s methods as well. Lee’s method omits the condi-

tional terms of the error equation by assuming there is always a quantization step after each oper-

ation. In other words, the number of output fractional bits of the operations is always assumed to

be shorter than the maximum number of meaningful fractional bits that is produced by that opera-

tion. So, the error model for addition/subtraction becomes

 (4.6)

For multiplication it is

51

 . (4.7)

Accordingly, the error models of the signals of Figure 4.1 are obtained as follows:

 (4.8)

 () ()

 .

The hazard arises in the substitution of the signal terms that emerge in the multiplication expres-

sions. Common approaches, such as Lee’s method, substitute these terms with the absolute value

of the worst-case bound of the signals, regardless of the rest of the circuit. This has been claimed

to be a conservative approximation. So, the and terms in the expression for above are

substituted by the value 1.

Now, starting from the primary inputs, the error terms are substituted by their corresponding ex-

pression until the output error expression is obtained as follows:

 (4.9)

 .

The term in (4.9) is small and is often disregarded [50, 51]. Since the elements are in the

range of -1 to 1, the upper bound of the error at the output is calculated as

 () . (4.10)

The incorrectness of the error expression in (4.9) and (4.10) can be easily shown by an example:

In Equation (4.8), If , the output error expression becomes

52

 ́ (4.11)

 (́)

 ,

which is larger than the value in (4.10) due to the contribution of the input quantization errors

(and). In fact, the early substitution of the signal terms in (4.8) causes incorrect cancella-

tion in later stages.

Cong et al. [50] used a more complex propagation method that does not generate the hazard. In

this method, the signal terms are substituted with their corresponding affine representation in-

stead of worst-case approximation. In the example of Figure 4.1, the and terms in ex-

pression are substituted with and , respectively.

 . (4.12)

The products and are replaced by new uncertainty factors as follows:

 . (4.13)

So, the output error expression is obtained as:

 (4.14)

 () .

This is the correct error model for Figure 4.1. The term is neglected in Cong’s paper [50].

Although this method can address the mentioned hazard, we found that it also faces a significant

issue. Cong’s method can occasionally fail to keep track of the correlation between new uncer-

tainty factors. For example, applying this method on the circuits shown in Figure 4.2 that calcu-

lates () () = 0. The error expressions are obtained as follows:

53

A=[0,2] B=[0,2]

×

C=[0,2]

x1 x2

×

××

_
x3 x4

Dout

Figure 4.2 Circuit that calculates () ().

 (4.15)

 ()
 ()

 ()
 ()

 (()) (())

 =(

) ()

 (()) (())

 () (

)

54

 .

Note that in order to simplify calculations, we do not take the quantization error of intermediate

signals (-) into account.

In a correct propagation approach, the quantization errors of the input signals should be cancelled

in the subtraction operation before reaching the output error expression. Hence, the correct

output error expression is . However, Cong’s method gives a different error expression

due to the fact that this method fails to keep track of the correlation among new uncertainty fac-

tors. As illustrated by the example in Figure 4.2, this issue can cause considerable overestimation

of the error values.

Another significant challenge of Cong’s method [50] is the large number of uncertainty factors

that it introduces in multiplication operations. This leads to high computational complexity of the

propagation process.

4.4 Proposed approach

We propose a modified error propagation approach with two improvements. The first improve-

ment addresses the shortcomings of the existing methods. The second improvement involves the

propagation of conditional terms which can enhance the accuracy.

4.4.1 Postponed substitution

An effective way to address the problems described in Section 4.3 is to postpone the signal term

substitution until the last stage of the propagation process. Applying this modification to the cir-

cuit of Figure 4.1, the and terms in are not substituted by a value until the output error

 is obtained as:

 () () (4.16)

 .

Now, for a conservative evaluation, non-constant coefficients of the error terms are approximated

to their maximum absolute values. For example, the () coefficient is approximated to

 (| |) applying , while a value of 0 was calculated for this coefficient in

55

Lee’s method due to early substitution. The upper bound error expression of (4.14) is eventually

obtained for the circuit of Figure 4.1 using our method. This case study shows that although early

substitution of signal terms simplifies the error propagation process, it may lead to an underesti-

mation of error bounds and consequently inaccuracy in precision analysis. Applying this method

on the circuit of Figure 4.2 gives the correct result, i.e., . This shows that our method

also addresses the overestimation issue of Cong’s approach.

Solving the maximization function in the last stage forms the main complexity overhead of our

approach. This overhead increases with the number of signal terms that participate in a non-

constant coefficient.

4.4.2 Propagation of conditional terms

The second proposed improvement involves the conditional terms in error expressions. Existing

methods assume that the quantization error is always introduced at the output of operations to

eliminate conditional elements. Although this assumption simplifies the error propagation process,

it may introduce unnecessary error elements that eventually lead to overestimation. Our second

improvement proposes avoiding this assumption by propagating the conditional terms in the same

way as other elements.

This improvement is shown by a real example. Figure 4.3 depicts the RGB-to-YCrCb function.

This widely used function calculates

[

] [

] (4.17)

where

 [

].

The input signals R, G, and B are assumed to be eight-bit unsigned integers. The existing AA-

based error modeling approach gives the following error bound expressions for the RGB-to-

YCrCb function.

56

×

+

+

R MC11

s1

Y

×

G MC12

×

MC13

s2 s3

s4

B

×

+

+

R MC21

s5

Cr

×

G MC22

×

MC23

s6 s7

s8

B

×

+

+

R MC31

s9

Cb

×

G MC32

×

MC33

s10 s11

s12

B

Figure 4.3 RGB-to-YCrCb example.

 () (4.18)

 ()

 ()

In above expressions, all conditional terms have been replaced by the constant error terms for s1-

s12 intermediate signals.

The proposed modification suggests keep of the conditional terms. For instance, applying this

modification on the RGB-to-YCrCb circuit gives the following upper bound error expression for

the output:

 () (4.19)

where

 {

 {

57

 {

 {
 ()

The error expression calculated in (4.18) is less accurate than that in (4.19) since it does not take

into account the fact that, in certain circumstances, no quantization error is introduced into the

calculations in intermediate signals. In other words, existing approaches simplify the error model-

ing at the expense of risking overestimation. In FWL allocation, using the error expression of the

modified approach (4.19) can potentially lead to more efficient results since the improved ap-

proach can gives a more accurate and smaller error estimation for a unique FWL allocation solu-

tion. For instance, in the RGB-to-YCrCb example, the modified error model leads to a FWL solu-

tion of

{

 }

 * + (4.20)

to satisfy 8 bit accuracy at the output Y while the error model given by the existing approach re-

jects it. So, according to the existing approach, the FWL of at least one signal must be increased

to meet the accuracy requirements and this may lead to more hardware cost and latency.

Experimental results in Section 4.5 demonstrate the effectiveness of this modification on word

length optimization.

4.5 Results and comparison

We developed a word length optimization system to evaluate the efficiency of the conditional

term propagation. This system is a reproduction of the method proposed by Osborne et al. [52]

and is implemented in MATLAB. The error models are given to the word-length optimization

process as input. Using a more accurate error model, the optimization process can potentially find

shorter signal bit-lengths that still meet the requested output error bound. The shorter signals

eventually lead to lower hardware cost during the hardware implementation. This section

measures the hardware cost reduction and optimization time overhead obtained by using condi-

tional term propagation in AA-based error modeling. For the experiments described in this sec-

58

tion, we have employed five well-known case studies that include some commonly used trans-

forms and operators in the signal and image processing domains.

Lee et al. [38] described the case studies in detail. For hardware cost measurement, the case stud-

ies were modeled in VHDL. The polynomial approximation was implemented in general form,

contrary to Lee et al. [38] who customized this approximation to a specific function. All experi-

ments were performed on an Intel i7 3-GHz PC with 16 GB RAM. Designs were synthesized

with Synplify 9.1 for a Xilinx Virtex 5 XC5VLX110 FPGA.

Table 4.1 illustrates the hardware area cost and optimization time for the five case studies. In

these results, conditional term propagation saves hardware area by up to 7.0% at the expense of

negligible complexity overhead. Achieved hardware savings are significant regarding the com-

petitive results in previous works in this area.

Figure 4.4 compares the hardware savings obtained in various degrees of polynomial approxima-

tion. These results show a slight growth in hardware savings by increasing the application size.

The requested output precision was fixed to 8-bits in all reported experiments.

Table 4.1 Impacts of conditional term propagation on efficiency of the results

*M1: Without conditional term propagation **M2: With conditional term propagation

Case Study # of Signals

Area (slices) Opt. Time (s)

M1* M2** Imp (%) M1 M2

Degree-4 Poly 13 1234 1172 5.3 5.1 5.2

B-Spline 15 719 691 4.1 3.5 3.5

RGB to YCrCb 19 558 537 3.9 5.7 5.9

2×2 Matrix Mult. 29 1939 1812 7.0 14.4 14.7

DCT 8×8 55 5178 4902 5.6 127.3 131.1

59

Figure 4.4 Hardware area savings for various polynomial degrees.

4.6 Conclusion

We have demonstrated a common hazard in existing AA-based finite-precision error modeling

methods using two counter examples. We have proposed the postponed substitution approach to

address this hazard. Furthermore, we have proposed conditional term propagation to enhance

error modeling accuracy. The efficiency of our approach was evaluated through a set of case

studies. The results show that the approach can yield significant hardware savings with negligible

complexity overhead.

60

CHAPTER 5 WORD-LENGTH ALLOCATION FOR HARDWARE

SYNTHESIS

In this chapter, we focus on word-length optimization that targets hardwired circuit design for

fixed-point computations. Two new fractional word-length selection algorithms and an accelera-

tion technique are introduced in this chapter.

The contents of this chapter are largely extracted from our paper "Enhanced precision analysis for

accuracy-aware bit-width optimization using affine arithmetic," published in IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems in 2013 [87].

5.1 Introduction

Bit-width allocation is a key step in fixed-point computational circuit design. This process has

significant impact on accuracy and hardware efficiency of fixed-point circuits. Design flexibility

of reconfigurable hardware devices, such as FPGAs and ASICs allows the designers to customize

the bit-width of each signal in a given application, independently. The goal of this customization

is to optimize the trade-off between hardware efficiency and computational accuracy of the im-

plementation. Finding the optimal bit-widths is widely known as word length selection or word

length determination problem. Word-length allocation is an NP-hard problem [3]. Exhaustive

search and manual evaluation methods are not practical for WLO in large designs due to the huge

size of the search space.

WLO is composed of two main processes: IWL allocation and FWL allocation. IWL allocation

requires range analysis to evaluate the range of values that each signal may take. Knowing the

range of values, the number of IBs is simply obtained as the minimum value that ensures over-

flow avoidance. On the other hand, the goal of the FWL allocation is to minimize the hardware

cost while meeting the accuracy requirements.

IWL and FWL allocation methods can be categorized into dynamic (or simulation-based) and

static (or analytical) approaches. Dynamic methods are usually far slower due to the large number

of input stimuli they need to process. They also cannot guarantee the accuracy of the result be-

cause of their dependency to the selected input stimuli. On the other hand, static methods offer

61

more conservative results. This may occasionally lead to overestimation of the range and/or error

bounds and consequently less efficient results.

Finite-precision error modeling is a vital part of most analytical FWL allocation approaches. The

error models express the precision of the outputs as a function of quantization error of input and

intermediate signals. For a candidate FWL solution, the error model can be used to evaluate the

upper-bound error that may appear at the output and verify its compliance to the requested error

range.

Many simulation-based and analytical techniques have been introduced for these two problems in

literature. Range and error propagation via AA is widely accepted as one of the best analytical

approaches for both problems [38, 52].

This chapter introduces novel ideas for WLO for hardwired circuit synthesis using AA. It propos-

es two new FWL selection algorithms as well as a simplification technique to reduce the com-

plexity of the FWL allocation problem. These contributions build on approaches presented by

Lee et al. [38] and Osborne et al. [52] and offer trade-offs between hardware efficiency and op-

timization speed. Multi-output circuits are supported in all proposed algorithms and techniques.

An important factor in word length optimization is the error measurement metric. To keep con-

sistency with related works, we have used maximum absolute error in terms of ulp (unit in the

last place) in this chapter. We have evaluated the effectiveness of the proposed algorithms and

techniques and compared them with previous works.

The rest of the chapter is organized as follows. Section 5.2 presents an overview of the proposed

WLO framework that implements all ideas and algorithms introduced throughout the chapter.

The proposed techniques and algorithms for FWL allocation are described in Section 5.3. Section

5.4 gives experimental results and comparisons, while Section 5.5 concludes the chapter.

5.2 Implementation framework overview

Figure 5.1 illustrates the WLO framework that implements the proposed algorithms and tech-

niques described in this chapter. In this framework, the source application is first converted from

C into the GIMPLE intermediate representation (IR) using the GCC compiler. This conversion

facilitates reading and parsing the input code. The IR is then processed in four steps.

62

Step 1 in the optimization process is the AA-based range analysis. It requires the range of the

primary inputs. The FWL allocation is made up of steps 2, 3 and 4. Step 2 consists of the limited-

precision error modeling, which requires the range information and the required output precision.

Step 3 is a simplification technique described in Section 5.3.2. Step 4 is a new algorithm to select

the fractional bit-width of the signals. It takes as input the range information, the error model and

the hardware cost estimation model of the given application. The outputs of the framework are

the IWL and the FWL.

5.3 FWL allocation

This section describes our proposed FWL allocation approach, which is composed of a prelimi-

nary simplification technique (Step 3 in Figure 5.1) and a novel fractional bit-width selection

process (Step 4 in Figure 5.1).

5.3.1 Example design

We use an example circuit to illustrate our method in subsequent sections. This example circuit,

which is borrowed from Lee et al. [2], is given in Figure 5.2.

In this chapter, the enhanced error modeling approach presented in Chapter 4 is used to estimate

worst case error bound. Using that approach, the upper bound error expression obtained for Fig-

ure 5.2 is:

 (5.1)

where

 {

,

 {

 (

)

,

In subsequent sections, this inequality will be used as the error bound model.

63

GCC compiler

.GIMPLE

AA Range Analysis

Error Modeling

New FWL selection

algorithm

Hardware cost

estimation

model

Range of primary

inputs

Output(s) requested

upper bound error

Fractional word-

length (FWL)

Precision Analysis

Simplification

Technique

Step1

Step2

Step 3

Step 4

Application in C

Integer word-

length (IWL)

Figure 5.1 Overview of the proposed word length optimization framework.

5.3.2 Preliminary simplification technique

We propose the following Lemma, from which our simplification technique has been derived:

Lemma: Quantization of an intermediate signal between two additions/subtractions does not have

any benefit over quantizing the inputs of the preceding one and keeping the fractional length of the

intermediate signal equal to the maximum FWL of the input signals.

64

×

+

_

a=[-3,2] b=[4,8] c=4.3

d=[-24,18]

e=[-19.7,22.3]

z=[-25.7,16.3]

Figure 5.2 Example circuit along with the range information in brackets.

Applying the Lemma to the general subcircuit of Figure 5.3 suggests that to gain a constant accu-

racy at output out, the lowest hardware cost is achieved when

 (). (5.2)

Proof: According to our error modeling approach of Chapter 4, the output error expression of

Figure 5.3 circuit is:

 () (5.3)

where

 {
 ()

.

Comparing the fractional widths of the intermediate signal and inputs and , the follow-

ing three possibilities emerge:

 : In this case, the term is equal to zero. If we re-1.

duce the to ̅̅ ̅̅ ̅̅
 (), the error remains the same while the

hardware cost can be reduced in proportion to the difference ̅̅ ̅̅ ̅̅
 . Hence, re-

ducing the fractional width of signal , from to ̅̅ ̅̅ ̅̅
 , improves the efficiency.

65

±

in1 in2

x

. .
.

. .
.. . .

. . .

out

±

in3

Figure 5.3 A general subcircuit that calculates out=in1±in2±in3.

 or : Let us as-2.

sume that to discuss this case. The other case can be proved in the same

manner. If we reduce to , the error equation becomes:

 (̅) (). (5.4)

This reduction always results in smaller error and smaller hardware cost.

 : We can rewrite this condition as: 3.

 (5.5)

Then, there are two possible states:

The FWL of both inputs (and) are equal to : in this state, the

output error expression is

 () . (5.6)

If the and are both reduced to , the maximum error expression re-

mains the same but the hardware cost of the preceding operator decreases due to one bit

shorter operands.

66

The FWL of at least one of the inputs is longer than : in this state, if we change

the , and to ̅̅ ̅̅ ̅̅
 , ̅̅ ̅̅ ̅̅

 and ̅̅ ̅̅ ̅̅
 respectively, while

 ̅̅ ̅̅ ̅̅
 ̅̅ ̅̅ ̅̅

 ̅̅ ̅̅ ̅̅
 the upper bound error becomes:

 (̅) (). (5.7)

This modification increases the FWL of the intermediate signal by one bit, while reducing the

width of the preceding operator by at least one bit. Hence, considering single fan-out for the in-

termediate signal, the hardware cost of the modified circuit would always be less than or equal to

the primary circuit. Note that we assume uniform hardware cost for each extra bit in addi-

tion/subtraction. More precisely, this modification shows that a single fan-out signal between two

addition/subtraction operators can always be removed from the word-length selection problem

without taking the risk of disregarding more efficient solutions. For this purpose, these unneces-

sary signals must first be identified and then eliminated from the list of the signals which are to

be considered in the FWL selection process.

/* Nop: number of existing operations in the circuit */

/* OPi: i’th operation in the circuit while i {1,…,Nop} */

/* Si: the output signal of OPi */

/* NFi: Fan-out of signal Si ; number of operations that use Si as input */

/* FOPij: j’th operation that use signal Si as input; j {1,…,NFi} */

/* FISik: k’th signal that operation OPi receives as input;

 k {1,2} since we only consider two-input operations here */

for (all intermediate and output signals Si)

 if (NFi ==1 and OPi and FOPi1 are addition/subtraction)

 Remove Si from the list of signals that require word length selection.

 Replace the
 by (

) in all error equations.

 end if;

end for;

Figure 5.4 The proposed algorithm for preliminary simplification technique.

67

in1 in2

in3

_

×

in4

_

out=in3-(in1×in2)+in4-(in1×in2)

x2

x1 x1

x3

+

+

in1 in2

out=in1+in2-(in2×in3)-in3

_

×

in3

_

x1
x2

x3

 (

)
 ()

 (

)
 (

)

Figure 5.5 Applying the preliminary simplification algorithm to two example circuits.

The necessary changes must be made in error models assuming that the FWL of each removed

signal is always equal to the maximum FWL of the last preceding operator. Figure 5.4 presents

the algorithm we developed to realize this technique. It can significantly simplify the problem by

pruning the search space. For example, applying this technique to the circuit of Figure 5.2, the

signal can be exempted from the selection problem assuming that

 .

/. (5.8)

Accordingly, the term reduces to zero and the error bound inequality of (5.1) is converted to:

 . (5.9)

Figure 5.5 illustrates the result of applying the simplification technique to two other example cir-

cuits. The signals marked by the dashed square are removed from the fractional width selection

problem.

68

Note that the presented lemma was only proved in terms of worst case error. This does not guar-

antee the validity of the lemma when average error is intended.

5.3.3 Hardware cost estimation model

Hardware cost measurement is normally necessary for effective width selection. It is considered

as the main efficiency metric by most works in this field [38, 61, 69]. A hardware cost estimation

model is necessary for a fast optimization process.

The cost model which is used in this chapter is similar the one used by Lee et al. [38]. In this

model, the full adder has unit cost. Hence, the cost of the addition/subtraction is modeled

by () () while the cost of multiplication is modeled

by ()(). A more precise model for addition and subtraction is to

consider the minimum fractional word-length of the operands as the cost of the fractional part

instead of the maximum one. It is because the FWLs must be left-aligned prior to addition, the

operand with the fewest bits must be right-padded with zeros, and no hardware is necessary to

add them. However, in this thesis, we use the Lee’s model to keep consistency with previous

works.

Based on this model, the hardware cost of the circuit shown in Figure 5.2 is:

 .

/ .

/ (5.10)

 .

/ .

/

 .

/ .

/

Increasing the fractional width of a signal normally increases the hardware cost while reducing

the output error.

5.3.4 Progressive Selection Algorithm (PSA)

The first FWL selection algorithm we introduce, named PSA, is based on a fast progressive ap-

proach. The idea we pursue with this algorithm is to partition the allowed amount of error among

69

the involved signals based on their unit bit hardware cost. The algorithm is composed of three

main phases.

 Marginal bit cost estimation. During this phase, the hardware cost of each extra fractional 1.

bit is estimated for all signals. Since the hardware cost of a signal may depend on the bit-

width of other signals, an initial width assumption is necessary. A simple and effective

way is to use Uniform Fractional Bit-width (UFB) as this initial assumption. The UFB can

be analytically calculated from the error model by substituting all FWL variables with a

single variable in the error bound equation. In the example circuit of Figure 5.2, this cal-

culation gives:

 (
) (). (5.11)

Assuming that 8-bit accuracy is requested at the output , then:

 . (5.12)

In this case, the minimum value of UFB that meets the required accuracy is 12. Now, we

can obtain the initial cost by substituting the IWLs with the range analysis results and

substituting the FWLs with the calculated UFB (12 in this example) in the cost equation:

 ()() (5.13)

To compute the marginal cost of each signal, the above calculation is repeated by incre-

menting the FWL of that signal by a single unit. The difference of the result and the initial

cost value is considered as the marginal bit cost.

 Cost-based error allocation. During the second phase, the allowed error bound is divided 2.

into small pieces. Each piece corresponds to the maximum error that can be introduced by

a signal. The proposed method performs the error division based on the hardware cost of

the signals in order to optimize the total hardware cost. To describe the proposed alloca-

tion scheme, the error bound equation is first written in a sum-of-products form as fol-

lows:

 () ∑

 (5.14)

70

where is the number of signals and stands for the i
th

 signal. Assuming non-zero values

for conditional statements, the
 terms are obtained as constant values in affine expres-

sions. For example, the
 values in error bound equation (5.4) are as follows:

* + { ⁄ ⁄ ⁄ }. (5.15)

In the proposed approach, the division of each product term in the output error has a direct

relationship with the cost of the corresponding signal. The marginal bit cost data, calcu-

lated in the first phase, is used as the cost metric in this step. Therefore, the primary frac-

tional width of the signals is calculated as:

∑

 ⌊

 ∑

⌋ (5.16)

where

 ;

The primary fractional width of the example circuit signals are computed with (5.16), as

illustrated in first row of Table 5.1.

 Fractional width refinement: The rounding down operation causes accumulative impreci-3.

sion in primary width calculation. Hence, the output error resulting from the primary

widths may be considerably smaller than the requested error bound. This error slack al-

lows further refinement of the widths. For example, with the results obtained for the ex-

ample of Figure 5.2 in the last phase, the output error is computed as follows:

 (
) (5.17)

71

We developed an iterative error slack allocation algorithm to refine the primary fractional width

values. For each iteration, this algorithm selects the best candidate signal as the best signal for

fractional width reduction. For efficient selection, this algorithm calculates the Cost_Error func-

tion for all eligible signals as follows:

 (5.18)

where the parameters are defined as follows:

 i’th signal

 amount of error that would be introduced by decreasing the

width of by one bit.

 cost reduction achieved by decreasing the width of by one bit.

The signal that represents the largest Cost_Error value is selected and its fractional part is nar-

rowed by one bit. Afterwards, the , the , and the Cost_Error of all signals

and the error slack value are updated, accordingly. The
 term is slightly different from

the marginal bit cost,
, defined in the first phase. The

 is calculated based on

the dynamic word-length values during the refinement process, while the
 is constant and

calculated based on UFB allocation. The conditional terms in the error model must be particularly

considered in these calculations mainly because they can create dependencies between the sig-

nals. In other words, in the presence of conditional terms, a change in FWL of a signal can affect

the error penalty and bit cost of the others. Only the signals whose does not exceed

the error slack are eligible for width reduction and are therefore considered in this process. By

reducing the error slack in each iteration, the number of eligible signals shrinks.

The algorithm continues until no eligible signal remains. The
 is obtained by

measuring the difference between the output error values before and after narrowing the by one

bit. In multi-output circuits, the differences are accumulated. Figure 5.6 presents the PSA algo-

rithm with a single output. A multi-output version can be obtained with a few minor modifica-

tions.

72

Table 5.1 Fractional width refinement of the example circuit of Figure 5.2

iter. a b c d Err_Slack

1
FWL 13 12 14 14

9.1
 34816 32768 17408 17408

2
FWL 12 12 14 14

4.2
 NE

*
 NE 17408 17408

3
FWL 12 12 13 14

3.9
 NE

*
 NE 8704 17408

4
FWL 12 12 13 13

3.6
 NE NE 8704 8704

… … … … … … …

10
FWL 12 12 11 11

0
 NE NE NE NE

 *NE: not eligible for fractional width reduction because of error violation

Table 5.1 demonstrates the first four and the last iteration of this algorithm applied to the example

circuit. According to these results, the final selected FWL s for the signals are

 * + * +

(5.19)

5.3.5 Accelerated Tree-Based Search Algorithm (TBSA)

The second FWL selection algorithm we introduce, named TBSA, is based on an accelerated

tree-based search. This algorithm also starts with the marginal bit cost calculation in the same

way as the progressive algorithm. The main process is carried out in a recursive loop. In each

iteration, the FWL of one signal is determined in a fractional format based on the cost proportion

according to the following equation:

 ̂

 ∑

 (5.21)

73

 /*

 Primary fractional widths */

/* Requested output error */

Calculate primary output error using primary fractional widths

 //error slack calculation

for all signals

 Calculate the
 //Error penalty of decreasing the

 //fractional width of by one bit

 Calculate the
 //Cost reduction of decreasing the

 //width of by one bit.

⁄

end for;

while

 //keep track of the best

 for (all signals)

 if (
)

 //There is at least one eligible signal for

 //width reduction.

 if (
)

 //better than the best previously obtained signal for width

 //reduction

 //keep track of the index of the best

 //found signal

 end if;

 end if;

 end for;

74

 if (stop==0) // At least one eligible signal has been found

 //decreasing the fractional width of the best found signal

 for (all signals)

 Update
,

 and
.

 end for;

 end if;

end while;

Figure 5.6 The fractional width refinement algorithm PSA.

The ,
 and

terms are defined in Section 5.3.4. The term represents

the total amount of error that is allowed to be introduced by the unprocessed signals.

Since the fractional width is an integer, the calculated ̂ must be rounded to one of the adja-

cent integer values. The decision to round up or down has cascading impacts on other signals

mainly because they lead to different values. So, this decision can make two

possible states for each signal. The algorithm considers these two states as two nodes in a binary

decision tree.

The algorithm starts with a single node in the first iteration where two children nodes are gener-

ated based on two possible decisions for the first signal. During the second iteration, the second

signal is processed in each of the nodes, separately.

The algorithm keeps track of the value in all nodes using the following calcula-

tions:

{

⌊ ̂

 ⌋

⌈ ̂
 ⌉

 (5.22)

where

 .

75

The term stands for the node number in one level of the tree. So, the
 repre-

sents the maximum allowed error in th
 node of the th

 level of the tree. We have also employed a

technique to accelerate the algorithm by eliminating unpromising paths in each level of the tree.

The following pruning rule is used to identify unpromising paths.

Pruning Rule: In each level of the binary FWL decision tree, the node is unpromising if a

node exists in the same level that offers larger or equal with lower cost. The

cost value is calculated based on the known FWL of the processed signals and UFB value for

unprocessed ones. Figure 5.7 illustrates the pseudo-code of this algorithm with a single output. A

multi-output version can be obtained with a few minor modifications. Figure 5.8 shows the first

four levels of the decision tree obtained by applying the algorithm to the example circuit of Fig-

ure 5.2. The in this figure has been eliminated since its has reached ze-

ro. This means that the error introduced by the two determined signals has already reached the

maximum allowed error and no other error gap remains for the rest of the signals. According to

the pruning rule, is unpromising since the outperforms it in both error and cost

results.

Finally, this algorithm selects the following FWLs:

 * + * + (5.23)

This solution offers almost the same cost as the one achieved by the PSA. However, for larger

applications, we will see in Section 5.4 that the TBSA considerably outperforms the PSA in terms

of hardware cost.

5.3.6 Time complexty of the PSA and TBSA algorithms

Time complexity is one of the main criteria to compare WLO techniques. This criterion is partic-

ularly important for large designs. This section studies the time complexity of the described algo-

rithms. A brief analysis reveals that the fractional width refinement step takes up most of the time

of the PSA algorithm.

The main part of this process is an undetermined-bound loop to select the best candidate signal

for width reduction. This loop lasts until the allowed output error bound is violated. The maxi-

mum possible number of iterations in this loop can be formalized analytically as follows.

76

/*

 Primary fractional widths */

/* Requested output error */

Calculate primary output error using primary fractional widths

 //error slack calculation

/* Requested output error */

/* N: Number of signals */

/*
 The marginal bit cost of signal si */

/*
: Constant coefficients of term in output error equation*/

/* (): The cost of the j
th

 nod in current level of the tree */

/* Processing one level of the decision tree and generating the next-level nodes. This re-

cursive function is called for the in the main body as FWL_select (, UFB_Array,

UFB_Cost, 1). UFB_Array is a one dimensional array with N elements and all elements

are equal to UFB. The UFB_Cost is the cost of the UFB solution */

Function ()

/* ind: the index of the signal that is being processed in this iteration (level of the tree)*/

 if ind==N+1 //have all signals been processed ?

 return (the array with lowest cost) // by examining the elements

 end if;

 Calculating the
coefficient;

 for (from 1 to) // : number of nodes in this level of the tree

 if (()) // This node has already violated

 continue; // the requested error threshold

 end if;

 Calculating ̂()

 () ()

 ∑ ()

 // Constructing the nodes of the next level of the decision tree

 () () //Initializing

77

 () ()

 // Updating the FWL of the signal corresponding to this level

 ()() ⌊ ̂()⌋ //round down

 ()() ⌈ ̂()⌉

 // The array for the next iteration

 () ()

⌊ ̂
 ⌋

 () ()

⌊ ̂
 ⌋

 Updating the () and () by calculating the

cost of () and (), respec-

tively

end for;

 //Acceleration by removing the unpromising nodes

 for (from 1 to)

 for (from 1 to)

 if (() ())

 if (() ())

 Remove i’th node from and

 and

 end if;

 end if;

 end for;

 end for;

 //Calling the next iteration (to process the next level of the tree)

 ()

end function;

Figure 5.7 The accelerated tree-based search algorithm (TBSA).

78

Node 11

Level1 Level2

Node 21

FWLs={FWLb,FWLa,FWLc,FWLd}

 ={12,12,12,12}

FWLs={10,12,12,12}

Allowed_Error=0

Cost=246

FWLs={11,12,12,12}

Allowed_Error=9.77×10-4

Cost=261

Node 22

Level3

Node 33

FWLs={11,13,12,12}

Allowed_Error=4.88×10-4

Cost=276

Node 34

FWLs={11,14,12,12}

Allowed_Error=7.32x10-4

Cost=291

Level4

Node 41

FWLs={11,13,11,12}

Allowed_Error=2.44x10-4

Cost=275

Node 42

FWLs={11,13,12,12}

Allowed_Error=3.66x10-4

Cost=276

Node 43

FWLs={11,14,10,12}

Allowed_Error=2.44x10-4

Cost=289

Node 44

FWLs={11,14,11,12}

Allowed_Error=4.88x10-4

Cost=290

Allowed_Error=2
-9

=2×10-3

Cost=291

Unpromising

Violating

Figure 5.8 First four levels of the decision tree in processing Figure 5.2 circuit with TBSA.

Let us assume that there are signals in the design and the initial width calculated for each sig-

nal according to Equation 5.16 (Section 5.3.4) is represented by
 , where * +. The

maximum possible error slack caused by the rounding down operator in initial width calculations

is

 ∑

 . (5.24)

Decreasing the width of the signal by one bit results in reducing the by

 . Examining different possibilities shows that the largest number of iterations is

needed when there is exactly one signal with a large

 and signals with

equal and small

 values, while the latter are selected for width reduction, successive-

79

ly. In such a case, the total error slack can be dominated by the large value introduced by the

initial width calculation, while this large gap is filled by small compensating values at each itera-

tion of the refinement algorithm. We denote the expressions

 as and

 of the other signals as . The maximum error slack inequality can be

rewritten as:

 () (5.25)

In the worst case, during the first iterations of the refinement algorithm, the minimum val-

ue of () is compensated. During the next iterations, the minimum value of

 () is compensated since the FWL of all signals, except the , have been decreased

by one bit. So, the termination condition can be formulated as follows:

 () .

 ⁄ / () (5.26)

()

 ⁄

 .

()
 / ()

where stands for the iteration number.

Taking into account the -times loop inside each iteration of the algorithm (Figure 5.6) and

above calculations, the PSA algorithm can be completed in () time,

where is the number of signals and and are the largest and smallest single-signal quantiza-

tion errors, respectively.

The basic time complexity of the TBSA algorithm is (), since all nodes in the N-level deci-

sion tree must be processed in this algorithm. However, our experiments demonstrate that the

employed acceleration technique and error violation condition can significantly reduce the com-

plexity by pruning ineffective nodes. Table 5.2 illustrates the amount of acceleration achieved in

the four experiments. For the tested cases, there is no apparent relationship between the design

size and time complexity. 8-bit precision is requested for the outputs in these experiments.

80

Table 5.2 Number of nodes eliminated from the TBSA using the acceleration technique

No. of eliminated nodes

Fig. 5.2
Degree-4

Polynomial

Degree-6

Polynomial

Degree-8

Polynomial

Total nodes 31 16K 1049K 67109K

Accel. Rule 2 4K 397K 21499K

Error Viol. 14 5K 224K 14332K

Total Red. 16 (52%) 9K (50%) ~57% ~55%

5.4 Experimental results and comparisons

This section evaluates the efficiency of the two proposed algorithms (PSA and TBSA) and the

simplification technique using eight case studies. The efficiency was measured in terms of time

complexity and hardware cost. The presented optimization framework in Section 5.2, containing

newly introduced algorithms and techniques, was implemented in MATLAB. The Osborne meth-

od [52] and an exhaustive search method were also implemented to enable comparison. All ex-

periments were performed on an Intel i7 3-GHz PC with 16 GB DDR3 RAM. Designs were syn-

thesized with ISE 13.1 for a Xilinx Virtex 6 FPGA.

5.4.1 Case studies

The case studies include some commonly used transforms and operators in the signal and image

processing domains. Table 5.3 lists these applications specifying the number of elementary op-

erations and signals in each of them as a measure of the complexity. Four of these applications

are the same as those used by Lee et al. [38]: RGB-to-YCrCb, B_Spline, 2×2 matrix multiplica-

tion, and 8×8 Discrete Cosine Transform (DCT).

For the polynomial approximations, we have implemented the general architecture, contrary to

Lee et al. [38] who customized it to the () function. In other words, we consider

the polynomial coefficients as input signals. This provides a more general architecture at the ex-

pense of higher hardware complexity. The eighth-order Infinite Impulse Response (IIR) filter is

implemented via four second-order cells. A radix-2 decimation in frequency structure is used for

81

the 64-point Fast Fourier Transform (FFT). All signals are complex in the FFT. The real and im-

aginary parts are considered as independent variables in our measurements. As a result, the num-

ber of operators is very large in this case study. The hardware costs of each case study were

measured from VHDL descriptions implemented in Virtex 6 FPGAs. Multiplications and divi-

sions by power of two constants were implemented by shifts. Common intermediate signals were

shared in the designs to improve hardware efficiency.

5.4.2 Coding limitations

Like for most of the other analytical methods, the applicability of the proposed techniques and

algorithms is limited to feed-forward datapaths. Covering control flow statements is also chal-

lenging in analytical WLO. Our approach supports if statements by performing the range and

precision analysis based on the taken and untaken codes, separately. The results are then merged

by selecting the largest achieved IWL and FWL value for each variable.

Loops with static bounds are also supported using an implicit unrolling mechanism. Supporting

loops with dynamic bounds is still an open problem [38, 52, 61].

Table 5.3 Complexity of the case studies

Case Study Add/Sub Mult. No. Signals

Degree-4 Poly 4 4 13

Degree-6 Poly 6 6 19

Degree-8 Poly 8 8 25

Degree-10 Poly 10 10 31

RGB-to-YCrCb 6 7 19

B-Spline 7 4 15

2×2 Matrix Mult. 18 7 29

DCT 8×8 32 32 55

FIR32 31 32 94

IIR8 16 20 56

FFT64 1028 520 1548

82

5.4.3 Preliminary simplification technique

We start the experiments by studying the impact of the preliminary simplification technique, de-

scribed in Section 5.4.2, on the efficiency. Table 5.4 shows the number of signals that are elimi-

nated from the FWL selection process using the simplification technique. The results reveal that

the simplification technique reduces the complexity of the problem by an average of 20.3%. Fig-

ure 5.9 and Figure 5.10 compare the optimization run-time and the hardware cost in terms of area

obtained for the selected applications before and after the simplification technique. 8-bit precision

is requested for the outputs in these experiments. Figure 5.9 illustrates the optimization time ratio

of the original applications to the corresponding simplified ones using the preliminary simplifica-

tion technique. The optimization time improvement of the polynomial approximation has not

been shown in Figure 5.9, because no variable can be simplified in this case study. Therefore, the

corresponding improvement value is equal to zero. Due to the overlong run-time of the TBSA

algorithm in the FIR32 and FFT64 benchmarks, no corresponding results are shown in Figure

5.9.

The results show a significant improvement in optimization run-time and a slight improvement in

hardware area when using the simplification technique. The simplification technique has been

applied to all benchmarks before being used for evaluation of the optimization algorithms in sub-

sequent sections.

Table 5.4 Complexity reduction using the preliminary simplification technique

Case Study Removed signals Reduction [%]

Degree-6 Poly 0 0

RGB-to-YCrCb 6 31.5

B-Spline 3 13.8

2×2 Matrix Mult. 4 20

DCT 8×8 16 29.1

FIR32 30 31.9

IIR8 11 19.6

FFT64 260 16.7

83

Figure 5.9 Optimization time ratio of the original applications to the corresponding simplified

ones.

Figure 5.10 Hardware cost ratio without/with simplification technique.

1

10

100

1000

O
p

ti
m

iz
at

io
n

 T
im

e
R

at
io

PSA TBSA

84

5.4.4 Comparing with UFB and Osborne’s method

In this section we compare PSA and TBSA with the naïve UFB allocation and Osborne’s method

[52], which is based on similar principles as our method.

Osborne’s method begins with the calculation of the UFB value. Then, the UFB is added to an

initial constant to give the starting value for the second step during which the bit-widths are re-

duced via an iterative procedure. In each iteration, one signal is selected for FWL reduction. The

hardware cost was considered as the main criterion to select a signal for width reduction, such

that the reduction that causes the largest decrease in cost will be selected first. If several signals

offer the largest cost reduction, the one that increases the error by the smallest amount is selected.

This process continues until the error bound requirement is broken. To be faithful, we have used

the original error modeling approach in our implementation of Osborne’s method. A significant

problem with this method is the lack of a specific way to determine the initial constant. Hence,

this value must be selected arbitrarily. A small initial constant may lead to ignoring valuable parts

of the search space, while a large one causes unnecessarily long run-time.

Table 5.5 lists the results obtained for the different case studies. Figure 5.11 shows the saved area

by the four algorithms with respect to the UFB approach. Figure 5.12 illustrates the relative opti-

mization time for Osborne’s and Menard’s methods over the PSA.

The results demonstrate that PSA provides superior run-time over the Osborne algorithm by a

factor between 5× and 27×, with an average of 16.1×. PSA also provides solutions with a reduc-

tion in area by an average of 10.9% and 3.9% compared to the UFB and Osborne methods, re-

spectively.

In hardware area, TBSA outperforms the UFB, Osborne’s and progressive search approaches by

an average of 13.1%, 6.6% and 2.9%, respectively. There are no results in Table 5.5 for TBSA

for the FFT64 case study because of the complexity of that case, with over 1250 variables even

after applying the simplification technique. For problems of that size, where the processing is

excessive, although for the moment PSA offers a good compromise, an eventual solution with

TBSA would be to restrict the variables to those associated with costly components such as mul-

tipliers.

85

Table 5.5 Efficiency of the proposed algorithms and previous works

Case Study

Prec.

(bits)

Optimization Time (s) Area (slices)

Osborne

[52]

Menard’s

Greedy

[66]

Menard’s

Greedy

+Tabu [66]

This work

PSA

This work

TBSA

UFB Osborne

[52]

Menard’s

Greedy

[66]

Menard’s

Greedy

+Tabu [66]

This work

PSA

This work

TBSA

Degree 6 Poly-

nomial

8 5.24 1.3 4.3 0.9 16.7 2008 1841 1831 1806 1819 1773

16 5.4 1.4 4.6 1.0 16.2 4858 4423 4318 4290 4311 4217

RGB to YCrCb

8 5.5 1.1 3.2 0.7 12 539 511 511 491 494 484

16 5.6 1.1 3.0 0.7 12.4 912 861 844 823 821 807

2×2 Matrix

Multiplica-

tion

8 31.9 3.4 37.6 2.7 154.1 1857 1717 1679 1637 1627 1597

16 31.1 3.6 39.1 2.6 154 3920 3657 3577 3492 3510 3444

B-Splines

8 3.6 0.7 2.9 0.6 4.5 711 643 637 626 626 613

16 3.6 0.7 2.9 0.5 4.5 1277 1159 1121 1102 1109 1102

DCT 8×8

8 131.1 9.1 187.2 5.9 2375.5 4917 4761 4627 4611 4613 4422

16 137.6 9.7 191.8 6.1 2262.7 8328 8130 7903 7833 7871 7610

FIR32

8 404.6 31.9 701.8 16.3 7754.1 7912 7217 7092 6898 7027 6505

16 439.9 33.7 716.0 17.1 7633.6 15390 14141 13551 13224 13411 13002

IIR8

8 216.9 15.5 176.6 9.6 2078.8 5791 5410 5209 5004 5122 4918

16 197.1 14.2 160.0 9.0 2122.1 10722 9893 9440 9292 9388 9002

FFT64

8 150786.1 19449.1 263677.9 5721.4 - 89234 81225 76922 75005 76177 -

16 156005.6 18234.4 259071.1 5699.3 - 160511 144961 140545 134933 138109 -

5.4.5 Comparing with Menard et al.

We now compare the proposed algorithms with one of the most recent works presented by

Menard et al. [66]. Menard’s work proposes a combination of HLS and WLO. The target applica-

86

tion is first given to the HLS process to divide the operations of the same type into a number of

groups. The operations that lie within the same group are organized for execution in a single

hardware operator. The objective of this process is to share the hardware resources among opera-

tions in order to reduce implementation costs.

The output of the grouping process is given to the WLO algorithm to optimize the bit-width as-

signed to each group and its operator. The grouping function significantly reduces the number of

variables which are considered in the WLO process.

Menard et al.'s WLO approach is composed of a greedy search followed by a Tabu search algo-

rithm. The greedy search, which is significantly faster, finds an initial solution. Afterwards, the

Tabu search refines the solution quality by exploring the neighborhood area of the initial point.

The HLS technique is out of scope of this thesis. To make a fair comparison between our work

and Menard et al.'s, we have only considered the WLO approach. It was employed in our frame-

work omitting the grouping process. Table 5.5, Figure 5.11 and Figure 5.12 compare the results

obtained by Menard’s approach with our proposed algorithms. These results demonstrate that

Menard’s method lies between the PSA and the TBSA in the time-area design space. The area

cost results of Menard's method are up to 2.3% better than the PSA method's, while its optimiza-

tion time is greater than the PSA's by a factor between 4× and 45×. Figure 5.11 and Figure 5.12

represent the average results achieved for 8- and 16-bit output precisions.

The greedy search in Menard’s method is similar to our PSA algorithm in some ways. However,

the PSA benefits from a more effective selection strategy that enables additional savings before

termination of the algorithm. This is achieved by using a list of non-eligible variables that pre-

vents early termination of the bit-width reduction process. Moreover, the PSA takes advantage of

a smarter starting point selection scheme, as presented in Section 5.4.4. Having a shorter distance

between the starting point and the final solution considerably reduces the execution time. The

results in Table 5.5 show that the PSA finds better solutions than Menard’s greedy search algo-

rithm in less time. Using the Tabu search, Menard’s method compensates for the poor quality of

the greedy search solution at the expense of longer execution time.

87

5.4.6 Comparing with Exhaustive Search

As a last step, the FWL selection algorithms were compared with an exhaustive search method

that is expected to generate optimal cost results.

In our exhaustive search algorithm, all FWLs were initially set to their minimum possible value.

For the signal , this value is calculated by assuming infinite precision for any other signal that

gives following equation:

 ⌊

⌋ (5.27)

Any fractional bit-width smaller than

 causes a violation of the requested error bound regard-

less of the precision of the other signals. A maximum bit-width value is also selected to limit the

upper bound FWL search process. This value must be large enough to ensure coverage of the

valuable solution areas. Then, the widths are incremented iteratively, such that all possible com-

binations within the obtained bounds are examined. After evaluating all combinations, the one

that respects the error requirement with the smallest cost is selected as the final solution.

Figure 5.11 Area cost reduction over the UFB approach.

88

Figure 5.12 Normalized optimization time relative to PSA method.

Figure 5.13 Comparing the proposed algorithms with the exhaustive search method.

89

The experiments show that the exhaustive search run-time takes from a few hours for B-spline to

a few days for the DCT case study. Figure 5.13 compares the area obtained by the proposed algo-

rithms, UFB solution, and the described exhaustive search approach for polynomial approxima-

tion. 8-bit precision is requested for the outputs in these experiments .The results show that the

area efficiency of PSA and TBSA is within 3.8% and 0.9% of the exhaustive search, respectively.

5.5 Conclusion

In this chapter, we introduced a new word length optimization methodology for fixed-point de-

signs. It uses affine arithmetic for both range and precision analyses. Moreover, we have intro-

duced a simplification technique and two new semi-analytical algorithms for FWL allocation. A

novel word-length optimization framework was developed that implements our introduced ap-

proaches.

A set of eight case studies was used to evaluate the proposed methods. The experimental results

show that our simplification technique reduces the complexity of the fractional bit-width selec-

tion problem by an average of 20.3%. Moreover, the results demonstrate considerable improve-

ments in optimization run-time and hardware area when using the proposed FWL selections algo-

rithms.

90

CHAPTER 6 FIXED-POINT PROCESSOR CUSTOMIZATION

In this chapter, we introduce a new processor customization method for fixed-point applications.

This method is composed of customization of processor word-length based on a dedicated WLO

method and customization of the functional unit architecture regarding the selected word-length

configuration.

The contents of this chapter are largely extracted from our paper "Accuracy-aware processor

customization for fixed-point applications," submitted to IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems in 2014 [88].

6.1 Introduction

Application-specific processor customization is one of the promising trends to promote the effi-

ciency of processor-based designs. This trend includes various state of the art research areas such

as instruction-set customization in extensible processors [26], micro-architectural customization

in parameterizable processors [9] and application-specific processor design offered in ADLs [30].

In this chapter, we introduce a novel processor customization approach which explores a new

dimension in application-specific micro-architectural optimization targeting fixed-point applica-

tions. This new dimension is the word-length of the datapath that is normally fixed in micropro-

cessors. In integer computation, the minimum required word-length of the datapath is determined

by the maximum range of the data elements in the applications. Customizing the word-length of

the processor to this value can potentially improve the efficiency of the processor depending on

the application.

In fixed-point computation, the problem of word-length allocation is considerably more complex

due to the introduction of new factors. Each fixed-point value is comprised of integer and frac-

tional parts. The IWL of each signal should be long enough to guarantee overflow/underflow

avoidance. This lower-bound requirement can be found by range analysis using various existing

analytical [38, 39] and simulation-based techniques [89].

Determining the FWL is inherently more complex. The FWL of each signal determines the quan-

tization error which is introduced due to the finite word-length representation of that signal. This

quantization error can propagate through the subsequent levels of the circuit and eventually show

91

up at the outputs as inaccuracy in the computations. Various analytical [38, 51] and simulation-

based techniques [58, 59] were introduced in the literature to model the finite-precision error of a

circuit based on the word-length allocation of its signals. Reducing the IWL and FWL of signals

can significantly improve the efficiency of the implementation. In fixed-point designs, WLO ad-

justs the IWL and FWL allocated to each signal considering the overflow/underflow hazards and

the accuracy requirements. The efficiency can be measured from the hardware area, power con-

sumption, performance, or a combination of them based on the design objectives.

There are basically two word-length allocation approaches. The traditional UWL allocation ap-

proach offers a single word-length for all variables. The MWL approach allows different word-

lengths for different variables. Figure 6.1 compares a conventional processor with customized

processors via UWL and MWL approaches. The important customizable elements in the pro-

posed method include the word-length of the register-files, pipeline buffers and functional units,

and the number of words in each register-file.

W

Reg_File

Instruction Decoder

Fetch

Instruction

memory

Pipeline Buffer

Pipeline Buffer

Pipeline Buffer

W W
W

W W

W1

Reg_Files

Instruction Decoder

Fetch

Instruction

memory

Pipeline Buffer

Pipeline Buffer

Pipeline Buffer

W2 W2
W2

W2 W2

L

W2

L1

L2

W1 W1

W1 W1

(a) (b)

Pipeline Buffer Pipeline Buffer

Figure 6.1 Comparing customized processors via UWL and MWL approaches.

92

WLO has been extensively studied in numerous researches for ASIC designs. However, to the

best of our knowledge, no related research work has been considered in custom processor design.

The main contribution of this chapter is to present the first work of literature that investigates

WLO for application-specific customization of microprocessors by exploring architectural trade-

offs. This is illustrated in Figure 6.1a and Figure 6.1b.

More precisely, this work proposes a method for accuracy-guaranteed optimization of the proces-

sor word-length for fixed-point applications. This method aims to enhance the efficiency of the

processor architecture through application-specific customization, while meeting the precision

requirements.

The architecture of the functional unit is the other target that the proposed method aims to opti-

mize in parallel with the WLO. Complex arithmetic functions such as multiplication commonly

have a significant impact on area usage and performance of the processors. There are usually

various possible architectures to realize an arithmetic functions in hardware. The efficiency of

using a specific architecture in a design depends on the application and the word-length alloca-

tion. The proposed method customizes the number of hardware operators and architecture of each

one regarding the word-length allocation solutions. A dedicated design space exploration algo-

rithm is developed for the architecture selection.

Finite-precision error modeling is an essential part of any WLO method. Such a model formulates

finite precision error at the outputs in terms of the FWL of the inputs and the intermediate sig-

nals. Given the error model, the uniform word-length can be easily calculated in the UWL ap-

proach. However, the MWL optimization is an NP-hard problem that is normally solved by heu-

ristic search algorithms. The proposed method explores both UWL and MWL approaches in its

optimization algorithm.

The rest of this chapter is organized as follows. Section 6.2 describes the proposed methodology.

The design flow of the proposed method is described in Section 6.3. Section 6.4 presents the op-

timization algorithm which is used in this chapter. Section 6.5 gives experimental results and

comparisons, and Section 6.6 concludes the chapter.

93

6.2 Proposed methodology

In this section, we present our proposed methodology. This methodology aims to generate appli-

cation-specific customized processors for fixed-point applications. New hardware elements and

components are the target of customization in this work. In the following subsections, we will

first present the objectives of the proposed method in processor customization. Then we will il-

lustrate these objectives in detail using an example.

6.2.1 Methodology objectives

Our proposed method is based on the pursuit of three objectives.

The first objective of the proposed method is to improve the efficiency of the processor architec-

ture by customizing the word-length of the data elements and consequently the calculations. The

word-length has direct impact on the area cost and speed of various parts of a processor. Any

reduction in the word-length of a processor can lead to a significant improvement of overall effi-

ciency. The proposed approach supports the MWL scheme that allows using multiple datatypes

with different word-lengths in the customized processor. Although using multiple word-lengths

may increase the complexity of the hardware realization and the optimization problem, it also

increases the potential of reaching more efficient solutions.

The second objective is to improve the efficiency of the processor architecture by customizing

the depths of the register-files. One register-file is dedicated to each selected word-length. The

minimum depth required for each register-file depends on the application and the word-length

allocation. In addition to the area usage, the depths of the register-files also impact the bitwidth

required to index the registers in the instruction and consequently the bitwidth of the instructions

and related memory units.

The third objective is to improve the efficiency of the design by customizing the architecture of

the functional units. There are usually many possible architectures to realize a unique operator.

The latency, area cost and throughput of the operators may vary for the selected architecture. In

this work, one of the issues considered in the optimization algorithm is to select the best architec-

ture to implement the hardware operator. The number of hardware operators needed to be imple-

mented in the execution stage depends on the number of data types and the operators which are

94

required for each data type. Both of these factors are determined through the design space explo-

ration in the proposed optimization algorithm. The architecture of each operator can also be op-

timized based on application requirements and the word-length allocation.

6.2.2 Illustration of the objectives

In this subsection, we illustrate how the three objectives are met by our optimization method us-

ing a design example. Figure 6.2 illustrates an example circuit that performs the following calcu-

lations:

 ,

 ,

 (6.1)

The input values are assumed to be in the range of [0,128). Using the approach described in

Chapter 4, the error model of the example circuit is calculated as follows:

 (6.2)

 where {

,

 {

,

 {

,

 {

,

 {

,

95

 {

,

 {

The value represents the fractional word-length allocated to the signal s.

We start with the word-length allocation, which is the first objective of the proposed method.

Analyzing the error model reveals that the five multiplications that lie within the path of calculat-

ing z1 must be much wider than the other operations in the application when the same accuracy is

requested for all outputs. For instance, assume that 8-bit fractional accuracy is requested for all

outputs. Solving the error inequalities in (6.2) shows that at least 54 bits are required for a, b, s1,

s2, s3, and s4 to meet the requested accuracy at output z1 and to provide the necessary integer

word-length for the signals. This value is obtained by assuming a uniform word length for all

signals to simplify the calculations and by solving the first inequality of (6.2). However, 26 frac-

tional bits are enough for the b, c, d, e, s5, s6 and s7 signals to guarantee 8-bit accuracy at output

z2 and z3. The integer word-length of the signals is taken into account in these calculations. Four-

teen bits are required for the integer part of signals s1, s5, s6, and s7 while the integer part of sig-

nals s2, s3, and s4 should be at least 21, 28 and 35 bits, respectively.

A single datatype processor that can calculate the above example must have a datapath that is at

least 54 bits wide. This is, in fact, the realization of the UWL approach in the processor domain.

The register-file, inter-stage signal routes and the hardware operators in the functional unit, in-

cluding the multiplier, must also be able to handle this bitwidth. However, we know that 26-bits

are enough for three of the multiplications and 7 signals that only participate in the calculation of

the z1 and z2 outputs. Converting the processor to a double-word-length architecture with 26- and

54- bit datatypes can reduce the hardware area of the register-files. Moreover, adding a separate

26-bit multiplier to the processor may enable the design to use more diverse types of multiplier

architectures. All these decisions need an effective exploration of a large search space. The men-

tioned word-length allocation possibilities show the importance of the first objective.

The word-length allocation also has a direct impact on the minimum necessary depth of the regis-

ter-files as the second objective. In microprocessors, more than one variable can be mapped to the

96

same physical register if there is no time overlap between their living times in the application

code. Register allocation algorithms are normally used in compilers to map the registers to the

application variables. The register allocation result determines the minimum required depth for

the register-files. In the proposed method, variables are divided into different word-lengths in

MWL word-length allocation solutions. A change in word-length allocation can change effective

factors in the register allocation and can eventually change the minimum required depths of the

register-file. For instance, if a 54-bit word-length is selected for variable a and a 26-bit length is

selected for variable e, then variable a cannot be mapped to the 26-bit register file. These con-

straints are considered in the modified register allocation algorithm of the proposed optimization

algorithm described in Section 6.4. Hence, the register allocation and the required depth of the

register-files depend on the word-length allocation. The register-file depth must be evaluated and

considered during the word-length selection. In the proposed algorithm, the word-length alloca-

tion is performed through design space exploration. The fitness of each candidate solution is

evaluated by measuring the effective factors on the efficiency including the depth of the register-

files.

mult1

mult4

s1

s2

mult2

mult3

s3

mult6

mult5

s4

mult7mult8

abcde

add1

z2

add2

z3

z1

s5
s6

s6
s7

Figure 6.2 Example circuit

97

The third objective focuses on the architecture of complex functions. In this work, we limit our

explorations to the multipliers as the most widely used complex function in order to simplify the

presentation. Hardware multipliers are used in most modern embedded processors since multipli-

cation is a basic operation in most DSP and image processing applications. So, the proposed

method searches for the most efficient multiplier architectures to integrate into the customized

processor. However, all proposed procedures can be easily extended to cover other complex func-

tions such as division and logarithm. A multiplier can be implemented by various architectures

with different efficiency characteristics. In this work, we consider three well known architectures:

the basic combinational multiplier, the multi-cycle shift and add multiplier and the pipelined shift

and add multiplier.

The multi-cycle and the pipeline architectures divide the multiplier datapath into n fragments,

where n is less than or equal to the bitwidth of the operands. When n is equal to the width of the

operands, the multi-cycle architecture becomes a fully-serial shift and add multiplier. The case

n=1 corresponds to the combinational architecture. For multi-cycle multipliers, a larger n means

smaller hardware area and latency due to less calculation in each clock at the expense of more

clock cycles to complete a calculation. The three mentioned architectures are examined for any

requested multiplier unit. Let n be the number of stages in multi-cycle and pipeline architectures,

then n is the other configurable parameter that is explored by the optimization algorithm. The

hardware cost of each candidate architecture is measured separately. The results are given to the

optimization algorithm as tables to facilitate the overall cost estimation.

The operations of shorter bitwidth can always be calculated in wider hardware operators. For

example, an 8-bit addition can be calculated using a 10-bit adder. Adders/subtractors and logical

operators are small and fast enough to be always implemented as combinational circuits. There-

fore, a single, wide hardware operator is sufficient for operations on both narrow and wide data

types. However, for complex operators such as multipliers, a wider bitwidth implies a considera-

bly larger hardware area and/or longer latency. Hence, having multiple hardware operators of

different sizes for the complex functions may improve the overall efficiency. First, this allows

faster and more efficient processing for the shorter data types. Second, the wider operators are

freed from processing short data types and can thus be implemented more efficiently as multi-

cycle operations.

98

The design space of the multiplier architecture depends on the word-length allocation. Therefore,

exploration for the best multiplier architecture should be carried out based on a known word-

length allocation. To show how different function architectures may be used in a customized pro-

cessor, we give two possible solutions for the multiplier of the Figure 6.2 example. A 2-datatype

configuration is selected for bitwidth configuration, with signals a, b, s1, s2, s3, and s4 assigned

to the 54-bit type and the rest to the 26-bit type.

Figure 6.3 illustrates these two solutions. The first solution uses a single hardware multiplier unit

that is 54 bits wide. Figure 6.3a represents the time scheduling of the instructions using this solu-

tion. In all experiments, the throughput of the execution is supposed to have the highest priority.

Therefore, the search space of the function architectures is limited to those that do not require

extra clock cycles. Different multiplications must be calculated in successive clock cycles as

shown in Figure 6.3a. If a single multiplier is used in the processor, the selected architecture must

support a throughput of one multiplication per clock cycle to avoid pipeline stalls.

Either combinational or pipelined multiplier architectures can support this throughput. The time

scheduling of Figure 6.3a is based on using a combinational architecture for the processor multi-

plier. A 54-bit combinational multiplier is large and slow enough to become the critical path in

most embedded processors.

The second solution uses a 54-bit multiplier for mult1 to mult5 and a 26-bit multiplier for mult6

to mult8. The time schedule of this solution is presented in Figure 6.3b. Using separate multipli-

ers combined with appropriate ordering of the instructions allows 2-cycle gaps for completion of

the calculation in each multiplier. This extra cycle flexibility enables the use of a 2-cycle archi-

tecture for the multipliers. Moving from combinational to 2-cycle architecture causes significant

reduction of hardware resources and latency. The latter leads to an increase of the clock frequen-

cy when the multiplier is in the critical path.

This example demonstrates how multiple hardware units for a complex operator can improve the

efficiency of the design. The optimization algorithm should explore the possible architectures to

find the optimal solution that achieves the highest efficiency.

99

clk

add1

add2

54x54 bit multiplier:

54x54 bit Adder:

Operation

Latency

Operation

Latency

(a)

clk

add1

add2

2-cycle 54x54

bit multiplier

Operation

Latency

(b)

2-cycle 26x26

bit multiplier

Operation

Latency

Slack

mult’’

mult’

add

mult

mult1

mult6

mult2

mult7

mult3

mult4

mult8

mult5

mult’1

mult’2

mult’3

mult’4

mult’5

mult’’6

mult’’7

mult’’8

addmult’multadd mult’’

2
 c

lo
c
k
s
 f
o

r
m

u
lt
’1

Total execution time of

the second solution

Total execution time

of the first solution

Figure 6.3 Time scheduling of two possible solutions with (a) single multiplier (b) double multi-

pliers.

100

Optimization environment

Application in

GIMPLE intermediate

representation

Floating-point

Application

in C

Optimization

Algorithm

GCC Compiler

Register-File(s)

Word-length(s)

 Machine Code

PolyCuSP environment

PolyCuSP

Synthesizable

HDL

MATLAB

Simulation Model

HDL SimulatorHDL Synthesizer
In-system

Simulation

- System-Level

 Verification
- Low-level

 validation

- Performance

 measurement

- Area and timing

 measurement

Requested

Accuracy

 Area and

Latency

Estimation

Tables

Machine code synthesizer

Register-File(s)

Depth(s)

Functional Unit

Architecture

Register

Allocation

ISA Description

Figure 6.4 The design flow in the proposed method.

6.3 Design flow integration

We propose a complete design flow that incorporates the optimization and the custom processor

generation environments. The optimization environment is mostly developed in MATLAB. This

environment consists of the optimization algorithm, which will be described in Section 6.4, and

some peripheral units such as cost estimation tables. The processor generation environment cre-

ates the customized architecture based on the selected solution in the optimization algorithm.

This section discusses the design flow in more detail.

6.3.1 Overview

The design flow is illustrated in Figure 6.4. The optimization process starts by providing a C ap-

plication by the designer. All fractional variables are represented in floating-point in this input

101

code. In the first step, the input C code is converted into Gimple, which is an intermediate repre-

sentation of the GCC compiler, similar to a simplified C code. This conversion significantly facil-

itates code interpretation. The Gimple code is then given to the optimization algorithm to find a

solution to address the customization objectives described in Section 6.2. The selected solution is

finally given to PolyCuSP to generate a corresponding architecture in RT-level VHDL.

The area and latency estimation tables are given to the optimization algorithm to be used for the

fitness evaluation of the candidate solutions. These tables contain the cost estimations of different

possible values of the customizable elements. For example, one important table gives the estimat-

ed area and maximum achievable frequency for different word-lengths of the datapath regardless

of the architecture of the other parts of functional unit. The datapath word-length is equal to the

word-length of the longest datapath. The machine code synthesizer is like a compiler backend

that converts the intermediate representation of the application into the machine code. The regis-

ter allocation solution is generated by the optimization algorithm and given to this unit. The gen-

erated machine code is sent to PolyCuSP to store it in the instruction memory of the output pro-

cessor.

6.3.2 Custom processor design environment

The proposed method is eventually evaluated by implementing the selected solutions on a real

processor. In this chapter, we use PolyCuSP to generate the processor architecture based on the

selected customization solution. As described in Chapter 3, PolyCuSP provides a fast custom

processor design method that largely outperforms the traditional method of manual processor

design from scratch. In addition, PolyCuSP supports broad flexibility in microarchitectural and

instruction-set customizations [76].

The proposed customizations are realized through specific parameters in the processor descrip-

tion. PolyCuSP support the flexibility in configurable parameters that is required for the proposed

customizations. Other parts of the architecture are fixed in our experiments. For example, the

MIPS II ISA is used as the fixed instruction-set that is supported by the output processors and the

machine code synthesizer also works based on this instruction set. The PolyCuSP environment

offers automatic generation of synthesizable RT-level VHDL code, assembler, and MATLAB

simulation model from the given processor description.

102

6.4 Optimization algorithm

This section presents a detailed description of the proposed optimization algorithm. The optimi-

zation algorithm contains two nested genetic algorithm (GA) procedures for word-length alloca-

tion (Objective 1) and a dedicated search algorithm to find the best architecture for the functional

units (Objective 3). Furthermore, the algorithm has a fitness evaluation routine that determines

the fitness of the complete candidate solution using cost and performance estimation. Register

allocation is a necessary part of the fitness evaluation that also addresses the second objective of

the proposed method. The flow chart of this algorithm is illustrated in Figure 6.5. The following

definitions facilitate elaboration of each part of the algorithm:

 .

 * +

The different parts of the proposed algorithms are described in the following subsections.

6.4.1 The first- and second-level genetic algorithms

The algorithm starts by selecting N in the main loop that contains all other parts of the optimiza-

tion algorithm. Then, the algorithm performs N iterations (one for each possible number of word-

lengths). In our experiments, we selected N = 4 as the upper-bound, in order to provide a wide

range of flexibility to the optimization algorithm. In each iteration, the design space is explored

for N datatypes. After completion of the fourth round, the best solution is sent to PolyCuSP to

generate the corresponding processor architecture. The solution also includes the register alloca-

tion information that is used to generate the machine code of the application from the given

GIMPLE code.

The two nested GAs are named GA1 and GA2. On the first level, GA1 searches for the best

datatype assignment scheme (Vj). Each chromosome is a string composed of S elements, while

each element determines the candidate datatype for the corresponding variable in that chromo-

some. The first generation is generated randomly. After generating a population, the second GA

procedure starts.

103

GA1: Selecting word length

assignment candidate:

{V1..VS}

S: number of variavles

Vj {1 …N }

GA2: Selecting word length

candidates: {W1..WN}

(heuristic)

Application

Register allocation

Hardware cost

measurement

Performance

Measurement

Fitness formulation

Termination criteria

met?

Y

N

Fitness evaluation

N=N+1

N>3

Y

N

Selecting functional unit

architecture

Register-File(s) Word-Lengths

Register-File(s) Depth(s)

Functional Unit Architecture

Register Allocation

Requested Accuracy
Area and Latency

Estimation Tables

Figure 6.5 The flow chart of the optimization algorithm

104

On the second-level, GA2 finds the optimal word-length(s) for the datatypes () for each chro-

mosome of the given population determined by the first GA. In this phase, each chromosome is

composed of N' ≤ N word-length values for the N datatypes. N' is less than N when two or more

word-lengths in a chromosome have the same values. To limit the search space, the lower bound

and upper bound values of each datatype are determined analytically before the start of the GA2.

Only the values between the lower-bound and the upper-bound are searched in the GA2. The

lower-bound value of each datatype is calculated by assuming infinite word-length for all other

data types and solving the output error model with this assumption. The lower-bound values of

all datatypes are calculated first. Then the upper-bound word-length of each datatype is calculat-

ed by assuming the lower bound word-length for all other datatypes and the output error model is

solved based on this assumption. The upper- and lower-bound word-lengths are highly dependent

on the datatype assignment scheme. This means that these boundary values may change for each

chromosome of the given population determined by GA1. Hence, for each chromosome, the

boundary values must be calculated first.

Then, GA2 explores the range between the boundary values of all datatypes to find the best word-

length combination for all datatypes. Each chromosome in GA2 represents a candidate solution

for the word-length of the datatypes, i.e., a candidate W vector. With W and V vectors as the can-

didates of the first- and second-level chromosomes, the word-length of each variable in the appli-

cation can be identified as

, (6.3)

where is the word-length assigned to the j
th

 variable. So, the combination of one chromo-

some of GA1 and one chromosome of GA2 gives a complete candidate solution for word-length

(or datatype) allocation.

6.4.2 Architecture selection

The next step consists of finding the best architecture for each candidate word-length allocation

solution. This algorithm can be extended to any complex function. In this work we concentrate on

exploring the best architectures for the multipliers.

105

The developed algorithm, which is presented in Figure 6.6, starts by listing the word-lengths of

all required multiplications in the given application. For example, in a 2-word-lengths solution

with w1 and w2, at most three multipliers with w1×w1, w1×w2 and w2×w2 widths may be re-

quired. This architecture selection algorithm is executed for each candidate of GA2. The afore-

mentioned list of required multiplication widths depends on the word-length allocation and the

application. The narrower multiply operations can always be calculated on a wider multiplier.

Therefore, this list may differ from the hardware multiplier units that are in the processor.

In the next step, the widest required multiplication operation is identified using the application

and the word-length allocation information given by the GAs. There should be a multiplier unit

that can handle this widest multiplication. So, the width of the first multiply unit is known. This

multiplier is enough to handle all multiplications in the application but it does not necessarily

represent an optimal solution. Adding a shorter multiplier unit may open new areas in the design

space of the multipliers. This design space expansion can enable the use of more efficient archi-

tectures just like the example shown in Figure 6.3. Therefore, the algorithm evaluates addition of

shorter multiplications based on the list of required multiplication widths in the application using

an exhaustive search.

For each candidate solution, each multiplication operation is assigned to the shortest multiplier

that exists in that solution. For example, assume that there are two datatypes with w1 and w2

widths while w1>w2. If multiplications with all three possible widths exist in the application,

then a multiplier with w1×w1 width must exist in the processor. If a solution suggests adding a

w1×w2 multiplier, then w2×w2 multiplications can be assigned to the w1×w2 multiplier.

Different possible architectures are examined for each multiplier of a candidate solution. We only

consider combinational, pipeline and multi-cycle multipliers, in this work. The architectures that

do not impose further stall cycle in the execution time are evaluated. The total area cost and max-

imum latency of each solution is estimated. Comparing these estimations, the search algorithm

selects the best solution. The designer-defined priorities of area cost and performance are consid-

ered in the selection criteria.

106

Store all multiplication word-lengths present in the application into vector M_width.

Find the widest multiplication word-length and add it to the list of candidate word-

length for the hardware multipliers in vector HM_width

for all possible combinations of the elements in the M_width (excluding the widest

one found in Step2)

{

Add the selected combination of the bitwidths to the HM_width

Find the best architectures for the multipliers with word-lengths that exist in

HM_width using exhaustive search (each element in the HM_width means a hard-

ware multiplier with the same word-length).

Delete all element of the HM_width except the widest one (clear the vector for the

next candidate)

}

Figure 6.6 The multiplier selection algorithm

6.4.3 Fitness function

Now, the algorithm needs to measure the fitness of this candidate solution. The fitness of a solu-

tion is the efficiency that it achieves when implemented. The GA requires a single fitness value

for each chromosome in order to identify more promising areas in the search space. Therefore,

the efficiency must be evaluated as a single value that represents a combination of all important

efficiency metrics. The weight of different efficiency metrics in the fitness calculation can be

adjusted by the designers based on their priorities.

In this work, a formula is developed to calculate a single value to represent the fitness. This for-

mula takes into account four metrics:

107

 : Word-length of the largest datatype. This parameter defines the bitwidth of the major 1.

parts of the datapath.

 : Amount of on-chip memory resources used for the register-files. 2.

 : Estimation of the hardware area used for the multipliers. 3.

 : Estimation of the maximum frequency that can be used by the processor. 4.

The fitness formula is as follows:

 (6.4)

CF, CL, CM, and CA are weighting factors. The fitness value is returned to GA2, where it is stored

for processing. When the fitness evaluation of all chromosomes of one population is completed,

the fitness values are compared to identify the best found candidate solutions for GA2, i.e., the

best W vector. These best found chromosomes are used to generate a fraction of the chromo-

somes in the next generation. Crossover and mutation techniques, which are well-known methods

in GA, are used to generate new chromosomes. This process continues until the termination crite-

rion of GA2 is met. In this work, the termination criterion for both GAs is when no additional

improvement is achieved between two consecutive iterations. The current GA2 searched for the

best W vector for one chromosome given by the first-level. After termination of this GA2, the

best fitness value returns to the first-level. This value is considered as the fitness value of the cor-

responding chromosome in the GA2. For each chromosome in one population of GA1, GA2 is

executed from beginning to the end. When the fitness of all chromosomes in one generation is

evaluated, the next generation is generated using the best found candidates.

This process continues until the termination criterion of GA2 is met. Then, the optimization algo-

rithm terminates and the combination of the best found solutions in the two GA levels (i.e., the

best found V vector and the best W vector found for it) is returned as the final solution found by

the optimization algorithm.

The depth of the register-files is one of the effective factors on the efficiency of the processor

architecture. As mentioned in Section 6.2.1, the second objective of the proposed method is to

improve the efficiency of the processor architecture by customizing this factor. The depth of the

108

register files is determined based on the word-length allocation and the requirements of the appli-

cation. The minimum required depth for the register-files can be found via register allocation of

the target application.

A modified graph coloring algorithm is developed for register allocation. This algorithm assigns

a physical register to each variable of the application and also determines the minimum required

depth of each register file. This algorithm considers the word-length assigned to the variables in

the register assignment process. Hence, the register allocation and the depths of the register-files

depend on the candidate word-length allocation solution given by GA1 and GA2. The modified

graph coloring algorithm avoids allocation of a register to the variable when the bitwidth of

 is narrower than . For example, assume that a GA2 candidate suggests two register files

with bitwidths of and while . If -bit datatype is selected for this variable by

GA1, then the register allocation algorithm cannot assign a -bit register to this variable. Yet,

the algorithm allows allocation of a longer register to a shorter variable. In this case, the simplest

approach to address the register allocation is to use an independent graph coloring algorithm for

each datatype. However, the proposed approach is smarter and yields more efficient results by

allowing the use of a register resource for a shorter variable. The register allocation algorithm is a

part of the fitness evaluation that determines the area cost of the register-files for a given word-

length allocation candidate.

6.5 Experimental results

In addition to the Figure 6.2 example, three well-known benchmark applications were used to

evaluate the proposed customization method. The first application is a 126-tap linear-phase low-

pass FIR filter with direct form II transposed structure. The second application is an RGB-to-

YCrCb converter which is implemented based on the form suggested by the ITU [90]. The third

application is an IIR filter of fourth-order [65]. The Virtex IV FPGA family was selected as the

target platform for implementations and evaluations. ISE 13.2 was used for synthesis and meas-

urements. We gave higher priority to the area usage in the fitness formulation in our experiments.

Regarding Equation (6.4), this means that CF was set to a much smaller value compared to CL,

CM, and CA. The reason is to facilitate demonstration of the effectiveness of the proposed method

by focusing on area minimization as the main optimization goal.

109

Table 6.1 Hardware cost and performance results of the benchmark applications

Application Type of

multipliers

Word-

lengths

[bits]

of

multipliers

Delay of the

multipliers

[clock cycles]

Area Freq. [MHz]

(Imp)

LUTs (Imp*) FFs (Imp)

GPP32
**

 Single_WL 32 1 1 2143 1868 58

FIR

Single_WL 16 1 1 1419 (0%) 630 (0%) 94 (0%)

Combinational 13,18 1 1 1288 (10%) 585 (7.7) 73 (-22.4%)

Pipeline 13,18 1 5 1302 (9.0%) 645 (-2.3%) 141 (50.0%)

Multi-cycle 13,18 2 3,1 1213 (17.0%) 619 (1.8%) 122 (29.8%)

RGB-

YCrCb

Single_WL 18 1 1 1577 (0%) 346 (0%) 76 (0%)

Combinational 14,18 1 1 1413 (11.6%) 307 (12.7%) 74 (2.6%)

Pipeline 14,18 2 5,4 1508 (4.6%) 388 (-11.1%) 133 (75%)

Multi-cycle 14,18 2 2,2 1373 (14.9%) 339 (2.0%) 116 (52.6%)

IIR

Single_WL 12 1 1 1123 (0%) 377 (0%) 142 (0%)

Combinational 9,12 1 1 1034 (8.6%) 331 (13.9%) 136 (-4.2%)

Pipeline 9,12 2 3,2 1090 (3.0%) 364 (3.6%) 191 (34.5%)

Multi-cycle 9,12 2 2,2 977 (14.9%) 352 (7.1%) 177 (24.6%)

Fig. 6.2

example

Single_WL 54 1 1 2933 (0%) 672 (0%) 16 (0%)

Combinational 54,26 1 1 2755 (6.5%) 531 (26.5%) 16 (0%)

Pipeline 54,26 2 2,1 2771 (5.8%) 588 (14.3%) 28 (75%)

Multi-cycle 54,26 2 2,2 2609 (12.4%) 612 (9.8%) 24 (62.5%)

 * Imp: % improvement

** GPP32: A conventional 32-bit non-customized processor with 32-word register-file for comparison

110

Table 6.1 illustrates the hardware cost and the performance results of single-datatype and double-

datatype solutions for the four applications. It also compares the result of employing different

multiplier architectures in the MWL approach.

The results demonstrate that moving from a single-datatype to a 2-datatype architecture can sig-

nificantly improve the area usage and performance of the processor. In these experiments, 8-bit

accuracy was requested for the outputs. The results demonstrate how the architecture of complex

functions can affect the overall efficiency of the design. We illustrate the best found result by

using three different multiplier architectures, separately. New instructions can be fed into the

pipeline multiplier in each clock cycle. However, a multi-cycle multiplier does not accept any

new input until it completes the last calculation. So, the number of stages in pipeline multipliers

can be more than the multi-cycle ones. The pipeline multipliers gave better latency results in the

experiments. Note that customized single-datatype solutions are used as the reference to measure

the improvements. The word-lengths of the processor in these reference designs are adjusted to

the value achieved by UWL word-length optimization. Comparing with the existing processors

with fixed power of two word-lengths can obviously achieve significant improvements.

Figure 6.7 shows the run-time progress of the optimization algorithm for the three mentioned

applications. This figure illustrates how the genetic algorithms converge toward better solutions.

The area and the maximum frequency metrics are measured by synthesizing the best found can-

didate solution of each generation with the ISE tool. The results show that the 2-datatype solu-

tions achieve the best results for the evaluated benchmarks, while the 3- and 4-datatype solutions

can reach very close results in most cases. The main reason is that the benchmark applications are

not large enough to be able to take advantage of more than two datatypes.

Increasing the number of datatypes in a processor can lead to a reduction of the memory usage in

the register-files and some other related area resources. It can also increase the area usage in

some cases such as the multiplexers that select among the register-files in operand read stage.

Hence, there is a trade-off between the savings that more datatypes can achieve and the over-

heads that they imply. Figure 6.7 also shows that increasing the number of datatypes results in a

longer search time for convergence of the GAs. This is due to the fact that adding a new datatype

to the processor significantly expands the search space of the optimization algorithm.

111

Figure 6.7 Run-time progress of the optimization algorithm in each generation of the GA1.

1000

1100

1200

1300

1400

1500

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A
re

a
[L

U
Ts

]

Generation

FIR

1 datatype (N=1)

2 datatypes

3 datatypes

4 datatypes

80

90

100

110

120

130

140

150

160

170

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

M
ax

 F
re

q
u

e
n

cy
 [

M
H

z]

Generation

FIR

1 datatype (N=1)
2 datatypes
3 datatypes
4 datatypes

1000

1100

1200

1300

1400

1500

1600

1700

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
re

a
[L

U
Ts

]

Generation

RGB-YCrCb

1 datatype (N=1)
2 datatypes
3 datatypes
4 datatypes

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M
ax

 F
re

q
u

e
n

cy
 [

M
H

z]

Generation

RGB-YCrCb

1 datatype (N=1)
2 datatypes
3 datatypes
4 datatypes

800

900

1000

1100

1200

1300

1400

1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A
re

a
[L

U
Ts

]

Generation

IIR

1 datatype (N=1)
2 datatypes
3 datatypes
4 datatypes

10

15

20

25

30

35

40

45

50

55

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

M
ax

 F
re

q
u

e
n

cy
 [

M
H

z]

Generation

IIR

1 datatype (N=1)
2 datatypes
3 datatypes
4 datatypes

112

6.6 Conclusion

We proposed a new processor customization method for fixed-point computations. This method

combines the word length optimization with application-specific processor customization. The

word-lengths of the supported datatypes, depth of the register-files, and the architecture of the

functional unit form the customization targets. A multi-level genetic algorithm and a dedicated

fitness evaluation method were developed for the optimization algorithm.

Four benchmark applications were used to evaluate the proposed method. The experimental re-

sults show that, in the selected FPGA platform, moving from a single word-length processor to a

customized double-word-length processor can reduce the area consumption in terms of the num-

ber of LUTs and flip-flops by an average of 14.8% and 5.2%, respectively. The results also show

an average of 42.4% improvement in the speed of the processor by this customization. These re-

sults demonstrate the effectiveness of the proposed customization method.

113

CHAPTER 7 CONCLUSION AND FUTURE WORK

7.1 Summary of the work

In this thesis, we introduced new methodologies, techniques and algorithms to improve the hard-

ware realization of fixed-point computations in hardwired circuits and customizable processors.

We proposed new methods to improve the efficiency of different analyses required for automatic

hardware realization of fixed-point computation.

In the first step, we presented PolyCuSP which is a new processor design environment that is

used for fast and easy custom processor generation. PolyCuSP bridges the gap between architec-

ture description languages (ADLs) and extensible soft processors. The basic goal of designing

PolyCuSP was to have an environment that supports the required flexibility to realize the new

customizations proposed in this thesis and to facilitate design space exploration in a large design

area. PolyCuSP offers full flexibility in instruction-set description, while limiting the datapath

customization to a predefined set of tunable microarchitectural parameters.

We evaluated and compared the design and customization complexities offered by PolyCuSP

with competitive approaches by some experiments. The results demonstrated the efficiency of

applying customization techniques in the proposed environment.

In the second step, we introduced an enhanced finite-precision error modeling approach based on

affine arithmetic that addresses some shortcomings of existing methods and improves their accu-

racy. We demonstrated that there is a common hazard in existing affine arithmetic-based error

modeling approaches. The hazard is linked to early substitution of the signal terms that emerge in

operations such as multiplication and division. We proposed postponed substitution combined

with function maximization to address this problem. We also proposed a modification in the error

propagation process to enhance the error modeling accuracy. An existing word length optimiza-

tion method was reproduced to evaluate the efficiency of this modification. The results demon-

strated that the proposed modification can significantly improve the accuracy of the error estima-

tion at the expense of a negligible complexity overhead.

In the third step, we presented new WLO solutions for the hardware synthesis of fixed-point

computational circuits. These include two fractional word-length selection algorithms and an

114

acceleration technique. While the first FWL selection algorithm follows a progressive search

strategy, the second one uses a tree-shaped search method for fractional width optimization. The

algorithms offer two different time-complexity/cost efficiency trade-off areas. The first algorithm

has polynomial complexity and achieves comparable results with existing heuristic approaches.

The second algorithm has exponential complexity but it achieves near-optimal results compared

to the exhaustive search method.

A set of eight case studies was used to evaluate the proposed methods. The experimental results

show that our simplification technique significantly reduces the complexity of the fractional bit-

width selection problem. Moreover, the results demonstrated considerable improvements in op-

timization run-time and hardware area by using the proposed FWL selections algorithms.

In the last step, we introduced a new processor customization method based on fixed-point word-

length optimization. We proposed a method that for the first time combines word-length optimi-

zation with processor customization. The supported datatype word-lengths, the size of register-

files and the architecture of the functional units are the main target objectives to be optimized by

this method. Accuracy requirements, defined as the worst-case error bound, is the key considera-

tion that must be met by any solution. PolyCuSP was used to realize the processor architecture

based on the solution found in the proposed optimization algorithm.

Four benchmark applications were used to evaluate the efficiency of the proposed method. The

results show that for a specific application, the proposed method can improve the efficiency of

the processor architecture via customizing the word-length, functional unit architecture and regis-

ter-file size.

7.2 Summary of the contributions

This section reviews the contributions of the different parts of the thesis. The main contributions

for the PolyCuSP environment, which was introduced in Chapter 3, are:

 Proposition of a processor design approach that bridges the gap between ADLs and pa-1.

rameterizable processors by combining the former’s instruction-set customization and the

latter’s microarchitectural tuning.

115

 A design environment called PolyCuSP that realizes the proposed idea. PolyCuSP offers a 2.

simplified design and customization process that automates generation of major datapath

elements and interconnection signals from the instruction-set description.

 An original processor description approach that supports definition of multiple register-3.

files, multi-port register-files, and multi-cycle functional units, etc.

These contributions were published in our paper entitled “Customised soft processor design: a

compromise between architecture description languages and parameterisable processors," pub-

lished in IET Computers & Digital Techniques, journal, May 2013, [76].

The main contributions in finite-precision error modeling, which were presented in Chapter 4,

are:

 Illustration of a common hazard in existing AA-based error modeling approaches and 1.

presentation of a solution to address it.

 A modified error propagation method which can effectively improve error model accura-2.

cy.

These contributions were published in the paper entitled "Finite-precision error modeling using

affine arithmetic," presented in IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), May 2013 [84].

The main contributions in word-length optimization for hardwired circuit design, which were

presented in Chapter 5, are:

 An analytical method to simplify the precision analysis process. 1.

 A new polynomial-time semi-analytical algorithm for fractional word-length selection. 2.

 A new exponential-time semi-analytical algorithm for fractional word-length selection 3.

that can reach near-optimal results.

These contributions were published in the paper entitled “Enhanced precision analysis for

accuracy-aware bit-width optimization using affine arithmetic," published in IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, journal, Dec. 2013 [87].

116

The main contributions in WLO-based processor customization, which were presented in Chapter

6, are:

 A novel method to utilize WLO for application-specific customization of microprocessors 1.

by exploring architectural trade-offs.

 A multi-objective genetic algorithm (GA) to optimize the datapath word-length allocation. 2.

 Optimization of functional unit architecture based on the word length information and the 3.

application requirements to prove the design efficiency.

These contributions have been submitted to the journal IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems in a paper entitled "Accuracy-aware processor

customization for fixed-point applications," Jan. 2014 [88].

7.3 Future works

Even though the work described in this thesis has presented multiple contributions in the field of

hardware design for fixed-point computation. Several improvements could be proposed to the

solutions presented and, moreover, many extensions could be provided.

The novel idea of generating customized processors for fixed-point applications introduces a fer-

tile ground for research. This idea, which was mainly presented in Chapter 5, offers a combina-

tion of fixed-point optimization and processor customization. We demonstrated how customiza-

tion of specific elements in processor architecture can improve the overall efficiency. However,

the customizable elements are limited in our experiments. Therefore, the range of customizations

can be extended to other units.

For instance, we introduced a dedicated search-based routine to find the best architecture for

functional units in an optimization algorithm, presented in Chapter 5. We demonstrated how

combining this routine with WLO processes can enhance the achievable design efficiency. How-

ever, we limited the functional units to multipliers for which we considered three specific archi-

tecture options. One possible future work is to extend the list of the functional units whose archi-

tectures can be customized in the proposed method. Other complex functions, such as division,

exponential and logarithm, are required in many applications. These functions can also be added

117

to the functional unit selection algorithm. For this purpose, the most potentially efficient hard-

ware architectures for each function must first be developed. The hardware efficiency and accu-

racy of each candidate architecture should be measured for different word-lengths. This infor-

mation should be given to the optimization algorithm to be used for the efficiency measurements.

The proposed customizations were applied on a simple pipeline processor architecture. An inter-

esting future work would be to use the same idea for more advanced architectures such as

VLIWs. The complexity of the problem may change in the new architectures. For example, using

multiple parallel pipelines in VLIW architectures introduces new parameters to the optimization

algorithm that enlarges the search space.

The idea of using fixed-point optimization for processor customization was evaluated for the first

time in this thesis. For this first work, we used a genetic algorithm, which is a well-known gener-

ic heuristic method, as the optimization algorithm. GA is an appropriate choice for the early de-

velopments to evaluate the potentials of the idea. Although the capabilities of the GA to find the

optimal solution are widely proven, it does not have the best search speed. This makes the opti-

mization process very slow for large designs. A highly useful future work would be to develop a

dedicated heuristic algorithm for this problem to reduce the execution time of the optimization

algorithm.

We have only considered the area usage and latency as the effective efficiency factors in our de-

velopment and experiments. In other words, we limited the optimization goal to minimization of

the hardware area and latency of the customized processor. However, the power consumption is

the other important efficiency factor that can be considered in the optimization. For this purpose,

a new procedure could be added to the optimization algorithm to estimate the power consumption

of a candidate customization solution. Moreover, the fitness function should be modified so that

the estimated power consumption can properly contribute in the fitness calculation.

118

REFERENCES

[1] H. Keding, M. Willems, M. Coors, and H. Meyr, "FRIDGE: a fixed-point design and simulation

environment," in Proceedings of Design, Automation and Test in Europe, 1998, pp. 429-435.

[2] L. Zhang, Y. Zhang, and W. Zhou, "Tradeoff between approximation accuracy and complexity for

range analysis using affine arithmetic," Journal of Signal Processing Systems, vol. 61, pp. 279-

291, 2010.

[3] G. A. Constantinides and G. J. Woeginger, "The complexity of multiple wordlength assignment,"

Applied Mathematics Letters, vol. 15, pp. 137-140, 2002.

[4] K. Karuri, R. Leupers, G. Ascheid, and H. Meyr, "A generic design flow for application specific

processor customization through instruction-set extensions (ISEs)," in International Workshop on

Embedded Computer Systems: Architectures, Modeling, and Simulation, 2009, pp. 204-214.

[5] C. Galuzzi and K. Bertels, "The instruction-set extension problem: A survey," Springer Journal of

Reconfigurable Computing: Architectures, Tools and Applications, pp. 209-220, 2008.

[6] M. K. Jain, M. Balakrishnan, and A. Kumar, "ASIP design methodologies: survey and issues," in

International Conference on VLSI Design, Jan. 2001, pp. 76-81.

[7] J. Turley, "Embedded systems survey: who uses custom chips," Embedded Systems Programming,

vol. 18, pp. 39-42, 2005.

[8] J. Henkel, "Closing the SoC design gap," IEEE Journal of Computers, vol. 36, pp. 119-121, 2003.

[9] P. Yiannacouras, J. G. Steffan, and J. Rose, "Exploration and customization of FPGA-based soft

processors," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 26, pp. 266-277, 2007.

[10] P. Yiannacouras, J. G. Steffan, and J. Rose, "Application-specific customization of soft processor

microarchitecture," in International Symposium on Field Programmable Gate Arrays, Monterey,

California, USA, 2006, pp. 201-210.

[11] R. Dimond, O. Mencer, and W. Luk, "CUSTARD - a customisable threaded FPGA soft processor

and tools," in International Confference on Field Programmable Logic and Applications, Aug.

2005, pp. 1-6.

[12] D. Sheldon, R. Kumar, R. Lysecky, F. Vahid, and D. Tullsen, "Application-specific customization

of parameterized FPGA soft-core processors," in IEEE/ACM International Conference on

Computer-Aided Design, 2006, pp. 261-268.

119

[13] S. Padmanabhan, R. K. Cytron, R. D. Chamberlain, and J. W. Lockwood, "Automatic application-

specific microarchitecture reconfiguration," in 20th International Parallel and Distributed

Processing Symposium, 2006, pp. 1-8.

[14] M. A. R. Saghir, M. El-Majzoub, and P. Akl, "Datapath and ISA customization for soft VLIW

processors," in Proc. Int. Conf. Reconfigurable Computing and FPGAs, 2006, pp. 1-10.

[15] O. Hebert, I. C. Kraljic, and Y. Savaria, "A method to derive application-specific embedded

processing cores," in Workshop on Hardware/Software Codesign, 2000, pp. 88-92.

[16] M. Kuulusa, J. Nurmi, J. Takala, P. Ojala, and H. Herranen, "A flexible DSP core for embedded

systems," IEEE Journal of Design & Test of Computers, vol. 14, pp. 60-68, 1997.

[17] D. Fischer, J. Teich, M. Thies, and R. Weper, "Efficient architecture/compiler co-exploration for

ASIPs," in International Conference on Compilers, Architecture, and Synthesis for Embedded

Systems, CASES'02 2002, pp. 27-34.

[18] M. Itoh, S. Higaki, J. Sato, A. Shiomi, Y. Takeuchi, A. Kitajima, and M. Imai, "PEAS-III: an

ASIP design environment," in International Conference on Computer Design, Sept. 2000, pp.

430-436.

[19] P. Biswas, S. Banerjee, N. Dutt, L. Pozzi, and P. Ienne, "ISEGEN: generation of high-quality

instruction set extensions by iterative improvement," in Proceedings of Design, Automation and

Test in Europe 2005, pp. 1246-1251

[20] C. Galuzzi, E. M. Panainte, Y. Yankova, K. Bertels, and S. Vassiliadis, "Automatic selection of

application-specific instruction-set extensions," in Conference of Hardware/Software Codesign

and System Synthesis, 2006, pp. 160-165.

[21] K. Atasu, L. Pozzi, and P. Ienne, "Automatic application-specific instruction-set extensions under

microarchitectural constraints," in Proceedings of Design Automation Conference. , 2003, pp.

256-261.

[22] R. Kastner, A. Kaplan, S. O. Memik, and E. Bozorgzadeh, "Instruction generation for hybrid

reconfigurable systems," ACM Transaction on Design Automation of Electronic Systems, vol. 7,

pp. 605-627, 2002.

[23] N. T. Clark, H. Zhong, and S. A. Mahlke, "Automated custom instruction generation for domain-

specific processor acceleration," IEEE Transactions on Computers, vol. 54, pp. 1258-1270, 2005.

[24] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, "Custom-instruction synthesis for extensible-

processor platforms," IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 23, pp. 216-228, 2004.

120

[25] L. Pozzi, K. Atasu, and P. Ienne, "Exact and approximate algorithms for the extension of

embedded processor instruction sets," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 25, pp. 1209-1229, 2006.

[26] R. E. Gonzalez, "Xtensa: a configurable and extensible processor," IEEE Micro, vol. 20, pp. 60-

70, 2000.

[27] J.-H. Yang, et al., "MetaCore: an application specific DSP development system," in Design

Automation Conference, Apr. 2000, pp. 800-803.

[28] I. D. L. Anderson and M. A. S. Khalid, "SC Build: a computer-aided design tool for design space

exploration of embedded central processing unit cores for field-programmable gate arrays," IET

Computers & Digital Techniques, vol. 3, pp. 24-32, 2009.

[29] A. Chattopadhyay, H. Meyr, and R. Leupers, "LISA: A uniform ADL for embedded processor

modelling, implementation and software toolsuite generation," in Processor Description

Languages, P. Mishra and N. Dutt, Eds., ed: Morgan Kaufmann, 2008, pp. 95-130.

[30] P. Mishra and N. Dutt, "Architecture description languages for programmable embedded

systems," IEE Proceedings of Computers and Digital Techniques, vol. 152, pp. 285-297, 2005.

[31] A. Fauth, J. Van Praet, and M. Freericks, "Describing instruction set processors using nML," in

European Design and Test Conference, 1995, pp. 503-507.

[32] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau, "EXPRESSION: a language

for architecture exploration through compiler/simulator retargetability," in Design, Automation

and Test in Europe Conference and Exhibition, 1999, pp. 485-490.

[33] P. Mishra, A. Kejariwal, and N. Dutt, "Synthesis-driven exploration of pipelined embedded

processors," in International Conference on VLSI Design, 2004, pp. 921-926.

[34] V. Zivojnovic, S. Pees, and H. Meyr, "LISA-machine description language and generic machine

model for HW/SW co-design," in VLSI Signal Processing Workshop, 1996, pp. 127-136.

[35] J. Kairus, J. Forsten, M. Tommiska, and J. Skytta, "Bridging the gap between future software and

hardware engineers: a case study using the Nios softcore processor," in IEEE Frontiers in

Education, Nov. 2003, pp. 1-5.

[36] S. Changchun and R. W. Brodersen, "Automated fixed-point data-type optimization tool for signal

processing and communication systems," in 41st Design Automation Conference 2004, pp. 478-

483.

[37] A. A. Gaffar, O. Mencer, and W. Luk, "Unifying bit-width optimisation for fixed-point and

floating-point designs," in 12th IEEE Symposium on Field-Programmable Custom Computing

Machines, 2004, pp. 79-88.

121

[38] D. U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk, and G. A. Constantinides,

"Accuracy-guaranteed bit-width optimization," IEEE Transactions on Computer-Aided Design

Integration Circuits and Systems, vol. 25, pp. 1990-2000, 2006.

[39] P. Yu, K. Radecka, and Z. Zilic, "An efficient method to perform range analysis for DSP circuits,"

in International Conference on Electronics, Circuits, and Systems (ICECS), 2010, pp. 855-858.

[40] S. Roy and P. Banerjee, "An algorithm for trading off quantization error with hardware resources

for MATLAB-based FPGA design," IEEE Transactions on Computers, pp. 886-896, 2005.

[41] A. Benedetti and P. Perona, "Bit-width optimization for configurable DSP's by multi-interval

analysis," in Proceedings of Signals, Systems and Computers Conference, 2000, pp. 355-359

[42] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, "Wordlength optimization for linear digital

signal processing," IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 22, pp. 1432-1442, 2003.

[43] D. Menard, D. Chillet, and O. Sentieys, "Floating-to-fixed-point conversion for digital signal

processors," EURASIP Journal on Applied Signal Processing, vol. 2006, 2006.

[44] K. Seehyun and S. Wonyong, "A floating-point to fixed-point assembly program translator for the

TMS 320C25," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, vol. 41, pp. 730-739, 1994.

[45] K. Ki-Il, K. Jiyang, and S. Wonyong, "AUTOSCALER for C: an optimizing floating-point to

integer C program converter for fixed-point digital signal processors," IEEE Transactions on

Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, pp. 840-848, 2000.

[46] K. Ki-Il, K. Jiyang, and S. Wonyong, "A floating-point to integer C converter with shift reduction

for fixed-point digital signal processors," in IEEE International Conference on Acoustics, Speech,

and Signal Processing, 1999, pp. 2163-2166 vol.4.

[47] G. Caffarena, G. A. Constantinides, P. Y. K. Cheung, C. Carreras, and O. Nieto-Taladriz,

"Optimal combined word-length allocation and architectural synthesis of digital signal processing

circuits," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, pp. 339-343,

2006.

[48] J. A. Clarke, G. A. Constantinides, and P. Y. K. Cheung, "Word-length selection for power

minimization via nonlinear optimization," ACM Transactions on Design Automation of Electronic

Systems (TODAES), vol. 14, p. 39, 2009.

[49] R. Moore, Interval Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1966.

122

[50] J. Cong, K. Gururaj, B. Liu, C. Liu, Z. Zhang, S. Zhou, and Y. Zou, "Evaluation of static analysis

techniques for fixed-point precision optimization," in IEEE Symposium on Field Programmable

Custom Computing Machines, 2009, pp. 231-234.

[51] C. F. Fang, R. A. Rutenbar, and T. Chen, "Fast, accurate static analysis for fixed-point finite-

precision effects in DSP designs," in IEEE/ACM conf. Comput.-aided design (ICCAD'03), 2003,

pp. 275-282.

[52] W. Osborne, R. Cheung, J. Coutinho, W. Luk, and O. Mencer, "Automatic accuracy-guaranteed

bit-width optimization for fixed and floating-point systems," in Conference on Field

Programmable Logic and Applications, 2007, pp. 617-620.

[53] S. Kim, K. I. Kum, and W. Sung, "Fixed-point optimization utility for C and C++ based digital

signal processing programs," IEEE Transactions on Circuits and Systems II: Analog and Digital

Signal Processing, vol. 45, pp. 1455-1464, 1998.

[54] G. A. Constantinides, "Word-length optimization for differentiable nonlinear systems," ACM

Transactions on Design Automation of Electronic Systems (TODAES), vol. 11, pp. 26-43, 2006.

[55] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and I. Bolsens, "A methodology and design

environment for DSP ASIC fixed point refinement," in Design, Automation and Test in Europe

Conference and Exhibition, , 1999, pp. 271-276.

[56] G. Caffarena, "Combined Word-Length Allocation and High-Level Synthesis of Digital Signal

Processing Circuits," Ph.D Dissertation, E.T.S.I. Telecommunication (UPM), 2008.

[57] J. A. Lopez, G. Caffarena, C. Carreras, and O. Nieto-Taladriz, "Fast and accurate computation of

the roundoff noise of linear time-invariant systems," IET Circuits, Devices & Systems, vol. 2, pp.

393-408, 2008.

[58] G. Caffarena, C. Carreras, J. A. Lopez, and A. Fernandez, "SQNR estimation of fixed-point DSP

algorithms," EURASIP Journal of Advanced Signal Process, vol. 2010, pp. 1-12, 2010.

[59] J. A. Lopez, C. Carreras, and O. Nieto-Taladriz, "Improved interval-based characterization of

fixed-point LTI systems with feedback loops," IEEE Transactions on Computer-Aided Design

Integration Circuits and Systems, vol. 26, pp. 1923-1933, 2007.

[60] A. B. Kinsman and N. Nicolici, "Finite precision bit-width allocation using SAT-modulo theory,"

in Design, Automation and Test in Europe (DATE '09), 2009, pp. 1106-1111.

[61] L. Zhang, Y. Zhang, and W. Zhou, "Floating-point to fixed-point transformation using extreme

value theory," in IEEE/ACIS International Conference on Computer and Information Science,

2009, pp. 271-276.

123

[62] D. Boland and G. A. Constantinides, "Bounding variable values and round-off effects using

Handelman representations," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 30, pp. 1691-1704, 2011.

[63] M. A. Cantin, Y. Savaria, and P. Lavoie, "A comparison of automatic word length optimization

procedures," in IEEE International Symposium on Circuits and Systems, ISCAS'02, 2002, pp. 612-

615

[64] B. Le Gal and E. Casseau, "Word-length aware DSP hardware design flow based on high-level

synthesis," Journal of Signal Processing Systems, vol. 62, pp. 341-357, 2011.

[65] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, "Optimum and heuristic synthesis of multiple

word-length architectures," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 13, pp. 39-57, 2005.

[66] D. Menard, N. Herve, O. Sentieys, and H.-N. Nguyen, "High-Level synthesis under fixed-point

accuracy constraint," Journal of Electrical and Computer Engineering, vol. 2012, p. 14, 2012.

[67] H.-N. Nguyen, D. Ménard, and O. Sentieys, "Novel algorithms for word-length optimization," in

European Signal Processing Conference, 2011, pp. 1944-1948.

[68] P. D. Fiore and L. Li, "Closed-form and real-time wordlength adaptation," in IEEE Conference

Acoustics, Speech, and Signal Processing, 1999, vol.4, pp. 1897-1900

[69] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, "Optimum wordlength allocation," in IEEE

Symp. Field-Programmable Custom Computing Machines, 2002, pp. 219-228.

[70] P. Yu, K. Radecka, and Z. Zilic, "Optimization of imprecise circuits represented by Taylor series

and real-valued polynomials," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 29, pp. 1177-1190, 2010.

[71] D. U. Lee and J. D. Villasenor, "A bit-width optimization methodology for polynomial-based

function evaluation," IEEE Transactions on Computers, vol. 56, pp. 567-571, 2007.

[72] H.-N. Nguyen, D. Menard, and O. Sentieys, "Design of optimized fixed-point WCDMA receiver,"

in European Signal Processing Conference (EUSIPCO), Aug. 2009, pp. 993-997.

[73] S. A. Wadekar and A. C. Parker, "Accuracy sensitive word-length selection for algorithm

optimization," in International Conference on Computer Design: VLSI in Computers and

Processors 1998, pp. 54-61.

[74] N. Herve, D. Menard, and O. Sentieys, "Data wordlength optimization for FPGA synthesis," in

IEEE Workshop on Signal Processing Systems Design and Implementation, 2005, pp. 623-628.

124

[75] G. Caffarena, J. A. Lopez, C. Carreras, and O. Nieto-Taladriz, "High-level synthesis of multiple

word-length DSP algorithms using heterogeneous-resource FPGAs," in Proceedings of FPL'06,

2006, pp. 1-4.

[76] S. Vakili, J. M. P. Langlois, and G. Bois, "Customised soft processor design: a compromise

between architecture description languages and parameterisable processors," IET Computers &

Digital Techniques, vol. 7, pp. 122-131, 2013.

[77] A. Solomatnikov, A. Firoozshahian, O. Shacham, Z. Asgar, M. Wachs, W. Qadeer, S. Richardson,

and M. Horowitz, "Using a configurable processor generator for computer architecture

prototyping," in IEEE/ACM International Symposium on Microarchitecture, 2009,, pp. 358-369.

[78] P. R. Panda and N. D. Dutt, "Behavioral array mapping into multiport memories targeting low

power," in International Conference on VLSI Design, Jan. 1997, pp. 268-272.

[79] C. Price, "Mips IV instruction set," MIPS Tech. Inc, 1995.

[80] P. Yiannacouras. (Apr., 2013). SPREE:Soft Processor Rapid Exploration Environment. Available:

http://www.eecg.toronto.edu/~yiannac/SPREE/

[81] S. Vakili, D. C. Gil, J. M. P. Langlois, Y. Savaria, and G. Bois, "Customized embedded processor

design for global photographic tone mapping," in International Conference on Electronics,

Circuits and Systems (ICECS), 2011, pp. 382-385.

[82] A. El-Mahdy and H. El-Shishiny, "High-quality HDR rendering technologies for emerging

applications," IBM Journal of Research and Development, vol. 54, pp. 8:1-8:15, 2010.

[83] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, "Photographic tone reproduction for digital

images," ACM Transactions on Graphics, vol. 21, pp. 267-276, 2002.

[84] S. Vakili, J. M. P. Langlois, and G. Bois, "Finite-precision error modeling using affine

arithmetic," in IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2013, pp. 2591-2595.

[85] R. E. Moore and F. Bierbaum, Methods and applications of interval analysis: SIAM, Philadelphia,

1979.

[86] Y. Pu and Y. Ha, "An automated, efficient and static bit-width optimization methodology towards

maximum bit-width-to-error tradeoff with affine arithmetic model," in Asia and South Pacific

Design Automation Conference (ASPDAC), 2006, pp. 886-891.

[87] S. Vakili, J. M. P. Langlois, and G. Bois, "Enhanced precision analysis for accuracy-aware bit-

width optimization using affine arithmetic," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 32, pp. 1853-1865, 2013.

http://www.eecg.toronto.edu/~yiannac/SPREE/

125

[88] S. Vakili, J. M. P. Langlois, and G. Bois, "Accuracy-aware processor customization for fixed-

point applications," submitted to IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2014.

[89] S. Wonyong and K. Ki-Il, "Simulation-based word-length optimization method for fixed-point

digital signal processing systems," IEEE Transaction on Signal Processing, vol. 43, pp. 3087-

3090, 1995.

[90] B. L. Evans. Raster Image Processing on the TMS320C7X VLIW DSP. Available:

http://users.ece.utexas.edu/~bevans/hp-dsp-seminar/07_C6xImage2.pdf

http://users.ece.utexas.edu/~bevans/hp-dsp-seminar/07_C6xImage2.pdf

