241 research outputs found

    DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DISCRETE POWER LEVEL SMART HOME SCHEDULING USING FPGA

    Get PDF
    With the development and capabilities of the Smart Home system, people today are entering an era in which household appliances are no longer just controlled by people, but also operated by a Smart System. This results in a more efficient, convenient, comfortable, and environmentally friendly living environment. A critical part of the Smart Home system is Home Automation, which means that there is a Micro-Controller Unit (MCU) to control all the household appliances and schedule their operating times. This reduces electricity bills by shifting amounts of power consumption from the on-peak hour consumption to the off-peak hour consumption, in terms of different “hour price”. In this paper, we propose an algorithm for scheduling multi-user power consumption and implement it on an FPGA board, using it as the MCU. This algorithm for discrete power level tasks scheduling is based on dynamic programming, which could find a scheduling solution close to the optimal one. We chose FPGA as our system’s controller because FPGA has low complexity, parallel processing capability, a large amount of I/O interface for further development and is programmable on both software and hardware. In conclusion, it costs little time running on FPGA board and the solution obtained is good enough for the consumers

    Investigación sobre la flexibilidad de la demanda en redes eléctricas inteligentes: control directo de cargas

    Get PDF
    In recent decades, the European Union has made decisive efforts to maintain its global leadership in renewable energies to meet climate change targets resulting from international agreements. There is a deliberate intention to reduce the usage of non-renewable energy sources and promote the exploitation of renewable generation at all levels as shown by energy production data within the Eurozone. The electricity sector illustrates a successful implementation of these energy policies: The electricity coming from combustible fuels was at historical lows in 2018, accounting for 83.6 % of the electricity generated from this source in 2008. By contrast, the pool of renewables reached almost 170 % of the 2008 production. Against this background, power systems worldwide are undergoing deep-seated changes due to the increasing penetration of these variable renewable energy sources and distributed energy resources that are intermittent and stochastic in nature. Under these conditions, achieving a continuous balance between generation and consumption becomes a challenge and may jeopardize the system stability, which points out the need of making the power system flexible enough as a response measure to this trend. This Ph.D. thesis researches one of the principal mechanisms providing flexibility to the power system: The demand-side management, seen from both the demand response and the energy efficiency perspectives. Power quality issues as a non-negligible part of energy efficiency are also addressed. To do so, several strategies have been deployed at a double level. In the residential sector, a direct load control strategy for smart appliances has been developed under a real-time pricing demand response scheme. This strategy seeks to minimize the daily cost of energy in presence of diverse energy resources and appliances. Furthermore, a spread spectrum technique has also been applied to mitigate the highfrequency distortion derived from the usage of LED technology lighting systems instead of traditional ones when energy efficiency needs to be improved. In the industrial sector, a load scheduling strategy to control the AC-AC power electronic converter in charge of supporting the electric-boosted glass melting furnaces has been developed. The benefit is two-fold: While it contributes to demand flexibility by shaving the peaks found under conventional control schemes, the power quality issues related to the emission of subharmonics are also kept to a minimum. Concerning the technologies, this Ph.D. thesis provides smart solutions, platforms, and devices to carry out these strategies: From the application of the internet of things paradigm to the development of the required electronics and the implementation of international standards within the energy industry.En las últimas décadas, la Unión Europea ha realizado esfuerzos decisivos para mantener su liderazgo mundial en energías renovables con el fin de cumplir los objetivos de cambio climático resultantes de los acuerdos internacionales. Muestra una intención deliberada de reducir el uso de fuentes de energía no renovable y promover la explotación de la generación renovable a todos los niveles, como demuestran los datos de producción de energía en la eurozona. El sector de la electricidad ilustra un caso de éxito de estas políticas energéticas: la electricidad procedente de combustibles fósiles estaba en mínimos históricos en 2018, representando el 83,6 % de la electricidad generada a partir de esta fuente en 2008; en cambio, el grupo de renovables alcanzó casi el 170 % de la producción de 2008. En este contexto, los sistemas eléctricos de todo el mundo están experimentando profundos cambios debido a la creciente penetración de estas fuentes de energía renovable y de recursos energéticos distribuidos que son de naturaleza variable, intermitente y estocástica. En estas condiciones, lograr un equilibrio continuo entre generación y consumo se convierte en un reto y puede poner en peligro la estabilidad del sistema, lo que señala la necesidad de flexibilizar el sistema eléctrico como medida de respuesta a esta tendencia. Esta tesis doctoral investiga uno de los principales mecanismos que proporcionan flexibilidad al sistema eléctrico: la gestión de la demanda vista tanto desde la perspectiva de la respuesta a la demanda como de la eficiencia energética. También se abordan los problemas de calidad de suministro entendidos como parte no despreciable de la eficiencia energética. Para ello, se han desplegado varias estrategias a un doble nivel. En el sector residencial, se ha desarrollado una estrategia basada en el control directo de cargas para los electrodomésticos inteligentes siguiendo un esquema de respuesta a la demanda con precios en tiempo real. Esta estrategia busca minimizar el coste diario de la energía en presencia de diversos recursos energéticos y electrodomésticos. Además, también se ha aplicado una técnica de espectro ensanchado para mitigar la distorsión de alta frecuencia derivada del uso de sistemas de iluminación con tecnología LED, empleados para la mejora de la eficiencia energética frente a las tecnologías convencionales. En el sector industrial, se ha desarrollado una estrategia de planificación de cargas para controlar el convertidor AC-AC de los hornos de fundición de vidrio con soporte eléctrico. El beneficio es doble: mientras que se contribuye a la flexibilidad de la demanda al eliminar los picos encontrados en los esquemas de control convencionales, también se reducen al mínimo los problemas de calidad de suministro relacionados con la emisión de subarmónicos. En cuanto a las tecnologías, esta tesis doctoral aporta soluciones, plataformas y dispositivos inteligentes para llevar a cabo estas estrategias: desde la aplicación del paradigma del internet de las cosas hasta el desarrollo de la electrónica necesaria y la implementación de estándares internacionales dentro de la industria energética

    Advanced photonic and electronic systems WILGA 2018

    Get PDF
    WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers around 400 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2018 was the XLII edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2018 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445. WILGA 2018 works were published in Proc. SPIE vol.10808

    Towards sustainable energy-efficient communities based on a scheduling algorithm

    Get PDF
    The Internet of Things (IoT) and Demand Response (DR) combined have transformed the way Information and Communication Technologies (ICT) contribute to saving energy and reducing costs, while also giving consumers more control over their energy footprint. Unlike current price and incentive based DR strategies, we propose a DR model that promotes consumers reaching coordinated behaviour towards more sustainable (and green) communities. A cooperative DR system is designed not only to bolster energy efficiency management at both home and district levels, but also to integrate the renewable energy resource information into the community's energy management. Initially conceived in a centralised way, a data collector called the "aggregator" will handle the operation scheduling requirements given the consumers' time preferences and the available electricity supply from renewables. Evaluation on the algorithm implementation shows feasible computational cost (CC) in different scenarios of households, communities and consumer behaviour. Number of appliances and timeframe flexibility have the greatest impact on the reallocation cost. A discussion on the communication, security and hardware platforms is included prior to future pilot deployment.Comunidad de Madri

    Demand response for frequency control of multi-area power system

    Get PDF

    FUSE – using artificial intelligence in the energy grid of tomorrow

    Get PDF
    The objective of Future Smart Energy (FUSE), a Finnish-German research and development project, is to develop methods based on artificial intelligence (AI) that will help to increase the resilience of future energy distribution grids. The use cases that are investigated include both condition monitoring/predictive maintenance, and distributed demand-side management in medium-voltage and low-voltage grids. The FUSE concept foresees a hierarchical infrastructure of sensing- and data processing nodes that use AI to transform raw data into information on asset and grid status and performance. FUSE supports the upward flow of data and aggregation of information into high-level visualisations for grid operators, as well as the downward flow of soft control signals that trigger the distributed self-control of assets. This study outlines the FUSE concept and presents the first results.This is an open access article published by the IET under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/)fi=vertaisarvioitu|en=peerReviewed

    Manual for Automation of Dc-microgrid Component Using Matlab/Simulink and FPGA\u27s

    Get PDF
    Solar Energy is one of the abundantly available renewable energy source. Solar panels are semiconductor materials which capture the solar energy from every band in the visible light spectrum, infrared spectrum and ultra violet spectrum and converts it into electrical energy. The DC community microgrid is used to supplement utility electrical power supplied to the neighbored with renewable sources such as solar panels, emergency back-up power through batteries or generators. Smart Cloud Interconnected environment increases the standard of living and facilitates ease to rectify faults, debug components and reinstate or replace obsolete components with newer ones. Automation of the DC microgrid components provides a simple yet efficient way to connect to the grid and to every component in the grid remotely. It is essential to find the node of failure in the grid for technicians and engineers to work on and to debug the issue to facilitate smooth running of the grid without shutdown. FPGAs are used as target devices for end synthesis of the model that is created on Simulink. These FPGAs are links between cloud and power electronics components. To utilize the energy resource efficiently we need to monitor the input and output of every component at every node in the grid. Simulating models on Simulink will let us connect the component and test engineer to the grid to detect any flaws or failures on time. FPGAs are easily reprogrammable and have long life with excellent capability to withstand stress. This thesis report provides a set of procedures to create and simulate a real time component model and to generate HDL files to build a clean code which can be redeployed on target FPGAs

    A Viable Residential DC Microgrid for Low Income Communities – Architecture, Protection and Education

    Get PDF
    The availability of fossil fuels in the future and the environmental effects such as the carbon footprint of the existing methodologies to produce electricity is an increasing area of concern. In rural areas of under-developed parts of the world, the problem is lack of access to electrification. DC microgrids have become a proven solution to electrification in these areas with demonstrated exceptional quality of power, high reliability, efficiency, and simplified integration between renewable energy sources (principally solar PV) and energy storage. In the United States, a different problem occurs that can be addressed with the same DC microgrid approach that is finding success internationally. In disinvested, underserved communities with high unemployment and low wages, households contribute a significant portion of their income towards the fixed cost of their electrical utility connection, which by law must be supplied to every household. In order to realize such a microgrid in these communities, there are three major areas which need to be accounted for. Firstly, there needs to be a custom architecture for the community under consideration and it needs to be economical to match the needs of the underserved community. Secondly, DC microgrid for home energy interconnection is potentially less complex and less expensive to deploy, operate and maintain however, faster protection is a key element to ensuring resilience, viability and adoptability. Lastly, these types of efforts will be sustainable only if the people in the community are educated and invested in the same as they are the key stakeholders in these systems. This dissertation presents an approach to make the DC Microgrid economically feasible for low income households by reducing the cost they incur on electric bills. The approach is to overlay a DC system into homes that have a utility feed in order to incorporate renewable energy usage into an urban setting for the express purpose of driving down individual household utility costs. The results show that the incorporation of a certain level of “smart” appliances and fixtures into the renovation of vacated homes and the use of a microgrid to enable sharing of renewable energy, such as solar power combined with energy storage, between homes in the proposed architecture yields the least expensive option for the patrons. The development of solid state circuit breakers that interface between the microgrid and the home DC power panels helps in faster protection of the DC system. In this dissertation, a SiC JFET based device is designed and built to protect against DC faults at a faster rate than the available solutions. The prototype is tested for verification and used to discriminate against short circuit faults and the results show the successful fault discrimination capabilities of the device. A basic system level simulation with the protection device is implemented using Real Time Hardware in the loop platform. Finally, as a part of engaging the community members, the high school kids in the area who might potentially be living in some of the houses in this community are being educated about the microgrid, appliances and other technologies to get a better understanding of STEM and hopefully inspiring them to pursue a career in STEM in the future

    A Viable Residential DC Microgrid for Low Income Communities – Architecture, Protection and Education

    Get PDF
    The availability of fossil fuels in the future and the environmental effects such as the carbon footprint of the existing methodologies to produce electricity is an increasing area of concern. In rural areas of under-developed parts of the world, the problem is lack of access to electrification. DC microgrids have become a proven solution to electrification in these areas with demonstrated exceptional quality of power, high reliability, efficiency, and simplified integration between renewable energy sources (principally solar PV) and energy storage. In the United States, a different problem occurs that can be addressed with the same DC microgrid approach that is finding success internationally. In disinvested, underserved communities with high unemployment and low wages, households contribute a significant portion of their income towards the fixed cost of their electrical utility connection, which by law must be supplied to every household. In order to realize such a microgrid in these communities, there are three major areas which need to be accounted for. Firstly, there needs to be a custom architecture for the community under consideration and it needs to be economical to match the needs of the underserved community. Secondly, DC microgrid for home energy interconnection is potentially less complex and less expensive to deploy, operate and maintain however, faster protection is a key element to ensuring resilience, viability and adoptability. Lastly, these types of efforts will be sustainable only if the people in the community are educated and invested in the same as they are the key stakeholders in these systems. This dissertation presents an approach to make the DC Microgrid economically feasible for low income households by reducing the cost they incur on electric bills. The approach is to overlay a DC system into homes that have a utility feed in order to incorporate renewable energy usage into an urban setting for the express purpose of driving down individual household utility costs. The results show that the incorporation of a certain level of “smart” appliances and fixtures into the renovation of vacated homes and the use of a microgrid to enable sharing of renewable energy, such as solar power combined with energy storage, between homes in the proposed architecture yields the least expensive option for the patrons. The development of solid state circuit breakers that interface between the microgrid and the home DC power panels helps in faster protection of the DC system. In this dissertation, a SiC JFET based device is designed and built to protect against DC faults at a faster rate than the available solutions. The prototype is tested for verification and used to discriminate against short circuit faults and the results show the successful fault discrimination capabilities of the device. A basic system level simulation with the protection device is implemented using Real Time Hardware in the loop platform. Finally, as a part of engaging the community members, the high school kids in the area who might potentially be living in some of the houses in this community are being educated about the microgrid, appliances and other technologies to get a better understanding of STEM and hopefully inspiring them to pursue a career in STEM in the future
    corecore