
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2013

DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED

DISCRETE POWER LEVEL SMART HOME SCHEDULING USING DISCRETE POWER LEVEL SMART HOME SCHEDULING USING

FPGA FPGA

Xin Yang
michigan technological

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons

Copyright 2013 Xin Yang

Recommended Citation Recommended Citation
Yang, Xin, "DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DISCRETE POWER LEVEL
SMART HOME SCHEDULING USING FPGA", Master's report, Michigan Technological University, 2013.
https://digitalcommons.mtu.edu/etds/601

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Electrical and Computer Engineering Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages

DESIGN AND IMPLEMENT DYNAMIC
PROGRAMMING BASED DISCRETE POWER
LEVEL SMART HOME SCHEDULING USING

FPGA

By

Xin Yang

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2013

© 2013 Xin Yang

This report has been approved in partial fulfillment of the requirements for the
Degree of MASTER OF SCIENCE in Electrical Engineering

 Department of Electrical and Computer Engineering

 Report Advisor: Shiyan Hu

 Committee Member: Sumit Paudyal

 Committee Member: Chaoli Wang

Department Chair: Daniel R. Fuhrmann

http://www.mtu.edu/ece/department/faculty/fuhrmann/

- 1 -

Contents

Section Ⅰ. Abstract 3

Section Ⅱ. Introduction 4

1. History 4

2. Today’s power grid 4

3. Daily life power consumption 4

4. Solutions 5

Section Ⅲ. Algorithm 8

1. Dynamic programming method 8

2. Proposed algorithm 8

3. Example 13

4. Nash equilibrium 16

Section Ⅳ. Flow charts 19

1. Procedure 19

2. Individual user scheduling 20

3. Multiple users scheduling 21

Section Ⅴ. FPGA Structure 22

1. Choosing FPGA board 22

2. NIOS II processor 23

- 2 -

Section Ⅵ. Instruction of implementation in Quartus II 25

1. Schematic 25

2. SOPC builder 31

3. Clock source and Phase Lock Loop(PLL) 36

Section Ⅶ. Hardware Testing 37

1. Example 1 37

2. Example 2 38

3. Example 3 44

Section Ⅷ. Problems Solution 54

Section Ⅸ. Conclusion 56

Section Ⅹ. Code in NIOS II 57

Section Ⅺ. Appendix 65

Section Ⅻ. References 80

- 3 -

Ⅰ.Abstract:
With the development and capabilities of the Smart Home system, people today

are entering an era in which household appliances are no longer just controlled

by people, but also operated by a Smart System. This results in a more efficient,

convenient, comfortable, and environmentally friendly living environment. A

critical part of the Smart Home system is Home Automation, which means that

there is a Micro-Controller Unit (MCU) to control all the household appliances

and schedule their operating times. This reduces electricity bills by shifting

amounts of power consumption from the on-peak hour consumption to the off-

peak hour consumption, in terms of different “hour price”. In this paper, we

propose an algorithm for scheduling multi-user power consumption and

implement it on an FPGA board, using it as the MCU. This algorithm for discrete

power level tasks scheduling is based on dynamic programming, which could find

a scheduling solution close to the optimal one. We chose FPGA as our system’s

controller because FPGA has low complexity, parallel processing capability, a

large amount of I/O interface for further development and is programmable on

both software and hardware. In conclusion, it costs little time running on FPGA

board and the solution obtained is good enough for the consumers.

- 4 -

Ⅱ. Introduction

1. History

Over a century ago, Nikola Tesla proposed the architecture of the power grid and

people followed the design and developed it. During that time, electricity was a

luxury resource that was used for lighting. Today, the power grid is used in

almost all fields and people may not survive without it. Following the rapid

technology development and no longer satisfying the present situation of the

power grid, people are now concerned about issues such as greenness,

efficiency, sustainability and reliability. The power grid could have the capability

to become “smarter”, a smarter grid [1] [2].

2. Today’s power grid

There are many ways to make the power grid become smarter, such as

improving the efficiency and reliability, developing environmentally friendly

generators, managing the power consumption for consumers and so on so forth

[3]. A basic and important part of the smart grid is the smart home. Specifically, if

household tasks or daily power consumption could be arranged and scheduled, a

more efficient system could be developed.

3. Daily life power consumption

The following figure demonstrates the inefficiency power consumption that would

occur during daily life. This is a plot of the power consumption for the province

Ontario, Canada, on a normal weekday in April 27, 2009 [4].

- 5 -

Figure 1. Power consumption in Ontario on a normal day

We could easily find out that the peak power consumption occurred during the

afternoon and low power consumption during the late night when most people

were asleep [5]. The inefficiency occurs when the power companies must build

the power plant which could support this high demand. These power plants with

more capacity need more maintenance and repair cost. Hence, utility companies

have to purchase power at higher rate. Furthermore, consumers typically

purchase power with same price during different time periods. As the result,

consumers would not consider adjusting their power consumption.

4. Solutions

In order to improve this inefficient situation, utility companies would like to choose

a “time of use” policy, which means that the power rate could be variable due to

the total amount of power consumption. For example, higher power rate occurs

during the afternoon and lower power rate occurs during the late night. Hence,

for our individual consumers, we would like to have a smart system to help us

schedule our household tasks in a reasonable way to reduce our electricity bill.

The result could be that the controller for the system assists us to shift parts of

- 6 -

soft loads from the peak demand hours to the low demand hours. Soft loads are

the loads can be scheduled, like washing clothes. During the day, the consumer

may not need a precise washing time for clothes but ask for an end time to do

this job. So, he/she can put the clothes there and let the smart washing machine

decide when the clothes should be washed. These kinds of jobs are called soft

loads, and hard loads are exactly the opposite. As previously stated, due to the

smart scheduling, in terms of the individual the electricity bill is surely reduced

when the hourly power rate offered by the utility company remains the same.

These kinds of smart shifting behaviors can not only affect our electricity bill, but

can also help the environment. For instance, in a typical week in October, one

needs to do laundry. Thursday night during the high power demand hours, and

Friday morning during the low power demand hours could be chosen as the time

to start the laundry. The difference is, the power plants will need to add

immediate and long-term generation capacity to support the electricity grid on

Friday, which results in an increasing fuel levels in the plants by burning more

coal for that kind of capacity buildup. Hence, due to the help of the smart

scheduling, the emissions could be reduced [6].

However, if all the consumers in this community considered this reasonable

scheduling by using the same smart system, they would all like to shift their loads

from the peak demand hours to the low demand hours simultaneously. This

would result in a bad situation that the original low demand hours become the

high demand hours. Hence, if we need to solve this problem, communication with

the other users is one of the prerequisites. Good news is that the smart system

has a good capacity of communication. Thus, the controller could schedule the

tasks based on the other’s arrangement in an optimal way. This solution has two

major advantages. On one hand, it has less complexity and results in a time

saving strategy. On the other hand, it would allow the users to change the

schedule optionally, since whenever the consumer inputs the newest schedule

information to the controller in real time, the controller would immediately

calculate the best scheduling option based on the other users’ schedule.

- 7 -

This method is basically a dynamic programming strategy, which solves complex

problems by dividing them into some simpler “sub-problems” and each time

solves the sub-problem only once; the current solution depended on the previous

computed optimal solution [7]. In this report, our proposed method is dynamic

programming-based and focuses on the scheduling for the multi-user-community.

Since we need a Micro-Controller Unit (MCU) for the carrier of this proposed

algorithm, FPGA is chosen due to its low complexity, convenient re-

programmability both on software and hardware and the technology trend. This is

preliminary work for the controller of the Smart Home system, because in our

work, the controller can only schedule the tasks but not perform other smart

behaviors like real life wireless remote controls, controlling the power level of the

household appliances based on the temperature and so on so forth. Fortunately,

it is not hard to do further developments on the FPGA controller and that is

exactly its critical advantage.

- 8 -

Ⅲ. Algorithm

1. Dynamic programming method

Since our proposed algorithm is dynamic programming method based, I would

like to introduce the dynamic programming strategy first. Dynamic programming

is more like a divide and conquer algorithm, which divides the problems into

pieces of sub-problems and then conquers them step by step. But, the difference

is that these sub-problems are usually not mutually independent. If we solve this

problem using the divide and conquer algorithm, some of the sub-problems may

be calculated many times. Thus, if we could store the solutions of previous sub-

problems and use them to solve the next one, an abundance of repeated work

would be avoided. For example, we could use a table to record all the solutions

of the sub-problems we have already solved, no matter whether these sub-

problems would or would not be used for the future. This is the basic thinking of

the dynamic programming algorithm. Keeping in mind, dynamic programming is

not a typical algorithm that has a standard mathematical expression or clear

structure. It is a way, a ladder, of solving the optimization problem. For different

decision processes, there is different dynamic programming method-based

algorithm [7].

2. Proposed algorithm

Now, I would like to present our proposed algorithm in the following paragraph.

First of all, individual scheduling is presented. Assume that there are n hours in

the time period, and there are m tasks that need to be scheduled during the time

period. In our case, each task has 5 factors, which are the start time Task [i] [0],
the end time Task [i] [1], power level 1 Task [i] [2], power level 2 Task [i] [3]
and the total power consumption Task [i] [4]. For an easy simulation, we only

divide time into hourly periods and only have two options of the power levels for

each task. Furthermore, each task can only be operated continuously and can

- 9 -

also change its power level during the operating time period. Hence, the total

power consumption Task [i] [4] for one task would be,

 Task [i][4] = ∑ Energytask[i],t
Task [i] [1]
t=Task [i] [0] (1)

Since we are on the premise that the utility company is using the “time of use”

strategy, different power consumption at different times has different power rates.

These prices for the different hours are offered to the customers before the day

starts and the prices would not change during that day. For example, Table 1,

which is shown below, indicates the price related with certain hours in Ontario

from May, 2012 to Apr, 2013. [8] In our case, we assume each hour has 3 factors,

hours [j] [0], hours [j] [1] and hours [j] [2]. hours [j] [0] represents the

threshold value. If the total power consumption of the community in this hour is

larger than the threshold value, the power rate would be hours [j] [1]. Otherwise,

if the community total power consumption is less than the threshold value, the

power rate would become hours [j] [2]. Then, we could start our scheduling

algorithm in this condition for seeking the best or one of the best solutions to

schedule all of the n tasks.

- 10 -

Table 1. 2012-2013 Ontario Time of Use Electricity Rates

- 11 -

The easiest way for scheduling these tasks that comes to mind would usually be

the enumeration algorithm. However, since we have hundreds of tasks for multi-

users and need to schedule them on at least 24 hours, the enumeration

algorithm would cost a large amount of time to accomplish the job. This is due to

the number of repeating sub problems that would grow exponentially while the

size of the input is increasing. Fortunately, our proposed dynamic programming

based algorithm is especially useful to deal with this kind of problems. Hence, it

is very easy for us to abandon the way using the enumeration algorithm, even

though using the enumeration algorithm can get the global optimal solution.

Back to the point, let Sched (E, C) be the main function of our scheduling. E

denotes the current total energy consumption, while C denotes the current total

cost. Thus, we obtained Table 2 for the optimization process for each task,

assuming the start time is 12:00am.

- 12 -

 Hour

Ways

12:00am 1:00am 2:00am 3:00am ……

1 (0,C1) (0,C4) (0,C11) …… ……

2 (E1,C2) (E1,C5) (E1,C12) …… ……

3 (E2,C3) (E2,C6) (E2,C13) …… ……

4 (E1+E1,C7) (E1+E1,C14) …… ……

5 (E1+E2,C8) (E1+E2,C15) …… ……

6 (E2+E1,C9) (E2+E1,C16) …… ……

7 (E2+E2,C10) (E2+E2,C17) …… ……

8 (E1+E1+E1,C18) …… ……

9 (E1+E1+E2,C19) …… ……

10 (E1+E2+E1,C20) …… ……

11 (E1+E2+E2,C21) …… ……

12 (E2+E1+E1,C22) …… ……

13 (E2+E1+E2,C23) …… ……

…… ……. …… ……

 Table 2. Scheduling the tasks without pruning

E1 and E2 denote the power level choices of the task respectively. For the first

hour, we could schedule the task in 3 ways: no schedule, schedule it in power

level 1, or schedule it in power level 2. And each of these schedules would cause

a cost named 𝐂𝐢. Since each schedule is based on the previous solution, we have

a cost when this task does not schedule on this hour, or (0, Cx). We could easily

find out that the solution numbers for jth hour is 32∗i+1, and this number we

obtained without simplification. With simplification, some of the solution could be

abandoned due to its lower energy consumption and higher cost in the same row.

For example, looking at the second row, at this hour, there are 2 outputs of cost

for total power consumption E1+E2. So, if 𝐂𝟖 is bigger than𝐂𝟕, which means the

- 13 -

5th way costs more, compared to the 6th way, while consuming the same power

at this time. Thus, the 5th way at 1:00am should be abandoned. For the result,

the solution following this abandoned solution at the next hour should all be

deleted, since for those child solutions, their parent solution is no longer an

optimal one. Then, we do the same comparison for all the solutions in the same

column mutually as long as no higher cost with lower energy consumption

solutions remain. That is a huge simplification for this table, and the new one, as

an example, is shown below in Table 3.

 Hour

Ways

12:00am 1:00am 2:00am 3:00am ……

1 (0,C1) (0,C4) (0,C11) …… ……

2 (E1,C2) (E1,C5) (E1,C12) …… ……

3 (E2,C3) (E2,C6) (E2,C13) …… ……

4 (E1+E1,C7) (E1+E1,C14) …… ……

5 (E2+E1,C9) (E1+E2,C15) …… ……

6 (E2+E2,C10) (E2+E2,C17) …… ……

7 (E1+E1+E1,C18) …… ……

8 (E1+E1+E2,C19) …… ……

9 (E2+E1+E2,C20) …… ……

10 (E2+E2+E1,C21) … …..

11 ….. ……

….. ….. …..

Table 3. Scheduling the tasks with pruning

For jth hour, j∈[1,24], the combination of energy is (a*E1+b*E2), and a <= j ,

b<= j. Hence, we could find out that the solution numbers for jth hour become no

more than(j + 1)2. Assume that in the real life, the power level would usually be

- 14 -

an integer number. Let C equals to the maximum value in the E set, then the

solution number for jth hour becomes no more than C*j.

After one task scheduling, the next task scheduling which is based on the

previous one, would be easy and we would like to schedule it in the same way as

the previous one was done. After finishing all the tasks for individual customers,

we would like to re-schedule the tasks from the beginning for better scheduling.

The advantage of doing so is that more precise optimization would occur. What

we need to do is just removing one task from the scheduler, recalculating the

total energy consuming for each of hours the task used to schedule on, and re-

schedule the task into the scheduler just like a new task based on the rest tasks.

Multi-user tasks scheduling is almost the same as the individual user task

scheduling. In multi-user tasks scheduling, however, we just add the remaining

tasks to the previous user’s scheduler and repeat the work, which is shown

through the example below.

3. Example

Let us assume that we have 9 tasks, and each of them has 5 factors (start

time=0, end time=6, power level 1=1, power level 2=2, total energy=4). The

hourly price for all hours is $1 if the total energy consumption for each hour is

below or equal to 1 and the hourly price would be $2 if the total energy

consumption for each hour is above 1. Then, the scheduling for the first task is

shown below.

- 15 -

 jth

hour

ways

1st(0) 2nd(1) 3rd(2) 4th(3) 5th(4) 6th(5) 7th(6)

1 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

2 (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)

3 (2,4) *(2,4) *(2,4) *(2,4) *(2,4) *(2,4) *(2,4)

4 (2,2) (2,2) (2,2) (2,2) (2,2) (2,2)

5 *(3,5) *(3,5) *(3,5) *(3,5) *(3,5) *(3,5)

6 (3,5) (3,3) (3,3) (3,3) (3,3) (3,3)

7 (4,8) *(4,6) *(4,6) *(4,6) *(4,6) *(4,6)

8 (4,6) (4,4) (4,4) (4,4) (4,4)

9

* need to be pruned Table 4. Example of pruning for task 1

The red ones are the final schedule for task 1 which is the optimum solution as

there is no other task scheduled. Now, we need to schedule the next task

depending on the task 1’s scheduling.

 jth

hour

ways

1st(0)

Prev 1

2nd(1)

Prev 1

3rd(2)

Prev 1

4th(3)

Prev 1

5th(4)

Prev 0

6th(5)

Prev 0

7th(6)

Prev 0

1 (0,1) (0,2) (0,3) (0,4) (0,4) (0,4) (0,4)

2 (1,4) (1,5) (1,6) (1,7) (1,5) (1,5) (1,5)

3 (2,6) (2,7) (2,8) (2,9) *(2,8) *(2,8) *(2,8)

4 *(2,8) *(2,9) *(2,10) (2,8) (2,6) (2,6)

5 *(3,10) *(3,11) *(3,12) *(3,11) *(3,9) *(3,9)

6 (3,10) (3,11) (3,12) (3,10) (3,9) (3,9)

7 (4,12) (4,13) (4,14) *(4,13) *(4,12) *(4,12)

8 *(4,14) *(4,15) (4,13) (4,11) (4,10)

9

* need to be pruned Table 5. Example of pruning for task 2

- 16 -

Prev n means in this hour period, n units’ power has already been scheduled

due to previous scheduling. After scheduling, we figure out that the total cost is

lowest when we arranged the task 2 uniformly in power level 1 on the last four

time periods. Repeat the scheduling using our proposed algorithm for the rest

tasks. After one time full-tasks scheduling, we arrange all the tasks in the way

shown in the following table.

 jth

hour

tasks

1st(0) 2nd(0) 3rd(2) 4th(3) 5th(4) 6th(5) 7th(6)

1 1 1 1 1

2 1 1 1 1

3 2 2

4 2 2

5 2 2

6 2 2

7 2 2

8 2 2

9 2 2

 Table 6. All tasks scheduling

In order to optimize the arrangement, we prefer to run it again. First, we should

“delete” task 1 from the table. Then, depending on the existing arrangement,

reschedule task 1 and reschedule the rest after it. Finally, we would obtain the

following arrangement.

- 17 -

 jth

hour

tasks

1st(0) 2nd(0) 3rd(2) 4th(3) 5th(4) 6th(5) 7th(6)

1 2 1 1

2 1 1 1 1

3 2 2

4 2 2

5 2 2

6 2 2

7 2 2

8 2 2

9 2 2

 Table 7. All tasks rescheduling

Then, we met equilibrium, no matter how many further rescheduling we run. For

this simple example, this arrangement is one of the optimum solutions. Most of

the time, we may not obtain the optimum solution using this algorithm, but we

could get a solution very close to the optimum one after rescheduling λ times. In

order to determine this λ, we could compare the lowest cost in λth time and in (λ-
1)th time. If the difference is below a certain value, like 1%, which the consumers

may accept, the controller shall stop rescheduling the tasks. Then we could do

this progress for all the users in the community, just treating multi-users as multi-

tasks. Finally, equilibrium would be met and all the users in the community would

satisfy the result [9].

4. Nash equilibrium

Our proposed algorithm is to find Nash equilibrium. “In game theory, the Nash

equilibrium is a solution concept of a non-cooperative game involving two or

more players, in which each player is assumed to know the equilibrium strategies

of the other players, and no player has anything to gain by changing only his own

strategy unilaterally” [10]. In the system, like our “smart community”, where

- 18 -

multiple independent consumers are trying to optimize their own utility unilaterally,

Pareto Optimality is very hard to achieve. Pareto optimality or Pareto efficiency

means that in the system, “no one can be made better off without making at least

one individual worse off [11].” Hence, Nash equilibrium is fair and reasonable

among consumers since everyone in the system is choosing the individual

optimal strategy depending on others’ choices. Following is the normal math

definition of Nash equilibrium. In a game set G={S1,…,Sn: u1,...un}, there is a

Strategy Profile (s1*,…,sn*), where si*∈Si(Si is the strategy set of player i). If

any si* is the best strategy to the combination of others’ strategies (s1*,…s*i-

1,s*i+1,…,sn*), or ui(s1*,…,s*i-1,s*i,s*i+1,…,sn*) ≥ui((s1*,…,s*i-1,sij*,s*i+1,…,sn*)

where sij∈Si, then the strategies(s1*,…,sn*) is a Nash equilibrium of the game

set G [12].

Apparently, our algorithm keeps finding the Nash equilibrium until the

improvement of the two scheduling solutions for the whole community is less

than a certain value. For instance, our solution is implemented in a community

with 100 customers. The controller would do the scheduling for the first customer,

and repeat the procedure until the last one. The strategy for each scheduling

depends on what we have scheduled for the previous ones. After one complete

scheduling for these 100 customers, we could obtain a game set G1=

{𝑆11, 𝑆21,…, 𝑆1001: 𝑐11, 𝑐21,…, 𝑐1001}, where 𝑆𝑖1 denotes the strategy of

customer i and 𝑐𝑗1denotes the cost of customer j using its strategy in the 1st

scheduling. Then in the 2nd scheduling for the whole community, we would

change everyone’s scheduling strategy one by one, depending on the Strategy

Profile of the whole community (𝑆12, 𝑆22, … , 𝑆𝑖 − 12,𝑆𝑖1, 𝑆𝑖 + 11, … , 𝑆1001), to

obtain a new Strategy Profile {𝑆12, 𝑆22, … , 𝑆𝑖 − 12,𝑆𝑖2, 𝑆𝑖 + 11, … , 𝑆1001}. After a

Strategy Profile {𝑆12, 𝑆22, … , 𝑆𝑖 − 12,𝑆𝑖2, 𝑆𝑖 + 12, … , 𝑆1002} is obtained, the

controller shall start the 3rd scheduling for the community. Since each individual

scheduling strategy is set depending on all the other strategies in the community,

the controller must be able to find a game set 𝐺𝑘, in which any 𝑆𝑖𝑘 is the best

strategy to the combination of others’ strategies (s1,…si-1,si+1,…,sn).

- 19 -

Additionally, the best strategy means the strategy with the lowest cost. It is

important to remember that finding the Nash equilibrium does not mean that we

should find out Minimum(c1+c2+…+c100). However, this k value is hard to find

since the tasks’ number in a community may be very large. In fact, we only need

to go through λ times, like mentioned in the earlier paragraph. After λ times

scheduling, the difference of the total cost between two complete scheduling for

the community is less than a very small value. Then, we would obtain a solution

that is very close to the Nash equilibrium and the customers would be satisfied.

The algorithm part is completed and therefore I would like to present the

hardware and software setup in the next sections. Due to the complexity of the

algorithm, I decided to use the CPU core embedded on the FPGA board to do

the calculation, or scheduling. The following are flow charts of the whole

procedure of scheduling.

- 20 -

Ⅳ. Flow Charts

1. Procedure

Start

Hardware and Software
configuration

Input the task information
and hourly price in a file

Read the file and store the
inputs to the flash memory
embedded on the FPGA

board

Load the inputs and run the
scheduling algorithm on the

CPU core

Demonstrate the outputs of
which task should be

scheduled on which hours

Figure 2a. Flow chart of the procedure

- 21 -

2. Individual user scheduling

Start

Initialization
Hour = 0
Task = 0

Energy = 0
Cost = 0

Hour < 24?

Task <= total_task?

Hour∈[start_time[task],
end_time[task]]?Hour = Hour + 1

Energy_pre[i] +
freq[task][j] <

total_power[task]?

Insert a
solution(Energy,Cost)

at this Hour

i >=
solutions_pre?

Compare all the
solutions mutually,

prune the solutions with
lower Energy and higher

Cost

Check all the solutions
with Energy =

total_power[task],
If Cost < Lowest_cost,

Then Lowest_cost = Cost

Task = Task + 1

(Lowest_pre-
Lowest_cost)/
Lowest_cost

<= 1%

Store the accumulated
energy consumption per
hour and Lowest_cost

Task = 0
Hour = 0

End

Yes

Yes

Yes

i = i +1

Yes

Yes

Yes

No

No

No

No

No

No

Clear the previous
arrangement for

this Task

Figure 2b. Flow chart of the algorithm for individual user scheduling

- 22 -

3. Multiple users scheduling

Start

Initialization

Individual
scheduling for

User i

i< total number of users in
the community?

Counter i=0

Store the accumulated power
consumption per hour and
lowest cost of the whole

community

i=i+1

(Lowest_pre-
Lowest_cost)/
Lowest_cost

<= 1%

Yes

Yes

No

No

End

Figure 2c. Flow chart of the algorithm for multiple users scheduling

- 23 -

Ⅴ. FPGA Structure

1. Choosing FPGA board

At the beginning of the project, I chose Altera’s DE0 Nano board, which is shown

below, as my controller due to its small size of body, good portability, and enough

logic elements and comparatively large memory storage. Cyclone IV EP4C22

FPGA, which has 150,000 logic elements, is embedded in the DE0-Nano board.

This FPGA education board also has 32MB SDRAM [13]. However, since it has

no Flash Memory embedded on the board, it is kind of difficult to load the task

information and hourly electricity price, which needs to be input by the operators

from the keyboard or from a file. Hence, I finally abandoned this board and used

Altera’s DE2 board as the MCU. Even though this board is about 10 times larger

than DE0-Nano board and only has Cyclone II FPGA core with 68,416 logic

elements and 8MB SDRAM, it still fits this project [14].

Figure 3a. DE0-Nano board

- 24 -

A photograph of the DE2 board is shown below in Figure 3. It demonstrates the

location of the key component. The components with a yellow square frame are

used in our project.

Figure 3b.DE2 board

2. NIOS II processor

In order to implement the comparatively complex algorithm, the NIOS II

Processor embedded in Cyclone II FPGA is used in this project. Figure 4,

obtained from Altera, shows an example of the architecture of a NIOS II

Processor System [15].

- 25 -

 Figure 4.Example of a NIOS II Processor System

This architecture is very important for us to build a System on Programmable

Chip (SOPC). I will review this figure later when I use the SOPC builder in

Quatus II.

- 26 -

Ⅵ. Instruction of Implementing in Quartus II

1. Schematic

First of all, we need to create the hardware configuration in Quartus II. A new

project should be built and after we will create a schematic file as our project’s

top entity. The overview of the hardware schematic is shown below as the Figure

5a and Figure 5b.

Figure 5a. Overview of the schematic1

- 27 -

Figure 5.Overview of the schematic2

- 28 -

A system clock is needed, so we will create an input connecting to CLOCK_50,

which has 50Mhz power level, followed by the wire named clk. This wire could

connect to any modules, which need clock sources.

Figure 6.System Clock Source

Use KEY[1] as the reset input and KEY[0] to choose the particular hours to

demonstrate the tasks scheduled on them.

Figure 7.KEY modules

In this case, if KEY[0] is not pushed, the tasks scheduled on hour[0] would be

displayed on the board by turning on the LEDs. If KEY[0] is pushed one time, the

tasks scheduled on hour[1] would be displayed and so on so forth. In this

simulation, I set the number of hours up to 24 and the output has 5 bits. The

Verilog code of this KEY controlling module is shown below.

- 29 -

module hours_display(

 KEY,

 hours

);

input [0:0]KEY;

output reg [4:0]hours;

always @(negedge KEY[0])

 if (hours>5'd22) hours<=0;

 else hours<=hours+1;

endmodule

Following is the demonstrated used LEDs output module and its brightness

control used counter module. Each LED represents a task. If the power level of

the running task is high, the LED would become brighter, otherwise it would

become fainter. In our project, I assume that the power level range of all the

tasks is between 1 and 15. Counter is used to count the clock. Since it only has 4

bits, counter will keep increasing between 0 and 15 in 50 Mhz frequency as the

same as the system clock. Hence, the brightness of the LED would be set

proportionally depending on the power level of the corresponding task, since

during each 16 units time period the LED would be turned on in factor number

unit time period and be turned off in (16 - factor) number unit time period.

- 30 -

 Figure 8.LEDs output module

 Figure 9.Brightness control used counter module

The Verilog codes for these two module are shown below.

module simple_counter (

 CLOCK_50,

 counter_out

);

input CLOCK_50;

output reg [3:0] counter_out;

always @ (posedge CLOCK_50)

 begin

 counter_out <= #1 counter_out + 1;

 end

endmodule

- 31 -

module brightness (

 clk,

 factor,

 counter,

 out

);

input clk;

input [3:0]factor;

input [3:0]counter;

output reg out;

always @ (posedge clk)

 if (factor==0) out<=0;

 else if (counter<=factor) out <=1; else out <=0;

endmodule

- 32 -

2. SOPC builder

The most important part is the CPU core of this system. We will use SOPC

builder to create an on chip system, which is shown below.

 Figure 10.SOPC builder setup

- 33 -

CPU is the core and it connects to all of the other parts of system. Jtag_uart is

used for the FPGA board to communicate with the PC. For example, through the

jtag_uart interface, the input file could be stored from the PC to the Flash

Memory embedded on the FPGA board. Then, we created several I/O interfaces

like pio_key and pio_ledx to connect the CPU core to the I/O pins on the FPGA

board. It’s painless to quickly add a System ID component, named sysid, to

keep track of whether the BSP driver package currently used is still compatible

with the hardware we are trying to run it on. It is also painless to add an

Onchip_memory. Actually we don’t need to use it since I decided to store all the

instructions, library, etc. in the SDRAM. Why I would like to use SDRAM as my

CPU memory is that the memory space in onchip_memory is too small to support

the full c library. I could only use the full c library to use file operation in NIOS II.

In Figure 4, it shows that we need an SDRAM controller to connect the real

SDRAM memory and to control its behavior. For each particular FPGA chip, we

should consider the configuration of the SDRAM controller. Datasheet of the

target board is needed here.

Figure 11.SDRAM Controller Memory Profile configuration

- 34 -

 Figure 12.SDRAM Controller Timing Configuration

Flash Memory Interface, named cfi_flash, is also added in the SOPC. In order to

correctly use Flash Memory, indicating in Figure 4, tri_state_bridge is also

required, and the slave side should connect to the CPU and the master side

should connect to the Flash Memory. Flash Memory Interface’s setup is shown

below.

- 35 -

 Figure 13.Flash Memory Interface Configuration

The NIOS II CPU core is setup as shown below, notice that SDRAM is chosen.

Figure 14.NIOS II core overview

- 36 -

After we created all of the components of the system and added a system 50Mhz

clock, we need to refresh the system and Auto-Assign Base Addresses for all of

the components and then generate it.

Figure 15.SOPC module

The figure above is the quick look of the SOPC module. Since we only create a

SDRAM controller in the SOPC, we have to connect the controller pins to the

- 37 -

input pins of the SDRAM embedded on the FPGA board. Followed by the

controller pins of SDRAM is the flash controller pins. Just a reminder, the Flash

Memory reset pin must connect to the reset pin or simply a constant 0.

3. Clock source and Phase Lock Loop(PLL)

In order to make sure all the signals are stable on the clock edge, a Phase Lock

Loop (PLL) module is needed to create a second clock signal into SDRAM. We

should also consider the setup of the PLL module, since that may cause an error

when building the project if some values are incorrect for each particular FPGA

board. The setup for DE2 board, or Cyclone II EP2C35F672C6 FPGA chip, is

shown below.

Figure 16.PLL module

- 38 -

Ⅶ. Hardware Testing

1. Example 1

I would like to have two tests to demonstrate my work. First one is the example I
analyzed in the part Algorithm. Assume there are 10 tasks and we are
supposed to assign them in 7 hours. First, since we need to input our information
into the FPGA board using txt format file, a Zip file named files.zip should be
created under scheduling_0_syslib folder, including 2 txt format files named
file1.txt and file2.txt storing the tasks information and hourly price information
respectively. Due to the software work, the names of these files cannot be
modified and the txt files cannot be compressed. See the following figure.

Figure 17.Input information of Example 1

Then the result run in FPGA shows below from hour 0 to hour 6. We could see
that the tasks with higher power level would be brighter.

- 39 -

Figure 18. Hourly power consumed of Example 1

2. Example 2

Another example is shown below

Figure 19. Input information of Example 2

- 40 -

And the hardware testing result is shown below from hour 0 to hour 23.

- 41 -

Figure 20. Hourly power consumed of Example 2

- 42 -

Since there are only 18 onboard LEDs, I could not demonstrate the tasks with
more than 18 in this way. I would like to show the debug result when there are
more than 18 tasks, like 99 tasks, and multiple users below.

Figure 21. Multiple users_1

- 43 -

Figure 21. Multiple users_2

- 44 -

Figure 22. Accumulated power level for each hours

Figure 23. The total cost

It cost about 2 seconds to obtain the result if the total task number is 99.

- 45 -

3. Example 3

To demonstrate the effectiveness, I would like to present the simulation of
household appliances. The power use for each smart appliance is consulted from
the manuals [16][17][18][19].

Appliance Start
time

End
time

Power
level 1
(Watt)

Power
level 2
(Watt)

Total power
Consumption
(KJ)

Mini Oven 10:00 12:15 900 1800 1620

Rice Cooker 11:00 12:15 400 600 1080

Clothes Washer 8:00 14:30 400 600 1800

Clothes Dryer 14:30 17:00 2650 5300 19080

Refrigerator 0:00 23:45 720 720 25920

Vacuum Cleaner 0:00 18:45 1000 1200 3600

Dishwasher 13:15 18:45 1200 2400 2160

Water Pump 0:00 23:45 250 1000 2700

Table 5. Input information of household appliances

About the price scheme for a day, we could use the Ontario Time of Use

Electricity Rates for Winter I mentioned in Algorithm part, which is shown below.

(For better calculation and demonstration, I will round the decimal price to the

nearest integer)

- 46 -

From

To

Winter Rate(Nov-Apr)

7:00 AM 8:00 AM 12 cents/kwh

8:00 AM 9:00 AM 12 cents/kwh

9:00 AM 10:00 AM 12 cents/kwh

10:00 AM 11:00 AM 12 cents/kwh

11:00 AM 12:00 PM 10 cents/kwh

12:00 PM 1:00 PM 10 cents/kwh

1:00 PM 2:00 PM 10 cents/kwh

2:00 PM 3:00 PM 10 cents/kwh

3:00 PM 4:00 PM 10 cents/kwh

4:00 PM 5:00 PM 10 cents/kwh

5:00 PM 6:00 PM 12 cents/kwh

6:00 PM 7:00 PM 12 cents/kwh

7:00 PM 8:00 PM 6 cents/kwh

8:00 PM 9:00 PM 6 cents/kwh

9:00 PM 10:00 PM 6 cents/kwh

10:00 PM 11:00 PM 6 cents/kwh

11:00 PM Midnight 6 cents/kwh

Midnight 1:00 AM 6 cents/kwh

1:00 AM 2:00 AM 6 cents/kwh

2:00 AM 3:00 AM 6 cents/kwh

3:00 AM 4:00 AM 6 cents/kwh

4:00 AM 5:00 AM 6 cents/kwh

5:00 AM 6:00 AM 6 cents/kwh

6:00 AM 7:00 AM 6 cents/kwh

Table 6. 2012-2013 Ontario Time of Use Electricity Rates for winter

- 47 -

Since we measured the day as 96 quarter hours in this simulation, we have 96
time periods. For example, time period 0 represents the period from midnight to
12:15 AM, or time period 16 represents the period from 4:00 AM to 4:15 AM. In
Ontario, “in the winter months, the higher electricity price is charged for
consumption above 1,000 kwh.” [8] As shown in Table 1, usually the higher
electricity price is about 1 cent/kwh higher than the lower price. Hence, in our
simulation, I will consider that if the quarterly power use was over

1,000 𝑘𝑤ℎ
𝑚𝑜𝑛𝑡ℎ

30 𝑑𝑎𝑦𝑠
𝑚𝑜𝑛𝑡ℎ×24ℎ𝑜𝑢𝑟𝑠𝑑𝑎𝑦 ×4𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑠ℎ𝑜𝑢𝑟

 ≈ 0.35𝑘𝑤ℎ
𝑞𝑢𝑎𝑟𝑡𝑒𝑟

= 1260𝑘𝐽
𝑞𝑢𝑎𝑟𝑡𝑒𝑟

the price would be 1 more cent plus the original price. The unit of power level
shown in Table 5 is Watt, and each of the time period is a quarter. Hence, we

need to convert 𝐽 𝑆� to 𝐽 𝑞𝑢𝑎𝑟𝑡𝑒𝑟� , which means each power level need to multiply

by 60 × 15 𝑆 𝑞𝑢𝑎𝑟𝑡𝑒𝑟� . Therefore, the input information for this simulation is

shown below.

- 48 -

Figure 24. Input tasks information

Figure 25a. Input price information

- 49 -

Figure 25b. Input price information

For clearer demonstration, it is better to add a time display module in Quartus II,
which is shown below.

Figure 26. time_display module

And the Verilog code for this module is shown below.

module time_display (

 clk,

 time_period,

 HEX0,

 HEX1,

 HEX2,

 HEX3

);

input clk;

input [6:0]time_period;

output [6:0]HEX0,HEX1,HEX2,HEX3;

reg [3:0]t1,t2,t3,t4;

reg [4:0]tm,ts; //tm: min; ts: sec

always @ (posedge clk)

- 50 -

 begin

 tm<=time_period/4;

 ts<=time_period%4;

 t1<=tm/10;

 t2<=tm%10;

 case (ts)

 0: begin

 t3<=0;

 t4<=0;

 end

 1: begin

 t3<=1;

 t4<=5;

 end

 2: begin

 t3<=3;

 t4<=0;

 end

 3: begin

 t3<=4;

 t4<=5;

 end

 endcase

 end

HEX_display h1(t1,HEX3);

HEX_display h2(t2,HEX2);

HEX_display h3(t3,HEX1);

HEX_display h4(t4,HEX0);

- 51 -

endmodule

module HEX_display(t,q);

input [3:0]t;

output reg [7:0]q;

always begin

 case (t)

 0: q<=7'b1000000;

 1: q<=7'b1111001;

 2: q<=7'b0100100;

 3: q<=7'b0110000;

 4: q<=7'b0011001;

 5: q<=7'b0010010;

 6: q<=7'b0000010;

 7: q<=7'b1111000;

 8: q<=7'b0000000;

 9: q<=7'b0010000;

 default q<=7'b1111111;

 endcase

 end

endmodule

Since it is better to assign one task in more time periods to flat the power
consumption curve, I will add another factor that record how many time periods
this task is assigned in. If there are many solution with the same lowest cost for
one task, the controller would choose the one with the most time periods.
Therefore, the result for this simulation is shown below

- 52 -

Time period Task and Power Level
0:00->3:00 Refrigerator(720Watt), Water Pump(250Watt)

3:00->10:00 Water Pump(250Watt)
11:00->11:30 Mini Oven(900Watt), Rice Cooker(400Watt)
11:30->11:45 Rice Cooker(400Watt), Clothes Washer(400Watt)
11:45->12:45 Clothes Washer(400Watt)
12:45->13:45 Vacuum Cleaner(1000Watt)
13:45->14:15 Dishwasher(1200Watt)
14:30->16:30 Clothes Dryer(2650Watt)

otherwise No tasks assigned
Table 7. Scheduling

- 53 -

- 54 -

The total cost is $1.42, which is exactly the same value with the result obtained
from the enumeration method. This is the optimal solution, which means that, in
this case, any other scheduling cannot get lower price than $1.42. Customers
can benefit from our scheduling.

- 55 -

4. Example 3

Above is the simulation for individual user, and I will present the simulation for
multi-user below. Here is the input information.

Figure 27. Multiple users’ tasks

- 56 -

Then, the simulation result is shown below.

Figure 28. Simulation result

- 57 -

If we don’t use any optimized way to assign these tasks, the power consumption
curve would become very sharp in the high-demand time periods. After using our
proposed algorithm, the curve becomes flatter. The total cost in this case is
7168536/3600=1991.26cents.

The scheduling time is about 10 minutes in this case for 120 tasks. This is for the
first scheduling at the beginning of the day. During the day, if the consumer want
to change several tasks or add some new tasks to the loads, the controller will
only do the scheduling for these tasks, not all the tasks for the whole community.
The scheduling time for several tasks is less than 1 minutes. The speed is
acceptable.

- 58 -

Ⅷ. Problem Solution
1. If the onchip memory is insufficient, use SDRAM to substitute it.

2. When build project in NIOS II.

First of all, check the address in SOPC builder to see which component has
error, most of the time the errors occur in memory component.

Then check the design in Quartus especially the pin assignment to see if all
the pins are correctly connected. Data bus must be bidirectional, and it is very
easy to forget it.

If it is the sdram, pll module is needed and the phase shift in pll module
should be corrected.

3. The data would be lost in sdram after shut down the FPGA. Altera’s DE0
Nano board has NO flash memory.

4.

- 59 -

Switch the button from PROG to RUN

5. Because of the compatibility issues, the following problem would occur very
often in Win7 system.

[main] ? (5680) D:\altera\80\quartus\bin\cygwin\bin\sh.exe: *** fatal error -
 couldn't allocate heap, Win32 error 487, base 0x870000, top 0x890000, reser
ve_size 126976, allocsize 131072, page_const 4096
 2 [main] sh 3244 fork: child -1 -
 died waiting for longjmp before initialization, retry 0, exit code 0x100, errno 1
1

It is not enough to change the compatibility in properties. The reason to
cause it is that the capacity of Cygwin’s heap is not big enough and Windows
does not add its capacity automatically. We need to open the Registry, under
HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER section, add a
DWORD key named heap_chunk_in_mb under the Cygwin folder. Change
the value of it to 1024 in decimal to limit the capacity of heap to 1024 Mb.
Even though the problem would still occur sometimes, the probability
becomes much lower.

- 60 -

Ⅸ. Conclusion
Using our proposed dynamic programming based algorithm could significantly
reduce the time complexity to schedule tasks for multi-users, compared with the
classical algorithm like the method of enumeration. On the other hand, I am
satisfied with the accuracy of finding a solution set that is close to the global
optimal solution.

Altera’s DE2 FPGA board we used fits our task. Furthermore, Smart Home
system consists of a lot of applications to provide improved comfort, convenience
and efficiency. Due to FPGA’s large amount of I/O interfaces and low complexity,
it is very easy for us to do the further development of smart behavior on FPGA.

- 61 -

Ⅹ. Coding in NIOS II

/*
 * Project: DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DISCRETE
POWER LEVEL SMART HOME SCHEDULING
 *
 * Name : XIN YANG
 *
 * Advisor: SHIYAN HU
 *
 * This project consists of 3 parts:
 * 1: Read user information from the computer and save it into flash
memory in FPGA
 * 2: Schedule the tasks use our proposed dynamic programming based
algorithm
 * 3: Demonstrate the results using the onboard LEDs
 *
 */

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include "system.h"
#include "io.h"
#include "altera_avalon_pio_regs.h"

#define hours 96
#define task_max_number 200
#define repeat_times 10
#define value_size 6 //maxium size of each input value
#define BUF_SIZE (30*task_max_number)

// [0] start time [1] end time [2] power level 1 [3] power level 2 [4]
total time
int task[task_max_number][5];

// [0] Accumulated power threshold [1] unit power level price <=
threshold [2] unit power level price > threshold
int price[hours][3];

// [0] power consumed [1] cost [2] power level [3] path
int sched[hours][task_max_number][4];
int best[hours][task_max_number];
int power[hours] = {0};

int lowest = 9999999;
volatile int taskprice = 0;
int delay;
int condition;

- 62 -

volatile int j=0;
volatile int m=0;
volatile int i=0;
volatile int n=0;
volatile int ii=0;
volatile int cost_total=0;

volatile int tasknumber;

/**
* Function: taskread
*
* Purpose: Read the tasks information from the file input from
* the consumers
*
**/
void taskread(FILE* fp)
{
 char buffer[BUF_SIZE] = {0x20};
 char value[value_size];
 int read_size;
 int i,j,p;
 int ptr;

 read_size = fread (buffer, 1, BUF_SIZE, fp); //the total size of the
file

 for(p=0; p<value_size; p++) value[p] = 0;

 for(i=0; i<value_size; i++)
 {
 if ((buffer[i] == 0xa) | (buffer[i] == 0x20) | (buffer[i] == 0xd))
break; // if it is a newline or space or Enter, then break
 else value[i] = buffer [i];
 }

 ptr = i+2;
 tasknumber = atoi(value);

 for(i=0; i<tasknumber; i++)
 {
 for(j=0; j<5; j++)
 {
 for(p=0; p<value_size; p++) value[p] = 0;
 for(p=ptr; p<ptr+value_size; p++)
 {
 if ((buffer[p] == 0xa) | (buffer[p] == 0x20) | (buffer[p]
== 0xd)) break; // if it is a newline or space or Enter, then break
 else value[p-ptr] = buffer[p];
 }
 ptr = p+1;
 task[i][j] = atoi(value);
 if (buffer[p] == 0xd) {ptr++; break;}
 }

- 63 -

 }

}

/**
* Function: hoursread
*
* Purpose: Read the hourly price information from the file input from
* the utility company
*
**/
void hoursread(FILE* fp)
{
 char buffer[BUF_SIZE] = {0x20};
 char value[value_size];
 int read_size;
 int i,j,p;
 int ptr=0;

 read_size = fread (buffer, 1, BUF_SIZE, fp); //the total size of the
file

 for(p=0; p<value_size; p++) value[p] = 0;

 for(i=0; i<hours; i++)
 {
 for(j=0; j<3; j++)
 {
 for(p=0; p<value_size; p++) value[p] = 0;
 for(p=ptr; p<ptr+value_size; p++)
 {
 if ((buffer[p] == 0xa) | (buffer[p] == 0x20) | (buffer[p]
== 0xd)) break; // if it is a newline or space or Enter, then break
 else value[p-ptr] = buffer[p];
 }
 ptr = p+1;
 price[i][j] = atoi(value);
 if (buffer[p] == 0xd) {ptr++; break;}
 }
 }

}

/**
* Function: Initialization
*
* Purpose: Open the users' task information file and utility
* company's power rates information file in the
* flash memory
*
**/
void Initialization()
{
 FILE *fp;

- 64 -

 fp = fopen ("/mnt/rozipfs/file1.txt", "r");
 if (fp == NULL)
 {
 printf ("Cannot open file.\n");
 exit (1);
 }

 taskread(fp);

 fclose (fp);

 fp = fopen ("/mnt/rozipfs/file2.txt", "r");
 if (fp == NULL)
 {
 printf ("Cannot open file.\n");
 exit (1);
 }

 hoursread(fp);

 fclose (fp);
}

/**
* Function: cost
*
* Purpose: Return the cost. If the accumulated power level is larger
* or equal to the threshold value, use the 1st power rate.
* Otherwise, use the 2nd power rate.
*
**/
int cost(int hour_now, int power_consume)
{
 int sum;
 if (power_consume<=price[hour_now][0])
 sum = price[hour_now][1] * power_consume;
 else
 sum = price[hour_now][2] * power_consume;
 return sum;
}

/**
* Function: Schedule the tasks
*
* Purpose: Use our proposed algorithm to schedule the tasks
*
*
**/
void go(int task_now)
{
 int good;
 int cost_cach;

- 65 -

 int lowest=9999999;
 int count;
 int lowest_time; // it means the last time we found the lowest cost

 int Fst_hour=task[task_now][0]; // First hour

 lowest_time = 0;

 // for repeatly schedualing
 for (j=Fst_hour; j<=task[task_now][1]; j++)
 {
 cost_total=cost_total-cost(j,power[j])+cost(j,power[j]-
best[j][task_now]);
 power[j]=power[j]-best[j][task_now];
 best[j][task_now]=0;
 }

 //sched[j][0][0] means the number of situation in hour j
 sched[Fst_hour][0][0]=3;
 sched[Fst_hour][1][1]=cost_total;
 sched[Fst_hour][2][0]=task[task_now][2];

sched[Fst_hour][2][1]=cost_total+cost(Fst_hour,power[Fst_hour]+task[tas
k_now][2])-cost(Fst_hour,power[Fst_hour]);
 sched[Fst_hour][2][2]=task[task_now][2];
 sched[Fst_hour][3][0]=task[task_now][3];

sched[Fst_hour][3][1]=cost_total+cost(Fst_hour,power[Fst_hour]+task[tas
k_now][3])-cost(Fst_hour,power[Fst_hour]);
 sched[Fst_hour][3][2]=task[task_now][3];

 // j means hours
 for (j=Fst_hour; j<task[task_now][1]; j++)
 {
 sched[j+1][0][0]=1;
 sched[j+1][1][3]=1;
 sched[j+1][1][1]=sched[j][1][1];

 for (m=1; m<=sched[j][0][0]; m++)
 if ((m==1) | (sched[j][m][0]!=0))
 if (sched[j][m][0]<task[task_now][4])
 //n means solutions
 for (n=2; n<=3; n++)
 if (sched[j][m][0]+task[task_now][n]<=task[task_now][4])
 {
 i=1;
 count=0;
 good=0;

cost_cach=sched[j][m][1]+cost(j+1,power[j+1]+task[task_now][n])-
cost(j+1,power[j+1]);
 while (i<=sched[j+1][0][0])
 {
 if (((sched[j][m][0]+task[task_now][n]>sched[j+1][i][0])
& (cost_cach<=sched[j+1][i][1])) |
((sched[j][m][0]+task[task_now][n]>=sched[j+1][i][0]) &

- 66 -

(cost_cach<sched[j+1][i][1])))
 {
 if (good==0)
 {
 sched[j+1][i][0]=sched[j][m][0]+task[task_now][n];
 sched[j+1][i][1]=cost_cach;
 sched[j+1][i][2]=task[task_now][n];
 sched[j+1][i][3]=m;
 good=i;
 }
 else {sched[j+1][i][0]=0; sched[j+1][i][1]=0;}
 }
 if ((sched[j][m][0]+task[task_now][n]>sched[j+1][i][0]) &
(cost_cach>sched[j+1][i][1]))
 count=count+1;
 i=i+1;
 }
 if (count>=sched[j+1][0][0])
 {
 sched[j+1][0][0]=i;
 sched[j+1][i][0]=sched[j][m][0]+task[task_now][n];
 sched[j+1][i][1]=cost_cach;
 sched[j+1][i][2]=task[task_now][n];
 sched[j+1][i][3]=m;
 good=count+1; // good is the new solution added in
the schedule
 }

 if ((sched[j][m][0]+task[task_now][n]==task[task_now][4]) &
((cost_cach<lowest) | ((cost_cach==lowest) &
(power[lowest_time]>power[j+1]))))
 {
 lowest=cost_cach;
 lowest_time=j+1;
 cost_total=cost_cach;
 for (i=0; i<hours; i++)
 best[i][task_now]=0;
 best[j+1][task_now]=task[task_now][n];
 for (i=j+1; i>0; i--)
 {
 best[i-1][task_now]=sched[i-
1][sched[i][good][3]][2];
 good=sched[i][good][3];
 }
 }
 }
 }
 for (i=0; i<hours; i++)
 power[i]=power[i] + best[i][task_now];
}

/**
* Function: LEDs
*
* Purpose: Give the outputs of the NIOS II core specific values

- 67 -

* to toggle the LEDs
*
*
**/
void led(int hour)
{
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED0_BASE, best[hour][0]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED1_BASE, best[hour][1]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED2_BASE, best[hour][2]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED3_BASE, best[hour][3]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED4_BASE, best[hour][4]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED5_BASE, best[hour][5]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED6_BASE, best[hour][6]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED7_BASE, best[hour][7]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED8_BASE, best[hour][8]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED9_BASE, best[hour][9]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED10_BASE,
best[hour][10]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED11_BASE,
best[hour][11]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED12_BASE,
best[hour][12]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED13_BASE,
best[hour][13]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED14_BASE,
best[hour][14]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED15_BASE,
best[hour][15]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED16_BASE,
best[hour][16]);
 IOWR_ALTERA_AVALON_PIO_DATA(PIO_LED17_BASE,
best[hour][17]);

}

/**
* Function: main
*
* Purpose : Just do it
*
**/

int main()
{
 Initialization();

 int repeat;
 for (repeat=repeat_times; repeat>0; repeat--)
 for (ii=0; ii<tasknumber; ii++)
 go(ii);

 while(1)
 {
 int tmp;
 tmp = IORD_ALTERA_AVALON_PIO_DATA(PIO_KEY_BASE);
 switch (tmp)

- 68 -

 {
 case 0x00: led(0);break;
 case 0x01: led(1);break;
 case 0x02: led(2);break;
 case 0x03: led(3);break;
 case 0x04: led(4);break;
 case 0x05: led(5);break;
 case 0x06: led(6);break;
 case 0x07: led(7);break;
 case 0x08: led(8);break;
 case 0x09: led(9);break;
 case 0xa: led(10);break;
 case 0xb: led(11);break;
 case 0xc: led(12);break;
 case 0xd: led(13);break;
 case 0xe: led(14);break;
 case 0xf: led(15);break;
 case 0x10: led(16);break;
 case 0x11: led(17);break;
 case 0x12: led(18);break;
 case 0x13: led(19);break;
 case 0x14: led(20);break;
 case 0x15: led(21);break;
 case 0x16: led(22);break;
 case 0x17: led(23);break;
 }
 }

return 0;

}

- 69 -

Ⅺ.Appendix
In this appendix, I would like to describe the operating instructions about using
Quatus II and NIOS II.

I start with design entry using schematics since all the modules are visible and
the project becomes more intuitively clear than using Verilog Code as my top
level entity.

First of all, create a project in Quatus II and assign the device. In the Quartus II
software, select File -> New Project Wizard. Create a working directory for the
project and then type a name for the top-level design entity. Assign a specific
FPGA device in Family & Device Settings. In this project, since DE2 board is
choosing, we need to change the Device family to Cyclone II and select
EP2C35F672C6 as our device. Then Finish.

 Figure 29. Specify the device

- 70 -

Create a top-level schematic design file Scheduling.bdf by selecting File -> New,
and choose Block Diagram/Schematic File, then OK.

Figure 30.New BDF

Select Tools ->SOPC Builder to configure the NIOS II on chip system.

- 71 -

Figure 31.SOPC System

Select Library -> Processors -> NIOS II Processor to open the wizard as
shown below to configure our CPU component. Click Finish

Figure 32.NIOS II Processor

The NIOS II/f we chose is with the best performance compared to the NIOS II/e
and NIOS II/s. Even though we do not need this high performance in our project,
I decide to use SDRAM, which has 8MB, as our memory and we do not really
care about the extra memory space by choosing the high performance. In some
other cases, when we use on chip memory, which has very small memory space
like several KB, high performance processors may not be able to be used since
there may not be enough memory space to support it.

- 72 -

Choose Library -> Interface Protocols -> Serial -> JTAG UART to open wizard
and add JTAG UART by clicking Finish. See the figure below.

Figure 33. JTAG UART

Choose Library -> Memories and Memory Controllers -> SDRAM -> SDRAM
Controller to open the wizard as shown below and add SDRAM to our system.

Figure 34. SDRAM Controller

The configuration of this SDRAM Controller including Timing Setting is described
in the report at page 22 in details.

- 73 -

Click module CPU in the component list we have already built, update Reset
Vector and Exception Vector as shown in figure below. Then click Finish.

Figure 25. Nios II Processor Memory configuration

Choose Library -> Memories and Memory Controllers -> Flash -> Flash
Memory Interface (CFI) to open the wizard to add the Flash Memory Interface
as shown below.

Figure 26. Flash Memory Interface (CFI)

- 74 -

The configuration of this Flash Memory Interface (CFI) including Timing Setting is
also described in the report at page 22 in details.

Look back to Figure 4, the example of a NIOS II Processor System, Tristate
Bridge is needed for the system to connect off-chip memory, like Flash Memory.
Choose Library -> Bridges and Adapters -> Memory Mapped -> Avalon-MM
Tristate Bridge to open the wizard as shown below to add the Tristate Bridge.

Figure 37. Tristate Bridge

Remember to connect the Tristate Bridge from the Tristate Master side to the
Tristate Slave side of Flash Memory. See figure below.

Figure 38. Connection between Tristate Master and Tristate Slave

Choose Library -> Peripherals -> Microcontroller Peripherals -> PIO (Parallel
I/O) to open the wizard to add the Parallel inputs and outputs as shown below.

- 75 -

Figure 39. Parallel I/O

Since we need to use 18 LEDs to demonstrate the arrangement of tasks and a
KEY input to control the hours, 18 4-bits wide output and 1 5-bits wide input are
created in SOPC as shown below.

Figure 40. Parallel I/O setup

Choose System -> Auto-Assign Base Addresses. After these base addresses
are assigned, choose File -> Refresh System. No errors would be displayed in
the message window as shown in the figure below

- 76 -

 Figure 41. No errors

Generate the system and exit the SOPC builder after the system is successfully
generated.

In Quatus II, choose Edit -> Insert Symbol… and you will find the system
module we just created in Libraries.

Figure 42. Insert Symbol

Click OK and put the module at anywhere in the schematic file we created.

Next we need to use Quartus to add a Phase Lock Loop (PLL) Megafunction.

Choose Edit -> Insert Symbol.

Click Megawizard Plug-In Manager and following window would appear.

- 77 -

Figure 43. Megawizard Plug-In Manager Page1

Click Next.

Choose I/O -> ALTPLL. Under “Which device family will you be using”,
choose Cyclone II since we are using DE2 FPGA development, which is
embedded with Altera’s Cyclone II device. Choose Verilog HDL and give this
PLL module a new name like sdram_pll. Then click Next.

Figure 44. Megawizard Plug-In Manager Page2

- 78 -

Configure the ALTPLL followed by the figures shown below.

Figure 45. Step 1 PLL configuration

Figure 46. Step 2 PLL configuration

- 79 -

Figure 47. Step 3 PLL configuration

Then Finish.

Then insert this module in the schematic like we did for adding the system
module.

Create other components modules and name the connecting wires between
them, and then we could obtain the schematic in Figure 5. After assigning the pin
assignment, compiling the project and downloading the sof file to the board, we
finish the hardware design part. We could close the Quartus II Programmer or
leave it open in the background.

Open Nios II IDE.

Choose File -> Switch Workspace to set the workspace to your project folder.

Figure 48. Switch Workspace

- 80 -

Choose File -> New -> NIOS II C/C++ Application to open the New Project
Wizard.

Figure 49. New Project

Then fill the code in the part “Coding in NIOS II”.

Choose Tools -> Flash Programmer. Under Flash Programmer, create a new
flash programmer and configure it. See the figures below.

- 81 -

Figure 50. Flash Programmer

Offset must be 0x100000 in this case. Then click Program Flash. Following
messages would appear and that is fine.

Choose Project -> Properties to open the wizard and choose Associated
System Library, then click System Library Properties..

- 82 -

Figure 51. Properties of the project

Remember to set the memory location to SDRAM and uncheck Small C library.
Small C library has no file relate operation command. See the figure below.

 Figure 52. System Library

- 83 -

Then click Software Components, check the following information to make sure it
is right.

Figure 53. Software Components

Finally, build up our project and Debug it and we could see the results on FPGA.

- 84 -

REFERENCES

[1] “The smart grid: An introduction,” U.S. Dept. Energy, 2009.

[2] M. Shinwari, "A Water-Filling Based Scheduling Algorithm for the Smart Grid."

Smart Grid, IEEE Transactions on., vol. 3(2): 710-719, Feb. 2012

[3] R. Krishnan, “Meters of tomorrow,” IEEE Power Energy Mag., vol. 6, pp. 92–

94, Mar. 2008.

[4] (2009). "Ontario's MicroGeneration Feed-Tarriff." Available:

http://renaud.ca/wordpress/?tag=cost-of-electricity

[5] “Ontario demand and market prices,” Independent Electricity System

Operator, Sep. 2011 [Online]. Available: http://www.ieso.ca

[6] (2012). “How does Power Stoplight help the environment?” Available:

http://www.powerstoplight.com/?page_id=10

[7] A. Lew and H. Mauch, Dynamic Programming: A Computational Tool.
Springer-Verlag Berlin Heidelberg 2007

[8] (2013) “Ontario Hydro Rates: Time-of-use Pricing”, Apr. 2013, Available:
http://www.ontario-hydro.com/index.php?page=current_rates

[9] M. J. Osborne and A. Rubinstein, A Course in Game Theory. Cambridge, MA:

MIT, 1994.

[10] Osborne, Martin J., and Ariel Rubinstein. A Course in Game Theory.

Cambridge, MA: MIT, 1994. Print

[11] Barr, N. (2004). Economics of the welfare state. New York, Oxford

University Press (USA)

[12] Nash, J. F. "Non-Cooperative Games." Ann. Math. 54, 286-295, 1951.

[13] “DE0-Nano Development and Education Board,” Altera, Available:
http://www.altera.com/education/univ/materials/boards/de0-nano/unv-de0-
nano-board.html

[14] “Cyclone II Device Handbook,” Altera, Available:

http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5165411
http://renaud.ca/wordpress/?tag=cost-of-electricity
http://www.ieso.ca/
http://www.powerstoplight.com/?page_id=10
http://www.powerstoplight.com/?page_id=10
http://www.ontario-hydro.com/index.php?page=current_rates
http://en.wikipedia.org/wiki/Ariel_Rubinstein
http://www.altera.com/education/univ/materials/boards/de0-nano/unv-de0-nano-board.html
http://www.altera.com/education/univ/materials/boards/de0-nano/unv-de0-nano-board.html
http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf

- 85 -

[15] “Nios II Processor Reference Handbook,” Altera, Available:
http://www.altera.com/literature/lit-
nio2.jsp?GSA_pos=1&WT.oss_r=1&WT.oss=NIOS%20II%20Processor%
20System

[16] Manual for Breville the Smart Oven, Available:

http://www.brevilleusa.com/media/mediaappearance/4539/BOV800XL.pdf

[17] Manual for Breville the Risotto Plus, Available:

http://www.brevilleusa.com/media/mediaappearance/12563/BRC600XL_I
B_A12_FA_LowRes.pdf

[18] Features for Samsung 7.5 cu. Ft. King-size Capacity, Electric Touch

Screen LCD Front-Load Dryer, Available:
 http://www.samsung.com/us/appliances/washers-

dryers/DV457EVGSGR/AA-specs

[19] “Estimating Appliance and Home Electronic Energy Use”, Energy.gov,

August 31, 2012, Available:
 http://energy.gov/energysaver/articles/estimating-appliance-and-home-

electronic-energy-use

http://www.altera.com/literature/lit-nio2.jsp?GSA_pos=1&WT.oss_r=1&WT.oss=NIOS%20II%20Processor%20System
http://www.altera.com/literature/lit-nio2.jsp?GSA_pos=1&WT.oss_r=1&WT.oss=NIOS%20II%20Processor%20System
http://www.altera.com/literature/lit-nio2.jsp?GSA_pos=1&WT.oss_r=1&WT.oss=NIOS%20II%20Processor%20System
http://www.brevilleusa.com/media/mediaappearance/4539/BOV800XL.pdf
http://www.brevilleusa.com/media/mediaappearance/12563/BRC600XL_IB_A12_FA_LowRes.pdf
http://www.brevilleusa.com/media/mediaappearance/12563/BRC600XL_IB_A12_FA_LowRes.pdf
http://www.samsung.com/us/appliances/washers-dryers/DV457EVGSGR/AA-specs
http://www.samsung.com/us/appliances/washers-dryers/DV457EVGSGR/AA-specs
http://energy.gov/energysaver/articles/estimating-appliance-and-home-electronic-energy-use
http://energy.gov/energysaver/articles/estimating-appliance-and-home-electronic-energy-use

	DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DISCRETE POWER LEVEL SMART HOME SCHEDULING USING FPGA
	Recommended Citation

	Report Advisor: Shiyan Hu
	Committee Member: Sumit Paudyal
	Committee Member: Chaoli Wang
	Department Chair: Daniel R. Fuhrmann

