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RÉSUMÉ 

De nos jours, le calcul avec des nombres fractionnaires est essentiel dans une vaste gamme 

d’applications de traitement de signal et d’image. Pour le calcul numérique, un nombre fraction-

naire peut être représenté à l’aide de l’arithmétique en virgule fixe ou en virgule flottante.  

L’arithmétique en virgule fixe est largement considérée préférable à celle en virgule flottante 

pour les architectures matérielles dédiées en raison de sa plus faible complexité 

d’implémentation. Dans la mise en œuvre du matériel, la largeur de mot attribuée à différents 

signaux a un impact significatif sur des  métriques telles que les ressources (transistors),  la vi-

tesse et la consommation d'énergie. L'optimisation de longueur de mot (WLO) en virgule fixe est 

un domaine de recherche bien connu qui vise à optimiser les chemins de données  par l'ajuste-

ment des longueurs de mots attribuées aux signaux. 

Un nombre en virgule fixe est composé d’une partie entière et d’une partie fractionnaire. Il y a 

une limite inférieure au nombre de bits alloués à la partie entière, de façon à prévenir les débor-

dements pour chaque signal. Cette limite dépend de la gamme de valeurs que peut prendre le si-

gnal. Le nombre de bits de la partie fractionnaire, quant à lui, détermine la taille de l'erreur de 

précision finie qui est introduite dans les calculs. Il existe un compromis entre la précision et l'ef-

ficacité du matériel dans la sélection du nombre de bits de la partie fractionnaire. Le processus 

d'attribution du nombre de bits de la partie fractionnaire comporte deux procédures importantes: 

la modélisation de l'erreur de quantification et la sélection de la taille de la partie fractionnaire. 

Les travaux existants sur la WLO ont porté sur des circuits spécialisés comme plate-forme cible. 

Dans cette thèse, nous introduisons de nouvelles méthodologies, techniques et algorithmes pour 

améliorer l’implémentation de calculs en virgule fixe dans des circuits et processeurs spécialisés. 

La thèse propose une approche améliorée de modélisation d’erreur, basée sur l'arithmétique af-

fine, qui aborde certains problèmes des méthodes existantes et améliore leur précision. 

La thèse introduit également une technique d'accélération et deux algorithmes semi-analytiques 

pour la sélection de la largeur de la partie fractionnaire pour la conception de circuits spécialisés. 

Alors que le premier algorithme suit une stratégie de recherche progressive, le second utilise une 

méthode de recherche en forme d'arbre pour l'optimisation de la largeur fractionnaire. Les algo-

rithmes offrent deux options de compromis entre la complexité de calcul et le coût résultant. Le 

premier algorithme a une complexité polynomiale et obtient des résultats comparables avec des 
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approches heuristiques existantes. Le second algorithme a une complexité exponentielle, mais il 

donne des résultats quasi-optimaux par rapport à une recherche exhaustive. 

Cette thèse propose également une méthode pour combiner l'optimisation de la longueur des mots 

dans un contexte de conception de processeurs configurables. La largeur et la profondeur des 

blocs de registres et l'architecture des unités fonctionnelles sont les principaux objectifs ciblés par 

cette optimisation. Un nouvel algorithme d'optimisation a été développé pour trouver la meilleure 

combinaison de longueurs de mots et d'autres paramètres configurables dans la méthode propo-

sée. Les exigences de précision, définies comme l'erreur pire cas, doivent être respectées par 

toute solution. 

 Pour faciliter l'évaluation et la mise en œuvre des solutions retenues, un nouvel environnement 

de conception de processeur a également été développé. Cet environnement, qui est appelé Poly-

CuSP, supporte une large gamme de paramètres, y compris ceux qui sont nécessaires pour éva-

luer les solutions proposées par l'algorithme d'optimisation. L’environnement PolyCuSP soutient 

l’exploration rapide de l'espace de solution et la capacité de modéliser différents jeux d'instruc-

tions pour permettre des comparaisons efficaces. 
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ABSTRACT 

Fixed-point arithmetic is broadly preferred to floating-point in hardware development due to the 

reduced hardware complexity of fixed-point circuits. In hardware implementation, the bitwidth 

allocated to the data elements has significant impact on efficiency metrics for the circuits includ-

ing area usage, speed and power consumption. Fixed-point word-length optimization (WLO) is a 

well-known research area. It aims to optimize fixed-point computational circuits through the ad-

justment of the allocated bitwidths of their internal and output signals. 

A fixed-point number is composed of an integer part and a fractional part. There is a minimum 

number of bits for the integer part that guarantees overflow and underflow avoidance in each sig-

nal. This value depends on the range of values that the signal may take. The fractional word-

length determines the amount of finite-precision error that is introduced in the computations. 

There is a trade-off between accuracy and hardware cost in fractional word-length selection. The 

process of allocating the fractional word-length requires two important procedures: finite-

precision error modeling and fractional word-length selection. Existing works on WLO have fo-

cused on hardwired circuits as the target implementation platform. 

In this thesis, we introduce new methodologies, techniques and algorithms to improve the hard-

ware realization of fixed-point computations in hardwired circuits and customizable processors. 

The thesis proposes an enhanced error modeling approach based on affine arithmetic that ad-

dresses some shortcomings of the existing methods and improves their accuracy. 

The thesis also introduces an acceleration technique and two semi-analytical fractional bitwidth 

selection algorithms for WLO in hardwired circuit design. While the first algorithm follows a 

progressive search strategy, the second one uses a tree-shaped search method for fractional width 

optimization. The algorithms offer two different time-complexity/cost efficiency trade-off op-

tions. The first algorithm has polynomial complexity and achieves comparable results with exist-

ing heuristic approaches. The second algorithm has exponential complexity but achieves near-

optimal results compared to an exhaustive search. 

The thesis further proposes a method to combine word-length optimization with application-

specific processor customization. The supported datatype word-length, the size of register-files 

and the architecture of the functional units are the main target objectives to be optimized. A new 
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optimization algorithm is developed to find the best combination of word-length and other cus-

tomizable parameters in the proposed method. Accuracy requirements, defined as the worst-case 

error bound, are the key consideration that must be met by any solution. 

To facilitate evaluation and implementation of the selected solutions, a new processor design 

environment was developed. This environment, which is called PolyCuSP, supports necessary 

customization flexibility to realize and evaluate the solutions given by the optimization algo-

rithm. PolyCuSP supports rapid design space exploration and capability to model different in-

struction-set architectures to enable effective comparisons.  
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CHAPTER 1    INTRODUCTION 

1.1 Overview and motivation 

Fractional computation is necessary in a vast amount of applications in the DSP and image pro-

cessing domains. In digital arithmetic, a fractional value can be represented in fixed-point or 

floating-point. Arithmetic operators and their associated computational complexity are highly 

different for these two representations. Using the same number of bits, the floating-point repre-

sentation supports a wider range of values compared to the fixed-point representation. However, 

in a hardware implementation, the complexity of a fixed-point realization is normally far less 

than the equivalent floating-point one [1]. As a result, a fixed-point computational circuit is usu-

ally more efficient than the corresponding floating-point circuit in terms of area, performance and 

power consumption. Hence, the fixed-point representation is commonly preferred for hardware 

implementation, particularly in embedded systems.  

In a digital computational circuit, reducing the bitwidth of a signal can result in improvements in 

efficiency. The quantity of this improvement depends on the hardware components which are 

related to that signal, since the size of these components can be affected by the bitwidth reduc-

tion.  

A fixed-point number is composed of integer bits and fractional bits. In a fixed-point-computing 

circuit, a fixed number of bits are allocated to the integer and fractional parts of each signal. The 

Integer Word-Length (IWL) of each signal must be wide enough to guarantee over-

flow/underflow avoidance. The minimum required width of the integer bits depends on the range 

of values that the signal may take. The Fractional Word-Length (FWL) determines the accuracy 

of the computations. A wider FWL means less introduced quantization error at the expense of 

consuming more hardware resources. Finding the appropriate bitwidths to allocate to the integer 

and fractional parts of the signal is a well-known research problem called word-length optimiza-

tion (WLO). The objective of a WLO method is to optimize the efficiency of the hardware im-

plementation while meeting the accuracy requirements of the application by adjusting the word-

length of the signals.       

Fixed-point WLO consists of two main activities: 
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 IWL optimization, which aims to find the minimum number of bits for the integer part of 

each signal that guarantees overflow/underflow avoidance. Range analysis is the usual 

method for IWL optimization.  

 FWL optimization, which aims to maximize the efficiency of the design through adjusting 

the fractional word-lengths of the signals. Accuracy requirements must be met by the se-

lected fractional word-lengths. Finite-precision error modeling and FWL selection algo-

rithm are the main parts of this activity. 

The WLO is the subject of numerous works in the literature. The objective of most of these 

works is to optimize the efficiency of the fixed-point computational circuits by allocating the best 

combination of word-lengths to the signals in the circuit. The signal word-lengths determine the 

bitwidth of the arithmetic, control and logic operators in the hardware implementation. In this 

field, research efforts normally focus on one of the three major components of any WLO ap-

proach: finite-precision error modeling, integer word-length selection algorithm and fractional 

word-length selection algorithm. Almost all of these works have targeted the hardwired circuits 

as the implementation platform. However, the WLO problem can be extended to other hardware 

platforms such as microprocessors. 

1.2 Problem statement 

This thesis introduces new methods to enhance and optimize the hardware implementation of the 

fixed-point computations in hardwired circuits and microprocessor. WLO for hardware synthesis 

and microprocessor platforms form a major part of this thesis. 

For hardwired circuit design, this thesis introduces new techniques and algorithms to improve 

existing word-length allocation methods. There are a large number of related works in the litera-

ture that aim to improve different parts of the WLO. These works normally compete on efficien-

cy of the circuits that they produce and the execution time that they require. In this work, we in-

troduce a finite-precision error modeling approach that amends and promotes a widely-used Af-

fine-Arithmetic-based approach. The proposed modifications address a significant hazard in the 

existing method and improve the error modeling accuracy. The latter improves the efficiency of 

the FWL selection by increasing the error estimation accuracy while the former prevents false 
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FWL allocation. FWL selection is the other significant problem in WLO that was targeted in 

many existing works. These works typically proposed heuristic search algorithms to solve this 

NP-hard problem [2, 3]. In this work, we introduce an acceleration technique to reduce the 

searching time of the FWL selection algorithms. Moreover, we present two new heuristic algo-

rithms to solve this problem more efficiently.   

Microprocessors are the other platforms that are targeted in the contributions of this thesis. Over 

the last few decades, microprocessors have been the most popular choice to implement computa-

tional algorithms. Programmability and high degree of flexibility are the main advantages of mi-

croprocessor-based designs. Processor-centric architectures are commonly used in embedded 

systems, which is the largest production area of digital computers. However, general purpose 

processors are not normally able to meet the high demand of computationally intensive real-time 

applications in the multimedia, communication and signal processing domains. At the other ex-

treme, maximum feasible performance is offered by hardwired circuits widely known as ASICs 

(Application-Specific Integrated Circuits). However, ASICs offer the lowest flexibility in terms 

of programmability and reusability. 

In the processor domain, this research introduces the idea of combining the fixed-point word-

length allocation with the processor customization, for the first time. This idea proposes use of 

word-length determination in fixed-point custom processor design process in order to customize 

the quantity and the format of the data types supported by the processor architecture. The objec-

tive is to improve the implementation efficiency (in terms of hardware cost, performance and 

offered accuracy) of the processor architecture by customizing the bit-length of the processor 

datapath and corresponding microarchitecture components. Based on this idea, we introduce a 

method for accuracy-guaranteed optimization of the processor word-length for fixed-point point 

applications. 

Processors use functional units (FUs) to realize arithmetic functions. FUs are major performance 

bottlenecks particularly in computation-intensive applications and they typically demand signifi-

cant hardware area. The complexity of each arithmetic function and the technique and architec-

ture employed to implement them determine the performance and hardware cost of the corre-
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sponding FU. Selection of the appropriate architectures for the functional units forms a new op-

timization problem.  

Signal and image processing is selected as the target application domain for this research. There-

fore, the developments and the evaluations will be accomplished based on selected applications 

from this domain. 

1.3 Objectives 

The main objective of this research is to develop methodologies to enhance the word-length allo-

cation process for hardwired circuit design and to combine fixed-point optimization and proces-

sor customization into an integrated design environment. The processor customization environ-

ment will generate an optimized application-specific fixed-point processor as well as the corre-

sponding executable code based on the given application. 

The following specific objectives are identified for this research plan: 

 Developing a custom processor design environment, which provides enough capability to 

implement and evaluate the ideas of the next objectives such as functional-unit architec-

ture selection and datapath word-length configuration. 

 Introducing an enhanced finite-precision error modeling approach that addresses the prob-

lems in existing approaches and improves their accuracy. 

 Introducing an acceleration technique and two new semi-analytical word-length selection 

algorithms to improve fixed-point circuit design.  

 Proposing an automatic word-length allocation methodology to be integrated into the cus-

tom processor design process. This methodology is based on design space exploration and 

aims to optimize cost-accuracy trade-offs.  

 Proposing a method to enhance processor efficiency through functional unit architecture 

customization. This process is tightly connected to the word-length allocation solution 

and, therefore, must be integrated in the word-length allocation process to form a compre-

hensive optimization algorithm.   
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1.4 Thesis organization 

This thesis is divided into 7 chapters. Chapter 2 reviews the important background material and 

related works that are used in this thesis. Chapter 3 describes a new processor design environ-

ment that is used to realize the processor customization method introduced in Chapter 6. Chapter 

4 presents an improved finite-precision error modeling approach which is used in subsequent 

chapters. Chapter 5 introduces new algorithms and techniques for WLO in hardware synthesis. 

Chapter 6 presents a new method to customize the processor architectures based on fixed-point 

word-length optimization. Chapter 7 concludes the thesis.  
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CHAPTER 2    LITERATURE REVIEW 

In this chapter, we review the previous work that forms the background material of this thesis. 

Two topics, which are relevant to our research, were selected for this literature review: applica-

tion-specific processor customization and fixed-point word-length optimization. First, we review 

various existing custom processor design methodologies and important related works. Second, we 

survey significant work in research areas related to fixed-point word-length optimization. This 

includes a review of the important IWL and FWL optimization methods. In FWL optimization 

section, we consider finite-precision error-modeling approaches and FWL selection techniques.  

2.1 Custom processor design 

The complexity of embedded SoC (System-on-Chip) designs has increased enormously in recent 

years. Programmable processor cores are increasingly used in such systems to shrink the design 

turnaround time through high-level language programming and high degree of code reusability 

[4]. However, general purpose processors are not usually able to meet high computational re-

quirements of complex embedded applications in multimedia, communication systems, and sig-

nal processing domains. Application-specific processor customization is a well-known approach 

that has emerged in the past few years to close the gap between programmable processors and 

hardwired hardware implementation in ASICs (Application-Specific Integrated Circuits) [5-7]. 

The objective of processor customization is to enhance the efficiency of the processor by special-

izing specific elements of the processor architecture based on requirements of the target applica-

tions.  

2.1.1 Customization categories 

Processor customization approaches can be divided into two categories: micro-architectural tun-

ing and instruction-set customization. Important existing works in these two categories are re-

viewed in this section. 

The objective of micro-architectural tuning is to find the most efficient trade-offs for datapath 

elements such as pipeline depth, processor word-length and functional unit implementation. In 

micro-architectural tuning, there are typically some configurable parameters related to the pro-
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cessor architecture, which are influential in efficiency. The objective is to find the combination of 

parameter values that represent the best trade-off among efficiency factors (i.e., performance, 

hardware cost, and occasionally power consumption). Henkel [8] divided micro-architectural 

tuning into two types of configurations: inclusion/exclusion of hardware functional units (e.g., 

hardware multiplier) and parameterization of components such as cache memories. Major exist-

ing works in this area that were reviewed for related parts of this thesis are summarized below. 

Yiannacouras et al. [9, 10] developed a processor design environment, called SPREE, and used it 

to explore the impact of microarchitecture tuning on efficiency metrics of the processor. Their 

exploration covered four micro-architectural parameters: (1) optional hardware multiplication 

support; (2) choice of shifter implementation; (3) pipeline depth; and (4) cycle latency of multi-

cycle paths. The presented results demonstrate significant impacts of microarchitectural tuning on 

the efficiency of the processors. The results also confirm the capability of SPREE for rapid de-

sign space exploration. 

Dimond et al. [11] presented a Field Programmable Gate Array (FPGA) implementation of a pa-

rameterizable core, named CUSTARD, supporting the following options: different number of 

hardware threads and types, Custom Instructions (CI), branch delay slot, load delay slot, forward-

ing, and register file size. CUSTARD offers generation of single and multithread architectures. 

Customizations must be performed manually in CUSTARD since no automatic search algorithm 

was integrated in this tool.     

Sheldon et al. [12] introduced a methodology for fast application specific customization of pa-

rameterized FPGA soft cores. In this work, two search approaches were considered for microar-

chitectural customization. One uses a traditional CAD approach that does an initial characteriza-

tion using synthesis to create an abstract problem model and then explores the solution space us-

ing a knapsack algorithm. The other uses a synthesis-in-the-loop exploration approach. The 

methodology was evaluated on Xilinx MicroBlaze soft-core processors taking into account four 

inclusion/exclusion and cache parameterization configurations. The results demonstrate that the 

introduced approaches can generate customized processors that are 2× faster than the base soft-

core, reaching within 4% of the optimal. The execution time of these approaches is 1.5 hours on 

average, compared to over 11 hours for the exhaustive search. 
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Padmanabhan et al. [13] formulated microarchitecture customization as a multi-objective nonlin-

ear optimization problem to find Pareto-optimal configuration for the LEON processor. This ap-

proach is linear in the number of reconfigurable parameters, with an assumption of parameter 

independence. This assumption highly simplifies the optimization problem. The results show that 

the approach was able to achieve a performance gain within 0.02% difference from the exhaus-

tive solution and with 1% reduction in LUTs (chip resource cost). 

Saghir et al. [14] presented a new development tool to design and evaluate VLIW (Very Long 

Instruction Word) architecture with a set of customizable microarchitectural parameters. They 

compared the impacts of parameters on the efficiency factors of the design. The results show that 

this method can achieve significant gains in efficiency over XILINX MicroBlaze using a combi-

nation of processor customization and instruction-level parallelism. Obviously, this method takes 

advantage of the inherent superiority of the VLIW architectures in performance and, therefore, it 

cannot be directly compared with most of the related works that only focus on single-instruction 

architectures.   

Automatic microarchitectural tuning is the other well-studied topic in literature. The related 

works commonly propose integrated design flows that consist of a search algorithm to explore 

the design space for the optimal microarchitectural configuration and a processor generation pro-

cess to realize the best-found solution. Diverse search algorithms were proposed for this purpose 

in the literature. Hebert et al. [15] and Kuulusa et al. [16] adopted exhaustive search for the ex-

ploration of the architecture parameter space while Fitcher et al. [17] proposed heuristic ap-

proaches for this problem.  Exhaustive search can usually yield the best possible results at the 

expense of significantly slower execution. The methodology presented in [15] involves an analy-

sis of the resources of the processing core used by the target application. Then, a series of optimi-

zations based on the analysis results are performed on an optimizable model of the processor 

core. The proposed exploration algorithm in [17] uses Pareto-dominance tests to prune non-

optimal parts of the design space. A VLIW template design is used as the base architecture and 

obtained Pareto-optimal points for a number of DSP-like benchmark programs are presented. 

Table 2.1 summarizes some of the major works mentioned in this section. 



9 

 

 

 

Table 2.1 Comparing previous works related to micro-architecture tuning 

 Supported  

architectures 

Parameters Exploration 

method 

Yiannacouras 

et al. [9, 10]   

Simple pipeline 

(based on MIPS I) 

 Hardware vs. software multipli-

cation 

 Shifter implementation 

 Pipeline depth, organization, 

and forwarding.  

Manual 

Dimond et al. 

[11]  

Hardware multi-

thread  

 Multi-threading support: number 

of threads, threading type 

 Forwarding and interlock archi-

tecture: branch delay slot, load 

delay slot, forwarding: ena-

ble/disable  

 Register file: number of regis-

ters, number ports 

Manual 

Sheldon et al. 

[12]                     

Simple pipeline  

(Microblaze) 

 Inclusion/exclusion of hardware 

FUs for: multiplier, barrel shift-

er, divider, floating-point unit 

 Data cache configuration  

Automatic 

 Knapsack 

 Impacted or-

dered trees 

Padmanabhan 

et al. [13] 

Simple pipeline 

(LEON2) 

 Data cache configuration 

 Instruction cache configuration 

 Integer Unit: multiplier, divider, 

register window size, fast jump 

Automatic 

Integer Linear 

Programming  

Saghir et al. 

[14] 

VLIW  Multiplier 

 Data forwarding paths 

 RAM block depth and word-

length 

Manual 

 



10 

 

 

 

Instruction-set customization, which is also known as Application-Specific Instruction-set Pro-

cessor (ASIP), aims to adapt the processor’s instruction set to a given application to achieve im-

provement according to a chosen metric. Automatic instruction-set customization is defined as a 

process to generate CIs from an application in order to improve intended efficiency metric(s). 

This activity can be categorized into two main approaches [5]. 

The first approach offers complete customization in which the whole instruction-set is selected 

based on application requirements [18]. The second approach is partial customization, also 

known as instruction-set extension (ISE), which involves adding a limited number of CIs to a 

pre-existing instruction-set architecture [19, 20]. The ISE process generally starts with the source 

code of the target application written in a high-level programming language such as C. The pro-

cess typically consists of three significant steps [4]: (1) application profiling and characterization; 

(2) automated ISE identification; (3) ISE realization.  

Application profiling is used to identify the computational hotspot areas of the target application. 

The objective of the ISE identification step is to find combinations of operations in hotspot areas, 

which can be integrated into a single instruction aiming for improvement in performance. Finally, 

the ISE realization step involves techniques to synthesize and add the selected custom instruc-

tions into the processor architecture.   

Most of the research in this field has focused on automatic ISE identification. The introduced 

methods are commonly based on data flow graph (DFG) analysis. The custom instruction selec-

tion process can be formulated as a convex sub-graph identification problem [21]. Each convex 

sub-graph of a DFG is a potential CI. The selection process typically takes into account hardware 

cost, architectural constraints and achievable improvements of the candidate CIs. Examples of 

such constraints include limited bandwidth of custom functional units and general purpose regis-

ter file [4]. 

Various methodologies and algorithms have been proposed and employed for DFG-based custom 

instruction identification. Kastner et al. [22] combined template matching and generation to iden-

tify sub-graphs based on recurring patterns. A novel algorithm was introduced in this work that 

profiles a dataflow graph and iteratively clusters the nodes based on a method, called edge con-

traction, to create the templates. The paper investigated how to target the algorithm toward the 
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novel problem of instruction generation for hybrid reconfigurable systems. In particular, this 

work targeted the Strategically Programmable System, which embeds complex computational 

units such as ALUs, IP blocks, and so on into a configurable fabric.  

Clark et al. [23] and Sun et al. [24] proposed heuristic approaches to solve this problem. The 

methodology presented by Sun et al. [24], employs a two-stage process, wherein a limited num-

ber of promising instruction candidates are first short-listed using efficient selection criteria, and 

then evaluated in more detail through cycle-accurate instruction set simulation and synthesis of 

the corresponding hardware. Dynamic pruning techniques were also exploited to eliminate inferi-

or parts of the design space from consideration. In the methodology proposed by Pozzi et al. [25], 

a binary tree search approach is employed to discover all potential CIs in a DFG first. Then the 

candidates who do not meet the predefined constraints (e.g., hardware cost and register file access 

bandwidth) are discarded to speed up the search process.  

2.1.2 Existing methodologies  

There are two basic trends in application-specific custom processor design: partial customization 

of a configurable processor and designing from scratch. Tensilica Xtensa [26], MetaCore [27] 

and SC Build [28] are some examples of partially customizable processor environments in which 

the main body of the processor is fixed, while a limited number of elements or components are 

left customizable. Xtensa is known as a configurable and extensible RISC processor core. Con-

figuration options include the number and width of registers, memories, inclusion/exclusion of 

hardware units for some operations, etc. New instructions can be described using the Tensilica 

Instruction Extension (TIE) language and added to the baseline core. A complete software toolkit 

as well as synthesizable code can be generated automatically for Xtensa processors [26]. Moreo-

ver, automatic design space exploration for TIE-based instruction extension is offered by the pro-

vided development tools. 

Architecture Description Languages (ADLs) such as PEAS III [18], LISA [29] and EXPRES-

SION [30] offer designing from scratch, which provides higher flexibility by allowing the de-

signers to define their own ISA and datapath at the expense of more design effort. An ADL is 

normally accompanied by a corresponding tool-chain that allows automatic generation of the 

software toolkit (including compiler, assembler, simulator, and debugger) and Register Transfer 
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Level (RTL) code generator for the ADL processor model. The objectives of different ADLs may 

vary and their modeling complexity and generable outputs are not necessarily similar. 

Mishra et al. [30] have classified existing ADLs according to two aspects: content and objective. 

ADLs can be classified into four categories based on the contents: structural, behavioral, mixed 

and partial. In structural ADLs, architecture of components and their connectivity must be explic-

itly defined. This category needs lowest abstraction level in modeling and consequently offers the 

highest flexibility. MIMALO and UDL/I are two well-known structural ADLs. In contrast, be-

havioral ADLs explicitly specify the instruction semantics and ignore detailed hardware struc-

tures. This means that the micro-architecture of the processors is not modeled in this approach. 

nML is one of the behavioral ADLs that captures instruction-set architecture and corresponding 

functional description in a hierarchal scheme [31]. The required structural description is limited 

to the information used by the instruction-set architecture (ISA). For example, memory and regis-

ter units should be defined since they are visible to the instruction-set. The timing model is not 

supported for computations in nML. Sophisticated Instruction Level Parallelism (ILP) techniques 

such as those presented in superscalar processors cannot be modeled by nML.  

Mixed ADLs capture both architectural details and behavioral function description of the proces-

sors. EXPRESSION is a mixed-level ADL primarily designed to generate software toolkits from 

the processor/memory description to enable compiler-in-loop design-space exploration [32]. 

Structural modeling in EXPRESSION includes three subsections: pipeline and data transfer path 

description, component specification and memory subsystem. Similarly, the behavioral model is 

composed of three subsections: operation specification, instruction description, and operation 

mapping. The components can be multi-cycle or pipelined units for storage elements, ports, and 

connections for which the timing behavior can also be specified. Automatic RTL generation from 

an EXPRESSION model is not supported by the original tool chain. However, a restricted tem-

plate-based RTL generation method was proposed in [33]. LISA (Language for Instruction-Set 

Architecture) is the other mixed-level ADL that offers complete tool chain along with optimal 

RTL generation for design space exploration. LISA needs explicit modeling of the controlling 

process in the designs. This feature enables LISA to model complex control paradigms at the 

expense of a more complicated design process. However, LISA cannot model out-of-order-

execution found in superscalar processors [34].  
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Figure 2.1  Taxonomy of ADLs  

 

ADLs can also be classified into six categories based on their objectives: synthesis oriented, test 

oriented, validation oriented, compilation oriented, simulation oriented and Operating System 

(OS) oriented. Figure 2.1 demonstrates the taxonomy of ADLs based on the presented classifica-

tion. This figure is extracted from [30].   

As a result of the increasing complexity of SoC designs, in recent years, synthesis-based design 

space exploration has faced great challenges in search speed. An emerging trend to address this 

issue is to move toward simulation-based exploration in higher levels of abstraction. This trend is 

quickly becoming popular, particularly in Multiprocessor SoC (MPSoC) designs. Figure 2.2 

compares the simulation speed of various abstraction levels of modeling.  

Yiannacouras et al. [10] presented SPREE (Soft Processor Rapid Exploration Environment) that 

facilitates the design and exploration process using a high-level format for ISA and datapath de-

scription. In this text-based description, each instruction is defined as a directed graph of basic 

components provided as a library of available micro-operations, e.g., register files and instruction 

fetch units. Although using these encapsulated components significantly simplifies the design 

process, it also limits the describable architectures. For example, the internal structure of major 

components such as register files and fetch units are predefined and making any modification to 

these components entails direct HDL (Hardware Description Language) programming. Moreover, 

datapath and ISA should be designed separately from scratch and the designer is in charge of the 

consistency between datapath and ISA models. Yiannacouras et al. [9] employed the SPREE en-

vironment to explore the impacts of microarchitecture tuning on efficiency metrics of a soft-

processor and compared the results with the Altera Nios II  processor [35]. 
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Nurvitadhi [28] introduced a transactional specification framework (T-space) that allows descrip-

tion of a pipelined processor as a state machine with a set of transitions. In this approach, the de-

signer views the datapath as executing one transaction at a time, just like single-cycle designs. 

The T-space description is converted into the pipeline model using a specific synthesizer, called 

T-piper. The pipeline model allows concurrent execution of multiple overlapped transactions in 

different pipeline stages. The objective of this work is to facilitate pipelined processor design by 

automating the major parts of the design process such as pipeline parallelization and hazard pre-

vention.  

Dimond et al. [11] presented the FPGA implementation of a parameterizable core, named CUS-

TARD, supporting the following configurable parameters: number of hardware threads, CI, 

branch delay slot, load delay slot, forwarding paths and register file size. 

Saghir et al. [14] presented a development tool to design and evaluate VLIW architectures with a 

set of customizable micro-architectural parameters. They compared the impacts of parameters on 

the efficiency factors of the design. 

2.2 Fixed-point word-length optimization 

For convenience in design and verification, most signal and image processing applications are 

initially developed in floating-point arithmetic. The applications are converted into fixed-point 

arithmetic for hardware implementation to achieve more efficient circuits. Fixed-point WLO is 

used to perform this conversion, automatically.  

A WLO method is composed of the IWL and FWL allocation processes that aim to find the opti-

mal values of IWL and FWL for each signal in the design. The efficiency of a word-length allo-

cation method is measured by its execution speed and the efficiency of the resulting circuit. For 

complex designs, up to 50% of the design time may be needed for word-length allocation [1]. 

IWL and FWL allocation are naturally different problems while their complexity is categorized 

as NP-hard [2]. There are a significant number of previous works that propose various methods 

and algorithms to solve these problems. In the following subsections, we review some of the im-

portant existing works for each problem. 
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Figure 2.2  Simulation speed vs. abstraction levels. 

 

2.2.1 IWL allocation 

The allocated IWL to each signal of the circuit must be wide enough to guarantee over-

flow/underflow prevention during computation. There is an upper-bound in the range of values 

that each signal may take. The minimum required IWL is determined from this range of values. 

Hence, the main activity in IWL allocation is to find the range of values for each signal. A vast 

number of approaches have been introduced in literature to perform this activity, which is also 

known as range analysis. Range analysis approaches can be divided into two major categories: 

simulation-based approaches and analytical approaches.  

Simulation-based approaches feed various input data to the algorithm to find out the variation 

range of each signal [36, 37]. These methods use statistical properties of the signals, such as the 

mean and the variance, and the maximum and minimum peak values obtained during simulations. 

Analytical approaches try to formulate the range analysis problem first and then employ appro-
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priate methods to solve it [38]. Although the results of analytical approaches are commonly more 

conservative, their higher speed makes them more popular for complex designs [2, 39]. 

The methods based on Interval Arithmetic (IA), as well as those based on forward and backward 

propagation [40] usually overestimate scaling, while approaches based on multi-intervals [41] 

and Affine Arithmetic (AA) [38] may achieve better results by reducing overestimation. The 

methods based on AA and on the transfer function [42]  are suitable for feedback systems. The 

methods based on the transfer function, however, are not able to handle nonlinear systems. The 

AA-based methods are modified in non-linear systems to reduce the computational complexity. 

In addition to the fixed-point hardware design, the IWL allocation is also used for conversion of 

software code from floating-point to fixed-point. This activity is sometimes called Floating-point 

to Fixed-point Conversion (FFC) in the literature. The FFC commonly aims to convert a floating-

point sequential code to a corresponding fixed-point one in order to be eventually executed in an 

embedded processor. Since fixed-point operators are the same as integer ones, integer arithmetic 

and data types along with appropriate scaling operators (typically realized by a shift operation) 

are adequate to implement a fixed-point application. Hence, a conventional integer processor is 

able to execute fixed-point applications produced by the FFC process.  

Since the word-length is usually constant in conventional processors, the IWL allocation is suffi-

cient for fixed point transformation. In literature, this scheme is also known as Uniform Word 

Length (UWL). When the IWL has been determined, the remaining bits are simply allocated to 

the fractional part. The output of this process is an integer code in which scaling operators are 

used to correct the values of the signals that have been converted from a floating-point represen-

tation. Figure 2.3 demonstrates this modification process on a simple Finite Impulse Response 

(FIR) filter. This example is highly extracted from [43]. In this figure, IWLi represents the binary-

point position in signal i from the left side. The dynamic range of the signals is identified by lim-

ited precision values. The original flow graph (Figure 2.3.a) illustrates that determining different 

binary-point positions for the signals (based on their dynamic range) may lead to unaligned oper-

ands for a single operation. In the IWLu and the IWLacc signals, the point is placed after the first 

and after the fourth bit, respectively. Thus, a scaling operation must be introduced between the 

multiplication and the addition to align the binary-point position before the addition.  
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Figure 2.3  Using scaling operations for fixed-point alignment in FIR filter example. 

 

Figure 2.3.b represents the DFG after the insertion of the scaling operation. u, u1 and u2 are in-

termediate signals. This example illustrates why scaling factors are necessary in fixed-point soft-

ware development using the example of an FIR filter. 

Earlier works in this category mostly proposed code conversion methodologies for particular 

DSP processors. In [44], a methodology which generates fixed-point code for the 

TMS320C25/50 DSP is proposed. The output code cannot be used in other architectures. Auto-

matic tools to transform floating-point C source code into an ANSI code with integer data types 

are proposed in [45] and [46]. These methods use control flow graph representations for their 

analysis. Moreover, they apply an optimization process to minimize the number of required scal-

ing operators in the output code.  
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2.2.2 FWL allocation 

FWL allocation is the other important part of WLO. The FWL of each signal determines the 

amount of finite-precision error that it introduces in computations. This error can propagate 

through the next stages of the operations and eventually show up at the output as the finite-

precision inaccuracy. Allocating wider FWLs results in more accurate computations at the ex-

pense of more hardware resources and higher latency.    

FWL allocation aims to optimize the efficiency of hardwired hardware designs (on ASIC or 

FPGA) by adjusting the bitwidth of the fractional part of the signals. The accuracy requirement is 

the main consideration that must be satisfied by the FWL allocation solution. Since each opera-

tion in hardwired circuits can have a dedicated hardware unit, each intermediate signal can have a 

different word-length. This scheme is known as Multiple Word Length (MWL) in the literature. 

It is widely accepted that MWL is potentially able to lead to much more efficient implementa-

tions in terms of hardware cost compared to UWL in hardwired circuit design [47].  

In both MWL and UWL approaches, the tolerable output inaccuracy of the design is normally 

measured in terms of the worst-case output error bound or Signal-to-Quantization-Noise Ratio 

(SQNR) for DSP systems. However, it can be also measured through other application specific 

metrics, such as the Bit Error Rate (BER) or Peak Signal-Noise Ratio (PSNR) in wireless systems 

and image/video processing designs, respectively. The quantization error must be estimated for 

every point in the search space that is examined during FWL selection [48]. 

The FWL allocation process normally consists of two important parts: finite precision error mod-

eling and FWL selection algorithm. Each of these parts is the subject of a large number of re-

searches.  

Finite-precision error modeling is used to estimate the amount of quantization noise that is intro-

duced at the outputs from the FWL of the input and intermediate signals. Analyzing the word-

length effects on the precision of the computation is sometimes called precision analysis in litera-

ture. IA is again a widely-used method for finite-precision error modeling [49]. One drawback of 

IA is that it ignores the correlation among signals [50, 51]. AA is a preferable approach that ad-

dresses the correlation problem by taking into account the interdependency of the signals. In AA, 

each signal is represented as a linear combination of certain primitive variables, which stand in 
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for sources of uncertainty.  Fang et al. [51], Lee et al. [38] and Osborne et al. [52] introduced 

word-length optimization methods based on AA. In Chapter 4 of this thesis, we introduce an en-

hanced AA-based error modeling approach. This method is used for the error estimation through-

out the thesis 

FWL selection methods can be categorized into optimal and heuristic methods. The optimal 

methods mainly employ exhaustive search or Integer Linear Programming (ILP). Both approach-

es are highly computational intensive. Heuristic methods aim to reach quasi-optimal result in a 

more reasonable amount of time. Some of the proposed heuristic methods are based on gradient-

descent. These methods follow one of the following strategies to approach the optimal result: (1) 

starting from an infeasible point (due to unacceptable precision) and improving the accuracy [53]; 

and (2) starting from a feasible point and reducing the cost by degrading the precision [54]. The 

advantage of these methods is their relatively fast convergence. Their main drawback is their po-

tential to fall in local optima. Simulated Annealing (SA) is another algorithm used to solve the 

word length selection problem [38]. SA-based approaches use stochastic properties of the search 

space to find the solution. Since SA algorithms use random point selection and exploration, they 

tend to be able to jump out of local optima.  

Although the main objective of the word-length optimization process is to reduce the implemen-

tation cost (i.e. area, latency, power, etc.), many of the proposed methods do not take into account 

hardware costs directly [55]. However, some of the recent methods embody cost estimation tech-

niques and consider the estimation result as the fitness value of the candidate solutions. These 

latter methods typically obtain results closer to the optimum. Most of the previous works consid-

ered the hardware area as the cost value [42]. However, latency, power consumption, or a combi-

nation of these metrics is taken into account in some researches [56]. Some of the important re-

lated works in error modeling and FWL selection are reviewed below. 

López et al. [57] introduced a new methodology to represent statistical parameters of the quanti-

zation noise using AA. In this method, each quantizer of the realization is first modeled by an 

independent affine form. The constant value and the uncertainty factors are calculated as func-

tions of the mean and variance of the noise source. Afterwards, the noise models are propagated 

using an AA-based simulation. The results show that, although this approach is more accurate 
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than analytical AA-based error modeling methods, it is still far slower in terms of computational 

time.    

Caffarena et al. [58] proposed an AA-based method to estimate SQNR. This method combines 

the analytical AA calculations and simulation-based noise model parameterizations. The experi-

mental results show a significant speed-up compared to simulation-based methods, at the expense 

of a negligible estimation error. 

In another related work, López et al. [59] presented a non-linear adaptation of AA, called Quan-

tized Affine Arithmetic (QAA), that offers tighter interval estimation compared to the traditional 

AA. In this method, only the uncertainty factors which are associated with the input signals ap-

pear in the affine representation of any signal of a design. In other words, QAA prevents intro-

duction of new uncertainty factors in the propagation process. This significantly reduces the 

complexity of the affine expressions. However, the QAA fails to provide guaranteed worst-case 

error bounds as in the traditional interval-based computations.  

Kinsman et al. [60] used Satisfiability-Modulo Theories to refine the range results given by IA 

and AA. The main drawback of this method is that its runtime grows rapidly with application 

complexity.  

Zhang et al. [61] employed Extreme Value Theory for both range and precision analysis. They 

used a lightweight simulation to study the characteristics of extreme conditions. Although this 

approach is significantly faster than fully simulation-based approaches, the reported results 

demonstrate that it is still far slower than analytical methods particularly in large designs. 

Boland et al. [62] recently introduced a polynomial algebraic approach using Handelman repre-

sentations. When calculating bounds, this approach takes into account dependencies within a pol-

ynomial representing the range of a signal. Although this approach has shown promising results, 

it faces significant limitations in processing non-polynomial functions and scalability. 

Cong et al. [50] made an extensive comparison of three significant static precision analysis meth-

ods using a set of experiments. The methods studied include AA, general interval arithmetic 

(GIA) and automatic differentiation. Cantin et al. [63] compared some pre-existing word length 

optimization algorithms through experimental evaluation with twelve DSP applications. 
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Le Gal et al. [64], Constantinides et al. [65] and Menard et al. combined the word length optimi-

zation and high-level synthesis (HLS) problems. These works propose new HLS methodologies 

which take care of data word length in scheduling, allocation, and binding processes aiming at 

optimizing the hardware implementation. 

Menard et al. [66] introduced a grouping algorithm to optimize the resource sharing paradigm for 

the operations. This process is followed by a WLO algorithm that optimizes the word length of 

each signal group. The WLO algorithm is composed of a greedy and a Tabu search procedures. 

Nguyen et al. [67] also proposed a word length selection algorithm based on Tabu search. Con-

trary to the widely-used greedy search algorithms that are mono-directional, this method allows 

bidirectional movement in the solution space. To demonstrate applicability, the chapter provides 

experimental comparisons with three related works.   

Fiore et al. [68] derived closed-form expressions for efficient word length allocation. They 

showed that these expressions can be effectively calculated in hardware. This allows the realiza-

tion of adaptive word lengths that change in real-time as a function of the data. This idea can be 

particularly beneficial in specific applications such as adaptive filters. 

Integer linear programming is a general optimization method that is believed to give optimal re-

sults for FWL selection problem. Due to the huge complexity of the ILP solving process, this 

method is not practical for large designs. However, it has been used to generate reference results 

for comparison [47, 69]. Custom heuristic methods [38, 52, 62] are the most widely used FWL 

selection algorithms in existing works. 

Some researches focused on word length optimization in specific applications. Pang et al. [70] 

presented a technique for real-valued polynomial representation, such as Taylor series. This tech-

nique relies on arithmetic transforms and a branch-and-bound search algorithm for word-length 

allocation. Lee et al. [71] proposed an optimization methodology for piecewise polynomial ap-

proximation of arithmetic functions. Nguyen et al. [72] designed an optimized fixed-point 

WCDMA receiver using a combination of static and dynamic techniques. 

The MWL word-length optimization can also be effectively used in High-Level Synthesis (HLS). 

HLS is a digital design trend, which has been widely studied since its introduction in the early 
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1990s. The main objective of HLS is to offer methodologies to convert a high-level description of 

an application to low-level RTL, automatically. HLS methods are mainly composed of three 

phases: scheduling, resource allocation and resource binding. Scheduling identifies timing period 

for the computation of each operation in the algorithm. Resource allocation involves the selection 

and integration of hardware components to realize operations. These resources include functional 

units, storage components, intercommunication circuits, and controlling logic. Resource binding 

is the process of assigning a resource to each operation.  

As mentioned before, the MWL approach is efficient for hardware synthesis of fixed-point de-

signs. It means that in such realizations, each variable in the algorithm may have a different 

word-length and precision. Consequently, operators of the same type may have different word-

lengths. The resource allocation process is highly dependent on availability of a library of com-

ponents on the target hardware platform. The timing properties, hardware area and power con-

sumption of the components are normally provided in the library. These characteristics are used 

by the resource allocation process to identify the appropriate set of required components. Obvi-

ously, considering different word-lengths for the operators significantly increases the size of the 

component library. This leads to a vast growth in the complexity of the resource allocation pro-

cess. 

Early methodologies used the UWL scheme to simplify the library and the exploration process. 

However, MWL has been considered in more recent works. Contrary to the traditional approach-

es (i.e., UWL-based ones) which only consider the type of the resources in the allocation process, 

MWL-based methods take into account both the type and word-length of the components. This 

new model is based on the fact that an operation can be executed on a component only if its input 

word-lengths are equal or smaller than the component word-lengths. More than 50% area reduc-

tions are reported with the MWL approach. There are a few research works which combined HLS 

with MWL optimization [47, 65, 73-75]. Actual combination of these two processes provides a 

more comprehensive design space exploration.  

Wadekar et al. [73] published one of the earliest works in this field. In their methodology, re-

sources are fully shared among the operations of the same type. The word length selection looks 

for the lower bound of area cost, considering the cost estimation of the results. This cost estima-
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tion is accomplished by a simple model taking into account provided information about compo-

nent area of as well as their word-lengths. The latency of all FUs is assumed to be one cycle for 

simplification.  

The work introduced in [74] proposes a methodology in which the word-length assignment 

(WLA) and HLS are carried out iteratively. The word-length optimization activity is preceded by 

HLS in each iteration. HLS integrates functional units which can be grouped together and WLA 

tries to reduce hardware cost by minimizing the word-length. This process is repeated until the 

improvements finish. The paper suffers from insufficient experimental results and comparisons 

with previous methods. 

Constantinides et al. [65] proposed a new methodology in which a heuristic is employed to ad-

dress the scheduling problem with incomplete word-length information. This methodology actu-

ally combines the resource binding and word-length selection processes. The heuristic follows a 

primary word-length selection step and aims to refine the word-length information regarding the 

scheduling and resource binding decisions. The provided results represent up to 46% of area re-

duction even for modest problem sizes. 

Caffarena et al. [75] proposed a new framework that combines word-length optimization and 

FPGA-based synthesis. This method considers the embedded and logic-based multipliers in the 

resources binding step. Moreover, variable latency resource models are used in this work. A sim-

ulated annealing-based approach for the combined scheduling, resource allocation and binding 

tasks is presented. Compared to previous approaches, area improvements of up to 60% are re-

ported.  

Caffarena et al. [47] employed mixed integer linear programming to formulate the combined 

problem. Storage devices and control logic are not considered and FUs are assumed to have 1-

cycle latency in order to simplify the problem. Therefore, this work does not meet real-world 

design criteria, completely. However, it is worthwhile to consider as initial research in this sub-

ject. 

Table 2.2 summarizes the previous works on combined WLO and HLS problem. There are still 

many opportunities for new research on this subject. However, WLO has not been considered in 

custom processor designs so far. 
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Table 2.2 Summary of combined WLO and HLS approaches. 

Approach Tasks Optimizations Comments 

Wadekar and Parker 

[73] 

1. WLS
*
 (considering 

hardware cost estima-

tion) 

2. HLS 

Heuristic 1-cycle FUs 

Herve et al. [74] Loop: 

1. Grouping the FUs 

2. HLS 

3. WLS 

Heuristic Var. FU latencies 

Constantinides et al. 

[65] 

Primary WLS 

Loop: 

HLS+WLS 

Heuristic Var. FU latencies 

Caffarena et al. [75] 1. WLS 

2. HLS 

Heuristic: Simu-

lated Annealing 

Var. FU latencies 

Caffarena et al. [47] WLS+HLS MILP
** 

1-cycle FUs 

* WLS: Word-length Selection   **Mixed Integer Linear Programming 

  

2.3 Conclusion 

In this chapter, we reviewed important related works that form the background knowledge used 

in this thesis. Some of the contributions of this thesis are built on the ideas introduced in these 

works. Furthermore, some of these works are used for comparison in several parts of the thesis. 

First, we reviewed important existing methodologies and environments for custom processor de-

sign. Then, we reviewed significant research on different analyses required in fixed-point WLO. 

We saw that the final objective, of most existing works, in this area, is to generate an optimal 

hardwired circuit for fixed-point computation. A smaller number of works focused on methods to 

convert floating-point software code to fixed-point, efficiently. Using WLO for processor cus-

tomization, which is one of the new ideas proposed in this thesis, has not been considered in any 

previous work. 
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CHAPTER 3    POLYCUSP PROCESSOR DESIGN ENVIRONMENT 

In this chapter, we present the Polytechnique Customized Soft Processor (PolyCuSP) design en-

vironment, which is a new processor design environment that is used for fast and easy custom 

processor generation. This thesis also introduces a new processor customization method for the 

fixed-point applications. This customization method is presented in Chapter 5. The basic goal for 

designing PolyCuSP was to have an environment that supports the required flexibility to realize 

new customizations proposed in this thesis and facilitates design space exploration in a large de-

sign area. The large number of customizable elements in PolyCuSP enables the generation of 

different processor architectures, which helps us to have more accurate comparisons with the 

related works. This chapter focuses on the general characteristics and the design flow of the Pol-

yCuSP environment. 

The contents of this chapter are largely extracted from our paper "Customised soft processor de-

sign: a compromise between architecture description languages and parameterisable processors," 

published in IET Computers & Digital Techniques in 2013 [76]. 

3.1 Introduction  

Employing soft processors is increasingly becoming popular in FPGA-based embedded system 

design, as they offer rapid design process and high flexibility [4, 7]. However, general purpose 

processors are not usually able to meet the high computational requirements of complex embed-

ded applications, particularly in the multimedia, communications and signal processing domains.  

Application-specific processor customization is a well-known approach to close the gap between 

programmable processors and dedicated hardware implementation, while keeping post-

fabrication flexibility [6]. In recent years, a large body of research has focused on different as-

pects of employing processor customization in the soft processor domain. Processor customiza-

tion can be divided into micro-architectural tuning (or datapath customization) and instruction-set 

customization. The objective of microarchitectural tuning is to find the most efficient trade-offs 

for datapath elements such as pipeline depth, processor word-length and functional unit imple-

mentation. Instruction-set customization aims to adapt the processor’s instruction set to a given 

application for achieving improvement according to a chosen metric. The application-specific 



26 

 

 

 

instruction-set customization is widely known as ASIP design, in literature. Design space explo-

ration is normally an essential part of a processor customization methodology. Rapid develop-

ment process and high performance efficiency measurement are highly demanded in design space 

exploration [9]. 

Traditional RTL programming has proven to be inefficient for custom processor design mainly 

due to its high development cost. ADLs aim to reduce the design complexity by offering higher-

level processor-specific description [30]. The main drawback of ADLs is their verbose format 

that can significantly slow down the development process and, consequently, the design space 

exploration. Moreover, the RTL generation capability in existing ADLs has shown poor quality 

in terms of efficiency in hardware synthesis [9]. A third option consists of using parameterizable 

and extensible processors. Such processors usually have a fixed core with a limited number of 

tunable microarchitectural parameters, and an Instruction-Set Architecture (ISA) with some ex-

tension capability. This approach constrains the designer to a narrow range of possibilities, which 

results in a smaller search space and faster design process. In general, it does not support specific 

customization techniques such as ISA subsetting. Altera Nios II [35] and Xtensa [26] are two 

well-known examples of parameterizable and extensible processors.  

In this chapter, we explore a new area in the custom processor design space which lies between 

ADLs and extensible processors such as Xtensa. We introduce a new customized soft processor 

design environment, called PolyCuSP. The PolyCuSP environment combines the flexibility of the 

ADLs with the easy customizability of parameterizable processors. It allows ISA description 

from scratch for highest flexibility, while limiting datapath description to a predefined set of tun-

able parameters. This compromise follows from the observation that implementing usual micro-

architectural customizations does not normally require high flexibility and is one of the main 

sources of design complexity in ADLs. In PolyCuSP, all microarchitectural elements are either 

directly defined by the tunable parameters or inferred from the ISA description. 

The main difference between PolyCuSP and extensible processors like Xtensa is that PolyCuSP 

supports customization of the core processor datapath, which is normally fixed in extensible pro-

cessors [77]. For example, the Xtensa core processor comes with 80 fixed instructions. Major 

datapath elements such as the processor word-length (bit-width of the registers and signals), in-
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struction encoding formats and register-file size and access ports are fixed in the Xtensa core ar-

chitecture. Other customizable processors such as Nios II present similar characteristics.  Howev-

er in PolyCuSP, the core processor datapath is mostly defined by the designer and hence, highly 

flexible. This flexibility facilitates evaluation of significant processor design techniques. For ex-

ample, supporting multi-port memories enables PolyCuSP to realize related techniques such as 

the one proposed by Panda et al. [78], in a rapid way.  

3.2 Processor description method 

The PolyCuSP environment offers automatic generation of synthesizable RT-level VHDL code, 

assembler, and MATLAB simulation model from the given processor description. An overview 

of the development process is shown in Figure 3.1.  

 

 

Figure 3.1  Overview of the proposed development process 
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The processor description in PolyCuSP is partially parametric and partially programming-based 

to allow design flexibility and rapid design exploration capabilities. The numeric parameters are 

used to define the size and bit-length of the components, select among limited number of options, 

and include or exclude specific elements. The datapath bit width, type of data memory (direct 

memory or cache-based) and the inclusion of forwarding paths are some examples of numerically 

defined elements in the processor description model.  

Keeping the datapath description consistent with the intended ISA is a very complex task for 

most existing ADLs and related environments such as SPREE [10]. In pipelined architectures, 

designers are normally responsible for balancing stage latency by appropriate distribution of the 

circuits among the stages. Improper distribution may lead to long critical paths and consequently 

lower clock frequencies. In PolyCuSP, the datapath shape and component distribution is fixed 

while the set of microarchitectural elements is customizable through numerically-tunable parame-

ters and ISA description. This idea is supported by the fact that almost all previous works on mi-

croarchitectural design space exploration have limited their search space to a few elements. So, 

extensive flexibility provided by text-based datapath descriptions is not necessary for such lim-

ited explorations. Hence, compared to ADLs, the proposed method offers extremely low cost 

microarchitectural exploration while covering most of the significant parameters such as instruc-

tion encoding format. On the other hand, for the instruction-set architecture, the PolyCuSP envi-

ronment offers full control to the designer. This allows the environment to realize different ISAs 

and well-known customization techniques such as instruction-set extension and subsetting. 

The instruction-set description has a hierarchal structure and is stored in an XML file. The de-

scription is composed of the following elements: 

1. Definition of general and special purpose processor registers and register-file(s). The 

identifier, depth and bit-width values must be indicated for each register. 

2. Definition of instruction encoding formats.  

3. Definition of instructions including assembly syntax, functional description and decoding 

data (the data by which the instructions can be distinguished from each other, e.g., opcode 

value in many ISAs). 
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Encoding formats are defined in two steps. First, the encoding fields and their corresponding bit-

length are defined within the Encoding XML element. Then, a new encoding format can be de-

fined by putting the appropriate set of fields together as an attribute within the Encode_format 

element. The order of the fields in the format definition must be the same as their order in the 

binary instruction word. Each encoding format has an identifier (ID) to enable easy connection to 

the instructions.  

Figure 3.2 presents the definition of two major encoding formats (R-type and I-type formats) in 

MIPS ISA [79]. This convenient modeling approach allows the description of a wide variety of 

encoding formats including variable-length ones.       

 

 

Figure 3.2  Description of two major encoding formats of MIPS ISA 

<Encoding>

    <field  name="Opcode"    bits="6"   />

    <field  name="Function"  bits="6"   />

    <field  name="imm"       bits="16"  />

    <field  name="Rs"        bits="5"   />

    <field  name="Rt"        bits="5"   />

    <field  name="Rd"        bits="5"   />

    <field  name="sa"        bits="5"   />

</Encoding>

      

<Encode_format>

    <!-- Instruction Format Definition -->

    <!--R-Type-->

    <format  ID=     "3registers"       

      format= "Opcode Rs Rt Rd sa Ext" 

    />

    <!--I-Type-->

    <format  ID=     "2registers_imm"   

             format= "Opcode Rs Rt imm" 

    />

</Encode_format>
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The functionality of ordinary functions can be described with code written in a simplified form of 

the C language. Special techniques are employed to detect and resolve sequential assignment 

conflicts in the hardware realization. In this approach, all variables assigned more than once are 

converted to multiple renamed signals in the final RTL code. Hence, sequential assignments to a 

single variable or port are supported in function descriptions. 

More complex functions, such as multi-cycle and pipelined ones, can be modeled directly in 

HDL. The HDL modules, which normally reside in an external library of components, can be 

instantiated in the function description section of the instruction definition.    

All temporary variables must be declared before being used inside the code. Two new data types 

including bit and bitvec are offered to facilitate the declaration of arbitrary-length variables. All 

identifiers declared for the registers and encoding fields are meaningful (and thus reserved words) 

in function description code. As an example, Figure 3.3 demonstrates the description of a MAC 

(Multiply and Accumulate) instruction.   

One of the features of the PolyCuSP environment is its capability to automatically extract re-

quired interconnection signals (inputs and outputs of the components and their connections) from 

the function description of the instruction-set. The number of input and output ports of the regis-

ter-file(s) and data memory is also identified automatically. For example, in a single-register-file 

processor, if all instructions have one or two operands, then a dual read-port register-file unit will 

be generated in the output RTL code and all interconnection signals (including pipeline buffers, 

input ports of the EXE unit, etc.) will be configured accordingly. Now, if a three-operand instruc-

tion such as MAC (Figure 3.3) is added to the ISA, the PolyCuSP environment will replace the 

register file(s) and all related interconnections to support triple concurrent operand reads. This 

feature significantly simplifies the design process by exempting the designers from explicit decla-

ration of a large number of elements. 

External modules can also be instantiated in function description code. This feature allows de-

signers to develop complex CIs and function evaluation algorithms in low-level RTL. In such 

cases, direct RTL coding normally leads to more efficient designs. External modules can be sin-

gle- or multi-cycle. A specific handshaking mechanism is defined for control and data exchange 

purposes. 
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Figure 3.3  Description of Multiply and Accumulate (MAC) instruction.  

 

For efficient execution of multi-cycle instructions, a smart interlocking mechanism has been im-

plemented that checks data dependency between the instructions. When a multi-cycle instruction 

is being executed in a functional unit, the pipeline can continue to work as long as there is no data 

or resource dependency. Since the contents of external modules are unknown to the environment, 

a simulation model of these modules cannot be generated automatically and must be provided. 

The designers can also use encapsulated IP-cores as external modules in their designs.  

3.3 Tunable parameters 

This section summarizes tunable parameters currently supported in the PolyCuSP environment. 

The extent of these elements determines the size of the search space in design space exploration. 

A larger search space may lead to coverage of more meaningful design trade-offs at the cost of a 

longer design time. Table 3.1 lists significant tunable parameters currently supported by Poly-

CuSP. These elements can be classified into microarchitectural parameters and the elements de-

termined by the ISA description. 
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Table 3.1 List of configurable elements in PolyCuSP 

Category Element Options 

Microarchitectural 

parameters 

Pipeline depth  3, 4, 5 

Processor word length Unlimited 

Forwarding paths Enable/Disable 

Pipeline interlock control Enable/Disable 

Branch delay slot Enable/Disable 

Program memory size 8K-16M Words 

Data memory size 8K-16M Words 

ISA Description 

Number and functionality of 

the instructions 

- 

Encoding formats - 

Registers (number, size and 

bit-length) 

Unlimited 

  

Pipeline depth is a customizable parameter which indicates the number of pipeline stages. This 

parameter is realized by enabling or disabling pipeline buffers. Experimental results reported by 

Yiannacouras et al. [9] demonstrate the inefficiency of two- and seven-stage pipelines while each 

of the other examined intermediate options (including three, four and five stages) outperforms the 

others in some applications. Based on a simple pipeline with MIPS I ISA, we have implemented 

a similar architecture using PolyCuSP to obtain the results presented in this work. Hence, we 

have only considered the three most promising options in this work. Figure 3.4 illustrates the lay-

out of these three options. This assumption is dependent to the target ISA and major datapath 

features; if either of them changes, then other pipeline depths should also be considered in the 

exploration process. 

Processor word-length is the parameter that determines the size of the addressable words in data 

memory. The selected value for this option is automatically assigned to the reserved Wordlength 

macro which can be used as a number in the ISA description file. Forwarding paths and pipeline 

interlocking are two well-known techniques for data hazard avoidance. Two parameters are de-

fined to allow designers to employ either of these techniques.  
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Figure 3.4  Pipeline layout in (a) 5-stage, (b) 4-stage, (c) 3-stage configurations. 

 

When both parameters are disabled, the programmer is responsible for controlling the data hazard 

in application code. The program and data memory sizes are the other important microarchitec-

tural parameters. They can be set to any power of two value between 2
13

 to 2
24

 words. Cache 

memories are not considered in the present version of the PolyCuSP environment. 

3.4 Processor development process 

The development process is composed of the design and verification phases. An extensive toolset 

was designed to facilitate these two phases. External CAD tools are also necessary for industry-

standard HDL simulation and synthesis.  

The development environment and the adopted verification method are briefly described in the 

following subsections. 
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3.4.1 Development environment 

The development environment was implemented in MATLAB. The main reason of selecting 

MATLAB is its extensive facilities for developing exhaustive and heuristic search algorithms. 

Also, the main target application domain in this chapter is real-time embedded applications such 

as DSP and image/video processing. MATLAB provides a comprehensive library of functions 

and toolboxes which facilitate interfacing, monitoring and verification for such applications. Fig-

ure 3.5 illustrates the environment’s design flow. Various components of this process are de-

scribed as follows:   

 The first step in a new design is to develop the ISA description and to define the microar-

chitectural parameters.  

 The ISA description and the parameters are then fed to the environment where they are 

analyzed by the internal engine to extract all necessary information to produce the proces-

sor. This information is defined either in the list of parameters or inferred from the ISA 

description using specific procedures. The encoding formats that determine the decode 

stage circuits and the number of input and output ports of the register-file(s) are examples 

of elements that are obtained from the ISA description. Intermediate signals and pipeline 

buffers that support inter-stage data movements is another example of such elements. The 

obtained information in this step is passed to the HDL and simulation model generator 

procedures. The assembler and disassembler are also generated according to the defined 

assembly syntax of the instructions and the encoding format. 

 The HDL generator creates the synthesizable HDL from the captured processor descrip-

tion. The output code can be directly simulated and synthesized by external tools. 

 A stand-alone MATLAB simulation model can also be generated for the described pro-

cessor. This cycle-accurate model greatly facilitates verification and in-system simulation, 

particularly when the application is initially developed in high-level MATLAB and in-

tended to be implemented on embedded hardware. This is a widely used process in DSP 

and image/video processing designs. This feature enables performance and correctness 

evaluation during step-by-step migration from high-level algorithm to implementation. 
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Figure 3.5  PolyCuSP design flow diagram. 

 

 The application loader unit creates program and data memory content files from an input 

file in assembly or binary file. These files can be loaded into the corresponding memories 

during RTL and MATLAB simulations. Automatic high-level compiler generation (e.g., 

C compiler) for custom ISAs has not been supported in current version of PolyCuSP. 

However, adding this capability using retargetable compilers would be a highly useful fu-

ture work.  

 The development environment also provides a debugging tool to facilitate tracking and 

validation of application development in target processor. This tool exploits the 

MATLAB simulation model as the simulation engine.    
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3.4.2 Processor verification 

The generated processors can be verified by examining functional correctness of the simulation 

and RTL models in a debugging tool and the external HDL simulator, respectively. In the exper-

iments for this chapter, we employed Modelsim to observe RT-level tracing of the data and con-

trol signals. All instructions of the input ISA are examined one-by-one and pipeline controlling 

circuits such as data hazard avoidance techniques are verified by appropriate instruction sequenc-

es in the test applications. Other test cases must be developed manually in the current version of 

PolyCuSP. As a future work, an existing automatic test case generation method can be integrated 

into PolyCuSP to reduce the verification time and enhance the reliability of the designs.  

When modeling a standard ISA, the synthesis results are expected to be comparable with existing 

implementations. This fact provides another useful verification approach particularly to validate 

functionality of microarchitectural configurations.  

3.5 Experimental results 

This section evaluates and compares the PolyCuSP environment in terms of development effort 

and efficiency of the soft processor it produces. It compares the design space and the design 

complexity of PolyCuSP with those of Nios II, SPREE and the LISA ADL.  

3.5.1 Experimental set-up 

The framework generates synthesizable VHDL for the processors. This code is evaluated using 

standard simulation and synthesis tools to quantify performance and hardware cost results. In this 

chapter, we have used Synplify 9.0 and Xilinx ISE 13.2 for synthesis and Modelsim for simula-

tions. To enable meaningful comparison with previous works, we have synthesized the designs to 

Altera Stratix EP1S40F780C5 and Xilinx XC5VLX30 FPGAs. We developed three well-known 

image and video processing applications for the experiments: Sobel edge-detection operator, 3×3 

convolution and Reinhard’s tone mapping algorithm. The first two are used in general evalua-

tions and trade-off explorations, while the latter serves as a case study. All applications were cod-

ed in assembly language. Despite different assembly syntax in other processors used for compari-

son, we tried to have the same code structure to ensure that the comparisons are fair. 
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3.5.2 Comparing with Nios II 

We compared the processor generated by our environment with the commercial Altera Nios II 

soft processor. Since Yiannacouras et al. [10] has also compared the SPREE generated processors 

with Nios II, this allows a comparison between the PolyCuSP environment and SPREE. Howev-

er, this comparison is not exact due to the different experimental applications used to measure 

their performance. The Sobel algorithm was adopted for performance measurements in this sec-

tion.  

Three unparameterized variations of Nios II were evaluated in this chapter: Nios II/e, a small six-

cycle unpipelined architecture; Nios II/s, a five-stage pipeline with hardware multiplier; and Nios 

II/f, a large six-stage pipeline architecture with single-cycle multiplier and shifter, and dynamic 

branch prediction.   

As mentioned in Section 4, we implemented the MIPS I ISA (except unaligned load and store 

operations) which is very similar to the Nios instruction-set. We set similar parameters to identi-

cal values to ensure that the comparisons were as fair as possible. For instance, the size of the 

data and instruction memories in all examined processors is identical and equal to 64 KB.  

The Sobel application is small enough to reside in instruction cache memories used in Nios II/s 

and Nios II/f. As a result, the instructions are presumably moved to the on-chip instruction cache 

only once (for computation of the first pixel) while the same computation is repeated for all pix-

els of the input image. Hence, memory access time has negligible impacts on reported perfor-

mance of Nios II/s and Nios II/f and our processors. However, since Nios II/e does not support 

cache memories, its performance results are subject to longer memory access time impacts. For 

the present experiments with PolyCuSP, the applications reside in on-chip memory to have a con-

sistent comparison with SPREE and Nios II. Two 64-KB of RAM are used for separate instruc-

tion and data memories in both Nios II and PolyCuSP processors. The memories have not been 

included in area measurements. Memory hierarchy exploration, which requires larger benchmark 

applications, is out of scope of this thesis. Optional units such as JTAG interface and floating-

point unit have not been taken into account in Nios II measurements.   

Figure 3.6.a compares processors generated by our tool and Nios II variations in performance-

area space. Differences among our processors are caused by changing micro-architectural param-
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eters while the ISA is the same in all cases. The performance is represented by the wall clock 

time needed to compute Sobel on a 512×512 image. The most effective factor on the performance 

is the maximum clock frequency. While Nios II/s and Nios II/f achieve 128 and 136 MHz, re-

spectively, our generated processors reach at most 115 MHz. The result also show a reduction of 

approximately 30 MHz in maximum frequency migrating from a 4-stage to a 3-stage (keeping 

other parameters) the same. The IPC (instructions per clock) of our processors in the best case is 

up to 52% higher than Nios II/s. Since the shift operation is widely used in Sobel algorithm, the 

single-cycle LUT-based barrel shifter employed in our processors is one of the effective factors 

on the IPC results.   

Figure 3.6.b, which is borrowed from Yiannacouras’ paper [10], presents a comparison of SPREE 

generated processors and Nios II variations. The performance is measured by calculating the av-

erage wall clock time of 20 embedded benchmarks. The processor of interest is an 80 MHz pro-

cessor which is 9% smaller and 11% faster than Nios II/s. The right vertical axes in Figure 3.6.a 

and Figure 3.6.b illustrate normalized performance values based on Nios II/e as a common refer-

ence design. These axes facilitate the comparison between the design space of SPREE with Pol-

yCuSP. Comparing the two diagrams demonstrates that the PolyCuSP design space is more ori-

ented toward higher performance solutions. Furthermore, a precise look at the diagrams show that 

PolyCuSP offers slightly more efficient solutions near the high performance design space in some 

cases.  

SPREE requires a description of both datapath and instruction-set. Each instruction is described 

in terms of data dependence graphs of basic operations coded in C++. The datapath description is 

composed of the list of the components (such as memories and arithmetic functions) and the in-

terconnections between their ports. Individual components are described by RTL coding. In the 

open access MIPS I SPREE models [80], an average of 510 and 180 lines of C++ programs are 

needed for instruction and datapath descriptions, respectively. The RTL description of the com-

ponents was not taken into account in this complexity assessment since they can be commonly 

used in other processor developments. The similar instruction-set was described using approxi-

mately 430 lines of XML code in the PolyCuSP environment, including functional description of 

the instructions. The microarchitectural parameters can be stored in fewer than 50 XML lines. 
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(a) PolyCuSP design space and Nios II variations running Sobel operator
 

(b) SPREE design space and Nios II variations [10]

 

Figure 3.6  Comparing Nios II with (a) PolyCuSP environment (b) SPREE environment. 
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Although a difference in benchmark applications prohibits a direct comparison with SPREE, the 

fairly constant position of the Nios II variations in performance-area space helps to make a valid 

assessment of the efficiency of the two environments. The results show that microarchitectural 

configuration in PolyCuSP covers a relatively smaller area of the design space compared to 

SPREE. This area is more oriented towards higher performance and more costly solutions. The 

main reason is that we gave a higher priority to performance in PolyCuSP development. Based on 

this priority, we eliminated the slower solutions from consideration. Moreover, the diversity of 

the solutions is more limited in PolyCuSP due to supporting a smaller number of configuration 

options. On the other hand, the efficiency of the PolyCuSP designs is comparable with the high-

est performance solutions of SPREE and NIOS II.    

3.5.3 Processor customization techniques 

Two customization techniques were evaluated in the PolyCuSP environment. In the first step, we 

explored microarchitectural trade-offs of the generated processors for two target algorithms: a 

Sobel edge detector and a 3×3 vector convolution. Pipeline depth, branch delay slot and data haz-

ard avoidance techniques were covered in these experiments. Figure 3.7 illustrates the perfor-

mance of possible trade-offs in terms of average instruction throughput of the two evaluated algo-

rithms. The results show that four-stage pipelines generally yield the highest performance mainly 

due to the lower clock frequency in three-stage pipelines, and higher data dependency and branch 

penalties in five-stage pipelines. Pipeline interlocking circuits impose significant delays on the 

Operand Read stage. Hence, in the presence of the interlocking technique, the processor may 

suffer a reduction in maximum achievable clock frequency. The best performance is offered by 

four-stage pipeline with forwarding, and branch delay slot that yields more than 66 MIPS average 

instruction throughput.  

In the second step, we examined application-specific ISA customization techniques for the Sobel 

algorithm. First, we applied an instruction subsetting technique through which all unused instruc-

tions were pruned from a default MIPS I instruction-set. Then, the pruned ISA was extended by 

two new custom instructions selected after a manual analysis of the Sobel algorithm (Figure 3.8). 

This operator is composed of two steps: a convolution of two 3×3 constant vectors and input im-

age (or video frame); and post-processing of the convolution results to calculate the output image. 
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*DS stands for branch delay slot 

Figure 3.7  Impact of microarchitectural parameters on performance  

 

 

Figure 3.8  Selected CIs for the Sobel algorithm. 

 

Figure 3.9 presents performance-area trade-offs after deploying ISA customization techniques. 

This diagram demonstrates significant improvement in both performance and area. The results 

show that the described ISA customization techniques lead to an average improvement of 19% 

and 35% in performance and hardware area, respectively.  

In summary, the performance-to-cost ratio was improved by an average of 44% and 27% through 

microarchitectural tuning and ISA customization, respectively, targeting the Sobel algorithm. 
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Figure 3.9  Performance-area trade-offs after ISA customization. 

 

3.5.4 Case study of HDR tone mapping 

This section evaluates the proposed environment through the implementation of a High Dynamic 

Range (HDR) tone mapping algorithm. In a previous work, we developed an ASIP for this algo-

rithm using ISA extension [81]. The LISA ADL [29], was used for that research. In this section, 

we follow the same design process using the PolyCuSP environment. The results can serve as a 

source of comparison between our environment and a commercial ADL.  

(HDR imaging can capture scenes commensurate with the real-world luminance, which is on the 

order of 10
8
:1. However, the captured luminance values by this technique can be larger than the 

range perceptible by the human eye and the range supported by some display technology. Ren-

dering HDR images on screens with reduced contrast while maintaining a reasonable perceptual 

match with the real scene requires a special technique called Tone Mapping (TM) [82]. TM algo-

rithms usually impose high demands on computational resources. Customized processors are in-
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teresting options for implementing these algorithms since they can provide a trade-off between 

the efficiency of a dedicated solution and the flexibility of a programmable solution.  

We have chosen a well-known TM algorithm proposed by Reinhard et al. [83] as the target appli-

cation. 

In this method, the HDR image is first converted from RGB color space to scene-referred lumi-

nance (or world luminance) values as follows: 

                         .                                                  (3.1) 

Analogous to photography practices, the scene’s key is identified by calculating the log-average 

luminance value: 

         .
 

 
∑    (    )/,                                                        (3.2) 

where   is the number of pixels in the image and   is a small value. Next, the initial scaling is 

computed using (3.3), where the log-average is mapped to a desired value .  

   
 

    
                                                                                    (3.3) 

Then, the compressed luminance    is obtained by applying a linear mapping based on (3.4), as 

follows: 

   
 (   

 

      
 )

   
                                                                             (3.4) 

where        is the smallest luminance value to be mapped to pure white. By default,        is 

the maximum luminance value after the initial scaling. The final step is to recover the tone-

mapped color image.  

      
  

  
                                                                               (3.5) 

Three CI were selected through analyzing the computational flow graph of Reinhard’s algorithm. 

The first CI, called LumCI, realizes Equation 3.1 using three multipliers and two adders. The se-

cond CI, LogCI, facilitates the calculation of the approximation technique adopted for evaluation 
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of the logarithm function. The last CI, MaxCI, accelerates the compare and store process required 

for the        calculation. We have provided detailed descriptions of these three CIs elsewhere 

[81], where we employed the LISA language for ASIP development. In that work, we used 

LTRISC As the target processor. LTRISC is a 32-bit RISC-like processor model provided with 

Synopsys Processor Designer. Its Harvard architecture features 16 general-purpose registers and 

four pipeline stages.    

In the experiments presented here, the MIPS I was used as baseline ISA. Although MIPS I in-

cludes more instructions and a larger register-file, compared to LTRISC, the two processors are 

still similar enough to ensure a fair comparison. To have compatible results, we synthesized the 

designs for a Xilinx XC5VLX30 FPGA. Since Reinhard’s algorithm is based on fixed-point 

computation, specific fixed-point division and multiplication instructions (obviously by the same 

implementation) were added to the baseline processors before starting the experiments. These 

two instructions are necessary for obtaining acceptable accuracy results. 

Figure 3.10 compares performance-per-area results (in terms of frame rate per area) of the pro-

cessors generated by PolyCuSP with those obtained in our previous work [81]. The performance 

results were measured for 256×192 video frames. To simplify the comparison, only the results 

achieved by the fastest micro-architectural configuration are illustrated. According to the results, 

the PolyCuSP processors yield an average of 38% higher performance-per-area compared to the 

LTRISC ones. These results demonstrate the greater effectiveness of our RTL code generation, 

compared to existing commercial solutions. Modern FPGAs have dedicated DSP and RAM 

blocks for high performance realization of the memory elements and major arithmetic functions. 

By default, synthesis tools map registers and multipliers into these dedicated resources when pos-

sible. To have a unique and illustrative metric for area usage measurement, we avoided utilization 

of these dedicated resources in the experiments by adjusting the related settings in the synthesiz-

er.  

Table 3.2 presents an assessment of development complexity in the two environments. In terms 

of coding length, the LTRISC requires about 307% more programming. The ISA extension pro-

cess usually starts with finding the well-suited encoding format in the processor architecture 

based on the input and output data of the intended CI.  
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Figure 3.10  Comparing efficiency of PolyCuSP and the LISA-based ASIP design. 

  

Table 3.2 Design complexity of LISA LTRISC and PolyCuSP processor 

Factor   Development LTRISC [81] PolyCuSP 

Number of lines  

Baseline 1477 480 

ISA Extension 181 144 

ISA Subsetting 285 135 

Development time 

(hours) 

 

 

Baseline - 26 

ISA Extension ~7 ~6 

ISA Subsetting ~6 <1 

 

The LISA description is composed of several LISA operations. These operations are organized in 

a tree-like structure. The functionality, coding and syntax of the instructions are distributed 

among the operations. To figure out existing encoding formats in a given model, the designer 

needs to process most of the functions manually. This process is notably easier in the PolyCuSP 

environment, in which all encoding formats are defined by a few XML elements. Encoding data 

determination (e.g., opcode value) and functional description form the next major steps of in-
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struction-set extension. The complexity of these two steps is comparable in the two description 

methods. Finally, due to the distributed structure of the instruction description in LISA, removing 

a specific instruction usually entails manipulation of several operations. Accordingly, ISA subset-

ting is much more complex in LISA than in the PolyCuSP environment.   

3.6 Conclusion 

Application-specific customization of programmable processors is widely accepted as an effec-

tive approach to improve efficiency of processor centric designs. This chapter introduced a new 

custom processor development environment, called PolyCuSP, that takes advantage of a novel 

processor description method. Supporting a significant range of configurable microarchitectural 

parameters, straightforward instruction-set description format, and automatic generation of RTL 

along with cycle-accurate simulation models enable PolyCuSP to support rapid design space ex-

ploration.  

Three image processing applications were used to evaluate the efficiency of the proposed envi-

ronment. Microarchitectural exploration and instruction-set extension were examined to deter-

mine efficient trade-offs. Reported results demonstrate the applicability and efficiency of the pro-

posed design environment.  
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CHAPTER 4    FIXED-POINT ERROR MODELING METHOD 

In this chapter, we present an improved finite-precision error modeling approach that addresses a 

common hazard of the existing AA-based approaches and offers enhanced accuracy. The error 

modeling is an essential part of any fixed-point WLO method, which is one of the main subjects 

of this thesis. The error modeling approach introduced in this chapter is used in Chapter 5 and 6 

for WLO in hardware synthesis and microprocessor platforms, respectively.   

The contents of this chapter are largely extracted from our paper "Finite-precision error modeling 

using affine arithmetic," presented in IEEE International Conference on Acoustics, Speech and 

Signal Processing (ICASSP) in 2013 [84]. 

4.1 Introduction  

Finite-precision error modeling is a key step in accuracy-aware fixed-point design. Error models 

are essential for word-length optimization methodologies, which have been the subject of a large 

body of research in the last decade. Accuracy and computational complexity are the main factors 

for the evaluation of an error modeling approach. 

Many simulation-based and analytical techniques have been introduced in the literature for error 

modeling [51, 61, 62]. IA is a well-known analytical method which was originally invented to 

find the range of signals in a computational circuit [85]. The main drawback of IA is that it ig-

nores the correlation among signals [50, 51]. AA is a preferable approach that addresses the cor-

relation problem by taking signal interdependency into account. In AA, each signal is represented 

as a linear combination of certain primitive variables which stand in for sources of uncertainty. 

Fang et al. [51] and Lee et al. [38] introduced AA-based error propagation methods for quantiza-

tion error modeling. Other works have tried to improve the AA-based method, but they typically 

fail to cover all features of the basic method [59]. 

This chapter illustrates a common hazard in existing AA-based error modeling approaches and 

proposes a solution to address it. The chapter also suggests a modification of the propagation 

process which can effectively improve error model accuracy. Improvements are demonstrated 

and quantified using a set of widely used case studies. 
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Section 4.2 briefly reviews necessary affine arithmetic concepts. Section 4.3 describes existing 

error propagation models and their shortcomings. Section 4.4 presents our proposed solution. 

Section 4.5 gives experimental results and comparisons, and Section 6 concludes the chapter. 

4.2 Affine arithmetic  

In affine arithmetic, the estimated value  ̂ of a signal x is represented by the sum of a constant x0 

and a finite set of n uncertainty terms xiεi, as follows:  

 ̂                            ,    -.                                  (4.1) 

Each    element is an independent uncertainty factor of the total uncertainty of the signal. The 

estimated value of a signal x with specified range ,         - is represented in affine form by 

 ̂         ,                                                                             (4.2) 

where 

   
         

 
      

         

 
                                  

The affine form for addition-subtraction is calculated by adding-subtracting the affine expression 

of the inputs. Multiplication is more complex due to the emergence of non-affine terms in the re-

sult expression. The widely used solution is to replace these terms with an affine approximation 

that introduces a new uncertainty factor [38, 51, 52].  

The range of each signal is calculated from its affine representation by finding the minimum and 

maximum values when the uncertainty factors are replaced by -1 or 1. 

In error modeling with AA, the quantization errors must be added to the affine forms. The quan-

tized value xq of a signal x is represented in affine form as 

        
 ,                                                                       (4.3) 

where 

   
 {

                                 

                                         
       ,    -  
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The    
 and      

terms correspond to the quantization error and fractional word-length of the 

quantized signal     respectively. In Equation (4.3), we show two quantization approaches: trun-

cation and round to nearest. With FWL fractional bits, truncation and round to nearest cause a 

maximum error of      and        , respectively. To keep consistency with existing works, 

we use the round to nearest approach in the rest of this chapter. Equation (4.2) is a simplified 

version of the affine representation that is sufficient for finite-precision error modeling. A more 

detailed  treatment can be found in [51]. 

Using the affine expression from (4.3), the quantization error from addition-subtraction is ob-

tained as follows: 

                
    

   

     
    

    
                                                                     (4.4) 

where 

     {
                         

     (     
      

)  

                                                                                
.  

From (4.4), we see that the total error at the output of an addition is equal to sum of errors of its 

operands added to the quantization error of the output signal. The δ is nonzero only when the 

fractional part of the output is narrower than at least one operand. 

For multiplication, the error is:  

   
     

     
    

   
                                                        (4.5) 

where  

  {
 

        
                  

      
       

 

                                                                           
  

In a commonly used conservative approximation [38, 51], the x and y terms in (4.5) are replaced 

by the maximum absolute values of the x and y inputs that can be inferred from the range values.  
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Figure 4.1  Example circuit with input range values shown in brackets. 

 

4.3 Existing error propagation method 

To compute the finite-precision error of a computational flow which is composed of consecutive 

elementary operations, an error propagation procedure is required.  

Fang et al. [51], Lee et al. [38] and Pu et al. [86]  presented the widely accepted reference 

methods for AA-based error propagation. As a main contribution, this chapter identifies a com-

mon hazard that may arise in all error modeling approaches used in these works. We illustrate 

this hazard by applying Lee’s error modeling approach [38] on the example shown in Figure 4.1. 

The same problem emerges in Fang’s and Pu’s methods as well. Lee’s method omits the condi-

tional terms of the error equation by assuming there is always a quantization step after each oper-

ation. In other words, the number of output fractional bits of the operations is always assumed to 

be shorter than the maximum number of meaningful fractional bits that is produced by that opera-

tion. So, the error model for addition/subtraction becomes  

   
    

    
                                                                     (4.6) 

For multiplication it is 
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            .                                      (4.7) 

Accordingly, the error models of the signals of Figure 4.1 are obtained as follows: 

                                                                                         (4.8) 

                

    (      )  (      )                     

                        

                     . 

The hazard arises in the substitution of the signal terms that emerge in the multiplication expres-

sions. Common approaches, such as Lee’s method, substitute these terms with the absolute value 

of the worst-case bound of the signals, regardless of the rest of the circuit. This has been claimed 

to be a conservative approximation. So, the    and    terms in the expression for     above are 

substituted by the value 1. 

Now, starting from the primary inputs, the error terms are substituted by their corresponding ex-

pression until the output error expression is obtained as follows: 

                                                                   (4.9) 

                             

                                               .   

The        term in (4.9) is small and is often disregarded [50, 51]. Since the   elements are in the 

range of -1 to 1, the upper bound of the error at the output   is calculated as 

    (  )                                              .      (4.10)           

The incorrectness of the error expression in (4.9) and (4.10) can be easily shown by an example: 

In Equation (4.8), If        , the output error expression becomes 
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 ́                                                               (4.11) 

                      

      ( ́ )                                      

                                                   , 

which is larger than the value in (4.10) due to the contribution of the input quantization errors 

(    and    ). In fact, the early substitution of the signal terms in (4.8) causes incorrect cancella-

tion in later stages. 

Cong et al. [50] used a more complex propagation method that does not generate the hazard. In 

this method, the signal terms are substituted with their corresponding affine representation in-

stead of worst-case approximation. In the example of Figure 4.1, the    and    terms in     ex-

pression are substituted with       and     , respectively. 

                                           .                        (4.12) 

The products      and      are replaced by new uncertainty factors as follows: 

                                       .                              (4.13) 

So, the output error expression is obtained as: 

                                                               (4.14) 

                                            

                      (  )                                               .                                                            

This is the correct error model for Figure 4.1. The        term is neglected in Cong’s paper [50].  

Although this method can address the mentioned hazard, we found that it also faces a significant 

issue. Cong’s method can occasionally fail to keep track of the correlation between new uncer-

tainty factors. For example, applying this method on the circuits shown in Figure 4.2 that calcu-

lates      (     )  (     ) = 0. The error expressions are obtained as follows:  
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Figure 4.2  Circuit that calculates      (     )  (     ). 

 

                                                                                       (4.15) 
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Note that in order to simplify calculations, we do not take the quantization error of intermediate 

signals (       -   ) into account. 

In a correct propagation approach, the quantization errors of the input signals should be cancelled 

in the subtraction operation before reaching the output      error expression. Hence, the correct 

output error expression is        . However, Cong’s method gives a different error expression 

due to the fact that this method fails to keep track of the correlation among new uncertainty fac-

tors. As illustrated by the example in Figure 4.2, this issue can cause considerable overestimation 

of the error values.  

Another significant challenge of Cong’s method [50] is the large number of uncertainty factors 

that it introduces in multiplication operations. This leads to high computational complexity of the 

propagation process.  

4.4 Proposed approach 

We propose a modified error propagation approach with two improvements. The first improve-

ment addresses the shortcomings of the existing methods. The second improvement involves the 

propagation of conditional terms which can enhance the accuracy. 

4.4.1 Postponed substitution 

An effective way to address the problems described in Section 4.3 is to postpone the signal term 

substitution until the last stage of the propagation process. Applying this modification to the cir-

cuit of Figure 4.1, the    and    terms in    are not substituted by a value until the output error 

   is obtained as:  

   (    )              (    )                                     (4.16) 

                                          . 

Now, for a conservative evaluation, non-constant coefficients of the error terms are approximated 

to their maximum absolute values. For example, the (    ) coefficient is approximated to 

   (|    |)    applying      , while a value of 0 was calculated for this coefficient in 
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Lee’s method due to early substitution. The upper bound error expression of (4.14) is eventually 

obtained for the circuit of Figure 4.1 using our method. This case study shows that although early 

substitution of signal terms simplifies the error propagation process, it may lead to an underesti-

mation of error bounds and consequently inaccuracy in precision analysis. Applying this method 

on the circuit of Figure 4.2 gives the correct result, i.e.,        . This shows that our method 

also addresses the overestimation issue of Cong’s approach. 

Solving the maximization function in the last stage forms the main complexity overhead of our 

approach. This overhead increases with the number of signal terms that participate in a non-

constant coefficient. 

4.4.2 Propagation of conditional terms 

The second proposed improvement involves the conditional terms in error expressions. Existing 

methods assume that the quantization error is always introduced at the output of operations to 

eliminate conditional elements. Although this assumption simplifies the error propagation process, 

it may introduce unnecessary error elements that eventually lead to overestimation. Our second 

improvement proposes avoiding this assumption by propagating the conditional terms in the same 

way as other elements.  

This improvement is shown by a real example. Figure 4.3 depicts the RGB-to-YCrCb function. 

This widely used function calculates  

[
 
  
  

]     [
 
 
 
]                                                                                            (4.17) 

where  

   [
      

        
   

    
     

        
        

    
     
   

        
].       

The input signals R, G, and B are assumed to be eight-bit unsigned integers. The existing AA-

based error modeling approach gives the following error bound expressions for the RGB-to-

YCrCb function.  



56 

 

 

 

×

+

+

R MC11

s1

Y

×

G MC12

×

MC13

s2 s3

s4

B

×

+

+

R MC21

s5

Cr

×

G MC22

×

MC23

s6 s7

s8

B

×

+

+

R MC31

s9

Cb

×

G MC32

×

MC33

s10 s11

s12

B

 

Figure 4.3  RGB-to-YCrCb example. 

 

 

    (  )                                                    (4.18) 

                                                                    

    (   )                                            

                                         

    (   )                                            

                                            

In above expressions, all conditional terms have been replaced by the constant error terms for s1-

s12 intermediate signals. 

The proposed modification suggests keep of the conditional terms. For instance, applying this 

modification on the RGB-to-YCrCb circuit gives the following upper bound error expression for 

the    output:                     

    (   )                                                 (4.19) 

                                    

where     

            {
                                        

                  

                                                                               
 

           {
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The error expression calculated in (4.18) is less accurate than that in (4.19) since it does not take 

into account the fact that, in certain circumstances, no quantization error is introduced into the 

calculations in intermediate signals. In other words, existing approaches simplify the error model-

ing at the expense of risking overestimation. In FWL allocation, using the error expression of the 

modified approach (4.19) can potentially lead to more efficient results since the improved ap-

proach can gives a more accurate and smaller error estimation for a unique FWL allocation solu-

tion. For instance, in the RGB-to-YCrCb example, the modified error model leads to a FWL solu-

tion of  

{       
        

        
                        } 

                                                                                   *                     +                 (4.20) 

to satisfy 8 bit accuracy at the output Y while the error model given by the existing approach re-

jects it. So, according to the existing approach, the FWL of at least one signal must be increased 

to meet the accuracy requirements and this may lead to more hardware cost and latency.       

Experimental results in Section 4.5 demonstrate the effectiveness of this modification on word 

length optimization. 

4.5 Results and comparison 

We developed a word length optimization system to evaluate the efficiency of the conditional 

term propagation. This system is a reproduction of the method proposed by Osborne et al. [52] 

and is implemented in MATLAB. The error models are given to the word-length optimization 

process as input. Using a more accurate error model, the optimization process can potentially find 

shorter signal bit-lengths that still meet the requested output error bound. The shorter signals 

eventually lead to lower hardware cost during the hardware implementation. This section 

measures the hardware cost reduction and optimization time overhead obtained by using condi-

tional term propagation in AA-based error modeling. For the experiments described in this sec-
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tion, we have employed five well-known case studies that include some commonly used trans-

forms and operators in the signal and image processing domains. 

Lee et al. [38] described the case studies in detail. For hardware cost measurement, the case stud-

ies were modeled in VHDL. The polynomial approximation was implemented in general form, 

contrary to Lee et al. [38] who customized this approximation to a specific function. All experi-

ments were performed on an Intel i7 3-GHz PC with 16 GB RAM. Designs were synthesized 

with Synplify 9.1 for a Xilinx Virtex 5 XC5VLX110 FPGA. 

Table 4.1 illustrates the hardware area cost and optimization time for the five case studies. In 

these results, conditional term propagation saves hardware area by up to 7.0% at the expense of 

negligible complexity overhead. Achieved hardware savings are significant regarding the com-

petitive results in previous works in this area.  

Figure 4.4 compares the hardware savings obtained in various degrees of polynomial approxima-

tion. These results show a slight growth in hardware savings by increasing the application size. 

The requested output precision was fixed to 8-bits in all reported experiments. 

 

 

Table 4.1 Impacts of conditional term propagation on efficiency of the results 

*M1: Without conditional term propagation     **M2: With conditional term propagation 

 

Case Study # of Signals 

Area (slices) Opt. Time (s) 

M1* M2** Imp (%) M1 M2 

Degree-4 Poly 13 1234 1172 5.3 5.1 5.2 

B-Spline 15 719 691 4.1 3.5 3.5 

RGB to YCrCb 19 558 537 3.9 5.7 5.9 

2×2 Matrix Mult. 29 1939 1812 7.0 14.4 14.7 

DCT 8×8 55 5178 4902 5.6 127.3 131.1 
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Figure 4.4  Hardware area savings for various polynomial degrees. 

 

4.6 Conclusion 

We have demonstrated a common hazard in existing AA-based finite-precision error modeling 

methods using two counter examples. We have proposed the postponed substitution approach to 

address this hazard. Furthermore, we have proposed conditional term propagation to enhance 

error modeling accuracy. The efficiency of our approach was evaluated through a set of case 

studies. The results show that the approach can yield significant hardware savings with negligible 

complexity overhead.   
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CHAPTER 5    WORD-LENGTH ALLOCATION FOR HARDWARE 

SYNTHESIS 

In this chapter, we focus on word-length optimization that targets hardwired circuit design for 

fixed-point computations. Two new fractional word-length selection algorithms and an accelera-

tion technique are introduced in this chapter.  

The contents of this chapter are largely extracted from our paper "Enhanced precision analysis for 

accuracy-aware bit-width optimization using affine arithmetic," published in IEEE Transactions 

on Computer-Aided Design of Integrated Circuits and Systems in 2013 [87]. 

5.1 Introduction  

Bit-width allocation is a key step in fixed-point computational circuit design. This process has 

significant impact on accuracy and hardware efficiency of fixed-point circuits. Design flexibility 

of reconfigurable hardware devices, such as FPGAs and ASICs allows the designers to customize 

the bit-width of each signal in a given application, independently. The goal of this customization 

is to optimize the trade-off between hardware efficiency and computational accuracy of the im-

plementation. Finding the optimal bit-widths is widely known as word length selection or word 

length determination problem. Word-length allocation is an NP-hard problem [3]. Exhaustive 

search and manual evaluation methods are not practical for WLO in large designs due to the huge 

size of the search space.  

WLO is composed of two main processes: IWL allocation and FWL allocation. IWL allocation 

requires range analysis to evaluate the range of values that each signal may take. Knowing the 

range of values, the number of IBs is simply obtained as the minimum value that ensures over-

flow avoidance. On the other hand, the goal of the FWL allocation is to minimize the hardware 

cost while meeting the accuracy requirements.  

IWL and FWL allocation methods can be categorized into dynamic (or simulation-based) and 

static (or analytical) approaches. Dynamic methods are usually far slower due to the large number 

of input stimuli they need to process. They also cannot guarantee the accuracy of the result be-

cause of their dependency to the selected input stimuli. On the other hand, static methods offer 



61 

 

 

 

more conservative results. This may occasionally lead to overestimation of the range and/or error 

bounds and consequently less efficient results. 

Finite-precision error modeling is a vital part of most analytical FWL allocation approaches. The 

error models express the precision of the outputs as a function of quantization error of input and 

intermediate signals. For a candidate FWL solution, the error model can be used to evaluate the 

upper-bound error that may appear at the output and verify its compliance to the requested error 

range.  

Many simulation-based and analytical techniques have been introduced for these two problems in 

literature. Range and error propagation via AA is widely accepted as one of the best analytical 

approaches for both problems [38, 52].  

This chapter introduces novel ideas for WLO for hardwired circuit synthesis using AA. It propos-

es two new FWL selection algorithms as well as a simplification technique to reduce the com-

plexity of the FWL allocation problem. These contributions build on approaches presented by 

Lee et al. [38] and Osborne et al. [52] and offer trade-offs between hardware efficiency and op-

timization speed. Multi-output circuits are supported in all proposed algorithms and techniques.   

An important factor in word length optimization is the error measurement metric. To keep con-

sistency with related works, we have used maximum absolute error in terms of ulp (unit in the 

last place) in this chapter. We have evaluated the effectiveness of the proposed algorithms and 

techniques and compared them with previous works. 

The rest of the chapter is organized as follows. Section 5.2 presents an overview of the proposed 

WLO framework that implements all ideas and algorithms introduced throughout the chapter. 

The proposed techniques and algorithms for FWL allocation are described in Section 5.3. Section 

5.4 gives experimental results and comparisons, while Section 5.5 concludes the chapter.     

5.2 Implementation framework overview  

Figure 5.1 illustrates the WLO framework that implements the proposed algorithms and tech-

niques described in this chapter. In this framework, the source application is first converted from 

C into the GIMPLE intermediate representation (IR) using the GCC compiler. This conversion 

facilitates reading and parsing the input code. The IR is then processed in four steps. 
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Step 1 in the optimization process is the AA-based range analysis. It requires the range of the 

primary inputs. The FWL allocation is made up of steps 2, 3 and 4. Step 2 consists of the limited-

precision error modeling, which requires the range information and the required output precision. 

Step 3 is a simplification technique described in Section 5.3.2. Step 4 is a new algorithm to select 

the fractional bit-width of the signals. It takes as input the range information, the error model and 

the hardware cost estimation model of the given application. The outputs of the framework are 

the IWL and the FWL. 

5.3 FWL allocation 

This section describes our proposed FWL allocation approach, which is composed of a prelimi-

nary simplification technique (Step 3 in Figure 5.1) and a novel fractional bit-width selection 

process (Step 4 in Figure 5.1).  

5.3.1 Example design 

We use an example circuit to illustrate our method in subsequent sections. This example circuit, 

which is borrowed from Lee et al. [2], is given in Figure 5.2. 

In this chapter, the enhanced error modeling approach presented in Chapter 4 is used to estimate 

worst case error bound. Using that approach, the upper bound error expression obtained for Fig-

ure 5.2 is: 

                     
        

                                 (5.1) 

where  

   {
 

        
                

      
       

 

                                                                          
, 

   {
 

        
                 

     (     
      

) 

                                                                                 
, 

In subsequent sections, this inequality will be used as the error bound model.  



63 

 

 

 

GCC compiler

.GIMPLE

AA Range Analysis

Error Modeling

New FWL selection 

algorithm

Hardware cost 

estimation 

model

Range of primary 

inputs

Output(s) requested 

upper bound error

Fractional word-

length (FWL)

Precision Analysis

Simplification 

Technique

Step1

Step2

Step 3

Step 4

Application in C

Integer word-

length (IWL)

 

 

Figure 5.1  Overview of the proposed word length optimization framework. 

 

5.3.2 Preliminary simplification technique 

We propose the following Lemma, from which our simplification technique has been derived:   

Lemma: Quantization of an intermediate signal between two additions/subtractions does not have 

any benefit over quantizing the inputs of the preceding one and keeping the fractional length of the 

intermediate signal equal to the maximum FWL of the input signals.  
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×

+

_

a=[-3,2] b=[4,8] c=4.3

d=[-24,18]

e=[-19.7,22.3]

z=[-25.7,16.3]  

Figure 5.2  Example circuit along with the range information in brackets. 

 

Applying the Lemma to the general subcircuit of Figure 5.3 suggests that to gain a constant accu-

racy at output out, the lowest hardware cost is achieved when 

        (             ).                                                      (5.2) 

Proof: According to our error modeling approach of Chapter 4, the output error expression of 

Figure 5.3 circuit is: 

      (    )                                                        (5.3) 

where 

    {
                           (             ) 
                                                                                

. 

Comparing the fractional widths of the intermediate signal   and inputs     and    , the follow-

ing three possibilities emerge: 

                        : In this case, the    term is equal to zero. If we re-1.

duce the      to    ̅̅ ̅̅ ̅̅
     (             ), the error remains the same while the 

hardware cost can be reduced in proportion to the difference         ̅̅ ̅̅ ̅̅
 . Hence, re-

ducing the fractional width of signal  , from      to    ̅̅ ̅̅ ̅̅
 , improves the efficiency. 

 



65 

 

 

 

± 

in1 in2

x

. . 
.

. . 
.. . .

. . .

out

± 

in3

 

Figure 5.3  A general subcircuit that calculates out=in1±in2±in3. 

 

                         or                        : Let us as-2.

sume that             to discuss this case. The other case can be proved in the same 

manner. If we reduce       to     , the error equation becomes: 

    ( ̅   )                                     (    ).           (5.4) 

This reduction always results in smaller error and smaller hardware cost.  

                        : We can rewrite this condition as:  3.

                                                                               (5.5) 

Then, there are two possible states: 

The FWL of both inputs (      and       ) are equal to       : in this state, the 

output error expression is 

    (    )                   .                                                   (5.6) 

If the        and        are both reduced to     , the maximum error expression re-

mains the same but the hardware cost of the preceding operator decreases due to one bit 

shorter operands.  
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The FWL of at least one of the inputs is longer than       : in this state, if we change 

the       ,       and      to    ̅̅ ̅̅ ̅̅
   ,    ̅̅ ̅̅ ̅̅

    and    ̅̅ ̅̅ ̅̅
  respectively, while 

   ̅̅ ̅̅ ̅̅
       ̅̅ ̅̅ ̅̅

       ̅̅ ̅̅ ̅̅
         the upper bound error becomes: 

    ( ̅   )                            (    ).                       (5.7) 

This modification increases the FWL of the intermediate signal   by one bit, while reducing the 

width of the preceding operator by at least one bit. Hence, considering single fan-out for the in-

termediate signal, the hardware cost of the modified circuit would always be less than or equal to 

the primary circuit. Note that we assume uniform hardware cost for each extra bit in addi-

tion/subtraction. More precisely, this modification shows that a single fan-out signal between two 

addition/subtraction operators can always be removed from the word-length selection problem 

without taking the risk of disregarding more efficient solutions. For this purpose, these unneces-

sary signals must first be identified and then eliminated from the list of the signals which are to 

be considered in the FWL selection process. 

   

 

/* Nop: number of existing operations in the circuit */ 

/* OPi: i’th operation in the circuit while i  {1,…,Nop} */ 

/* Si: the output signal of OPi */ 

/* NFi: Fan-out of signal Si ; number of operations that use Si as input */ 

/* FOPij: j’th operation that use signal Si as input; j  {1,…,NFi} */ 

/* FISik: k’th signal that operation OPi  receives as input;  

              k  {1,2} since we only consider two-input operations here */ 

for (all intermediate and output signals Si) 

    if (NFi ==1 and OPi and FOPi1 are addition/subtraction) 

          Remove Si from the list of signals that require word length selection. 

          Replace the      
 by    (        

         
) in all error equations.    

    end if; 

end for;      

Figure 5.4  The proposed algorithm for preliminary simplification technique. 



67 

 

 

 

in1 in2

in3

_

×

in4

_

out=in3-(in1×in2)+in4-(in1×in2)

x2

x1 x1

x3

+

        

+
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       )                       
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Figure 5.5  Applying the preliminary simplification algorithm to two example circuits.  

 

The necessary changes must be made in error models assuming that the FWL of each removed 

signal is always equal to the maximum FWL of the last preceding operator. Figure 5.4 presents 

the algorithm we developed to realize this technique. It can significantly simplify the problem by 

pruning the search space. For example, applying this technique to the circuit of Figure 5.2, the 

signal   can be exempted from the selection problem assuming that     

          .     
      

/.                                                      (5.8)  

Accordingly, the    term reduces to zero and the error bound inequality of (5.1) is converted to:  

                     
        

              .                      (5.9) 

Figure 5.5 illustrates the result of applying the simplification technique to two other example cir-

cuits. The signals marked by the dashed square are removed from the fractional width selection 

problem. 
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Note that the presented lemma was only proved in terms of worst case error. This does not guar-

antee the validity of the lemma when average error is intended.   

5.3.3 Hardware cost estimation model 

Hardware cost measurement is normally necessary for effective width selection. It is considered 

as the main efficiency metric by most works in this field [38, 61, 69]. A hardware cost estimation 

model is necessary for a fast optimization process. 

The cost model which is used in this chapter is similar the one used by Lee et al. [38]. In this 

model, the full adder has unit cost. Hence, the cost of the addition/subtraction     is modeled 

by    (         )     (         ) while the cost of multiplication     is modeled 

by (         )(         ). A more precise model for addition and subtraction is to 

consider the minimum fractional word-length of the operands as the cost of the fractional part 

instead of the maximum one. It is because the FWLs must be left-aligned prior to addition, the 

operand with the fewest bits must be right-padded with zeros, and no hardware is necessary to 

add them. However, in this thesis, we use the Lee’s model to keep consistency with previous 

works.  

Based on this model, the hardware cost of the circuit shown in Figure 5.2 is: 

     .     
      

/ .     
      

/                                      (5.10) 

            .     
      

/     .     
      

/ 

            .     
      

/     .     
      

      
/ 

Increasing the fractional width of a signal normally increases the hardware cost while reducing 

the output error.   

5.3.4 Progressive Selection Algorithm (PSA) 

The first FWL selection algorithm we introduce, named PSA, is based on a fast progressive ap-

proach. The idea we pursue with this algorithm is to partition the allowed amount of error among 
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the involved signals based on their unit bit hardware cost. The algorithm is composed of three 

main phases. 

 Marginal bit cost estimation. During this phase, the hardware cost of each extra fractional 1.

bit is estimated for all signals. Since the hardware cost of a signal may depend on the bit-

width of other signals, an initial width assumption is necessary. A simple and effective 

way is to use Uniform Fractional Bit-width (UFB) as this initial assumption. The UFB can 

be analytically calculated from the error model by substituting all FWL variables with a 

single variable in the error bound equation. In the example circuit of Figure 5.2, this cal-

culation gives:           

    (   
)                   (       ).                                 (5.11) 

Assuming that 8-bit accuracy is requested at the output  , then:  

                                   .                              (5.12) 

In this case, the minimum value of UFB that meets the required accuracy is 12. Now, we 

can obtain the initial cost by substituting the IWLs with the range analysis results and 

substituting the FWLs with the calculated UFB (12 in this example) in the cost equation: 

      (    )(    )                                         (5.13) 

To compute the marginal cost of each signal, the above calculation is repeated by incre-

menting the FWL of that signal by a single unit. The difference of the result and the initial 

cost value is considered as the marginal bit cost.  

 Cost-based error allocation. During the second phase, the allowed error bound is divided 2.

into small pieces. Each piece corresponds to the maximum error that can be introduced by 

a signal. The proposed method performs the error division based on the hardware cost of 

the signals in order to optimize the total hardware cost. To describe the proposed alloca-

tion scheme, the error bound equation is first written in a sum-of-products form as fol-

lows: 

   (    )  ∑    

 
                                                                 (5.14) 
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where   is the number of signals and    stands for the i
th

 signal. Assuming non-zero values 

for conditional statements, the    
 terms are obtained as constant values in affine expres-

sions. For example, the    
 values in error bound equation (5.4) are as follows: 

*              +  {      ⁄    ⁄    ⁄ }.                                          (5.15)      

In the proposed approach, the division of each product term in the output error has a direct 

relationship with the cost of the corresponding signal. The marginal bit cost data, calcu-

lated in the first phase, is used as the cost metric in this step. Therefore, the primary frac-

tional width of the signals is calculated as:  

   
         

       
     

∑        

 
    

 

        

    ⌊    

            

   
 ∑        

 
    

⌋                                                   (5.16) 

where   

    
                               ; 

                            

       
                                       

The primary fractional width of the example circuit signals are computed with (5.16), as 

illustrated in first row of Table 5.1.  

 Fractional width refinement: The rounding down operation causes accumulative impreci-3.

sion in primary width calculation. Hence, the output error resulting from the primary 

widths may be considerably smaller than the requested error bound. This error slack al-

lows further refinement of the widths. For example, with the results obtained for the ex-

ample of Figure 5.2 in the last phase, the output error is computed as follows: 

    (   
)                                                                (5.17) 
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We developed an iterative error slack allocation algorithm to refine the primary fractional width 

values. For each iteration, this algorithm selects the best candidate signal as the best signal for 

fractional width reduction. For efficient selection, this algorithm calculates the Cost_Error func-

tion for all eligible signals as follows: 

            
 

          

             

                                                                 (5.18) 

where the parameters are defined as follows: 

     i’th signal  

             
   amount of error that would be introduced by decreasing the     

width of    by one bit.  

          
  cost reduction achieved by decreasing the width of    by one bit.  

The signal that represents the largest Cost_Error value is selected and its fractional part is nar-

rowed by one bit. Afterwards, the           , the         , and the Cost_Error of all signals 

and the error slack value are updated, accordingly. The           
 term is slightly different from 

the marginal bit cost,        
, defined in the first phase. The           

 is calculated based on 

the dynamic word-length values during the refinement process, while the        
 is constant and 

calculated based on UFB allocation. The conditional terms in the error model must be particularly 

considered in these calculations mainly because they can create dependencies between the sig-

nals. In other words, in the presence of conditional terms, a change in FWL of a signal can affect 

the error penalty and bit cost of the others. Only the signals whose             does not exceed 

the error slack are eligible for width reduction and are therefore considered in this process. By 

reducing the error slack in each iteration, the number of eligible signals shrinks.  

The algorithm continues until no eligible signal remains. The              
 is obtained by 

measuring the difference between the output error values before and after narrowing the    by one 

bit. In multi-output circuits, the differences are accumulated. Figure 5.6 presents the PSA algo-

rithm with a single output. A multi-output version can be obtained with a few minor modifica-

tions. 
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Table 5.1 Fractional width refinement of the example circuit of Figure 5.2 

iter.   a b c d Err_Slack 

1 
FWL 13 12 14 14 

9.1       
           34816 32768 17408 17408 

2 
FWL 12 12 14 14 

4.2       
           NE

*
 NE  17408 17408 

3 
FWL 12 12 13 14 

3.9       
           NE

*
 NE 8704 17408 

4 
FWL 12 12 13 13 

3.6       
           NE NE 8704 8704 

… … … … … … … 

10 
FWL 12 12 11 11 

0 
           NE NE NE NE 

                              *NE: not eligible for fractional width reduction because of error violation 

 

Table 5.1 demonstrates the first four and the last iteration of this algorithm applied to the example 

circuit. According to these results, the final selected FWL s for the signals are 

     *                              +  *                +                        

(5.19) 

5.3.5 Accelerated Tree-Based Search Algorithm (TBSA) 

The second FWL selection algorithm we introduce, named TBSA, is based on an accelerated 

tree-based search. This algorithm also starts with the marginal bit cost calculation in the same 

way as the progressive algorithm. The main process is carried out in a recursive loop. In each 

iteration, the FWL of one signal is determined in a fractional format based on the cost proportion 

according to the following equation: 

   ̂  

      

                      
 

   
 ∑        

 
    

                                                  (5.21) 
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 /*      

   Primary fractional widths */ 

/*       Requested output error */ 

Calculate primary output error    using primary fractional widths 

                     //error slack calculation 

for all signals    

     Calculate the              
    //Error penalty of decreasing the  

                                                       //fractional width of    by one bit 

 Calculate the           
         //Cost reduction of decreasing the  

                                               //width of    by one bit. 

                  
           

             
⁄  

end for;   

           

while         

                 

                           //keep track of the best            

      for  (all signals   ) 

       if  (             
          ) 

                                 //There is at least one eligible signal for  

                                     //width reduction. 

               if  (            
                )   

                //better than the best previously obtained signal for width  

                //reduction  

                                     //keep track of the index of the best            

                                                 //found signal    

                                              
    

            end if; 

       end if; 

  end for; 
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     if  (stop==0)   // At least one eligible signal has been found 

          //decreasing the fractional width of the best found signal  

                        
               

       

                                                    
  

     for (all signals   ) 

               Update               
,           

 and             
. 

         end for; 

   end if; 

end while; 

Figure 5.6  The fractional width refinement algorithm PSA. 

 

The   ,        
 and    

terms are defined in Section 5.3.4. The               term represents 

the total amount of error that is allowed to be introduced by the unprocessed signals.  

Since the fractional width is an integer, the calculated    ̂ must be rounded to one of the adja-

cent integer values. The decision to round up or down has cascading impacts on other signals 

mainly because they lead to different               values. So, this decision can make two 

possible states for each signal. The algorithm considers these two states as two nodes in a binary 

decision tree. 

The algorithm starts with a single node in the first iteration where two children nodes are gener-

ated based on two possible decisions for the first signal. During the second iteration, the second 

signal is processed in each of the nodes, separately.  

The algorithm keeps track of the               value in all nodes using the following calcula-

tions: 

{
                

                   
     

  
⌊   ̂  

 ⌋

                
                 

     
  

⌈   ̂  
 ⌉

   
                   (5.22)  

where  

              
            . 
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The   term stands for the node number in one level of the tree. So, the               
  repre-

sents the maximum allowed error in  th
 node of the  th

 level of the tree. We have also employed a 

technique to accelerate the algorithm by eliminating unpromising paths in each level of the tree. 

The following pruning rule is used to identify unpromising paths. 

Pruning Rule:  In each level of the binary FWL decision tree, the node   is unpromising if a 

node   exists in the same level that offers larger or equal               with lower cost. The 

cost value is calculated based on the known FWL of the processed signals and UFB value for 

unprocessed ones. Figure 5.7 illustrates the pseudo-code of this algorithm with a single output. A 

multi-output version can be obtained with a few minor modifications. Figure 5.8 shows the first 

four levels of the decision tree obtained by applying the algorithm to the example circuit of Fig-

ure 5.2. The        in this figure has been eliminated since its               has reached ze-

ro. This means that the error introduced by the two determined signals has already reached the 

maximum allowed error and no other error gap remains for the rest of the signals. According to 

the pruning rule,        is unpromising since the        outperforms it in both error and cost 

results. 

Finally, this algorithm selects the following FWLs: 

                 *                              +  *                +    (5.23) 

This solution offers almost the same cost as the one achieved by the PSA. However, for larger 

applications, we will see in Section 5.4 that the TBSA considerably outperforms the PSA in terms 

of hardware cost. 

5.3.6 Time complexty of the PSA and TBSA algorithms 

Time complexity is one of the main criteria to compare WLO techniques. This criterion is partic-

ularly important for large designs. This section studies the time complexity of the described algo-

rithms. A brief analysis reveals that the fractional width refinement step takes up most of the time 

of the PSA algorithm. 

The main part of this process is an undetermined-bound loop to select the best candidate signal 

for width reduction. This loop lasts until the allowed output error bound is violated. The maxi-

mum possible number of iterations in this loop can be formalized analytically as follows. 
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/*      

   Primary fractional widths */ 

/*       Requested output error */ 

Calculate primary output error    using primary fractional widths 

                     //error slack calculation 

 

/*       Requested output error */ 

/* N: Number of signals */  

/*        
  The marginal bit cost of signal  si */ 

/*    
: Constant coefficients of         term in output error equation*/ 

/*           ( ): The cost of  the j
th

  nod in current level of the tree */ 

/* Processing one level of the decision tree and generating the next-level nodes. This re-

cursive function is called for the in the main body as FWL_select (    , UFB_Array, 

UFB_Cost, 1). UFB_Array is a one dimensional array with N elements and all elements 

are equal to UFB. The UFB_Cost is the cost of the UFB solution */   

 

Function                     (                                      )                                                

/* ind: the index of the signal that is being processed in this iteration (level of the tree)*/ 

        if ind==N+1  //have all signals been processed ? 

              return (the array with lowest cost)       // by examining the            elements 

       end if; 

       Calculating the        
coefficient; 

       for (  from 1 to         ) //        : number of nodes in  this level of the tree 

             if (             ( )   )     // This node has already violated  

                continue;                           // the requested error threshold 

            end if;  

              Calculating    ̂( )      

       ( )              ( )

     
 ∑        ( )

 
      

 

            // Constructing the nodes of the next level of the decision tree  

                          (     )           ( )        //Initializing 
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                           (   )           ( )  

           // Updating the FWL of the signal corresponding to this level 

                     (     )(   )  ⌊   ̂( )⌋      //round down 

                     (   )(   )  ⌈   ̂( )⌉  

          // The               array for the next iteration 

                (     )               ( )       
  

⌊   ̂  
 ⌋

 

                     (   )               ( )       
  

⌊   ̂  
 ⌋

 

   Updating the           (     ) and           (   ) by calculating the  

cost of               (     ) and               (   ), respec-

tively 

end for; 

     //Acceleration by removing the unpromising nodes 

     for (  from 1 to           )    

          for (  from 1 to           )    

         if (         ( )           ( )) 

               if (          ( )            ( )) 

                    Remove i’th node from                and      

                              and            

               end if; 

          end if; 

     end for;      

     end for;   

 

     //Calling the next iteration (to process the next level of the tree) 

                

                         (                                       ) 

end function; 

Figure 5.7  The accelerated tree-based search algorithm (TBSA). 
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Node 11

Level1 Level2

Node 21

FWLs={FWLb,FWLa,FWLc,FWLd}

           ={12,12,12,12}

FWLs={10,12,12,12}

Allowed_Error=0

Cost=246

FWLs={11,12,12,12}

Allowed_Error=9.77×10-4

Cost=261

Node 22

Level3

Node 33

FWLs={11,13,12,12}

Allowed_Error=4.88×10-4

Cost=276

Node 34

FWLs={11,14,12,12}

Allowed_Error=7.32x10-4

Cost=291

Level4

Node 41

FWLs={11,13,11,12}

Allowed_Error=2.44x10-4

Cost=275

Node 42

FWLs={11,13,12,12}

Allowed_Error=3.66x10-4

Cost=276

Node 43

FWLs={11,14,10,12}

Allowed_Error=2.44x10-4

Cost=289

Node 44

FWLs={11,14,11,12}

Allowed_Error=4.88x10-4

Cost=290

Allowed_Error=2
-9

=2×10-3

Cost=291

Unpromising

Violating

 

Figure 5.8  First four levels of the decision tree in processing Figure 5.2 circuit with TBSA. 

 

Let us assume that there are   signals in the design and the initial width calculated for each sig-

nal according to Equation 5.16 (Section 5.3.4) is represented by     
 , where    *       +. The 

maximum possible error slack caused by the rounding down operator in initial width calculations 

is 

                 ∑    

 
          

   .                                        (5.24) 

Decreasing the width of the signal    by one bit results in reducing the                  by 

   
       

   . Examining different possibilities shows that the largest number of iterations is 

needed when there is exactly one signal    with a large    
       

 
 and     signals with 

equal and small    
       

 
 values, while the latter are selected for width reduction, successive-



79 

 

 

 

ly. In such a case, the total error slack can be dominated by the large value introduced by the    

initial width calculation, while this large gap is filled by small compensating values at each itera-

tion of the refinement algorithm. We denote the expressions    
       

    as      and 

   
       

    of the other     signals as     . The maximum error slack inequality can be 

rewritten as: 

                      (   )                                          (5.25) 

In the worst case, during the first     iterations of the refinement algorithm, the minimum val-

ue of (   )     is compensated. During the next     iterations, the minimum value of 

 (   )     is compensated since the FWL of all signals, except the   , have been decreased 

by one bit. So, the termination condition can be formulated as follows:    

      (   )     . 
    

   ⁄   /  (   )                          (5.26) 

  
    

(   )    
    

    
   ⁄  

           .
    

(   )    
  /  (   )                                 

where      stands for the iteration number. 

Taking into account the  -times loop inside each iteration of the algorithm (Figure 5.6) and 

above calculations, the PSA algorithm can be completed in  (              ) time, 

where   is the number of signals and   and   are the largest and smallest single-signal quantiza-

tion errors, respectively. 

The basic time complexity of the TBSA algorithm is  (  ), since all nodes in the N-level deci-

sion tree must be processed in this algorithm. However, our experiments demonstrate that the 

employed acceleration technique and error violation condition can significantly reduce the com-

plexity by pruning ineffective nodes. Table 5.2 illustrates the amount of acceleration achieved in 

the four experiments. For the tested cases, there is no apparent relationship between the design 

size and time complexity. 8-bit precision is requested for the outputs in these experiments. 
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Table 5.2 Number of nodes eliminated from the TBSA using the acceleration technique  

 

No. of eliminated nodes 

Fig. 5.2 
Degree-4 

Polynomial 

Degree-6 

Polynomial 

Degree-8 

Polynomial 

Total nodes 31 16K 1049K 67109K 

Accel. Rule 2 4K 397K 21499K 

Error Viol. 14 5K 224K 14332K 

Total Red. 16 (52%) 9K (50%) ~57% ~55% 

 

5.4 Experimental results and comparisons 

This section evaluates the efficiency of the two proposed algorithms (PSA and TBSA) and the 

simplification technique using eight case studies. The efficiency was measured in terms of time 

complexity and hardware cost. The presented optimization framework in Section 5.2, containing 

newly introduced algorithms and techniques, was implemented in MATLAB. The Osborne meth-

od [52] and an exhaustive search method were also implemented to enable comparison. All ex-

periments were performed on an Intel i7 3-GHz PC with 16 GB DDR3 RAM. Designs were syn-

thesized with ISE 13.1 for a Xilinx Virtex 6 FPGA.  

5.4.1 Case studies 

The case studies include some commonly used transforms and operators in the signal and image 

processing domains. Table 5.3 lists these applications specifying the number of elementary op-

erations and signals in each of them as a measure of the complexity. Four of these applications 

are the same as those used by  Lee et al. [38]: RGB-to-YCrCb, B_Spline, 2×2 matrix multiplica-

tion, and 8×8 Discrete Cosine Transform (DCT). 

For the polynomial approximations, we have implemented the general  architecture,  contrary to 

Lee et al. [38] who customized it to the        (     ) function. In other words, we consider 

the polynomial coefficients as input signals. This provides a more general architecture at the ex-

pense of higher hardware complexity. The eighth-order Infinite Impulse Response (IIR) filter is 

implemented via four second-order cells. A radix-2 decimation in frequency structure is used for 
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the 64-point Fast Fourier Transform (FFT). All signals are complex in the FFT. The real and im-

aginary parts are considered as independent variables in our measurements. As a result, the num-

ber of operators is very large in this case study. The hardware costs of each case study were 

measured from VHDL descriptions implemented in Virtex 6 FPGAs. Multiplications and divi-

sions by power of two constants were implemented by shifts. Common intermediate signals were 

shared in the designs to improve hardware efficiency.  

5.4.2 Coding limitations 

Like for most of the other analytical methods, the applicability of the proposed techniques and 

algorithms is limited to feed-forward datapaths. Covering control flow statements is also chal-

lenging in analytical WLO. Our approach supports if statements by performing the range and 

precision analysis based on the taken and untaken codes, separately. The results are then merged 

by selecting the largest achieved IWL and FWL value for each variable.  

Loops with static bounds are also supported using an implicit unrolling mechanism. Supporting 

loops with dynamic bounds is still an open problem [38, 52, 61].  

 

 

 

Table 5.3 Complexity of the case studies  

Case Study Add/Sub Mult. No. Signals 

Degree-4 Poly 4 4 13 

Degree-6 Poly 6 6 19 

Degree-8 Poly 8 8 25 

Degree-10 Poly 10 10 31 

RGB-to-YCrCb 6 7 19 

B-Spline 7 4 15 

2×2 Matrix Mult. 18 7 29 

DCT 8×8 32 32 55 

FIR32 31 32 94 

IIR8 16 20 56 

FFT64 1028 520 1548 
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5.4.3 Preliminary simplification technique 

We start the experiments by studying the impact of the preliminary simplification technique, de-

scribed in Section 5.4.2, on the efficiency. Table 5.4 shows the number of signals that are elimi-

nated from the FWL selection process using the simplification technique. The results reveal that 

the simplification technique reduces the complexity of the problem by an average of 20.3%. Fig-

ure 5.9 and Figure 5.10 compare the optimization run-time and the hardware cost in terms of area 

obtained for the selected applications before and after the simplification technique. 8-bit precision 

is requested for the outputs in these experiments. Figure 5.9 illustrates the optimization time ratio 

of the original applications to the corresponding simplified ones using the preliminary simplifica-

tion technique. The optimization time improvement of the polynomial approximation has not 

been shown in Figure 5.9, because no variable can be simplified in this case study. Therefore, the 

corresponding improvement value is equal to zero. Due to the overlong run-time of the TBSA 

algorithm in the FIR32 and FFT64 benchmarks, no corresponding results are shown in Figure 

5.9.  

The results show a significant improvement in optimization run-time and a slight improvement in 

hardware area when using the simplification technique. The simplification technique has been 

applied to all benchmarks before being used for evaluation of the optimization algorithms in sub-

sequent sections.  

 

Table 5.4  Complexity reduction using the preliminary simplification technique 

Case Study Removed signals Reduction [%] 

Degree-6 Poly 0 0 

RGB-to-YCrCb 6 31.5 

B-Spline 3 13.8 

2×2 Matrix Mult. 4 20 

DCT 8×8 16 29.1 

FIR32 30 31.9 

IIR8 11 19.6 

FFT64 260 16.7 
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Figure 5.9 Optimization time ratio of the original applications to the corresponding simplified 

ones. 

 

 

Figure 5.10  Hardware cost ratio without/with simplification technique. 
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5.4.4 Comparing with UFB and Osborne’s method  

In this section we compare PSA and TBSA with the naïve UFB allocation and Osborne’s method 

[52], which is based on similar principles as our method.  

Osborne’s method begins with the calculation of the UFB value. Then, the UFB is added to an 

initial constant to give the starting value for the second step during which the bit-widths are re-

duced via an iterative procedure. In each iteration, one signal is selected for FWL reduction. The 

hardware cost was considered as the main criterion to select a signal for width reduction, such 

that the reduction that causes the largest decrease in cost will be selected first. If several signals 

offer the largest cost reduction, the one that increases the error by the smallest amount is selected. 

This process continues until the error bound requirement is broken. To be faithful, we have used 

the original error modeling approach in our implementation of Osborne’s method. A significant 

problem with this method is the lack of a specific way to determine the initial constant. Hence, 

this value must be selected arbitrarily. A small initial constant may lead to ignoring valuable parts 

of the search space, while a large one causes unnecessarily long run-time. 

Table 5.5 lists the results obtained for the different case studies. Figure 5.11 shows the saved area 

by the four algorithms with respect to the UFB approach. Figure 5.12 illustrates the relative opti-

mization time for Osborne’s and Menard’s methods over the PSA. 

The results demonstrate that PSA provides superior run-time over the Osborne algorithm by a 

factor between 5× and 27×, with an average of 16.1×. PSA also provides solutions with a reduc-

tion in area by an average of 10.9% and 3.9% compared to the UFB and Osborne methods, re-

spectively. 

In hardware area, TBSA outperforms the UFB, Osborne’s and progressive search approaches by 

an average of 13.1%, 6.6% and 2.9%, respectively. There are no results in Table 5.5 for TBSA 

for the FFT64 case study because of the complexity of that case, with over 1250 variables even 

after applying the simplification technique. For problems of that size, where the processing is 

excessive, although for the moment PSA offers a good compromise, an eventual solution with 

TBSA would be to restrict the variables to those associated with costly components such as mul-

tipliers.  
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Table 5.5 Efficiency of the proposed algorithms and previous works 

Case Study 

Prec. 

(bits) 

Optimization Time (s) Area (slices) 

Osborne 

[52] 

Menard’s 

Greedy 

[66] 

Menard’s 

Greedy 

+Tabu [66] 

This work 

PSA 

This work 

TBSA 

UFB Osborne 

[52] 

Menard’s 

Greedy 

[66] 

Menard’s 

Greedy 

+Tabu [66] 

This work 

PSA 

This work 

TBSA 

Degree 6 Poly-

nomial 

8 5.24 1.3 4.3 0.9 16.7 2008 1841 1831 1806 1819 1773 

16 5.4 1.4 4.6 1.0 16.2 4858 4423 4318 4290 4311 4217 

RGB to YCrCb 

8 5.5 1.1 3.2 0.7 12 539 511 511 491 494 484 

16 5.6 1.1 3.0 0.7 12.4 912 861 844 823 821 807 

2×2 Matrix 

Multiplica-

tion 

8 31.9 3.4 37.6 2.7 154.1 1857 1717 1679 1637 1627 1597 

16 31.1 3.6 39.1 2.6 154 3920 3657 3577 3492 3510 3444 

B-Splines 

8 3.6 0.7 2.9 0.6 4.5 711 643 637 626 626 613 

16 3.6 0.7 2.9 0.5 4.5 1277 1159 1121 1102 1109 1102 

DCT 8×8 

8 131.1 9.1 187.2 5.9 2375.5 4917 4761 4627 4611 4613 4422 

16 137.6 9.7 191.8 6.1 2262.7 8328 8130 7903 7833 7871 7610 

FIR32 

8 404.6 31.9 701.8 16.3 7754.1 7912 7217 7092 6898 7027 6505 

16 439.9 33.7 716.0 17.1 7633.6 15390 14141 13551 13224 13411 13002 

IIR8 

8 216.9 15.5 176.6 9.6 2078.8 5791 5410 5209 5004 5122 4918 

16 197.1 14.2 160.0 9.0 2122.1 10722 9893 9440 9292 9388 9002 

FFT64 

8 150786.1 19449.1 263677.9 5721.4 - 89234 81225 76922 75005 76177 - 

16 156005.6 18234.4 259071.1 5699.3 - 160511 144961 140545 134933 138109 - 

 

 

5.4.5 Comparing with Menard et al.  

We now compare the proposed algorithms with one of the most recent works presented by 

Menard et al. [66]. Menard’s work proposes a combination of HLS and WLO. The target applica-
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tion is first given to the HLS process to divide the operations of the same type into a number of 

groups. The operations that lie within the same group are organized for execution in a single 

hardware operator. The objective of this process is to share the hardware resources among opera-

tions in order to reduce implementation costs.  

The output of the grouping process is given to the WLO algorithm to optimize the bit-width as-

signed to each group and its operator. The grouping function significantly reduces the number of 

variables which are considered in the WLO process.       

Menard et al.'s WLO approach is composed of a greedy search followed by a Tabu search algo-

rithm. The greedy search, which is significantly faster, finds an initial solution. Afterwards, the 

Tabu search refines the solution quality by exploring the neighborhood area of the initial point.  

The HLS technique is out of scope of this thesis. To make a fair comparison between our work 

and Menard et al.'s, we have only considered the WLO approach. It was employed in our frame-

work omitting the grouping process. Table 5.5, Figure 5.11 and Figure 5.12 compare the results 

obtained by Menard’s approach with our proposed algorithms. These results demonstrate that 

Menard’s method lies between the PSA and the TBSA in the time-area design space. The area 

cost results of Menard's method are up to 2.3% better than the PSA method's, while its optimiza-

tion time is greater than the PSA's by a factor between 4× and 45×. Figure 5.11 and Figure 5.12 

represent the average results achieved for 8- and 16-bit output precisions. 

The greedy search in Menard’s method is similar to our PSA algorithm in some ways. However, 

the PSA benefits from a more effective selection strategy that enables additional savings before 

termination of the algorithm. This is achieved by using a list of non-eligible variables that pre-

vents early termination of the bit-width reduction process. Moreover, the PSA takes advantage of 

a smarter starting point selection scheme, as presented in Section 5.4.4. Having a shorter distance 

between the starting point and the final solution considerably reduces the execution time. The 

results in Table 5.5 show that the PSA finds better solutions than Menard’s greedy search algo-

rithm in less time. Using the Tabu search, Menard’s method compensates for the poor quality of 

the greedy search solution at the expense of longer execution time.  
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5.4.6 Comparing with Exhaustive Search 

As a last step, the FWL selection algorithms were compared with an exhaustive search method 

that is expected to generate optimal cost results.  

In our exhaustive search algorithm, all FWLs were initially set to their minimum possible value. 

For the signal   , this value is calculated by assuming infinite precision for any other signal that 

gives following equation: 

    

  ⌊    
         

   
 

⌋                                                                      (5.27) 

Any fractional bit-width smaller than     

  causes a violation of the requested error bound regard-

less of the precision of the other signals. A maximum bit-width value is also selected to limit the 

upper bound FWL search process. This value must be large enough to ensure coverage of the 

valuable solution areas. Then, the widths are incremented iteratively, such that all possible com-

binations within the obtained bounds are examined. After evaluating all combinations, the one 

that respects the error requirement with the smallest cost is selected as the final solution.  

 

 

Figure 5.11  Area cost reduction over the UFB approach. 
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Figure 5.12  Normalized optimization time relative to PSA method. 

 

 

 

Figure 5.13  Comparing the proposed algorithms with the exhaustive search method. 
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The experiments show that the exhaustive search run-time takes from a few hours for B-spline to 

a few days for the DCT case study. Figure 5.13 compares the area obtained by the proposed algo-

rithms, UFB solution, and the described exhaustive search approach for polynomial approxima-

tion. 8-bit precision is requested for the outputs in these experiments .The results show that the 

area efficiency of PSA and TBSA is within 3.8% and 0.9% of the exhaustive search, respectively.   

5.5  Conclusion 

In this chapter, we introduced a new word length optimization methodology for fixed-point de-

signs. It uses affine arithmetic for both range and precision analyses. Moreover, we have intro-

duced a simplification technique and two new semi-analytical algorithms for FWL allocation. A 

novel word-length optimization framework was developed that implements our introduced ap-

proaches. 

A set of eight case studies was used to evaluate the proposed methods. The experimental results 

show that our simplification technique reduces the complexity of the fractional bit-width selec-

tion problem by an average of 20.3%. Moreover, the results demonstrate considerable improve-

ments in optimization run-time and hardware area when using the proposed FWL selections algo-

rithms.    
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CHAPTER 6    FIXED-POINT PROCESSOR CUSTOMIZATION  

In this chapter, we introduce a new processor customization method for fixed-point applications. 

This method is composed of customization of processor word-length based on a dedicated WLO 

method and customization of the functional unit architecture regarding the selected word-length 

configuration.  

The contents of this chapter are largely extracted from our paper "Accuracy-aware processor 

customization for fixed-point applications," submitted to IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems in 2014 [88]. 

6.1 Introduction 

Application-specific processor customization is one of the promising trends to promote the effi-

ciency of processor-based designs. This trend includes various state of the art research areas such 

as instruction-set customization in extensible processors [26], micro-architectural customization 

in parameterizable processors [9] and application-specific processor design offered in ADLs [30]. 

In this chapter, we introduce a novel processor customization approach which explores a new 

dimension in application-specific micro-architectural optimization targeting fixed-point applica-

tions. This new dimension is the word-length of the datapath that is normally fixed in micropro-

cessors. In integer computation, the minimum required word-length of the datapath is determined 

by the maximum range of the data elements in the applications. Customizing the word-length of 

the processor to this value can potentially improve the efficiency of the processor depending on 

the application.  

In fixed-point computation, the problem of word-length allocation is considerably more complex 

due to the introduction of new factors. Each fixed-point value is comprised of integer and frac-

tional parts. The IWL of each signal should be long enough to guarantee overflow/underflow 

avoidance. This lower-bound requirement can be found by range analysis using various existing 

analytical [38, 39] and simulation-based techniques [89].  

Determining the FWL is inherently more complex. The FWL of each signal determines the quan-

tization error which is introduced due to the finite word-length representation of that signal. This 

quantization error can propagate through the subsequent levels of the circuit and eventually show 
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up at the outputs as inaccuracy in the computations. Various analytical [38, 51]  and simulation-

based techniques [58, 59] were introduced in the literature to model the finite-precision error of a 

circuit based on the word-length allocation of its signals. Reducing the IWL and FWL of signals 

can significantly improve the efficiency of the implementation. In fixed-point designs, WLO ad-

justs the IWL and FWL allocated to each signal considering the overflow/underflow hazards and 

the accuracy requirements. The efficiency can be measured from the hardware area, power con-

sumption, performance, or a combination of them based on the design objectives.  

There are basically two word-length allocation approaches. The traditional UWL allocation ap-

proach offers a single word-length for all variables. The MWL approach allows different word-

lengths for different variables. Figure 6.1 compares a conventional processor with customized 

processors via UWL and MWL approaches. The important customizable elements in the pro-

posed method include the word-length of the register-files, pipeline buffers and functional units, 

and the number of words in each register-file. 
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Figure 6.1  Comparing customized processors via UWL and MWL approaches. 
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WLO has been extensively studied in numerous researches for ASIC designs. However, to the 

best of our knowledge, no related research work has been considered in custom processor design. 

The main contribution of this chapter is to present the first work of literature that investigates 

WLO for application-specific customization of microprocessors by exploring architectural trade-

offs. This is illustrated in Figure 6.1a and Figure 6.1b. 

More precisely, this work proposes a method for accuracy-guaranteed optimization of the proces-

sor word-length for fixed-point applications. This method aims to enhance the efficiency of the 

processor architecture through application-specific customization, while meeting the precision 

requirements.  

The architecture of the functional unit is the other target that the proposed method aims to opti-

mize in parallel with the WLO. Complex arithmetic functions such as multiplication commonly 

have a significant impact on area usage and performance of the processors. There are usually 

various possible architectures to realize an arithmetic functions in hardware. The efficiency of 

using a specific architecture in a design depends on the application and the word-length alloca-

tion. The proposed method customizes the number of hardware operators and architecture of each 

one regarding the word-length allocation solutions. A dedicated design space exploration algo-

rithm is developed for the architecture selection. 

Finite-precision error modeling is an essential part of any WLO method. Such a model formulates 

finite precision error at the outputs in terms of the FWL of the inputs and the intermediate sig-

nals. Given the error model, the uniform word-length can be easily calculated in the UWL ap-

proach. However, the MWL optimization is an NP-hard problem that is normally solved by heu-

ristic search algorithms. The proposed method explores both UWL and MWL approaches in its 

optimization algorithm. 

The rest of this chapter is organized as follows. Section 6.2 describes the proposed methodology. 

The design flow of the proposed method is described in Section 6.3. Section 6.4 presents the op-

timization algorithm which is used in this chapter. Section 6.5 gives experimental results and 

comparisons, and Section 6.6 concludes the chapter. 
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6.2 Proposed methodology 

In this section, we present our proposed methodology. This methodology aims to generate appli-

cation-specific customized processors for fixed-point applications. New hardware elements and 

components are the target of customization in this work. In the following subsections, we will 

first present the objectives of the proposed method in processor customization. Then we will il-

lustrate these objectives in detail using an example. 

6.2.1 Methodology objectives 

Our proposed method is based on the pursuit of three objectives. 

The first objective of the proposed method is to improve the efficiency of the processor architec-

ture by customizing the word-length of the data elements and consequently the calculations. The 

word-length has direct impact on the area cost and speed of various parts of a processor. Any 

reduction in the word-length of a processor can lead to a significant improvement of overall effi-

ciency. The proposed approach supports the MWL scheme that allows using multiple datatypes 

with different word-lengths in the customized processor. Although using multiple word-lengths 

may increase the complexity of the hardware realization and the optimization problem, it also 

increases the potential of reaching more efficient solutions.  

The second objective is to improve the efficiency of the processor architecture by customizing 

the depths of the register-files. One register-file is dedicated to each selected word-length. The 

minimum depth required for each register-file depends on the application and the word-length 

allocation. In addition to the area usage, the depths of the register-files also impact the bitwidth 

required to index the registers in the instruction and consequently the bitwidth of the instructions 

and related memory units. 

The third objective is to improve the efficiency of the design by customizing the architecture of 

the functional units. There are usually many possible architectures to realize a unique operator. 

The latency, area cost and throughput of the operators may vary for the selected architecture. In 

this work, one of the issues considered in the optimization algorithm is to select the best architec-

ture to implement the hardware operator. The number of hardware operators needed to be imple-

mented in the execution stage depends on the number of data types and the operators which are 
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required for each data type. Both of these factors are determined through the design space explo-

ration in the proposed optimization algorithm. The architecture of each operator can also be op-

timized based on application requirements and the word-length allocation. 

6.2.2 Illustration of the objectives 

In this subsection, we illustrate how the three objectives are met by our optimization method us-

ing a design example. Figure 6.2 illustrates an example circuit that performs the following calcu-

lations: 

       ,  

          ,    

                                                                                                      (6.1) 

The input values are assumed to be in the range of [0,128). Using the approach described in 

Chapter 4, the error model of the example circuit is calculated as follows:  

                         
         

                      

                                                                           

 

                      
        

  
        

         

               

            
        

                                                 (6.2) 

    where       {
 

       
  

                  
      

       

                                                                               
, 

                     {
 

       
  

                  
      

        

                                                                                   
, 

                     {
 

       
  

                  
      

        

                                                                                  
, 

                    {
 

       
  

                  
      

        

                                                                                   
, 

                                            {
 

       
  

                  
      

       

                                                                                
, 



95 

 

 

 

                                         {
 

       
  

                  
      

       

                                                                                 
, 

                                         {
 

       
  

                 
      

       

                                                                              
 

The value       represents the fractional word-length allocated to the signal s. 

We start with the word-length allocation, which is the first objective of the proposed method. 

Analyzing the error model reveals that the five multiplications that lie within the path of calculat-

ing z1 must be much wider than the other operations in the application when the same accuracy is 

requested for all outputs. For instance, assume that 8-bit fractional accuracy is requested for all 

outputs. Solving the error inequalities in (6.2) shows that at least 54 bits are required for a, b, s1, 

s2, s3, and s4 to meet the requested accuracy at output z1 and to provide the necessary integer 

word-length for the signals. This value is obtained by assuming a uniform word length for all 

signals to simplify the calculations and by solving the first inequality of (6.2). However, 26 frac-

tional bits are enough for the b, c, d, e, s5, s6 and s7 signals to guarantee 8-bit accuracy at output 

z2 and z3. The integer word-length of the signals is taken into account in these calculations. Four-

teen bits are required for the integer part of signals s1, s5, s6, and s7 while the integer part of sig-

nals s2, s3, and s4 should be at least 21, 28 and 35 bits, respectively.   

A single datatype processor that can calculate the above example must have a datapath that is at 

least 54 bits wide. This is, in fact, the realization of the UWL approach in the processor domain. 

The register-file, inter-stage signal routes and the hardware operators in the functional unit, in-

cluding the multiplier, must also be able to handle this bitwidth. However, we know that 26-bits 

are enough for three of the multiplications and 7 signals that only participate in the calculation of 

the z1 and z2 outputs. Converting the processor to a double-word-length architecture with 26- and 

54- bit datatypes can reduce the hardware area of the register-files. Moreover, adding a separate 

26-bit multiplier to the processor may enable the design to use more diverse types of multiplier 

architectures. All these decisions need an effective exploration of a large search space. The men-

tioned word-length allocation possibilities show the importance of the first objective. 

The word-length allocation also has a direct impact on the minimum necessary depth of the regis-

ter-files as the second objective. In microprocessors, more than one variable can be mapped to the 
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same physical register if there is no time overlap between their living times in the application 

code. Register allocation algorithms are normally used in compilers to map the registers to the 

application variables. The register allocation result determines the minimum required depth for 

the register-files. In the proposed method, variables are divided into different word-lengths in 

MWL word-length allocation solutions. A change in word-length allocation can change effective 

factors in the register allocation and can eventually change the minimum required depths of the 

register-file. For instance, if a 54-bit word-length is selected for variable a and a 26-bit length is 

selected for variable e, then variable a cannot be mapped to the 26-bit register file. These con-

straints are considered in the modified register allocation algorithm of the proposed optimization 

algorithm described in Section 6.4. Hence, the register allocation and the required depth of the 

register-files depend on the word-length allocation. The register-file depth must be evaluated and 

considered during the word-length selection. In the proposed algorithm, the word-length alloca-

tion is performed through design space exploration. The fitness of each candidate solution is 

evaluated by measuring the effective factors on the efficiency including the depth of the register-

files. 
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Figure 6.2  Example circuit 
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The third objective focuses on the architecture of complex functions. In this work, we limit our 

explorations to the multipliers as the most widely used complex function in order to simplify the 

presentation. Hardware multipliers are used in most modern embedded processors since multipli-

cation is a basic operation in most DSP and image processing applications. So, the proposed 

method searches for the most efficient multiplier architectures to integrate into the customized 

processor. However, all proposed procedures can be easily extended to cover other complex func-

tions such as division and logarithm. A multiplier can be implemented by various architectures 

with different efficiency characteristics. In this work, we consider three well known architectures: 

the basic combinational multiplier, the multi-cycle shift and add multiplier and the pipelined shift 

and add multiplier.  

The multi-cycle and the pipeline architectures divide the multiplier datapath into n fragments, 

where n is less than or equal to the bitwidth of the operands. When n is equal to the width of the 

operands, the multi-cycle architecture becomes a fully-serial shift and add multiplier. The case 

n=1 corresponds to the combinational architecture. For multi-cycle multipliers, a larger n means 

smaller hardware area and latency due to less calculation in each clock at the expense of more 

clock cycles to complete a calculation. The three mentioned architectures are examined for any 

requested multiplier unit. Let n be the number of stages in multi-cycle and pipeline architectures, 

then n is the other configurable parameter that is explored by the optimization algorithm. The 

hardware cost of each candidate architecture is measured separately. The results are given to the 

optimization algorithm as tables to facilitate the overall cost estimation.  

The operations of shorter bitwidth can always be calculated in wider hardware operators. For 

example, an 8-bit addition can be calculated using a 10-bit adder. Adders/subtractors and logical 

operators are small and fast enough to be always implemented as combinational circuits. There-

fore, a single, wide hardware operator is sufficient for operations on both narrow and wide data 

types. However, for complex operators such as multipliers, a wider bitwidth implies a considera-

bly larger hardware area and/or longer latency. Hence, having multiple hardware operators of 

different sizes for the complex functions may improve the overall efficiency. First, this allows 

faster and more efficient processing for the shorter data types. Second, the wider operators are 

freed from processing short data types and can thus be implemented more efficiently as multi-

cycle operations.  
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The design space of the multiplier architecture depends on the word-length allocation. Therefore, 

exploration for the best multiplier architecture should be carried out based on a known word-

length allocation. To show how different function architectures may be used in a customized pro-

cessor, we give two possible solutions for the multiplier of the Figure 6.2 example. A 2-datatype 

configuration is selected for bitwidth configuration, with signals a, b, s1, s2, s3, and s4 assigned 

to the 54-bit type and the rest to the 26-bit type.  

Figure 6.3 illustrates these two solutions. The first solution uses a single hardware multiplier unit 

that is 54 bits wide. Figure 6.3a represents the time scheduling of the instructions using this solu-

tion. In all experiments, the throughput of the execution is supposed to have the highest priority.  

Therefore, the search space of the function architectures is limited to those that do not require 

extra clock cycles. Different multiplications must be calculated in successive clock cycles as 

shown in Figure 6.3a. If a single multiplier is used in the processor, the selected architecture must 

support a throughput of one multiplication per clock cycle to avoid pipeline stalls. 

Either combinational or pipelined multiplier architectures can support this throughput. The time 

scheduling of Figure 6.3a is based on using a combinational architecture for the processor multi-

plier. A 54-bit combinational multiplier is large and slow enough to become the critical path in 

most embedded processors.  

The second solution uses a 54-bit multiplier for mult1 to mult5 and a 26-bit multiplier for mult6 

to mult8. The time schedule of this solution is presented in Figure 6.3b. Using separate multipli-

ers combined with appropriate ordering of the instructions allows 2-cycle gaps for completion of 

the calculation in each multiplier. This extra cycle flexibility enables the use of a 2-cycle archi-

tecture for the multipliers. Moving from combinational to 2-cycle architecture causes significant 

reduction of hardware resources and latency. The latter leads to an increase of the clock frequen-

cy when the multiplier is in the critical path.  

This example demonstrates how multiple hardware units for a complex operator can improve the 

efficiency of the design. The optimization algorithm should explore the possible architectures to 

find the optimal solution that achieves the highest efficiency. 
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Figure 6.4  The design flow in the proposed method. 

 

6.3 Design flow integration 

We propose a complete design flow that incorporates the optimization and the custom processor 

generation environments. The optimization environment is mostly developed in MATLAB. This 

environment consists of the optimization algorithm, which will be described in Section 6.4, and 

some peripheral units such as cost estimation tables. The processor generation environment cre-

ates the customized architecture based on the selected solution in the optimization algorithm. 

This section discusses the design flow in more detail. 

6.3.1 Overview 

The design flow is illustrated in Figure 6.4. The optimization process starts by providing a C ap-

plication by the designer. All fractional variables are represented in floating-point in this input 
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code. In the first step, the input C code is converted into Gimple, which is an intermediate repre-

sentation of the GCC compiler, similar to a simplified C code. This conversion significantly facil-

itates code interpretation. The Gimple code is then given to the optimization algorithm to find a 

solution to address the customization objectives described in Section 6.2. The selected solution is 

finally given to PolyCuSP to generate a corresponding architecture in RT-level VHDL.  

The area and latency estimation tables are given to the optimization algorithm to be used for the 

fitness evaluation of the candidate solutions. These tables contain the cost estimations of different 

possible values of the customizable elements. For example, one important table gives the estimat-

ed area and maximum achievable frequency for different word-lengths of the datapath regardless 

of the architecture of the other parts of functional unit. The datapath word-length is equal to the 

word-length of the longest datapath. The machine code synthesizer is like a compiler backend 

that converts the intermediate representation of the application into the machine code. The regis-

ter allocation solution is generated by the optimization algorithm and given to this unit. The gen-

erated machine code is sent to PolyCuSP to store it in the instruction memory of the output pro-

cessor. 

6.3.2 Custom processor design environment 

The proposed method is eventually evaluated by implementing the selected solutions on a real 

processor. In this chapter, we use PolyCuSP to generate the processor architecture based on the 

selected customization solution. As described in Chapter 3, PolyCuSP provides a fast custom 

processor design method that largely outperforms the traditional method of manual processor 

design from scratch. In addition, PolyCuSP supports broad flexibility in microarchitectural and 

instruction-set customizations [76].  

The proposed customizations are realized through specific parameters in the processor descrip-

tion. PolyCuSP support the flexibility in configurable parameters that is required for the proposed 

customizations. Other parts of the architecture are fixed in our experiments. For example, the 

MIPS II ISA is used as the fixed instruction-set that is supported by the output processors and the 

machine code synthesizer also works based on this instruction set. The PolyCuSP environment 

offers automatic generation of synthesizable RT-level VHDL code, assembler, and MATLAB 

simulation model from the given processor description. 
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6.4 Optimization algorithm 

This section presents a detailed description of the proposed optimization algorithm. The optimi-

zation algorithm contains two nested genetic algorithm (GA) procedures for word-length alloca-

tion (Objective 1) and a dedicated search algorithm to find the best architecture for the functional 

units (Objective 3). Furthermore, the algorithm has a fitness evaluation routine that determines 

the fitness of the complete candidate solution using cost and performance estimation. Register 

allocation is a necessary part of the fitness evaluation that also addresses the second objective of 

the proposed method. The flow chart of this algorithm is illustrated in Figure 6.5. The following 

definitions facilitate elaboration of each part of the algorithm: 

                                                                    

                                             .   

                         

                                                  *    + 

The different parts of the proposed algorithms are described in the following subsections. 

6.4.1 The first- and second-level genetic algorithms 

The algorithm starts by selecting N in the main loop that contains all other parts of the optimiza-

tion algorithm. Then, the algorithm performs N iterations (one for each possible number of word-

lengths). In our experiments, we selected N = 4 as the upper-bound, in order to provide a wide 

range of flexibility to the optimization algorithm. In each iteration, the design space is explored 

for N datatypes. After completion of the fourth round, the best solution is sent to PolyCuSP to 

generate the corresponding processor architecture. The solution also includes the register alloca-

tion information that is used to generate the machine code of the application from the given 

GIMPLE code.  

The two nested GAs are named GA1 and GA2. On the first level, GA1 searches for the best 

datatype assignment scheme (Vj). Each chromosome is a string composed of S elements, while 

each element determines the candidate datatype for the corresponding variable in that chromo-

some. The first generation is generated randomly. After generating a population, the second GA 

procedure starts. 
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Figure 6.5  The flow chart of the optimization algorithm 
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On the second-level, GA2 finds the optimal word-length(s) for the datatypes (  ) for each chro-

mosome of the given population determined by the first GA. In this phase, each chromosome is 

composed of N' ≤ N word-length values for the N datatypes. N' is less than N when two or more 

word-lengths in a chromosome have the same values. To limit the search space, the lower bound 

and upper bound values of each datatype are determined analytically before the start of the GA2. 

Only the values between the lower-bound and the upper-bound are searched in the GA2. The 

lower-bound value of each datatype is calculated by assuming infinite word-length for all other 

data types and solving the output error model with this assumption. The lower-bound values of 

all datatypes are calculated first. Then the upper-bound word-length of each datatype is calculat-

ed by assuming the lower bound word-length for all other datatypes and the output error model is 

solved based on this assumption. The upper- and lower-bound word-lengths are highly dependent 

on the datatype assignment scheme. This means that these boundary values may change for each 

chromosome of the given population determined by GA1. Hence, for each chromosome, the 

boundary values must be calculated first.  

Then, GA2 explores the range between the boundary values of all datatypes to find the best word-

length combination for all datatypes. Each chromosome in GA2 represents a candidate solution 

for the word-length of the datatypes, i.e., a candidate W vector. With W and V vectors as the can-

didates of the first- and second-level chromosomes, the word-length of each variable in the appli-

cation can be identified as 

       
,                                                                                                         (6.3) 

where     is the word-length assigned to the j
th

 variable. So, the combination of one chromo-

some of GA1 and one chromosome of GA2 gives a complete candidate solution for word-length 

(or datatype) allocation. 

6.4.2 Architecture selection 

The next step consists of finding the best architecture for each candidate word-length allocation 

solution. This algorithm can be extended to any complex function. In this work we concentrate on 

exploring the best architectures for the multipliers.  
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The developed algorithm, which is presented in Figure 6.6, starts by listing the word-lengths of 

all required multiplications in the given application. For example, in a 2-word-lengths solution 

with w1 and w2, at most three multipliers with w1×w1, w1×w2 and w2×w2 widths may be re-

quired. This architecture selection algorithm is executed for each candidate of GA2. The afore-

mentioned list of required multiplication widths depends on the word-length allocation and the 

application. The narrower multiply operations can always be calculated on a wider multiplier. 

Therefore, this list may differ from the hardware multiplier units that are in the processor.  

In the next step, the widest required multiplication operation is identified using the application 

and the word-length allocation information given by the GAs. There should be a multiplier unit 

that can handle this widest multiplication. So, the width of the first multiply unit is known. This 

multiplier is enough to handle all multiplications in the application but it does not necessarily 

represent an optimal solution. Adding a shorter multiplier unit may open new areas in the design 

space of the multipliers. This design space expansion can enable the use of more efficient archi-

tectures just like the example shown in Figure 6.3. Therefore, the algorithm evaluates addition of 

shorter multiplications based on the list of required multiplication widths in the application using 

an exhaustive search. 

For each candidate solution, each multiplication operation is assigned to the shortest multiplier 

that exists in that solution. For example, assume that there are two datatypes with w1 and w2 

widths while w1>w2. If multiplications with all three possible widths exist in the application, 

then a multiplier with w1×w1 width must exist in the processor. If a solution suggests adding a 

w1×w2 multiplier, then w2×w2 multiplications can be assigned to the w1×w2 multiplier. 

Different possible architectures are examined for each multiplier of a candidate solution. We only 

consider combinational, pipeline and multi-cycle multipliers, in this work. The architectures that 

do not impose further stall cycle in the execution time are evaluated. The total area cost and max-

imum latency of each solution is estimated. Comparing these estimations, the search algorithm 

selects the best solution. The designer-defined priorities of area cost and performance are consid-

ered in the selection criteria. 
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Store all multiplication word-lengths present in the application into vector M_width. 

Find the widest multiplication word-length and add it to the list of candidate word-

length for the hardware multipliers in vector HM_width 

for all possible combinations of the elements in the M_width (excluding the widest 

one found in Step2)  

{    

Add the selected combination of the bitwidths to the  HM_width 

Find the best architectures for the multipliers with word-lengths that exist in 

HM_width using exhaustive search (each element in the HM_width means a hard-

ware multiplier with the same word-length).  

Delete all element of the HM_width except the widest one (clear the vector for the 

next candidate) 

} 

Figure 6.6  The multiplier selection algorithm 

 

6.4.3 Fitness function 

Now, the algorithm needs to measure the fitness of this candidate solution. The fitness of a solu-

tion is the efficiency that it achieves when implemented. The GA requires a single fitness value 

for each chromosome in order to identify more promising areas in the search space. Therefore, 

the efficiency must be evaluated as a single value that represents a combination of all important 

efficiency metrics. The weight of different efficiency metrics in the fitness calculation can be 

adjusted by the designers based on their priorities. 

In this work, a formula is developed to calculate a single value to represent the fitness. This for-

mula takes into account four metrics: 
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  : Word-length of the largest datatype. This parameter defines the bitwidth of the major 1.

parts of the datapath. 

      : Amount of on-chip memory resources used for the register-files. 2.

       : Estimation of the hardware area used for the multipliers. 3.

      : Estimation of the maximum frequency that can be used by the processor. 4.

The fitness formula is as follows: 

                                                    
       

                     
                                                 (6.4) 

CF, CL, CM, and CA are weighting factors. The fitness value is returned to GA2, where it is stored 

for processing. When the fitness evaluation of all chromosomes of one population is completed, 

the fitness values are compared to identify the best found candidate solutions for GA2, i.e., the 

best W vector. These best found chromosomes are used to generate a fraction of the chromo-

somes in the next generation. Crossover and mutation techniques, which are well-known methods 

in GA, are used to generate new chromosomes. This process continues until the termination crite-

rion of GA2 is met. In this work, the termination criterion for both GAs is when no additional 

improvement is achieved between two consecutive iterations. The current GA2 searched for the 

best W vector for one chromosome given by the first-level. After termination of this GA2, the 

best fitness value returns to the first-level. This value is considered as the fitness value of the cor-

responding chromosome in the GA2. For each chromosome in one population of GA1, GA2 is 

executed from beginning to the end. When the fitness of all chromosomes in one generation is 

evaluated, the next generation is generated using the best found candidates. 

This process continues until the termination criterion of GA2 is met. Then, the optimization algo-

rithm terminates and the combination of the best found solutions in the two GA levels (i.e., the 

best found V vector and the best W vector found for it) is returned as the final solution found by 

the optimization algorithm.  

The depth of the register-files is one of the effective factors on the efficiency of the processor 

architecture. As mentioned in Section 6.2.1, the second objective of the proposed method is to 

improve the efficiency of the processor architecture by customizing this factor. The depth of the 
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register files is determined based on the word-length allocation and the requirements of the appli-

cation. The minimum required depth for the register-files can be found via register allocation of 

the target application.   

A modified graph coloring algorithm is developed for register allocation. This algorithm assigns 

a physical register to each variable of the application and also determines the minimum required 

depth of each register file. This algorithm considers the word-length assigned to the variables in 

the register assignment process. Hence, the register allocation and the depths of the register-files 

depend on the candidate word-length allocation solution given by GA1 and GA2. The modified 

graph coloring algorithm avoids allocation of a register    to the variable    when the bitwidth of  

   is narrower than   . For example, assume that a GA2 candidate suggests two register files 

with bitwidths of    and    while      . If   -bit datatype is selected for this variable by 

GA1, then the register allocation algorithm cannot assign a   -bit register to this variable. Yet, 

the algorithm allows allocation of a longer register to a shorter variable. In this case, the simplest 

approach to address the register allocation is to use an independent graph coloring algorithm for 

each datatype. However, the proposed approach is smarter and yields more efficient results by 

allowing the use of a register resource for a shorter variable. The register allocation algorithm is a 

part of the fitness evaluation that determines the area cost of the register-files for a given word-

length allocation candidate. 

6.5 Experimental results 

In addition to the Figure 6.2 example, three well-known benchmark applications were used to 

evaluate the proposed customization method. The first application is a 126-tap linear-phase low-

pass FIR filter with direct form II transposed structure. The second application is an RGB-to-

YCrCb converter which is implemented based on the form suggested by the ITU [90]. The third 

application is an IIR filter of fourth-order [65]. The Virtex IV FPGA family was selected as the 

target platform for implementations and evaluations. ISE 13.2 was used for synthesis and meas-

urements. We gave higher priority to the area usage in the fitness formulation in our experiments. 

Regarding Equation (6.4), this means that CF was set to a much smaller value compared to CL, 

CM, and CA. The reason is to facilitate demonstration of the effectiveness of the proposed method 

by focusing on area minimization as the main optimization goal.  
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Table 6.1 Hardware cost and performance results of the benchmark applications  

Application Type of  

multipliers 

Word-

lengths 

[bits] 

# of  

multipliers 

Delay of the 

multipliers 

[clock cycles] 

Area  Freq. [MHz] 

(Imp) 

LUTs (Imp*) FFs (Imp) 

GPP32
**

 Single_WL 32 1 1 2143 1868 58 

FIR 

Single_WL 16 1 1  1419      (0%) 630       (0%) 94         (0%) 

Combinational 13,18 1 1  1288    (10%) 585       (7.7) 73   (-22.4%) 

Pipeline 13,18 1 5 1302   (9.0%) 645  (-2.3%) 141  (50.0%) 

Multi-cycle 13,18 2 3,1 1213 (17.0%) 619    (1.8%) 122  (29.8%) 

RGB-

YCrCb 

Single_WL 18 1 1 1577      (0%) 346       (0%) 76         (0%) 

Combinational 14,18 1 1 1413 (11.6%) 307  (12.7%) 74      (2.6%) 

Pipeline 14,18 2 5,4 1508   (4.6%) 388 (-11.1%) 133     (75%) 

Multi-cycle 14,18 2 2,2 1373 (14.9%) 339    (2.0%) 116  (52.6%) 

IIR 

Single_WL 12 1 1 1123      (0%) 377       (0%) 142       (0%) 

Combinational 9,12 1 1 1034   (8.6%) 331  (13.9%) 136   (-4.2%) 

Pipeline 9,12 2 3,2 1090   (3.0%) 364    (3.6%) 191  (34.5%) 

Multi-cycle 9,12 2 2,2 977 (14.9%) 352    (7.1%) 177  (24.6%) 

Fig. 6.2  

example 

Single_WL 54 1 1 2933      (0%) 672       (0%) 16         (0%) 

Combinational 54,26 1 1 2755   (6.5%) 531  (26.5%) 16         (0%) 

Pipeline 54,26 2 2,1 2771   (5.8%) 588  (14.3%) 28      (75%) 

Multi-cycle 54,26 2 2,2 2609 (12.4%) 612    (9.8%) 24    (62.5%) 

   

  * Imp: % improvement       

** GPP32:  A conventional 32-bit non-customized processor with 32-word register-file for comparison 
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Table 6.1 illustrates the hardware cost and the performance results of single-datatype and double-

datatype solutions for the four applications. It also compares the result of employing different 

multiplier architectures in the MWL approach. 

The results demonstrate that moving from a single-datatype to a 2-datatype architecture can sig-

nificantly improve the area usage and performance of the processor. In these experiments, 8-bit 

accuracy was requested for the outputs. The results demonstrate how the architecture of complex 

functions can affect the overall efficiency of the design. We illustrate the best found result by 

using three different multiplier architectures, separately. New instructions can be fed into the 

pipeline multiplier in each clock cycle. However, a multi-cycle multiplier does not accept any 

new input until it completes the last calculation. So, the number of stages in pipeline multipliers 

can be more than the multi-cycle ones. The pipeline multipliers gave better latency results in the 

experiments. Note that customized single-datatype solutions are used as the reference to measure 

the improvements. The word-lengths of the processor in these reference designs are adjusted to 

the value achieved by UWL word-length optimization. Comparing with the existing processors 

with fixed power of two word-lengths can obviously achieve significant improvements. 

Figure 6.7 shows the run-time progress of the optimization algorithm for the three mentioned 

applications. This figure illustrates how the genetic algorithms converge toward better solutions. 

The area and the maximum frequency metrics are measured by synthesizing the best found can-

didate solution of each generation with the ISE tool. The results show that the 2-datatype solu-

tions achieve the best results for the evaluated benchmarks, while the 3- and 4-datatype solutions 

can reach very close results in most cases. The main reason is that the benchmark applications are 

not large enough to be able to take advantage of more than two datatypes. 

Increasing the number of datatypes in a processor can lead to a reduction of the memory usage in 

the register-files and some other related area resources. It can also increase the area usage in 

some cases such as the multiplexers that select among the register-files in operand read stage. 

Hence, there is a trade-off between the savings that more datatypes can achieve and the over-

heads that they imply. Figure 6.7 also shows that increasing the number of datatypes results in a 

longer search time for convergence of the GAs. This is due to the fact that adding a new datatype 

to the processor significantly expands the search space of the optimization algorithm. 
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Figure 6.7  Run-time progress of the optimization algorithm in each generation of the GA1. 
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6.6 Conclusion 

We proposed a new processor customization method for fixed-point computations. This method 

combines the word length optimization with application-specific processor customization. The 

word-lengths of the supported datatypes, depth of the register-files, and the architecture of the 

functional unit form the customization targets. A multi-level genetic algorithm and a dedicated 

fitness evaluation method were developed for the optimization algorithm. 

Four benchmark applications were used to evaluate the proposed method. The experimental re-

sults show that, in the selected FPGA platform, moving from a single word-length processor to a 

customized double-word-length processor can reduce the area consumption in terms of the num-

ber of LUTs and flip-flops by an average of 14.8% and 5.2%, respectively. The results also show 

an average of 42.4% improvement in the speed of the processor by this customization. These re-

sults demonstrate the effectiveness of the proposed customization method. 
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CHAPTER 7    CONCLUSION AND FUTURE WORK 

7.1 Summary of the work 

In this thesis, we introduced new methodologies, techniques and algorithms to improve the hard-

ware realization of fixed-point computations in hardwired circuits and customizable processors. 

We proposed new methods to improve the efficiency of different analyses required for automatic 

hardware realization of fixed-point computation.  

In the first step, we presented PolyCuSP which is a new processor design environment that is 

used for fast and easy custom processor generation. PolyCuSP bridges the gap between architec-

ture description languages (ADLs) and extensible soft processors. The basic goal of designing 

PolyCuSP was to have an environment that supports the required flexibility to realize the new 

customizations proposed in this thesis and to facilitate design space exploration in a large design 

area. PolyCuSP offers full flexibility in instruction-set description, while limiting the datapath 

customization to a predefined set of tunable microarchitectural parameters.  

We evaluated and compared the design and customization complexities offered by PolyCuSP 

with competitive approaches by some experiments. The results demonstrated the efficiency of 

applying customization techniques in the proposed environment.  

In the second step, we introduced an enhanced finite-precision error modeling approach based on 

affine arithmetic that addresses some shortcomings of existing methods and improves their accu-

racy. We demonstrated that there is a common hazard in existing affine arithmetic-based error 

modeling approaches. The hazard is linked to early substitution of the signal terms that emerge in 

operations such as multiplication and division. We proposed postponed substitution combined 

with function maximization to address this problem. We also proposed a modification in the error 

propagation process to enhance the error modeling accuracy. An existing word length optimiza-

tion method was reproduced to evaluate the efficiency of this modification. The results demon-

strated that the proposed modification can significantly improve the accuracy of the error estima-

tion at the expense of a negligible complexity overhead. 

In the third step, we presented new WLO solutions for the hardware synthesis of fixed-point 

computational circuits. These include two fractional word-length selection algorithms and an 
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acceleration technique. While the first FWL selection algorithm follows a progressive search 

strategy, the second one uses a tree-shaped search method for fractional width optimization. The 

algorithms offer two different time-complexity/cost efficiency trade-off areas. The first algorithm 

has polynomial complexity and achieves comparable results with existing heuristic approaches. 

The second algorithm has exponential complexity but it achieves near-optimal results compared 

to the exhaustive search method.  

A set of eight case studies was used to evaluate the proposed methods. The experimental results 

show that our simplification technique significantly reduces the complexity of the fractional bit-

width selection problem. Moreover, the results demonstrated considerable improvements in op-

timization run-time and hardware area by using the proposed FWL selections algorithms. 

In the last step, we introduced a new processor customization method based on fixed-point word-

length optimization. We proposed a method that for the first time combines word-length optimi-

zation with processor customization. The supported datatype word-lengths, the size of register-

files and the architecture of the functional units are the main target objectives to be optimized by 

this method. Accuracy requirements, defined as the worst-case error bound, is the key considera-

tion that must be met by any solution. PolyCuSP was used to realize the processor architecture 

based on the solution found in the proposed optimization algorithm.  

Four benchmark applications were used to evaluate the efficiency of the proposed method. The 

results show that for a specific application, the proposed method can improve the efficiency of 

the processor architecture via customizing the word-length, functional unit architecture and regis-

ter-file size. 

7.2 Summary of the contributions 

This section reviews the contributions of the different parts of the thesis. The main contributions 

for the PolyCuSP environment, which was introduced in Chapter 3, are: 

 Proposition of a processor design approach that bridges the gap between ADLs and pa-1.

rameterizable processors by combining the former’s instruction-set customization and the 

latter’s microarchitectural tuning. 
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 A design environment called PolyCuSP that realizes the proposed idea. PolyCuSP offers a 2.

simplified design and customization process that automates generation of major datapath 

elements and interconnection signals from the instruction-set description. 

 An original processor description approach that supports definition of multiple register-3.

files, multi-port register-files, and multi-cycle functional units, etc. 

These contributions were published in our paper entitled “Customised soft processor design: a 

compromise between architecture description languages and parameterisable processors," pub-

lished in IET Computers & Digital Techniques, journal, May 2013, [76]. 

The main contributions in finite-precision error modeling, which were presented in Chapter 4, 

are: 

 Illustration of a common hazard in existing AA-based error modeling approaches and 1.

presentation of a solution to address it.  

 A modified error propagation method which can effectively improve error model accura-2.

cy. 

These contributions were published in the paper entitled "Finite-precision error modeling using 

affine arithmetic," presented in IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), May 2013 [84]. 

The main contributions in word-length optimization for hardwired circuit design, which were 

presented in Chapter 5, are: 

 An analytical method to simplify the precision analysis process. 1.

 A new polynomial-time semi-analytical algorithm for fractional word-length selection. 2.

 A new exponential-time semi-analytical algorithm for fractional word-length selection 3.

that can reach near-optimal results. 

These contributions were published in the paper entitled “Enhanced precision analysis for 

accuracy-aware bit-width optimization using affine arithmetic," published in IEEE Transactions 

on Computer-Aided Design of Integrated Circuits and Systems,  journal, Dec. 2013 [87]. 
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The main contributions in WLO-based processor customization, which were presented in Chapter 

6, are: 

 A novel method to utilize WLO for application-specific customization of microprocessors 1.

by exploring architectural trade-offs. 

 A multi-objective genetic algorithm (GA) to optimize the datapath word-length allocation. 2.

 Optimization of functional unit architecture based on the word length information and the 3.

application requirements to prove the design efficiency. 

These contributions have been submitted to the journal IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems in a paper entitled "Accuracy-aware processor 

customization for fixed-point applications," Jan. 2014 [88]. 

7.3 Future works 

Even though the work described in this thesis has presented multiple contributions in the field of 

hardware design for fixed-point computation. Several improvements could be proposed to the 

solutions presented and, moreover, many extensions could be provided. 

The novel idea of generating customized processors for fixed-point applications introduces a fer-

tile ground for research. This idea, which was mainly presented in Chapter 5, offers a combina-

tion of fixed-point optimization and processor customization. We demonstrated how customiza-

tion of specific elements in processor architecture can improve the overall efficiency. However, 

the customizable elements are limited in our experiments. Therefore, the range of customizations 

can be extended to other units.  

For instance, we introduced a dedicated search-based routine to find the best architecture for 

functional units in an optimization algorithm, presented in Chapter 5. We demonstrated how 

combining this routine with WLO processes can enhance the achievable design efficiency. How-

ever, we limited the functional units to multipliers for which we considered three specific archi-

tecture options. One possible future work is to extend the list of the functional units whose archi-

tectures can be customized in the proposed method. Other complex functions, such as division, 

exponential and logarithm, are required in many applications. These functions can also be added 
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to the functional unit selection algorithm. For this purpose, the most potentially efficient hard-

ware architectures for each function must first be developed. The hardware efficiency and accu-

racy of each candidate architecture should be measured for different word-lengths. This infor-

mation should be given to the optimization algorithm to be used for the efficiency measurements. 

The proposed customizations were applied on a simple pipeline processor architecture. An inter-

esting future work would be to use the same idea for more advanced architectures such as 

VLIWs. The complexity of the problem may change in the new architectures. For example, using 

multiple parallel pipelines in VLIW architectures introduces new parameters to the optimization 

algorithm that enlarges the search space.   

The idea of using fixed-point optimization for processor customization was evaluated for the first 

time in this thesis. For this first work, we used a genetic algorithm, which is a well-known gener-

ic heuristic method, as the optimization algorithm. GA is an appropriate choice for the early de-

velopments to evaluate the potentials of the idea. Although the capabilities of the GA to find the 

optimal solution are widely proven, it does not have the best search speed. This makes the opti-

mization process very slow for large designs. A highly useful future work would be to develop a 

dedicated heuristic algorithm for this problem to reduce the execution time of the optimization 

algorithm.  

We have only considered the area usage and latency as the effective efficiency factors in our de-

velopment and experiments. In other words, we limited the optimization goal to minimization of 

the hardware area and latency of the customized processor. However, the power consumption is 

the other important efficiency factor that can be considered in the optimization. For this purpose, 

a new procedure could be added to the optimization algorithm to estimate the power consumption 

of a candidate customization solution. Moreover, the fitness function should be modified so that 

the estimated power consumption can properly contribute in the fitness calculation. 
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