W M Michigan Technological University

Create the Future Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's
Reports - Open Reports
2013

DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED
DISCRETE POWER LEVEL SMART HOME SCHEDULING USING
FPGA

Xin Yang
michigan technological

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

b Part of the Electrical and Computer Engineering Commons
Copyright 2013 Xin Yang

Recommended Citation

Yang, Xin, "DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DISCRETE POWER LEVEL
SMART HOME SCHEDULING USING FPGA", Master's report, Michigan Technological University, 2013.
https://digitalcommons.mtu.edu/etds/601

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

b Part of the Electrical and Computer Engineering Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F601&utm_medium=PDF&utm_campaign=PDFCoverPages

DESIGN AND IMPLEMENT DYNAMIC
PROGRAMMING BASED DISCRETE POWER
LEVEL SMART HOME SCHEDULING USING

FPGA

By
Xin Yang

A REPORT
Submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2013

© 2013 Xin Yang

This report has been approved in partial fulfillment of the requirements for the
Degree of MASTER OF SCIENCE in Electrical Engineering

Department of Electrical and Computer Engineering

Report Advisor: Shiyan Hu

Committee Member: Sumit Paudyal

Committee Member: Chaoli Wang

Department Chair: Daniel R. Fuhrmann

http://www.mtu.edu/ece/department/faculty/fuhrmann/

Contents

Section [. Abstract

Section II. Introduction

Section III. Algorithm
1.
2.
3.

4.

. History

Today’s power grid

Daily life power consumption

Solutions

Dynamic programming method

Proposed algorithm

13

Example

Nash equilibrium

16

Section V. Flow charts

1.

2.

3.

19

Procedure

19

Individual user scheduling

20

Multiple users scheduling

21

Section V. FPGA Structure

1.

2.

Choosing FPGA board

NIOS Il processor

22

22

23

Section VI. Instruction of implementation in Quartus Il

25

1. Schematic

25

2. SOPC builder

31

3. Clock source and Phase Lock Loop(PLL)

36

Section VIl. Hardware Testing

37

1. Example 1

37

2. Example 2

38

3. Example 3

44

Section VII. Problems Solution

54

Section IX. Conclusion

56

Section X . Code in NIOS |l

57

Section XI. Appendix

65

Section XIl. References

80

I . Abstract:

With the development and capabilities of the Smart Home system, people today
are entering an era in which household appliances are no longer just controlled
by people, but also operated by a Smart System. This results in a more efficient,
convenient, comfortable, and environmentally friendly living environment. A
critical part of the Smart Home system is Home Automation, which means that
there is a Micro-Controller Unit (MCU) to control all the household appliances
and schedule their operating times. This reduces electricity bills by shifting
amounts of power consumption from the on-peak hour consumption to the off-
peak hour consumption, in terms of different “hour price”. In this paper, we
propose an algorithm for scheduling multi-user power consumption and
implement it on an FPGA board, using it as the MCU. This algorithm for discrete
power level tasks scheduling is based on dynamic programming, which could find
a scheduling solution close to the optimal one. We chose FPGA as our system’s
controller because FPGA has low complexity, parallel processing capability, a
large amount of I/O interface for further development and is programmable on
both software and hardware. In conclusion, it costs little time running on FPGA

board and the solution obtained is good enough for the consumers.

II. Introduction

1. History

Over a century ago, Nikola Tesla proposed the architecture of the power grid and
people followed the design and developed it. During that time, electricity was a
luxury resource that was used for lighting. Today, the power grid is used in
almost all fields and people may not survive without it. Following the rapid
technology development and no longer satisfying the present situation of the
power grid, people are now concerned about issues such as greenness,
efficiency, sustainability and reliability. The power grid could have the capability

to become “smarter”, a smarter grid [1] [2].
2. Today’s power grid

There are many ways to make the power grid become smarter, such as
improving the efficiency and reliability, developing environmentally friendly
generators, managing the power consumption for consumers and so on so forth
[3]. A basic and important part of the smart grid is the smart home. Specifically, if
household tasks or daily power consumption could be arranged and scheduled, a

more efficient system could be developed.
3. Daily life power consumption

The following figure demonstrates the inefficiency power consumption that would
occur during daily life. This is a plot of the power consumption for the province

Ontario, Canada, on a normal weekday in April 27, 2009 [4].

15 182 Mw Projected Demand at 10:00 p.m. EDT 15,316 MW
I

at 9:00 p.m. EDT Today's Projected Peak (st 5:00 p.m. EOT) 15,620 MW
April 26, 2009 Winter Record Peak (Dec 20, 2004) 24,979 MW
Hourly Ontario Demand in MW Projected

18000+

17000+

16000+

14000+

14000+

13000+

120004

110004

10000 T T T T T T T 1

3 & g 12 15 18 21
Monday April 27 2009

Figure 1. Power consumption in Ontario on a normal day

We could easily find out that the peak power consumption occurred during the
afternoon and low power consumption during the late night when most people
were asleep [5]. The inefficiency occurs when the power companies must build
the power plant which could support this high demand. These power plants with
more capacity need more maintenance and repair cost. Hence, utility companies
have to purchase power at higher rate. Furthermore, consumers typically
purchase power with same price during different time periods. As the result,

consumers would not consider adjusting their power consumption.
4. Solutions

In order to improve this inefficient situation, utility companies would like to choose
a “time of use” policy, which means that the power rate could be variable due to
the total amount of power consumption. For example, higher power rate occurs
during the afternoon and lower power rate occurs during the late night. Hence,
for our individual consumers, we would like to have a smart system to help us
schedule our household tasks in a reasonable way to reduce our electricity bill.

The result could be that the controller for the system assists us to shift parts of

-5-

soft loads from the peak demand hours to the low demand hours. Soft loads are
the loads can be scheduled, like washing clothes. During the day, the consumer
may not need a precise washing time for clothes but ask for an end time to do
this job. So, he/she can put the clothes there and let the smart washing machine
decide when the clothes should be washed. These kinds of jobs are called soft
loads, and hard loads are exactly the opposite. As previously stated, due to the
smart scheduling, in terms of the individual the electricity bill is surely reduced
when the hourly power rate offered by the utility company remains the same.
These kinds of smart shifting behaviors can not only affect our electricity bill, but
can also help the environment. For instance, in a typical week in October, one
needs to do laundry. Thursday night during the high power demand hours, and
Friday morning during the low power demand hours could be chosen as the time
to start the laundry. The difference is, the power plants will need to add
immediate and long-term generation capacity to support the electricity grid on
Friday, which results in an increasing fuel levels in the plants by burning more
coal for that kind of capacity buildup. Hence, due to the help of the smart

scheduling, the emissions could be reduced [6].

However, if all the consumers in this community considered this reasonable
scheduling by using the same smart system, they would all like to shift their loads
from the peak demand hours to the low demand hours simultaneously. This
would result in a bad situation that the original low demand hours become the
high demand hours. Hence, if we need to solve this problem, communication with
the other users is one of the prerequisites. Good news is that the smart system
has a good capacity of communication. Thus, the controller could schedule the
tasks based on the other’s arrangement in an optimal way. This solution has two
major advantages. On one hand, it has less complexity and results in a time
saving strategy. On the other hand, it would allow the users to change the
schedule optionally, since whenever the consumer inputs the newest schedule
information to the controller in real time, the controller would immediately

calculate the best scheduling option based on the other users’ schedule.

-6-

This method is basically a dynamic programming strategy, which solves complex
problems by dividing them into some simpler “sub-problems” and each time
solves the sub-problem only once; the current solution depended on the previous
computed optimal solution [7]. In this report, our proposed method is dynamic

programming-based and focuses on the scheduling for the multi-user-community.

Since we need a Micro-Controller Unit (MCU) for the carrier of this proposed
algorithm, FPGA is chosen due to its low complexity, convenient re-
programmability both on software and hardware and the technology trend. This is
preliminary work for the controller of the Smart Home system, because in our
work, the controller can only schedule the tasks but not perform other smart
behaviors like real life wireless remote controls, controlling the power level of the
household appliances based on the temperature and so on so forth. Fortunately,
it is not hard to do further developments on the FPGA controller and that is

exactly its critical advantage.

III. Algorithm

1. Dynamic programming method

Since our proposed algorithm is dynamic programming method based, | would
like to introduce the dynamic programming strategy first. Dynamic programming
is more like a divide and conquer algorithm, which divides the problems into
pieces of sub-problems and then conquers them step by step. But, the difference
is that these sub-problems are usually not mutually independent. If we solve this
problem using the divide and conquer algorithm, some of the sub-problems may
be calculated many times. Thus, if we could store the solutions of previous sub-
problems and use them to solve the next one, an abundance of repeated work
would be avoided. For example, we could use a table to record all the solutions
of the sub-problems we have already solved, no matter whether these sub-
problems would or would not be used for the future. This is the basic thinking of
the dynamic programming algorithm. Keeping in mind, dynamic programming is
not a typical algorithm that has a standard mathematical expression or clear
structure. It is a way, a ladder, of solving the optimization problem. For different
decision processes, there is different dynamic programming method-based
algorithm [7].

2. Proposed algorithm

Now, | would like to present our proposed algorithm in the following paragraph.
First of all, individual scheduling is presented. Assume that there are n hours in
the time period, and there are m tasks that need to be scheduled during the time
period. In our case, each task has 5 factors, which are the start time Task [i] [0],
the end time Task [i] [1], power level 1 Task [i] [2], power level 2 Task [i] [3]
and the total power consumption Task [i] [4]. For an easy simulation, we only
divide time into hourly periods and only have two options of the power levels for

each task. Furthermore, each task can only be operated continuously and can

-8-

also change its power level during the operating time period. Hence, the total

power consumption Task [i] [4] for one task would be,

. Task [i] [1
Task [i][4] = X\ “7ast (i jo] ENETEY task(ilc (1)

Since we are on the premise that the utility company is using the “time of use”
strategy, different power consumption at different times has different power rates.
These prices for the different hours are offered to the customers before the day
starts and the prices would not change during that day. For example, Table 1,
which is shown below, indicates the price related with certain hours in Ontario
from May, 2012 to Apr, 2013. [8] In our case, we assume each hour has 3 factors,
hours [j] [0], hours [j] [1] and hours [j] [2]. hours [j] [0] represents the
threshold value. If the total power consumption of the community in this hour is
larger than the threshold value, the power rate would be hours [j] [1]. Otherwise,
if the community total power consumption is less than the threshold value, the
power rate would become hours [j] [2]. Then, we could start our scheduling
algorithm in this condition for seeking the best or one of the best solutions to
schedule all of the n tasks.

7:00 AM

8:00 aMm
9:00 aM
10:00 AM
11:00 AM
12:00 PM
1:00 PM
2:00 PM
3:00 PM
4:00 PM
5:00 PM
5:00 PM
7:00 PM
g:00 PM
9:00 PM
10:00 PM
11:00 PM
Midnight
1:00 &M
2:00 aM
3:00 &M

4:00 AM
5:00 AM

6:00 AM

Winter Rate
(Nov - Apr)

Summer Rate
(May - Oct)

8:00 AM

9:00 AM mid-peak rate

10:00 AM 9.9 cents/kwh

11:00 AM
12:00 PM
1.00 PM

2:00 PM mid-peak rate

2:00 PM 9.9 cents/kWh

4:00 PM
5:00 PM
6:00 PM
7:00 PM
g8:00 PM
9:00 PM
10:00 PM
11:00 PM
Midnight
1:00 AM
2:00 aM
3:00 aM

mid-peak rate
9.9 cents/kWh

off-peak rate
6.3 cents/kwh

off-peak rate
6.3 cents/kwh

4:00 AM
5:00 AM

6:00 AM

7:00 AM

Comparison of Time-of-Use Rates

Off Peak Mid Peak

On Peak

MNote
Off peak rates are charged
on weekends and holidays.
The rates shown to the left
apply Monday to Friday.

Based on a small sample of 152 households,
we calculate that, on average, time-of-use
consumption typically breaks down as follows:

Off-peak: 63.4%
Mid-peak: 16.0%
On-peak: 20.5%

This results in a blended rate of
8.0 cents/kWh.

Help us improve our sample by participating
in our Ontario Electricity Usage study.

First 600 Kilowatt Hours per month: 7.4 cents/kWh

Above 600 kWh:

8.7 cents/kWh

Table 1. 2012-2013 Ontario Time of Use Electricity Rates

-10 -

The easiest way for scheduling these tasks that comes to mind would usually be
the enumeration algorithm. However, since we have hundreds of tasks for multi-
users and need to schedule them on at least 24 hours, the enumeration
algorithm would cost a large amount of time to accomplish the job. This is due to
the number of repeating sub problems that would grow exponentially while the
size of the input is increasing. Fortunately, our proposed dynamic programming
based algorithm is especially useful to deal with this kind of problems. Hence, it
is very easy for us to abandon the way using the enumeration algorithm, even

though using the enumeration algorithm can get the global optimal solution.

Back to the point, let Sched (E, C) be the main function of our scheduling. E
denotes the current total energy consumption, while C denotes the current total
cost. Thus, we obtained Table 2 for the optimization process for each task,
assuming the start time is 12:00am.

-11-

Hour 12:00am 1:00am 2:00am 3:00am |
Ways

1 (0,C1)NT—"(0,C4) «—» (0,C11) | ... | ...
2 (E1 Czii‘(m C5)\K‘i (E1,C12)

3 (E2,C3)\\ \(EZ,C6) XY (E2,c13) | ... | ...

\ \ N

4 \\(<E1+E1,CR\\ (E1+E1,C14) | ... | ...
5 XE1+E2,CSR \(E1+E2,C15)
6 \£52+E1,09)\ (E2+E1,C16) | ... | ...
7 (E2+E2,C10\\Y (E2+E2,C17) | ... | ...
8 &(E1+E1+E1,C18)
9 (E1+E1+E2,C19) | | ...
10 (E1+E2+E1,C20) | ... | ...
11 (E1+E2+E2,C21) | ... | ...
12 (E2+E1+E1,C22) | ... | ...
13 (E2+E1+E2,C23) | ... | ...

Table 2. Scheduling the tasks without pruning

E1 and E2 denote the power level choices of the task respectively. For the first

hour, we could schedule the task in 3 ways: no schedule, schedule it in power

level 1, or schedule it in power level 2. And each of these schedules would cause

a cost named C;. Since each schedule is based on the previous solution, we have

a cost when this task does not schedule on this hour, or (0, C,). We could easily

find out that the solution numbers for jth hour is 32*1+1, and this number we

obtained without simplification. With simplification, some of the solution could be

abandoned due to its lower energy consumption and higher cost in the same row.

For example, looking at the second row, at this hour, there are 2 outputs of cost

for total power consumption E1+E2. So, if Cg is bigger thanC-, which means the

-12 -

5t way costs more, compared to the 6" way, while consuming the same power
at this time. Thus, the 5™ way at 1:00am should be abandoned. For the result,
the solution following this abandoned solution at the next hour should all be
deleted, since for those child solutions, their parent solution is no longer an
optimal one. Then, we do the same comparison for all the solutions in the same
column mutually as long as no higher cost with lower energy consumption
solutions remain. That is a huge simplification for this table, and the new one, as
an example, is shown below in Table 3.

Hour 12:00am 1:00am 2:00am 3:00am |
Ways
1 (0,C1)—T—(0,C4)—— (0,C11) | ... | ...
2 E1 Cz)K XE1 C5K\\ E1,C12
3 iEz C3)\\\TE2’C6\\\‘ EEZ’C13;
4 \\\(‘E1+E1 C\\\4 (E1+E1,C14)
e\ e | |
5 \(E2+E1,C\ \ (E1+E2,C15) | ... | ...
6 E2+E2,C1 E2+E2,C17) | ... | ...
EHE2CI, EE2CT)
7 \\(E1+E1+E1,C18)
8 \ GE1+E1+E2,C19)
9 \"(E2+E1+E2,C20)
10 (E2+E2+E1,C21)| ... | ...
~© [! 1 00 . 1 ..

Table 3. Scheduling the tasks with pruning

For jth hour, j€[1,24], the combination of energy is (a*E1+b*E2), and a <=,
b<= j. Hence, we could find out that the solution numbers for jth hour become no

more than(j + 1)2. Assume that in the real life, the power level would usually be

-13-

an integer number. Let C equals to the maximum value in the E set, then the

solution number for jth hour becomes no more than C¥j.

After one task scheduling, the next task scheduling which is based on the
previous one, would be easy and we would like to schedule it in the same way as
the previous one was done. After finishing all the tasks for individual customers,
we would like to re-schedule the tasks from the beginning for better scheduling.
The advantage of doing so is that more precise optimization would occur. What
we need to do is just removing one task from the scheduler, recalculating the
total energy consuming for each of hours the task used to schedule on, and re-
schedule the task into the scheduler just like a new task based on the rest tasks.
Multi-user tasks scheduling is almost the same as the individual user task
scheduling. In multi-user tasks scheduling, however, we just add the remaining
tasks to the previous user’s scheduler and repeat the work, which is shown
through the example below.

3. Example

Let us assume that we have 9 tasks, and each of them has 5 factors (start
time=0, end time=6, power level 1=1, power level 2=2, total energy=4). The
hourly price for all hours is $1 if the total energy consumption for each hour is
below or equal to 1 and the hourly price would be $2 if the total energy
consumption for each hour is above 1. Then, the scheduling for the first task is

shown below.

-14 -

N jth 1St(o) 2nd(1) 3I’d(2) 4th(3) 5th(4) 6th(5) 7th(6)
ways
N N
(,)\\S,)\(,)\‘,) ,)\\(,)\\4,)
3 (2,4)*(2,4) X(;A) \:(2,4) *(2,4) *(2,4) \;(2,4)
\(5) \; DRANEERANCEANER \(5)
6 \,5) \3,3) \\(3,3)\ \(3,3) \(3,3) \\\£3,3)
7 4,8) *(4,6) *(4,6) \(‘4,6) *(4,6) *(4,6)
8 (4,6) (4,4) (4,4) (4,4) (4,4)
9

* need to be pruned

Table 4. Example of pruning for task 1

The red ones are the final schedule for task 1 which is the optimum solution as

there is no other task scheduled. Now, we need to schedule the next task

depending on the task 1’'s scheduling.

N\ jth 1St(0) 2nd(1) 3I‘d(2) 4th(3) 5th(4) 6th(5) 7th(6)
s Prev1 |Prev1l |Prev1l |Prevl |PrevO0 |PrevO0 |PrevO
1 (0,1) §—>(o 2) —-(o 3) 3(7'(0’4) <A(»(o,4) §<;o,4) $:.(0,4)
AEENENEREANEANENE
ANE NN AN NN
4 \ \28 (2,9) Xg,m) \‘2,8)\ \2.6) \jz,a)
5 \\210 \\f,ﬂ) \3,12) \3,11 \ng \\339
6 z\im ‘,11)\ ‘&3,12) ‘&3,10)\ \3 9) \$3 9)
7 (4,12) I\ (4,13) [\(4,14) \‘(4,13) \;12) *(4,12)
8 (4,14) | *(4,15) 13) | (@,11) 4.10)

9

* need to be pruned

Table 5. Example of pruning for task 2

-15-

Prev n means in this hour period, n units’ power has already been scheduled

due to previous scheduling. After scheduling, we figure out that the total cost is

lowest when we arranged the task 2 uniformly in power level 1 on the last four

time periods. Repeat the scheduling using our proposed algorithm for the rest

tasks. After one time full-tasks scheduling, we arrange all the tasks in the way

shown in the following table.

jth
hou
tasks

1St(0)

2nd(0)

3I’d(2)

4th(3)

5th(4)

6th(5)

7th(6)

—

Ol 0o Nl O O | WO DN

Nl N N N N NN

Nl N N N N NN

Table 6. All tasks scheduling

In order to optimize the arrangement, we prefer to run it again. First, we should

“delete” task 1 from the table. Then, depending on the existing arrangement,

reschedule task 1 and reschedule the rest after it. Finally, we would obtain the

following arrangement.

-16 -

jth 1St(0) 2nd(0) 3I’d(2) 4th(3) 5th(4) 6th(5) 7th(6)

hour
tasks

N
N
N
N

©| 0| N| O O] B[W DN
Nl N N N N NN
Nl N N N N NN

Table 7. All tasks rescheduling

Then, we met equilibrium, no matter how many further rescheduling we run. For
this simple example, this arrangement is one of the optimum solutions. Most of
the time, we may not obtain the optimum solution using this algorithm, but we
could get a solution very close to the optimum one after rescheduling A times. In
order to determine this A, we could compare the lowest cost in Ath time and in (A-
1)th time. If the difference is below a certain value, like 1%, which the consumers
may accept, the controller shall stop rescheduling the tasks. Then we could do
this progress for all the users in the community, just treating multi-users as multi-
tasks. Finally, equilibrium would be met and all the users in the community would
satisfy the result [9].

4. Nash equilibrium

Our proposed algorithm is to find Nash equilibrium. “In game theory, the Nash
equilibrium is a solution concept of a non-cooperative game involving two or
more players, in which each player is assumed to know the equilibrium strategies
of the other players, and no player has anything to gain by changing only his own
strategy unilaterally” [10]. In the system, like our “smart community”, where

-17 -

multiple independent consumers are trying to optimize their own utility unilaterally,
Pareto Optimality is very hard to achieve. Pareto optimality or Pareto efficiency
means that in the system, “no one can be made better off without making at least
one individual worse off [11].” Hence, Nash equilibrium is fair and reasonable
among consumers since everyone in the system is choosing the individual
optimal strategy depending on others’ choices. Following is the normal math
definition of Nash equilibrium. In a game set G={S1,...,Sn: u1,...un}, thereis a
Strategy Profile (s1%,...,sn*), where si* € Si(Si is the strategy set of player i). If

any si* is the best strategy to the combination of others’ strategies (s1%,...s%i-
1,s%i+1,...,sn%), or ui(s1*,...,s%-1,s%,s*i+1,...,sn*) 2ui((s1*%,...,s%i-1,sij*,s*i+1,...,sn¥)
where sij € Si, then the strategies(s1*,...,sn*) is a Nash equilibrium of the game

set G [12].

Apparently, our algorithm keeps finding the Nash equilibrium until the
improvement of the two scheduling solutions for the whole community is less
than a certain value. For instance, our solution is implemented in a community
with 100 customers. The controller would do the scheduling for the first customer,
and repeat the procedure until the last one. The strategy for each scheduling
depends on what we have scheduled for the previous ones. After one complete
scheduling for these 100 customers, we could obtain a game set G1=

{§1,, §24,...,5100;: c14, c24,..., c100,}, where Si, denotes the strategy of
customer i and cj;denotes the cost of customer j using its strategy in the 1%
scheduling. Then in the 2" scheduling for the whole community, we would
change everyone’s scheduling strategy one by one, depending on the Strategy
Profile of the whole community (S1,, 25, ..., Si — 1, Si3,Si + 14, ...,5100,), to
obtain a new Strategy Profile {S1,, $2,, ..., Si — 1, Si,,Si + 1, ...,5100, }. After a
Strategy Profile {S1,, §2,, ..., S5i — 1, Si,, Si + 1,, ...,5100,} is obtained, the
controller shall start the 3™ scheduling for the community. Since each individual
scheduling strategy is set depending on all the other strategies in the community,
the controller must be able to find a game set Gy, in which any Si, is the best

strategy to the combination of others’ strategies (s1,...si-1,si+1,...,sn).
- 18-

Additionally, the best strategy means the strategy with the lowest cost. It is
important to remember that finding the Nash equilibrium does not mean that we
should find out Minimum(c1+c2+...+c100). However, this k value is hard to find
since the tasks’ number in a community may be very large. In fact, we only need
to go through A times, like mentioned in the earlier paragraph. After A times
scheduling, the difference of the total cost between two complete scheduling for
the community is less than a very small value. Then, we would obtain a solution

that is very close to the Nash equilibrium and the customers would be satisfied.

The algorithm part is completed and therefore | would like to present the
hardware and software setup in the next sections. Due to the complexity of the
algorithm, | decided to use the CPU core embedded on the FPGA board to do
the calculation, or scheduling. The following are flow charts of the whole
procedure of scheduling.

-19-

IV. Flow Charts

1. Procedure

Start

A

Hardware and Software
configuration

A

Input the task information
and hourly price in a file

A

Read the file and store the

inputs to the flash memory

embedded on the FPGA
board

A

Load the inputs and run the
scheduling algorithm on the
CPU core

A

Demonstrate the outputs of
which task should be
scheduled on which hours

Figure 2a. Flow chart of the procedure

-20-

2. Individual user scheduling

Initialization
Hour =0
Task=0

Energy =0
Store the accumulated Cost=0

energy consumption per
hour and Lowest_cost j
Task=0
Hour =0 Clear the previous

arrangement for
this Task

Lowest_pre-
Lowest_cost)/
Lowest_cost
<=1%

Task = Task + 1

Hour € [start_time[task],
end_time[task]]?

Hour = Hour + 1

Yes

Energy_pre[i] +
freq[task][j] <
otal_power[task]?

No

Insert a
solution(Energy,Cost) i=i+1
at this Hour

Compare all the
solutions mutually,
prune the solutions with
lower Energy and higher
Cost

Check all the solutions
with Energy =
total_power(task],

If Cost < Lowest_cost,
Then Lowest_cost = Cost

Figure 2b. Flow chart of the algorithm for individual user scheduling

-21-

3. Multiple users scheduling

Initialization

Counter i=0

A
Store the accumulated power
consumption per hour and
lowest cost of the whole
community

A

Individual
scheduling for
Useri

i

i< total number of users in

the community? I=i+1

owest_pre

Lowest_cost)/
Lowest_cost

<=1%

No

Figure 2c. Flow chart of the algorithm for multiple users scheduling

-22-

V. FPGA Structure

1. Choosing FPGA board

At the beginning of the project, | chose Altera’s DEO Nano board, which is shown
below, as my controller due to its small size of body, good portability, and enough
logic elements and comparatively large memory storage. Cyclone IV EP4C22
FPGA, which has 150,000 logic elements, is embedded in the DEO-Nano board.
This FPGA education board also has 32MB SDRAM [13]. However, since it has
no Flash Memory embedded on the board, it is kind of difficult to load the task
information and hourly electricity price, which needs to be input by the operators
from the keyboard or from a file. Hence, | finally abandoned this board and used
Altera’s DE2 board as the MCU. Even though this board is about 10 times larger
than DEO-Nano board and only has Cyclone Il FPGA core with 68,416 logic
elements and 8MB SDRAM, it still fits this project [14].

AL s i
= Iy O]

e e G e b B B B

;.- ;:; -

T

!

®
-—
=3
-
=
-
-
-
-

Figure 3a. DEO-Nano board

_23-

A photograph of the DE2 board is shown below in Figure 3. It demonstrates the
location of the key component. The components with a yellow square frame are

used in our project.

LLLLTTT .

Altera Cyclone I

Figure 3b.DE2 board
2. NIOS Il processor

In order to implement the comparatively complex algorithm, the NIOS I
Processor embedded in Cyclone Il FPGA is used in this project. Figure 4,
obtained from Altera, shows an example of the architecture of a NIOS Il

Processor System [15].

_24-

SDRAM
Memory

[3

JTAG connection

to software debugger
23
JTHG @ O
Debug Module
Nios Il - 4—— RXD
Processor Core II"IST.
— - Timer1
2
2
SDRAM | > 1 et
- g LCD
% 4=p- LCD Display Driver | Eobaan
On-Chip ROM P §' Buttons,
d=p General-Purpose /0 | apmep LEDs, el
Tristate bridge to i | Ethernet
ofi-chip memory il @=p Etharnet Interface » MAC/PHY
P CompactFlash >
Altera FPGA Interface Flash

Figure 4. Example of a NIOS Il Processor System

This architecture is very important for us to build a System on Programmable
Chip (SOPC). I will review this figure later when | use the SOPC builder in

Quatus II.

-25-

VI. Instruction of Implementing in Quartus Il

1. Schematic

First of all, we need to create the hardware configuration in Quartus Il. A new
project should be built and after we will create a schematic file as our project’s
top entity. The overview of the hardware schematic is shown below as the Figure

5a and Figure 5b.

Lo 30 P ineth) P h 1 bz
[P A o ’—ﬂ
PIFCHEY
[(FREE] o]
o —r W bR | the_io_KEVIA 0]

| B e
R
-t | — BRI Tk] FRIEET]
: P AT

Figure 5a. Overview of the schematic1
-26-

clk

factor(3..0]

counter[3..0]

nsti3

clk out

factor2..0]

counter[3..0]

..... PIN_AE23 b._'

clk

st fzctor]3..0]

14

clk

factor3. 0]

counter[3..0]

counter[3..0]

s fartor]3..0]

clk

factor]3..0]

counter[3..0]

counter[2..0]

s f3ctor]3..0]

......... PIN_ABZ1 t,_
L b — -

clk out

factor]3..0]

counter[3..0]

counter[3..0]

3

V) -

clk out

m— {actor]3..0]

clk

factor[3..0]

counter[3..0]

counter[3..0]

T (PN G]

——)

m— {actor]3..0]

nst1d

clk

factor]3..0]

counter[3..0]

counter[3..0]

i":::":::"':::'"::L_______lp"“‘—".‘[”5

m factor[3..0]

clk

factor[3..0]

counter[3..0]

counter[3..0]

FIN_AETS | o

5

nst2

clk out

m factor[3..0]

clk

factor]3..0]

counter[3..0]

counter[3..0]

:.::l"'::L.P.'.’“‘;f‘.f.l?.J.f

factor[3..0]

nst23

counter[3..0]

i":::":::"':.::."'::L._..._....._..l""“‘—"‘E13 o

factor[3..0]

counter[3..0]

inst30

Figure 5.0verview of the schematic2

_27-

A system clock is needed, so we will create an input connecting to CLOCK_50,
which has 50Mhz power level, followed by the wire named clk. This wire could

connect to any modules, which need clock sources.

Figure 6.System Clock Source

Use KEY[1] as the reset input and KEY[0] to choose the particular hours to

demonstrate the tasks scheduled on them.

o [PNRBY e
" —

- hcurs_ﬂﬁplay -----

PINGZ] - oo LTI

e o e housie)

.---.-..... -connectto
oo - NIOS IT
ol System

... instd

Figure 7.KEY modules

In this case, if KEY[0] is not pushed, the tasks scheduled on hour[0] would be
displayed on the board by turning on the LEDs. If KEY[0] is pushed one time, the
tasks scheduled on hour[1] would be displayed and so on so forth. In this
simulation, | set the number of hours up to 24 and the output has 5 bits. The

Verilog code of this KEY controlling module is shown below.

-28 -

module hours_display(
KEY,

hours

input [0:0]KEY;
output reg [4:0]hours;
always @(negedge KEY[0])
if (hours>5'd22) hours<=0;
else hours<=hours+1;
endmodule

Following is the demonstrated used LEDs output module and its brightness
control used counter module. Each LED represents a task. If the power level of
the running task is high, the LED would become brighter, otherwise it would
become fainter. In our project, | assume that the power level range of all the
tasks is between 1 and 15. Counter is used to count the clock. Since it only has 4
bits, counter will keep increasing between 0 and 15 in 50 Mhz frequency as the
same as the system clock. Hence, the brightness of the LED would be set
proportionally depending on the power level of the corresponding task, since
during each 16 units time period the LED would be turned on in factor number

unit time period and be turned off in (16 - factor) number unit time period.

-29-

- t:rlghtness .

LO connects: © o ot ck out TR

' counter[3..0]
System

o ineta

Figure 8.LEDs output module

. i simple_counter

L ekl counter3,0] -
: X—'— CLOCK_5&0 counter_out[3..0] -

S instiz

Figure 9.Brightness control used counter module
The Verilog codes for these two module are shown below.

module simple_counter (
CLOCK_50,

counter_out

input CLOCK_50;
output reg [3:0] counter_out;
always @ (posedge CLOCK_50)
begin
counter_out <= #1 counter_out + 1;
end

endmodule

-30-

module brightness (

clk,
factor,
counter,
out
);
input clk;
input [3:0Jfactor;

input [3:0]counter;
output reg out;
always @ (posedge clk)
if (factor==0) out<=0;
else if (counter<=factor) out <=1; else out <=0;

endmodule

-31-

2. SOPC builder

The most important part is the CPU core of this system. We will use SOPC

builder to create an on chip system, which is shown below.

Target Clock Settings
Device Family; Cyclone I - Hame Source
: = clk_50 External
Use Connecti.. Module Name Description Clock Base End Tags RQ
cpu Nios Il Processor
— instruction_master Avalon Memory Mapped Master iclk_50
— data_master Avalon Memory Mapped Master IR O IRg 31
ftag_debug_module Avalon Memory Mapped Slave 0x 01802800 |0x01802fff
E onchip_memory2 On-Chip Memory (RAM or RON)
=1 Avalon Memory Mapped Slave iclk_50 0x01801000 |0x01801£ff
B jtag_uart JTAG UART
[— avalon_jtag_slave Avalon Memory Mapped Slave iclk_50 0x01803130 |0x01803137
B sdram SDRAM Controller
=1 Avalon Memory Mapped Slave iclk_50 0z 00800000 |0xO0ffffff
[cfi_flash Flazh Memory Interface (CFl)
=1 Avalon Memory Mapped Tristate Slave [clk_50 0x 01400000 |0x017Effff
(_) [tri_state_bridge_0 Avalon-MM Tristate Bridge
avalon_slave Avalon Memory Mapped Slave iclk_50
L—< tristate_master Avalon Nemory Mapped Tristate Master
B pio_LEDO PIO (Parallel O}
[— =1 Avalon Memory Mapped Slave iclk_50 0x 01803000 |0x0180300f
B pio_LED1 PIO (Parallel O}
[F— =1 Avalon Memory Mapped Slave iclk_50 0x01803010 |0x0180301f
E pio_LED2 PIO (Paralle! 10}
[— =1 Avalon Memory Mapped Slave iclk_50 0x01803020 |0x0180302f
[pio_LED3 PIO (Parallel 1O}
[F— =1 Avalon Memory Mapped Slave iclk_50 0x 01803030 |0x0180303f
E pio_LED4 PIO (Paralle! VD)
[— =1 Avalon Memory Mapped Slave iclk_50 0x01803040 (Jx0180304f
[pio_LEDS PIO (Parallel V'O)
[F— =1 Avalon Memory Mapped Slave iclk_50 0x 01803050 |0x0180303f
B pio_LEDG PIO (Parallel O}
[— =1 Avalon Memory Mapped Slave iclk_50 0x01803060 |0x01803061
B pio_LED7 PIO (Parallel O}
[F— =1 Avalon Memory Mapped Slave iclk_50 0x 01803070 |0x0180307f
B pio_LEDS PIO (Parallel O}
[— a1 Avalon Memory Mapped Slave iclk_50 0x01803080 (Jx0180308f
& pio_LED® PIC (Parallel O}
[— 51 Avalon Memory Mapped Slave iclk_50 0x01803090 |0x0180303%
B pio_LED10 PIO (Parallel O}
[— =1 Avalon Memory Mapped Slave clk_50 0x018030a0 (0x018030af
B pio_LED11 PIO (Parallel O}
[F— =1 Avalon Memory Mapped Slave iclk_50 0x018030b0 |0x018030bf
B pio_LED12 PIO (Parallel O}
[— =1 Avalon Memory Mapped Slave iclk_50 0x018030c0 |0x018030cf
B pio_LED13 PIO (Parallel O}
[F— =1 Avalon Memory Mapped Slave iclk_50 0x018030d0 |0x018030df
B pio_LED14 PIO (Paralle! 1D}
[— =1 Avalon Memory Mapped Slave iclk_50 0x018030e0 |0x018030ef
E pio_LED15 PIO (Parallel 1D}
[F— =1 Avalon Memory Mapped Slave iclk_50 Ox018030f0 |0x018030ff
E pio_LED16 PIO (Paralle! 10}
[— =1 Avalon Memory Mapped Slave iclk_50 0x01803100 |0x0180310f
B pio_LED17 PIO (Parallel O}
[F— =1 Avalon Memory Mapped Slave iclk_50 0x01803110 |0x0180311f
B pio_KEY PIO (Parallel O}
— =1 Avalon Memory Mapped Slave iclk_50 0x01803120 [0x0180312f

Figure 10.SOPC builder setup

-32-

CPU is the core and it connects to all of the other parts of system. Jtag uart is
used for the FPGA board to communicate with the PC. For example, through the
Jtag_uart interface, the input file could be stored from the PC to the Flash
Memory embedded on the FPGA board. Then, we created several I/O interfaces
like pio_key and pio_ledx to connect the CPU core to the 1/O pins on the FPGA
board. It’s painless to quickly add a System ID component, named sysid, to
keep track of whether the BSP driver package currently used is still compatible
with the hardware we are trying to run it on. It is also painless to add an
Onchip_memory. Actually we don’t need to use it since | decided to store all the
instructions, library, etc. in the SDRAM. Why | would like to use SDRAM as my
CPU memory is that the memory space in onchip_memory is too small to support
the full c library. | could only use the full c library to use file operation in NIOS II.
In Figure 4, it shows that we need an SDRAM controller to connect the real
SDRAM memory and to control its behavior. For each particular FPGA chip, we
should consider the configuration of the SDRAM controller. Datasheet of the

target board is needed here.

“ SDRAM Controller

Megoatore”

Parameter
Settings

Memory Profile m_

Presets: Custom -~

Data width

Bits: | 16 -

Architecture

Chip zelect: | 1 - Banks: | 4 -

Address widths

Rowe: (12 Caolumn: |5

Figure 11.SDRAM Controller Memory Profile configuration

-33-

SDRAM Controller] I
Documentat

SDRAM timing parameters

CAS latency cycles: B 1 5 2 @ 3
Inttialization refresh cycles: 2

lzsue one refresh command every: 15. 625 us
Delay after powerup, before initialization: 100 us
Duration of refresh command (t_rfc): 70 ns
Duration of precharge command (t_rp): 20 ns
ACTIVE to READ or WRITE delay (t_red): 20 ns
Access time (t_ac): 5.9 ns
Write recovery time (t_wr, no auto precharge): |14 ns

Figure 12.SDRAM Controller Timing Configuration

Flash Memory Interface, named cfi_flash, is also added in the SOPC. In order to
correctly use Flash Memory, indicating in Figure 4, tri_state_bridge is also
required, and the slave side should connect to the CPU and the master side
should connect to the Flash Memory. Flash Memory Interface’s setup is shown

below.

-34-

“ Flash Memory Ir

Timing

Presets: [Custom

Size
Address Width (bits): | 22 -
Data Width (bits): |8 -

gvout |||,

Attributes
Setup : |40 Wait: | 150 Hold: | &0 Units: | ne - |

Avalon clock period is 20.0 ns.
Timing granularity is in units of Avalon clock period.

Actual setup time for read and write transfers: 40.0 ns
Actual wait-state time for read and write transfers: 160 ns

Actual hold time for read and write transfers: 40.0 ns

Figure 13.Flash Memory Interface Configuration

The NIOS Il CPU core is setup as shown below, notice that SDRAM is chosen.

Select a Nios Il core:

ONios Iife ONios Ilfs |©Nios I
. RISC RISC RISC
Nios Il 32-bit 32 bit 32-bit
Selector Guide Instruction Cache Instruction Cache:
Family: Cyclone I Branch Prediction Branch Prediction
Hardware Multiply Hardware Multiply
fs}rslerr: 50.0 MHz Hardware Divide Hardware Divide
cpuid: 0 Barrel Shifter
Data Cache
Dynamic Branch Prediction
Performance at 50.0 MHz Up to 5 DMIPS Up to 25 DMIPS Up to 51 DMIPS
Logic Usage G00-700 LEs 1200-1400 LEs 1400-1800 LEs
Hardware Muliply: | Embedded Muttipliers - [Hardware Divide
Reszet Vector: Memory: 'Mram v' Offzet: k0 0=002800001
Exception Vector: Memory: | sdram + | Offset: 020 000800020

Figure 14.NIOS Il core overview

-35-

After we created all of the components of the system and added a system 50Mhz
clock, we need to refresh the system and Auto-Assign Base Addresses for all of

the components and then generate it.

system 0

+— clk_50
+—reset_n

= in_port_te_the_pio_KE%[4..0]

out_port_frem_the_pic_LEDO[3..0]

out_pert_frem_the_pic_LED1[3..0]

out_port_from_the_pio_LED10[3..0]

out_port_from_the_pioc_LED11[3..0]

out_port_from_the_pic_LED12[3..0]

out_port_from_the_pic_LED13[3..0]

cut_port_from_the_pic_LED14[3..0]

out_port_from_the_pio_LED15[3..0]

out_port_from_the_pic_LED16[3..0]

out_port_from_the_pio_LED17[3..0]

out_port_frem_the_pic_LED2[3..0]

out_port_frem_the_pic_LED3[3..0]

out_port_from_the_pic_LED4[3..0]

out_pert_frem_the_pic_LEDS[3..0]

out_port_from_the_pio_LEDS[3..0]

out_port_frem_the_pic_LEDT[3..0]

out_port_frem_the_pic_LED&[3..0]

out_port_frem_the_pic_LEDS[3..0]

zz_addr_from_the_sdram[11..0]

zz_ba_from_the_sdram[1..0] Sdram_b PIN_T&
zs_cas_n_from_the_sdram e PIN_W'4
zs_cke_from_the_sdram ey I PIN_AB3
zs_cs_n_from_the_sdram =l T PIN_AAS
zs_dg_to_and_from_the_sdram[15..0] - PIN_AC3
zs_dgm_from_the_sdram[1..0] P =drzm PIN_W&
zs_ras_n_from_the_sdram S Y PIN_AA2
zs_we_n_from_the_sdram ey I PIN_AB4
--------------------- PIN_AD3
select_n_to_the_cfi_flash =l FLCEN ;D;Ir:l_léf;:
tri_state_bridge_0_addres=[21..0] I PIN_W17
tri_state_bridge_0_data[7..0] PIN_AC1E
tri_state_bridge_0_readn — E::.ig::
tri_state_bridge_0_writen — m
=t PIN_AE18

Figure 15.SOPC module

The figure above is the quick look of the SOPC module. Since we only create a
SDRAM controller in the SOPC, we have to connect the controller pins to the

-36-

input pins of the SDRAM embedded on the FPGA board. Followed by the
controller pins of SDRAM is the flash controller pins. Just a reminder, the Flash

Memory reset pin must connect to the reset pin or simply a constant 0.
3. Clock source and Phase Lock Loop(PLL)

In order to make sure all the signals are stable on the clock edge, a Phase Lock
Loop (PLL) module is needed to create a second clock signal into SDRAM. We
should also consider the setup of the PLL module, since that may cause an error
when building the project if some values are incorrect for each particular FPGA
board. The setup for DE2 board, or Cyclone Il EP2C35F672C6 FPGA chip, is

shown below.

sdram_pll

Connects to Connects to
inclkD . I cl,

System Clock o ey mE SDRAM Clock

i TR o

5
Ea|
T

Figure 16.PLL module

-37-

VII. Hardware Testing

1. Example 1

| would like to have two tests to demonstrate my work. First one is the example |
analyzed in the part Algorithm. Assume there are 10 tasks and we are
supposed to assign them in 7 hours. First, since we need to input our information
into the FPGA board using txt format file, a Zip file named files.zip should be
created under scheduling_0_syslib folder, including 2 txt format files named
file1.txt and file2.txt storing the tasks information and hourly price information
respectively. Due to the software work, the names of these files cannot be
modified and the txt files cannot be compressed. See the following figure.

= | GRS ||) fle2tc - TEE o/ aT 58 |
MR REE) B0 BBV XD REE B0 ZEW #FEH) =| | « Scheduling » scheduling_0_syslib » v |43 || 2= scheduling 0 syslib
FEE(H) 112 - @@ ‘ ‘ H
10 112 A - &[Far:3 FIEI FR R
06124 112 —
06124 112 e Wik < ER A R 20N
06124 112 N)
06124 112 B TE _settings
06124 112 W sE Debug
8 S % é 3 % % g H smsEntE task_samples s
06124 112 L] «dtbuild 4 CDTBULLD 3z#f 2K
06124 112 e | edtproject CDTPROJECT 34 3K
06124 i % g B s [project PROJECT 4 3 K
1172 —_—) filelixt TR 1K
112 - | filezxt 20 ; 1K
112 e] @ filesip 20 28 BE 7P 1K
112 ol BETE 2| B readmena 20] 2K
112 & =5 || system.stf 2012/10/14 19:05 STF 3% 2K
112 i
112 .
112 L=
112 |
11z 1
&L BOOTCAMP (C:
€% DVD RW ZERnEE
s ¥ILHE E)
s Macintosh HD (|
s BEER (G)

{l B Apple iPhone

- < m 3

1N B 2 MR EMHEE: 2012/10/22 16:27 SEARE: 2012/10/16 21:19
- Fulv 284 =T

Figure 17.Input information of Example 1

Then the result run in FPGA shows below from hour 0 to hour 6. We could see
that the tasks with higher power level would be brighter.

LEDRZ - LEDR1 LEORO

CLEDR4 . LEDR3 LEDRZ - LEDR1 LEORO

-38-

LEDRT
LEDR7 ~ LEDR6 LEDRS LEDR4

e

Figure 18. Hourly power consumed of Example 1

2. Example 2

Another example is shown below

e b MU CT il (ST = [B By
TR BEE ERO0) S5V BEH) TEA EmE E0) SEM) #EH) | <« Schedualing » Scheduling » scheduling 0/syslib b
|18 112 -
11124 112 e — _
Dllisd 113 &Far: g8 a2 ﬁ:gm:tx
011124 112 o
011124 112
011124 112 v settings
011124 112 o mEAEEE
011124 112 Debug
011124 112 task_samples
011124 112 [edtbuild
1222236 112 -
1232236 112 L cdproject
1222236 112] project
1222236 112 £ fleLot
EH o s || g
1232236 112 S ERE & fileszip
1623124 112 [readme e
23111 } } g P . (N p——
112
11z)
11z e
11z

&, BOOTCAMP (C:
&% DVD RW EzR
ca FITHE E)
s Macintosh HD (
Ca BRERE (G
&Y Apple iPhone

&= Internal Stora

€ F =
e file2.txt SR EEE: 2012/10/16 22:47 AFEEEE: 2012/10/16 21:19
A Folv 166 FTT

Figure 19. Input information of Example 2
-39-

And the hardware testing result is shown below from hour 0 to hour 23.

ORis liﬁﬁ LEDRI4 LEDRI3 LEORIZ LEORML - LEDRIO LEBRS LEDRE LEDR? IEDFG LEDRS LEDR4 " LEDRI LEDR? LEDRI LEM]

-IEDI@@@.-SEEEE«

.. f‘\l‘\‘r‘\ Y - R . N Wy S

-~ -~ -~ - -
ol LEORI4 LEDRI LEOM\2 LEDRI - LEORIO LEORO LCOR® LEOR mm LEDRS LEDMM

1 1 IR0 ODODDE

LEDRI LEBR? LEDM LEOm¢

EORI0 LEDRY LEDRE LEOR? LEORS LEORS LEDMA ™ LEDR3 LEDR2 LEDRI LEORO

LEDM LEDAD LEDR? LEDMI LEgeg

LEDR4 LEDRZ LEDRZ

BFTs' LEORI4 LEDR1Z LED
w

7 - LEDRT LENRO

LEORI6 LEDA1S" LEDR!
r‘.‘.‘|
\d
—

§1 LEORG LEDRS LEORA™ LEORY LEDRZ LEDRN LEDRO

R7 LCDRG LEDAS LEDM4 LEDMI 'W? LEDAT LEDS

ERER

DR13 LEDMI2 LEDRI! - LEDRIC LEDA LEDRE LEDAT LEORS LEDRS LEOM LEDRS ~ LEDRZ LEDM1 LEDRO

EEEEERERE R

16 LESKS LfoR4 LERI LEDM2 DRI LEDRIO LERS LCDRS LDET LCOMS LM LB (M LG DM (0
= - - ' | - |

1313133031033

-40 -

LEDRI0 LEORY LEDRY LEDRT LEDM LEDRI LEDR2 LEDM LEQRO

StE - LeRTS ttome LR LOOM? LEORL
I B R B B 0 0 B3 1

1 =]
E E E
LEDR® LEDRT LEDRS LEDR4 * LEDRI LEOR? LEDRD LEQRO

PSECORS LEOKTS Leont |zr;ﬂa]1:. LEWn2 LEORIO LEDRY
- . RN
BENEBEEEEEREE LD

Ueopis * LefKis LeoRue LEORIS LEORD LEDRS DN LERZ LEDMI LEORO

f I L B 0 @ 0 § B

TTH v) cne Tx - EAT T . y
feopte (eBKTs Leom LooR A1l LEORIO LEORY LEDR (60T LEORZ LEDR LEDRO

= =) |'.. o f .
£ 8 0 § 8 01013 098303507

LER2 LEDAI LEORO

s s LRy LRy LR - L6 I_E:.rﬂs. awe L : :
X Kk E R P Q@ BB DB RODODODOD

=]

LEOR6 LEORS LEDR4 ~ LEORS LEDRZ LEOMI

'ttl liﬁil.ﬂ- IF{JHH. LEDRY LEDR12 LEORI1 - LEDAIO LEORO LEDRE L;.IJR;'I
PR R DR OO OOODODDNODDEDI

§ LEORTS LEORM4 LEORID LEDM2 DR1 EORS LEDRE LEDRT ~ LEDRG LEDAS LEDMM LEDR2 LM LEOM

SRR EERE R

L)

LEDRS LEDRS LEBR4 1 an e e

LEDRI4 LEDRIZ (EDM2 EDR1C fORS LEDRE LEDAT LEpR
I f 0 0 EBOBRAODRIDE

¥

LEDRS LEOM4" LEDR LEDR2 LEDR! - LEORO

3 LEDR12 ° LEDRLL - LEDRI® LEDRY LEDRT LED!
i B E E B OB 130000

[o Y o WY o, W

16 (eBRTS toR4 LEDRIZ LEOMIZ LERI LEDRO LERO LERG LORY LEDK LEDRS LEOMCEDAY LR LMY LW -

I 0 E B 0 B OO DB DO OGO

Figure 20. Hourly power consumed of Example 2

-41-

Since there are only 18 onboard LEDs, | could not demonstrate the tasks with

more than 18 in this way. | would like to show the debug result when there are

more than 18 tasks, like 99 tasks, and multiple users below.

UserA's tasks

11}

UserB's tasks

UserC's tasks

o s U - U L s RS
[ng B nuh [m el B e B wat g R n R wett
o
m111111111
6111111111

fe2 UOOOOOOOOO

(e tep tepisptaglaplaiis b
O 0D 0 0 07 070 0 O]
[ngh B [ma el [R mat R B B |

0] B8 O] O B O 0 Dl o
[ng B ma el e m g Y w
o B [ma el [R wah gl ¥ welh
PR R R e R e R M

=H=H =H =f =H =H =H =n =H
O] 08 O] O O8] O] O]] 0]
o o

rlllllllll
6111111111

UOOOOOOOOO

[tapispisplagliep sl e
O 0 0 07 0 07 07 0]
[nat ol R el nalt R ma Rt n B N |

£+ C+] O]] £]] £ 07
[t o et na B ma Rt B mal |
[oat Jmosh R mul et R mas o B T
P R R e e e I I B e

=H =H =H =f =H =H =H =fH =
O] 0] 0 O] O] O] 8] O 04
111111111

rlllllllll
6111111111

UOOOOOOOOO

[Taptaptaplaplapish s]
O 0 07 0 00 07 0 O
O 0] 0] O] O] O 0] o

£ 0]] C+ C]]] 7 07
[e s mat R [w
E5 0] O] O] O] O] Rl B4
PR R e R e I I et

Figure 21. Multiple users_1

-42-

[tep{e e inpiapielis b
O 0 00 0 00 0]
[axh B neh B nh R nelh [mel B gl NE S B0 |
£ 0] £ O] C]] 073 07

[ngl B Jmal R [s Rt nh R |
[[gl B R melh R mest QY ¥l |
— = =0

UserD's tasks

11

UserE's tasks

UserF's tasks

=
=
[
[
=

[tep et gTaiepiegToiis b
o R L L s L L L L

O 0 0 0 0 0 0 N
Lo [mab Bt I e el R met Bl Jme R n |

[gl B meh R mlh R met B nh [meh B B o
A

£ 0]] O]] C] 0] £ 07
Lo e B I e TR B e T e e o R e Y m w
o

[gl B mah Rmelh R met B nh [mh I ¥ g
e e T W e I s B B

LISETre

R R R B B I]

£ 0 £+ O] C]] 0] 07 0
A A A A A A A A I I EI T O O BN ey A A A o
D o o —

[l)]
[l e R R e R e R R R e

— o

o e e e e e e B W e M

[teplegiepiepia il teiis]
Ao LI LI L L L L L

AR L LB L L Ll U L
[i T R T g e B
Lot B s R mah [melh [melt [gl B nuh R mah [math | g B su R mah [nalh [nelh [mol B gl B nht R mh |
g R mah R ne R nelh [mel B nah N ne B0 B S|

— o

Figure 21. Multiple users_2

-43-

B (£ power
(9= power[0] 102
()= power[1] 104
()= power[2]
()=
()=
)=
()=
()=
()=
()=
()=
()=
()=
()=
()=
()=
()=
()=
()=
()=
()=
()=
()=
9=

power[3]

power[4]

power[5]

power[6]
power[7]
power[8]

power[9]

power[10]

e i e

power[11]
power[12] 105
power[13]

=
j=}
[l

power[14]

power[15]

power[16]

power[17]

power[18]

power[19]

power[20]

power[21]

[R R L = =)

power[22]

-
o

power[23]

Figure 22. Accumulated power level for each hours

(# cost_total 236
Figure 23. The total cost

It cost about 2 seconds to obtain the result if the total task number is 99.

- 44 -

3. Example 3

To demonstrate the effectiveness, | would like to present the simulation of
household appliances. The power use for each smart appliance is consulted from
the manuals [16][17][18][19].

Appliance Start End Power Power Total power
time time level 1 level 2 Consumption

(Watt) (Watt) (KJ)

Mini Oven 10:00 |[12:15 |900 1800 1620

Rice Cooker 11:00 |[12:15 |400 600 1080

Clothes Washer 8:00 14:30 | 400 600 1800

Clothes Dryer 14:30 [17:00 | 2650 5300 19080

Refrigerator 0:00 23:45 | 720 720 25920

Vacuum Cleaner 0:00 18:45 | 1000 1200 3600

Dishwasher 13:15 [18:45 | 1200 2400 2160

Water Pump 0:00 23:45 | 250 1000 2700

Table 5. Input information of household appliances

About the price scheme for a day, we could use the Ontario Time of Use
Electricity Rates for Winter | mentioned in Algorithm part, which is shown below.
(For better calculation and demonstration, | will round the decimal price to the

nearest integer)

- 45 -

From To Winter Rate(Nov-Apr)

7:00 AM 8:00 AM

8:00 AM 9:00 AM

9:00 AM 10:00 AM

10:00 AM 11:00 AM

11:00 AM 12:00 PM 10 cents/kwh
12:00 PM 1:00 PM 10 cents/kwh
1:00 PM 2:00 PM 10 cents/kwh
2:00 PM 3:00 PM 10 cents/kwh
3:00 PM 4:00 PM 10 cents/kwh
4:00 PM 5:00 PM 10 cents/kwh
5:00 PM 6:00 PM

7:00 PM 8:00 PM 6 cents/kwh
8:00 PM 9:00 PM 6 cents/kwh
9:00 PM 10:00 PM 6 cents/kwh
10:00 PM 11:00 PM 6 cents/kwh
11:00 PM Midnight 6 cents/kwh
Midnight 1:00 AM 6 cents/kwh
1:00 AM 2:00 AM 6 cents/kwh
2:00 AM 3:00 AM 6 cents/kwh
3:00 AM 4:00 AM 6 cents/kwh
4:00 AM 5:00 AM 6 cents/kwh
5:00 AM 6:00 AM 6 cents/kwh
6:00 AM 7:00 AM 6 cents/kwh

Table 6. 2012-2013 Ontario Time of Use Electricity Rates for winter

- 46 -

Since we measured the day as 96 quarter hours in this simulation, we have 96
time periods. For example, time period 0 represents the period from midnight to
12:15 AM, or time period 16 represents the period from 4:00 AM to 4:15 AM. In
Ontario, “in the winter months, the higher electricity price is charged for
consumption above 1,000 kwh.” [8] As shown in Table 1, usually the higher
electricity price is about 1 cent/kwh higher than the lower price. Hence, in our
simulation, | will consider that if the quarterly power use was over

kwh
1,000———— ~ 0.35kwh _ 1260k]
30 days X24hours quarters quarter quarter
month day hour

the price would be 1 more cent plus the original price. The unit of power level
shown in Table 5 is Watt, and each of the time period is a quarter. Hence, we

need to convert]/S to]/quarter, which means each power level need to multiply

by 60 x 15 S/quarter' Therefore, the input information for this simulation is

shown below.

_oer-omr | LR =
M #EE BIN0) EEN #FEH)

o -
40 49 510 1620 1620
dd 49 360 540 1080
32 58 360 540 1200

B8 B3 Z38b 4770 19080 D Tasks
0 95 648 648 25940 i i
0 T: 900 1080 3600 information

B3 75 1080 Z160 Z160
09k ZE5 900 ZT00

v 3§

KJ/quarter KJ

-47 -

Figure 24. Input tasks information

Electricity rate from
midnight to 10:00 AM

W07 WA

Figure 25a. Input price information

XHHED REE #IO0 FEW EEHH

1260 12 13 o
1260 12 13

1760 10 11 Electricity rate from
1260 10 11 10:15 AM to 11:45 PM

1

H
5]
&
=
B R R Y R
B R R R R R R R R R e R R P R R R P}

E9617,.H9F

-48 -

Figure 25b. Input price information

For clearer demonstration, it is better to add a time display module in Quartus Il,
which is shown below.

Cfnme display
il . e e meemiieeeireeeeeeeseeeeereseee e e e aen o+ 6 e e e e a
clk HEX0[E. 0] g TEWT —— HEMD[ELO] i
time_period]s..0] HEX1[5..0] mUTBUT " HEX1[6..0] PIN_AF10
HEX2[5..0] e UTBUT " HEXZ[6..0] PIN_v20
HEX2[5..0] UTBUT " HEX3[6..0] PIN_AB23
o PIN_v23
L | PIN_AAZS
S " O I i i,
.. PIN_\(’EE‘
i PN s
e PNz
RPN, S L

Figure 26. time_display module

And the Verilog code for this module is shown below.

module time_display (
clk,
time_period,
HEXO,
HEX1,
HEX?2,
HEX3

input clk;

input [6:0]time_period;

output [6:0]HEX0,HEX1,HEX2,HEX3;
req [3:0]t1,t2,t3,t4;

reg [4:0]tm,ts; //tm: min; ts: sec

always @ (posedge clk)

-49-

begin

end

tm<=time_period/4;

ts<=time_period%4;

t1<=tm/10;

t2<=tm%10;

case (ts)

0: begin
t3<=0;
t4<=0;

end

1: begin
13<=1;
t4<=5;

end

2: begin
13<=3;
t4<=0;

end

3: begin
t3<=4;
t4<=5;

end

endcase

HEX_display h1(t1,HEX3),
HEX_display h2(t2,HEX2),
HEX_display h3(t3,HEX1),
HEX_display h4(t4,HEXO),

-50-

endmodule

module HEX display(t,q);
input [3:0]t;

output req [7:0]q;

always begin
case (t)

0: q<=7'b1000000;

~

q<=7'b1111001;
q<=7'b0100100;
q<=7'b0110000;
q<=7'h0011001;
q<=7'b0010010;
q<=7'b0000010;
q<=7'b1111000;
q<=7'b0000000;

© ® N O g A @ N

q<=7'b0010000;
default q<=7'b1111111;
endcase

end

endmodule

Since it is better to assign one task in more time periods to flat the power
consumption curve, | will add another factor that record how many time periods
this task is assigned in. If there are many solution with the same lowest cost for
one task, the controller would choose the one with the most time periods.
Therefore, the result for this simulation is shown below

-51-

Time period Task and Power Level

0:00->3:00 Refrigerator(720Watt), Water Pump(250Watt)
3:00->10:00 Water Pump(250Watt)
11:00->11:30 Mini Oven(900Watt), Rice Cooker(400Watt)
11:30->11:45 Rice Cooker(400Watt), Clothes Washer(400Watt)
11:45->12:45 Clothes Washer(400Watt)
12:45->13:45 Vacuum Cleaner(7000Watt)
13:45->14:15 Dishwasher(7200Watt)
14:30->16:30 Clothes Dryer(2650Watt)

otherwise No tasks assigned

Table 7. Scheduling

e s T AL T T TR T TR

-52-

-53-

The total cost is $1.42, which is exactly the same value with the result obtained

which means that, in

this case, any other scheduling cannot get lower price than $1.42. Customers

can benefit from our scheduling.

from the enumeration method. This is the optimal solution

-54 -

4. Example 3

Above is the simulation for individual user, and | will present the simulation for
multi-user below. Here is the input information.

) file1 - iESE T HEP BEE BO0) SB(V) BEMH)
TF) 4RS(E) HEL0) ¥ ShE 0 88 2385 4770 19080

120 XHHF) FEE #0) 0 95 643 643 25920

usera userf 1llo 75 900 1080 3600

40 49 810 1620 1620
44 49 360 540 1080
32 B8 360 540 1800

0 683 2385 4770 19080
0 95 648 648 25420

0 75 900 1080 3600
53 75 1080 Z160 2160
0 95 225 900 2700
userh

40 49 810 1620 1620
44 49 360 540 1080
32 B8 360 540 1800

0 68 2385 4770 19080
0 95 648 648 25420

0 75 900 1080 3600
53 Th 1080 2160 Z160
0 95 225 900 2700
userc

40 49 810 1620 1620
44 49 360 540 1080
32 B8 360 540 1800

0 68 2385 4770 19080
0 95 648 648 25920

0 75 900 1080 3600
53 Th 1080 2160 Z160
0 95 225 900 2700
userd

40 49 810 1620 1620
44 49 360 540 1080
32 B8 360 540 1800

0 68 2385 4770 19080
0 95 648 648 25920

0 75 900 1080 3600
53 Th 1080 2160 Z160
0 95 225 900 2700
usere

40 49 810 1620 1620
44 49 360 540 1080
32 58 360 540 1800

0 68 2385 4770 19080
0 95 648 648 25420

0 75 900 1080 3600
53 Th 1080 2160 Z160
0 95 225 900 2700

40 4% 810 1620 1620
44 4% 360 540 1080
32 b 360 540 1800

0 BB 2385 4770 19080
0 95 648 648 25920

0 75 900 1080 3600
53 75 1080 2160 2160
0 95 225 400 2700
userg

40 49 810 1620 1620
44 4% 360 540 1080
32 b 360 540 1800

0 68 2385 4770 19080
0 95 648 648 25920

0 75 900 1080 3600
53 7h 1080 2160 2160
0 95 225 400 2700
userh

40 4% 810 1620 1620
44 49 360 540 1080
32 b 360 540 1800

0 68 2385 4770 19080
0 95 648 648 25920

0 75 900 1080 3600
53 7h 1080 2160 2160
0 95 225 900 2700
useri

40 4% 810 1620 1620
44 49 360 540 1080
32 b 360 540 1800

0 68 2385 4770 19080
0 95 648 648 25920

0 75 900 1080 3600
53 7h 1080 2160 2160
0 95 225 400 2700
user]

40 4% 810 1620 1620
44 4% 360 540 1080
32 b 360 540 1800

0 68 2385 4770 19080
0 95 648 648 25920

0 75 900 1080 3600
53 7h 1080 2160 2160
0 95 225 400 2700

53 75 1080 2160 2160
0 95 225 900 2700
userk

40 49 810 1620 1620
44 49 360 540 1080
32 58 360 540 1800

0 68 2385 4770 19080
0 95 648 648 25920

(0 75 900 1080 3600

53 7h 1080 2160 Z160
0 95 225 900 2700
userl

40 49 810 1620 1620
44 49 360 540 1080
32 58 360 540 1800

0 68 2385 4770 19080
0 95 648 648 25920

0 75 900 1080 3600
53 Tb 1080 2160 Z160
0 95 225 900 2700
userm

40 49 810 1620 1620
44 49 360 540 1080
32 58 360 540 1800

0 68 2385 4770 19080
0 95 648 648 25920

0 75 900 1080 3600
53 Tb 1080 2160 Z160
0 95 225 900 2700
usern

40 49 810 1620 1620
44 49 360 540 1080
32 58 360 540 1800

0 68 2385 4770 19080
0 95 648 648 25920

0 75 900 1080 3600
53 Tb 1080 2160 Z160
0 95 225 900 2700
UsSEero

40 49 810 1620 1620
44 49 360 540 1080
32 5B 360 540 1800

|0 68 2385 4770 19080

0 95 648 648 25920

Figure 27. Multiple users’ tasks

-55-

Then, the simulation result is shown below.

A S| - power(26] 20412
&= power[0] 25182 = power[27] 19512
6= power[1] 26082 6= power[28] 072
- power[2] 26982 6= power[29] 9072
6= power([3] 32652 €= power[30] 9072
6= power[4] 17442 ¢9: power([31] 9072
= power[5] 16542 = power[32] 072
= power[6] 20412 6= power[33] 9072
= power[7] 21312 0= power[34] 9072
= power[8] 25182 ¢9= power[35] 9072
64- power[9] 25182 6= power[36] 9072
9= power[10] 20412)= power[37] 072
= power[11] 20412 6= power[38] 9072
6= power[12] 16542 9= power[39] 9072
9= power[13] 20412 9= power[40] 0
= power[14] 20412 = power[41] 0
6= power[15] 20412 = power[42] 0
9= power[16] 21312 6= power[43]]
6= power[17] 21312 = power[44] 1170
6= power[18] 21312 = power[45] 14670
9= power[19] 16542 6= power[46] 1260
6= power[20] 20412 6= power[47] 1170
= power[21] 16542)= power[48] 15570
= power[22] 20412 9= power[49] 17100
= power[23] 20412 = power[50] 6660
- power[24] 26082 &= power[51] 7020
&= power[25] 25182 6= power[52] 1080

‘Outline| Make Targets |®= Variables B Disassembly

MName Value
0= power[53] 1080
0= power[54] 1080
¢ power[53] 0600 ‘Outline| Make Targetjm= Variables E@\[isassembly
= power[56] 1008 Eme — =
0= power[57] 1188 - power[80] 648
0= power[58] 1188 o power[81] 548
= power[59] 648 - power[82] 648
9= power[60] 648 6= power[83] 648
9= power[61] 648 - power[84] 648
0+ power[62] 648 6= power[85] 648
- power[63] 648 P pORHE0] b8
0= power[64] 648 (x]f il =
9= power[88] 648
&= power[65] A8 - power(89] 648
0= power[66] 648 = power[90] 648
0= power[67] 648 - power[91] 648
9= power|68] 648 6= power[92] 648
e power(69] 648 - powerl33] Ges
- power[70] 648 S powo B3
©)= power[95] 648
¢ powerl/1] bt o lowest 32767000
)= power[72] 648 o taskprice 0
= power(73] 648 o %5
0= power[74] 648 oA m 8
9= power[75] 648 o i 9
- power{76] 10548 «n 4
- power[77] 10548 ‘3 T &
o power(78] 10548 s o
t9- power[79] bt e |

Figure 28. Simulation result

-56-

If we don’t use any optimized way to assign these tasks, the power consumption
curve would become very sharp in the high-demand time periods. After using our
proposed algorithm, the curve becomes flatter. The total cost in this case is
7168536/3600=1991.26cents.

The scheduling time is about 10 minutes in this case for 120 tasks. This is for the
first scheduling at the beginning of the day. During the day, if the consumer want
to change several tasks or add some new tasks to the loads, the controller will
only do the scheduling for these tasks, not all the tasks for the whole community.
The scheduling time for several tasks is less than 1 minutes. The speed is
acceptable.

-57-

Vli. Problem Solution

1. If the onchip memory is insufficient, use SDRAM to substitute it.

2. When build project in NIOS II.

Using cable "US5BE-Blaster [USE-0]", dewvice 1, instance 0x00
Pausing target processor: CK

Initializing CPFU cache (if present)

OE

Downloading Q00200000 ([0%)
Downloading 00210000 (23%)
Downloaded T7EE in 1.3=s (55.2EB/=)

Verifying 00800000 (0%)
Verify failed between address 0x300000 and 0O0xS0FFFF
Leaving target processor paused

First of all, check the address in SOPC builder to see which component has
error, most of the time the errors occur in memory component.

Then check the design in Quartus especially the pin assignment to see if all
the pins are correctly connected. Data bus must be bidirectional, and it is very
easy to forget it.

If it is the sdram, pll module is needed and the phase shift in pll module
should be corrected.

3. The data would be lost in sdram after shut down the FPGA. Altera’s DEO
Nano board has NO flash memory.

4.
6 rror: CONF_DONE pin failed to go high in device 1
{'3 rror: Operation faeiled
L) Info: Ended Programmer operaticn at Tue Oct 16 14:33:35 2012

S O L = T o R T T ey F R =P |

-58 -

Switch the button from PROG to RUN

5. Because of the compatibility issues, the following problem would occur very
often in Win7 system.

[main] ? (6680) D:\altera\80\quartus\bin\cygwin\bin\sh.exe: *** fatal error -
couldn't allocate heap, Win32 error 487, base 0x870000, top 0x890000, reser
ve_size 126976, allocsize 131072, page_const 4096

2 [main] sh 3244 fork: child -1 -
died waiting for longimp before initialization, retry 0, exit code 0x100, errno 1
1

It is not enough to change the compatibility in properties. The reason to
cause it is that the capacity of Cygwin’s heap is not big enough and Windows
does not add its capacity automatically. We need to open the Registry, under
HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER section, add a
DWORD key named heap_chunk_in_mb under the Cygwin folder. Change
the value of it to 1024 in decimal to limit the capacity of heap to 1024 Mb.
Even though the problem would still occur sometimes, the probability
becomes much lower.

-59-

IX. Conclusion

Using our proposed dynamic programming based algorithm could significantly
reduce the time complexity to schedule tasks for multi-users, compared with the
classical algorithm like the method of enumeration. On the other hand, | am
satisfied with the accuracy of finding a solution set that is close to the global
optimal solution.

Altera’s DE2 FPGA board we used fits our task. Furthermore, Smart Home
system consists of a lot of applications to provide improved comfort, convenience
and efficiency. Due to FPGA'’s large amount of I/O interfaces and low complexity,
it is very easy for us to do the further development of smart behavior on FPGA.

-60-

X . Coding in NIOS Il

/*
* Project: DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DISCRETE
POWER LEVEL SMART HOME SCHEDULING

*

* Name : XIN YANG

*

* Advisor: SHIYAN HU

*

* This project consists of 3 parts:
*

1: Read user information from the computer and save it into flash
memory in FPGA

* 2: Schedule the tasks use our proposed dynamic programming based
algorithm

* 3: Demonstrate the results using the onboard LEDs

*

*/

#include <stdio.h>

#include <stddef.h>

#include <stdlib.h>

#include "system.h"

#include "io.h"

#include "altera avalon pio regs.h"

#define hours 96

#define task max number 200

#define repeat times 10

#define value size 6 //maxium size of each input value
#define BUF SIZE (30*task max number)

// [0] start time [1] end time [2] power level 1 [3] power level 2 [4]

total time
int task[task max number] [5];

// [0] Accumulated power threshold [1] unit power level price <=
threshold [2] unit power level price > threshold
int pricelhours][3];

// [0] power consumed [1] cost [2] power level [3] path
int sched[hours] [task max number] [4];

int best[hours] [task max number];

int power[hours] = {0};

int lowest = 9999999;
volatile int taskprice = 0;
int delay;

int condition;

-61-

volatile int
volatile int
volatile int
volatile int ;
volatile int ii=0;
volatile int cost total=0;

’

’

’

-3 R 8 U
I
I © o oo

volatile int tasknumber;

/**

Function: taskread

*
*
* Purpose: Read the tasks information from the file input from
* the consumers

*

**/
void taskread (FILE* fp)
{

char buffer[BUF SIZE] = {0x20};

char value[value size];

int read size;

int 1i,7,p;

int ptr;

read size = fread (buffer, 1, BUF SIZE, fp); //the total size of the
file

for (p=0; p<value size; p++) value[p] = 0;

for (i=0; i<value size; i++)

{

if ((buffer[i] == Oxa) | (buffer[i] == 0x20) | (buffer[i] == 0xd))
break; // if it is a newline or space or Enter, then break
else value[i] = buffer [i];
}
ptr = i+2;

tasknumber = atoi (value);

for (i=0; i<tasknumber; i++)
{
for (3=0; 3<5; J++)
{
for (p=0; p<value size; p++) value[p] = 0;
for (p=ptr; p<ptr+value size; p++)
{
if ((buffer[p] == Oxa) | (buffer[p] == 0x20) | (buffer|p]
== 0Oxd)) break; // if it is a newline or space or Enter, then break
else value[p-ptr] = buffer(p];
}

ptr = p+l;
task[1i][J] = atoi(value);
if (buffer[p] == 0xd) {ptr++; break;}

-62 -

}

/**

Function: hoursread

Purpose: Read the hourly price information from the file input from

*
*
* the utility company
*
*

***/

void hoursread (FILE* fp)
{
char buffer[BUF SIZE] = {0x20};
char value[value size];
int read size;
int 1,3,p;

int ptr=0;
read size = fread (buffer, 1, BUF SIZE, fp); //the total size of
file
for (p=0; p<value_ size; p++) valuelp] = 0;
for (i=0; i<hours; i++)
{ for (j=0; j<3; J++)
{ for (p=0; p<value_ size; p++) valuelp] = 0;
for (p=ptr; p<ptr+value size; p++)
{ if ((buffer[p] == 0Oxa) | (buffer[p] == 0x20) | (buffer|

== 0xd)) break; // if it is a newline or space or Enter, then brea
else value[p-ptr] = buffer(pl;
}

ptr = p+l;
price[i] [j] = atoi(value);
if (buffer[p] == 0xd) {ptr++; break;}

}

/**

Function: Initialization

*
*
* Purpose: Open the users' task information file and utility
* company's power rates information file in the

* flash memory

*

*

***/

void Initialization ()

{
FILE *fp;

-63-

the

<
k

fp = fopen ("/mnt/rozipfs/filel.txt", "r");
if (fp == NULL)
{
printf ("Cannot open file.\n");
exit (1);

taskread (fp) ;
fclose (fp):;

fp = fopen ("/mnt/rozipfs/file2.txt", "r");
if (fp == NULL)
{

printf ("Cannot open file.\n");

exit (1);

hoursread (fp) ;

fclose (fp);

/**

Function: cost

or equal to the threshold value, use the 1lst power rate.

*
*
* Purpose: Return the cost. If the accumulated power level is larger
*
* Otherwise, use the 2nd power rate.

*

**/

int cost (int hour now, int power consume)
{
int sum;
if (power consume<=price[hour now] [0])
sum = pricel[hour now][l] * power consume;
else
sum pricelhour now] [2] * power consume;
return sum;

/**

Function: Schedule the tasks

*
*
* Purpose: Use our proposed algorithm to schedule the tasks
*
*
*

***/
void go(int task now)
{
int good;
int cost_cach;
-64-

int lowest=9999999;
int count;
int lowest time; // it means the last time we found the lowest cost

int Fst hour=task[task now] [0]; // First hour
lowest time = 0;

// for repeatly schedualing
for (j=Fst _hour; j<=task[task now][1]; J++)
{
cost total=cost total-cost (j,power[]])+cost(j,power[j]-
best[j] [task now]);
power [j]=power[]j]-best[]] [task now];
best[j] [task now]=0;
}

//sched[j][0][0] means the number of situation in hour j
sched[Fst hour] [0] [0]=3;
sched[Fst hour] [1][1l]=cost total;
sched[Fst hour] [2] [0]=task[task now] [2];

sched[Fst _hour] [2] [1]=cost_total+cost (Fst hour,power[Fst hour]+task[tas
k now] [2])-cost (Fst_hour,power[Fst hour]);

sched[Fst hour] [2] [2]=task[task now] [2];

sched[Fst hour] [3] [0]=task[task now] [3];

sched[Fst _hour] [3] [1]=cost total+cost (Fst hour,power[Fst hour]+task[tas
k now] [3])-cost (Fst_hour,power[Fst hour]);
sched[Fst hour] [3] [2]=task[task now] [3];

// 7 means hours
for (j=Fst _hour; j<task[task now][1]; Jj++)
{

sched[j+1]1[0]1[0]
sched[j7+1][1][3]
sched[j+1][1][1]

lr
1;
sched[j][1][1];

; m++)
11=0))
ask now] [4])

if ((m==1) | (sched[]j] [m]
if (sched[j][m][0]<task
//n means solutions
for (n=2; n<=3; n++)
if (sched[j][m][0O]+task[task now] [n]<=task[task now] [4])
{

for (m=1; m<=sched[j][0][0]
[0
[t

i=1;
count=0;
good=0;

cost cach=sched[]] [m] [1]+cost (j+1,power[j+1l]+task[task now] [n]) -
cost (j+1,power[j+1]);

while (i<=sched[j+1]([0][01])

{

if (((sched[j][m][0O]+task[task now] [n]>sched[]j+1][1][0])
& (cost cach<=sched[j+1][i][1])) |
((sched[j] [m] [0]+task[task now] [n]>=sched[]j+1][1][0]) &
-65-

(cost _cach<sched[j+1][

}
if
{

the schedule
}

if

((cost _cach<lowest) |

if
(cost cach>sched[j+1][

i]1[(11)))
{

if
{

sched[j+1] [i

sched[j+1] [i

[1[4

1[4

(good==0)

sched[j+1
sched[j+1
good=i;
}
else {sched[j+1]]
}
((sched[j] [m
i]1[011))
count=count+1;

i=i+1;

(count>=sched[j+1

sched
sched[j+1
sched[j+1

J+111

1[4

1[4
sched[j+1] [4
1[4

t+

—_ — —

11001
11001
1011
112]
sched[j+1 1103]

0
i
i
1
1
good=count+1;

’

((sched[]] [m

:j_,-

((cost_cach==

=sched[j] [m
=cost cach;

=taskftask_now][n];

1] [0]=0;

] [O]+task[task now] [n

11011071)

=sched[j] [m
=cost cach;

m;

sched[j+1] [i

1111=0;}

]>sched[j+1][1

=task[task now] [n];

J[0]+task([task now] [n];

1101)

1 [0]+task[task now] [n];

// good is the new solution added in

lowest) &

(power[lowest time]>power[j+1]))))

{

1] [sched[i

}
}
for (i=0;

powe

i<hours;
=power [i]

r[i]

lowest=cost cach;
lowest time=j+1;

cost total=cost cach;

for (i=0;
best[i

for

{

(i=3+1; i>0;

best[i-

] lgood] [3]]1([2];

good=sched [
}

i++)
+ best[1]

i<hours;
] [task now]=0;
best[Jj+1] [task now]

1] [task now]

i++)

i--)
=sched[i-

i] [good] [31];

[task now];

=task[task now] [n];

] [O]+task[task now] [n]==task[task now] [4])

/**************************************k****************************

* Function:
*

* Purpose:

LEDs

- 66 -

Give the outputs of the NIOS II core specific values

&

&

* to toggle the LEDs
*

*

**/

void led(int hour)

{

IOWR ALTERA AVALON PIO DATA (PIO_LEDO BASE, best[hour] [0
IOWR_ALTERA AVALON PIO DATA (PIO LEDl1 BASE, best[hour] [l
IOWR_ALTERA AVALON PIO DATA (PIO LED2 BASE, best[hour] [2
IOWR ALTERA AVALON PIO DATA (PIO_LED3 BASE, best[hour] [3
IOWR ALTERA AVALON PIO DATA (PIO_LED4 BASE, best[hour] [4
IOWR ALTERA AVALON PIO DATA (PIO_LEDS BASE, best[hour] [5
IOWR_ALTERA AVALON PIO DATA (PIO LED6 BASE, best[hour][6
IOWR_ALTERA AVALON PIO DATA (PIO_LED7 BASE, best[hour] [7
IOWR_ALTERA AVALON PIO DATA (PIO _LED8 BASE, best[hour][8
IOWR_ALTERA AVALON PIO DATA (PIO_LED9 BASE, best[hour] [9
(

IOWR_ALTERA AVALON PIO DATA (PIO LED10 BASE,
best [hour] [10]) ;

IOWR ALTERA AVALON PIO DATA(PIO LED1l1 BASE,
best [hour] [11]);

IOWR ALTERA AVALON PIO DATA (PIO_LEDl 2_BASE ’
best [hour] [12]);

IOWR ALTERA AVALON PIO DATA (PIO LED13 BASE,
best [hour] [13]);

IOWR ALTERA AVALON PIO DATA (PIOiLEDl 47BASE ,
best [hour] [14]);

IOWR ALTERA AVALON PIO DATA (PIOiLEDl 57BASE ,
best[hour] [15]);

IOWR_ALTERA AVALON PIO DATA (PIO LED16 BASE,
best[hour] [16]);

IOWR ALTERA AVALON PIO DATA (PIOiLEDl 7 _BASE,
best[hour] [17]);

}

/**

* Function: main
*

* Purpose : Just do it
*

*****************~k~k***/

int main ()

{

Initialization ()

int repeat;
for (repeat=repeat times; repeat>0; repeat--)
for (1i=0; ii<tasknumber; ii++)
go (ii);

while (1)
{
int tmp;
tmp = IORD ALTERA AVALON PIO DATA(PIO KEY BASE);
switch (tmp)
-67-

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

}

return 0;

0x00:
0x01:
0x02:
0x03:
0x04:
0x05:
0x06:
0x07:
0x08:
0x09:

Oxa:
Oxb:
Oxc:
Oxd:
Oxe:
Oxf:

0x10:
Ox11:
0x12:
0x13:
0x14:
0x15:
0x16:
0x17:

led (0) ;break;
led (1) ;break;
led (2) ;break;
led (3) ;break;
led (4) ;break;
led (5) ;break;
led (6) ;break;
led (7) ;break;
led (8) ;break;
led (9) ;break;
led (10) ;break;
led(11) ;break;
led (12) ;break;
led (13) ;break;
led (14) ;break;
led (15) ;break;
led (16) ;break;
led (17) ;break;
led(18) ;break;
led(19) ;break;
led (20) ;break;
led (21) ;break;
led (22) ;break;
led (23) ;break;

-68-

XI. Appendix

In this appendix, | would like to describe the operating instructions about using

Quatus Il and NIOS II.

| start with design entry using schematics since all the modules are visible and
the project becomes more intuitively clear than using Verilog Code as my top

level entity.

First of all, create a project in Quatus Il and assign the device. In the Quartus Il
software, select File -> New Project Wizard. Create a working directory for the
project and then type a name for the top-level design entity. Assign a specific
FPGA device in Family & Device Settings. In this project, since DE2 board is
choosing, we need to change the Device family to Cyclone Il and select

EP2C35F672C6 as our device. Then Finish.

-
Mew Project Wizard: Family & Device Settings

[page 3 of 5]

C)

Select the family and device you want to target for compilation.

Show in ‘Available device' list

Device famil
Farnily: H%yclone I

L” Package: Any

Jan

Target device
™ Auto device selected by the Fitter

Awailable devices:

Pin count: Any

Speed grade: | Any

[v Show advanced devices

¥ Specific device selected in ‘Available devices' list r

Mame | Core v... | LEs | Userl/... | Memor... | Embed... | FLL
EP2C20F 42418 1.2 18752 HE 239616 B2 4
EP2C200240C8 1.2¢ 18752 142 ZI9E16 B2 4
EPZC35F484C6 129 33216 322 483840 70 4
EP2C35F484C7 129 33216 322 483840 70 4
EPZC35F484C8 129 33216 322 483840 70 4
E 1.2 4

1 4

1 4

< Back

| Hext > | Finizh |

LM

Figure 29. Specify the device

- 69 -

Create a top-level schematic design file Scheduling.bdf by selecting File -> New,
and choose Block Diagram/Schematic File, then OK.

-
- N
i-- SOPC Builder System N

& Design Files
oy i

State Machine File
Systemerilog HOL File
- Tel Script File
- Yerilog HOL File
- WHDL File

[=]- Memory Files

i i Hexadecimal (IntelFarmat) File

¢ i Memory Initialization File

B Werification/Debugging Files

- In-Syztem Sources and Probes File

- Logic Analyzer Interface File
SignalT ap Il Logic Analyzer File
Vector 'Waveform File

[=)- Other Files

- AHOL Include File

- Block Symbol File

-+ Chain Description File

m

-+ Synopsys Design Constiaints File
- Text File

-

Cancel |

Figure 30.New BDF

Select Tools ->SOPC Builder to configure the NIOS Il on chip system.
SOPC Builder

From Concept to System in Minutes
PCI’ Application

-70 -

“.J Create New System - Altera SOPC Builder - u;ma;m\unnamed.sop:} =& P

File Edit Module System WView Tools Help

System Contents ‘ System Generation

Clock Setti
Compenent Library Target ocl ings

Project Device Family: Cyclone Il - Name Source MHz
-8 New component
Library Remove
+-Avalon Verification Suite
-Bridges and Adapters
~Interface Protocols (h
- Legacy Components Use C. [) Create New System ﬁ
- Memories and Memory Controller:
Peripherals System Mame: m
~PLL -
~Processor Additions Target HOL: @ Veriog
~Processors
5.5
Video and Image Processing

Clock Base End

@) VHDL

‘@ Info: Specify a new system name. ‘

L T —

v L — ! v

Edit Add Remove Edit. = -~ hd x Address Map.

(@ Info: No errors or warnings.

o e [] e

Figure 31.SOPC System
Select Library -> Processors -> NIOS Il Processor to open the wizard as
shown below to configure our CPU component. Click Finish

. Nios 1T Processor - cpu 0 ——

%& Nios II Processor
Cofe Neas 1l
Select a Nos N core:

ONios Ilfe CNios llfs Nios IF
1 RSC RISC RISC

Nies Il T2-bit -2 £

Saiecter Gue instruction Cache Instruction Cache

Famby: Cyeione i Dranch Prediction Branch Precichon

Hardware Mustiply Hardware Mutioly'
wysen: 0.0 Mz Hardware Divide Hardware Davide.
epud O Barred Shifter
Duta Cache
Dynamic Branch Prediction
Pertormance &t 500 MMz Up to 5 DUPS Upia 25 DMFS Upte 51 DMPS.
Logic Usage B00-700 LEs 1200- 1600 LEs 1400-180% LEs.
Hardware Wutol' Embedded Uuliphers - Hardware Covide
© Velea aeet image Froceaang
Reset Vector Uemery. x Offset oxt
Exception Vecior Unsery - Ot [0
Ichude LA
Oty when cl g 5y
Fasd TLB Mins Fxceplion Veclsr. Mamny: - | oreee
Fokide VR
Wamning Beast vector and Eroeption vector cannot be et untl mmscey devicms are cormected o e Hios | precessar
'
Cancel e F h
x

Figure 32.NIOS Il Processor

The NIOS IlI/f we chose is with the best performance compared to the NIOS ll/e
and NIOS ll/s. Even though we do not need this high performance in our project,
| decide to use SDRAM, which has 8MB, as our memory and we do not really
care about the extra memory space by choosing the high performance. In some
other cases, when we use on chip memory, which has very small memory space
like several KB, high performance processors may not be able to be used since
there may not be enough memory space to support it.

-71-

Choose Library -> Interface Protocols -> Serial -> JTAG UART to open wizard
and add JTAG UART by clicking Finish. See the figure below.

-
Component Library 1) JTAG UART - jtag_uart_0 lﬂ

Project
LIt New component “ JTAG UART

“Avalon Verification Suite
- -Bridges and Adapters
EhInterface Protocols

ASI

Ethernet

-H\gn Speed

> Simulation >

Write FIFO (Data from Avalon to JTAG)

PC |
[=-Serial
@ Avalon-ST JTAG Inte [T] Construct using registers instead of memory blocks.
@ Avalon-ST Serial Per
@ SPI(3 Wire Serial}
@ UART (RS-232 Seria Buffer depth (bytes): |64 = IRQ threshold: |3
--Legacy Components
- Memories and Memery Controller: [] Construct using registers instead of memory blocks.
-Peripherals
PLL
--Processor Additions.
=l-Processors
i @ Nios Il Processor
5LS
Video and Image Processing

Buffer depth (bytes): | 64 v' IRQ threshold: |5

Read FIFO (Data from JTAG to Avalon)

[cancel || < Backe | [Wext >|[Finizh |

Figure 33. JTAG UART

Choose Library -> Memories and Memory Controllers -> SDRAM -> SDRAM
Controller to open the wizard as shown below and add SDRAM to our system.

Eompanent Livary -
Peojmet [4 SORAM Conroller - sdram.0 —p—
il New compenent
Library m SDRAM Controller -
Avakn Verification Sule &‘l. Resummntation

+i- Brcges ssd Adapters
Pterface Frotecsis
i a5t
% Ethernst
+i-High Spesd
i P Presets: | Custom -

Diata wish
Bex 16 -
P13 Wire Serinl)
UART (AS-232 Seral Po Architechure
+i- Lepacy Camponents
=i-Memones and Memary Controlers Chip select: 1 » Banin 4 -
* ODR 1 and ODR I+ SRAM CF
FLDRAM B Centreler with Uj Address wiging
s Traffic Ganerator as BT | — s
- Duda
% Fash
% On-Chig Share pins via kistats bridge
-+ SORAM

Corrnler nnares dyidqminasr ¥ pna
DOR SDRAM Controter | = o

DOR SOAAN Hgh Pertel

Trindate bei selectnn

DOR2 SCAAM Controler .

oD SOEAM tigh Part|

DORY S0RAM tugh Perfi Ganend memory model (simulation onty)

5 SRAN W Bciede 8 functionsl memory model in the System lealench

i+ -Pargherss
3-ALL Uemory 324 = 8 Milyles
i Precessse Addtens 4154304 x 16
= Processors s

o Processsr
#-5L5

¥l isen and mape Processing

»®

Figure 34. SDRAM Controller

The configuration of this SDRAM Controller including Timing Setting is described
in the report at page 22 in details.

-72 -

Click module CPU in the component list we have already built, update Reset
Vector and Exception Vector as shown in figure below. Then click Finish.

4 Mios I Processor - cpu

Nios II Processor

" Caches and Memory Inlerfoces > Advarced Features > MU and MPU Sellings

ore Mios 11

Core Nios 1|

Sebect a Hios B core:
ENIM e OMios s ONios I
| RISC RISE RESL
Nios Il 32-bat 3358 320
Selector Guise Instruction Cache Watruction Cache
Faady: Cychast Branch Prediction Branch Prediclin
Hardware Multiply Hararnre Mutiphy E
LA T Wardware Daide Hargware Diide
ol 0 Rarrml Shiftar
Data Cache
Dynamic Branch Prediction
Perfurmance al 50.0 WHz Uplo § DMPS. Up lv 25 DUPS Up to §10MIPS
Logs Usspe 800-T00 LEs 1200-1400 LEs 1400- 1800 LEs v
Hurswnre Mutiesy: Hars
e$e1 Vector: Memory” ' sdram w OfiSet 0y 0xD0BO000D
weeption Versse: Memory | saram » Offset gu3n NS00
Crly nchide the NMU when using an upersing sysiem thal explally supports sa MUU
Fnst TLB Miaa Euception Vecser Memary Otaet 10
Cameal weke | [Haxt 3 |[Esnaeh

Figure 25. Nios Il Processor Memory configuration

Choose Library -> Memories and Memory Controllers -> Flash -> Flash
Memory Interface (CFI) to open the wizard to add the Flash Memory Interface
as shown below.

E-interface Pratocols 1 Flash Memory Interface (CFI) - cfi_flash % " s

Flash Memory Interface (CFI)

m

[=+-Serial
@ Avalon-5T JTAG Interface

Avalon-ST Serial Peripheral Interface (S

JTAG UART

SPI(3 Wire Serial)

@ UART (RS-232 Serial Port)

-Legacy Components

Timing

Presets: | Custom

[=l--Memeries and Memory Controllers Size
@ QDR lland QDR I+ SRAM Controller with Uni Address Width (bits): (22 -
RLDRAM Il Controlier with UniPHY =
- @ Traffic Generator and BIST Engine Data Width (bits): 8 -
[-DMA
[=+-Flash

Create an interface to any industry-standard CFl (Commen Flash Interface}-compliant
flash memory device. Select from a list of tested flash memories or provide interface
and timing information for a CFI memory device which does not appear on the list.

-~ @ CompactFlash Interface (True IDE Mode]_|
@ EPCS Serial Flash Controller
@ Flash Memory Interface (CFI}

g"ggﬁ'r‘:’ [(3) Info: Flash memory capacty: 4.0 MBytes (4194304 byles).

DDR SDRAM Controller MegaCore Funct
DDR SDRAM High Performance Controlle
DDR2 SDRAM Controller MegaCore Func
DDR2 SDRAM High Performance Control
DDR3 SDRAM High Performance Control
@ SDRAM Controller 4! ———— ——————

Figure 26. Flash Memory Interface (CFl)

-73-

The configuration of this Flash Memory Interface (CFl) including Timing Setting is
also described in the report at page 22 in details.

Look back to Figure 4, the example of a NIOS Il Processor System, Tristate
Bridge is needed for the system to connect off-chip memory, like Flash Memory.
Choose Library -> Bridges and Adapters -> Memory Mapped -> Avalon-MM
Tristate Bridge to open the wizard as shown below to add the Tristate Bridge.

Library
B)-Avalon Veri

[=-Bridges and Adapters
E -Memory Mapped
i« @ Avalon MM DDR Memory Half Rate Bridge
@ Avalon-MM Clock Crossing Bridge
@ Avalon-MM Pipeline Bridge
- @ Avalon-MW Tristate Bridge
- @ JTAG to Avalon Master Bridge

1 Avalon-MM I nstate Bnidge - tn_state_bndge_0

ification Suite

Avalon-MM Tristate Bridge

{| Documentation I

> Shared Signals

H @ 5PlSlave to Avalon Master Bridge
-Streaming
-interface Protocols
Legacy Components
#-Memories and Memory Controllers.
--Peripherals

(@ Registered
Increases off-chip fmax, but also increases latency.
() Mot registered

Reduces latency, but also reduces fmax.

-PLL

--Processors
5L

Processor Additions |

Video and Image Processing

Note: Check the input setup times analysis in the Quartus compilation report
to be sure your bus inputs meet system-level timing requirements.

Outgoing address and control signals are always registered

[cancen || < Beck | [mext 2| [Eimisn]

Figure 37. Tristate Bridge

Remember to connect the Tristate Bridge from the Tristate Master side to the
Tristate Slave side of Flash Memory. See figure below.

= cfi_flash

H| 51

tri_state bridge 0

Flazh Memory Interface (CFl)
Avalon Memory Mapped Tristate Slave
Awvalon-MM Tristate Bridge

clk_50

avalon_slave
tristate_master

Avalon Memory Mapped Slave
Awvalon Memory Mapped Tristate Master

clk_50

Figure 38. Connection between Tristate Master and Tristate Slave

Choose Library -> Peripherals -> Microcontroller Peripherals -> PIO (Parallel
1/0) to open the wizard to add the Parallel inputs and outputs as shown below.

- 74 -

Library 1 PIO (Parallel I/O) - pio_LED10 &
valon Verification Suite

ridges and Adapters “ PIO (Para"el Ilo) =

terface Protocols

egacy Components

Memories and Memory Controllers
[=-Peripherals

: Debug and Performance
Display

FPGA Peripherals Width
icrocontroller Peripherals
Interval Timer

PIO {Parallel V0)

Multiprocessor Coordination Direction

Basic Setings | » InputOptions > Simulation

Width (1-32 bits} : [4

m

E-PLL)))
[-Processor Additions _) Bidirectional (tristate) ports
[(-Processors -

() Input ports on
@58 D Input ports. only
(-Video and Image Processing () Both input and output ports

@ Output ports only

Output Port ResetValue =
Reset Value: | 0x0
CQutput Register

|:| Enable individual bit setting/clearing

4 11 +

Figure 39. Parallel I/0

Since we need to use 18 LEDs to demonstrate the arrangement of tasks and a
KEY input to control the hours, 18 4-bits wide output and 1 5-bits wide input are
created in SOPC as shown below.

& pio_L)]

— 51 Avalon Memory Mapped Slave clk_50
B pio_LED1 FIO (Parallel VO)

[— s1 Avalon Memory Wapped Slave ck_S0
B pio_LEDZ FIO (Paraliel U0}

P s1 Avalon Memory Mapped Slave clk_50
B pio_LED3 PIO (Parallel U0}

[s1 /Avalon Memory Mapped Slave ck_50 0x01803030 |0x0180303F
B pio_LED4 PIO (Paraliel VO)

[— =1 Avalon Memory Mapped Slave ck_50 0x01803040 |0x0180304F
& pio_LEDS PIO (Parallel O}

[— s1 ‘Avalon Memory Mapped Slave clk_50 0z01B03050 [0x0180303F
E pio_LEDE PIO (Parallel VO)

— s1 Avalon Memory Mapped Slave ck_50
B pio_LEDT FIO (Parallel VO)

e s1 Avalon Memory Mapped Slave clk_50
B pio_LEDS PIO (Paraliel 0}

P s1 Avalon Memory Mapped Slave clk_50
B pio_LEDS PIO (Parallel U0}

[— s1 Avalon Memory Wapped Slave ck_50

— 51 ‘Avalon Memory Mapped Slave ck_50 0x0180300 |0x018030af
E pio_LED11 PIO (Parallel O}

[— s1 ‘Avalon Memory Mapped Slave clk_50 0z01B030b0 [0x018030bE
B pio_LED12 FIO (Paraliel VO)

— s1 Avalon Memory Mapped Slave ck_50 0x015030c0 |0x018030cE
B pio_LED13 FIO (Parallel VO)

F— s1 /Avalon Memory Mapped Slave ck_S0 0x018030d0 |0x018030df
B pio_LED14 PIO (Paraliel 0}

P— 51 /Avalon Memory Mapped Slave ck_50 0x018030e0 |0x018030ef
B pio_LED1S PIO (Parallel U0}

] s1 /Avalon Memory Mapped Slave ck_50 0x0180300 |0x018030E
& pio_LED1B PIO (Parallel VO)

P 51 ‘Avalon Memory Mapped Slave ck_50 0x01803100 |0x0180310F
= pio_LED17 PIO (Parallel O}

[— s1 Avalon Memory Mapped Slave ck_s0 0x01803110 |0x0180311F
B plo_KEY' FIO (Paraliel VO)

— El Avalon Memory Mapped Slave clk_S0 0x01803120 0x0180312f

Figure 40. Parallel /O setup

Choose System -> Auto-Assign Base Addresses. After these base addresses
are assigned, choose File -> Refresh System. No errors would be displayed in
the message window as shown in the figure below

-75-

Figure 41. No errors

Generate the system and exit the SOPC builder after the system is successfully
generated.

In Quatus I, choose Edit -> Insert Symbol... and you will find the system
module we just created in Libraries.

s -
Symbal . &J
Libravies: out_port_from_the_pio_LED14[3. 0] et -
E & Projsct X
LEF hiighthess

H N out_port_from_the_pio_LED15(3.0] e -
=B hours_display —port_Irom_the_plo_ =01 .

LEF Ipm_constantl

sdram_pll

mple_counter
n_[

out_port_from_the_pio_LED16[3..0] (e -

out_port_from_the_pio_LED17[3..0] pe

m_|
ridLbit

B3 DEZ_Board o out_port_from_the_pio_LEDZ[3. 0] (e -
23 e:altera’d! Aquartus/libraries! .

out_port_from_the_pic_LED3[3..0] |- -

out_port_from_the_pio_LED4[3..0] je

4 1 r

Mame: out_port_from_the_pio_LEDS[3..0] e
|systemj J

™ Repeatinzert mode :
™ Ingert symbol as block out_port_from_the_pio_LEDT[3..0] = -

-

out_port_from_the_pio_LEDS[3..0] f=— :

out_port_from_the_pio_LEDS[3..0] = :

tMegawizard Plug-In Manager... | L

oK | Cancel |

Figure 42. Insert Symbol
Click OK and put the module at anywhere in the schematic file we created.
Next we need to use Quartus to add a Phase Lock Loop (PLL) Megafunction.
Choose Edit -> Insert Symbol.

Click Megawizard Plug-In Manager and following window would appear.

-76 -

MegaWizard Plug-In Manager [page 1] ﬁ

The Megavwizard Plug-ln kanager helps you create or modify
dezign files that contain cugtom wariations of megafunchions.

Wwhhich action do you want bo perform?

* Create a new custom megafunction sariation
(" Edit an existing custom megafunction wariation

" Copy an existing custom rmegafunction vaniation

Copyright [C]1997-201 0 Altera Corporation

Cancel | | Mewut > | |

Figure 43. Megawizard Plug-In Manager Page1
Click Next.

Choose I/0 -> ALTPLL. Under “Which device family will you be using’,
choose Cyclone Il since we are using DE2 FPGA development, which is
embedded with Altera’s Cyclone Il device. Choose Verilog HDL and give this
PLL module a new name like sdram_pll. Then click Next.

. MegaWizard Plug-In Manager [page 2a] (3=

Which megafunction would you like to customize? Wwhich device Family will you be Cyclone || v
7
Select a megafunction from the list below e

= ‘which twpe of output file do you want to create?
£ AHDL
£ WHDL
(7] ALTASMI_PaRALLEL ' Veilog HDL
1] ALTCLKCTRL .
E s
A ALTODIO_BIDIR ‘what name do you want for the output file? Browse.
ALTDDIO_IM E \MyPrUiecl\Schadualing\Scheduling{sdram_pll
-7 aLTODIO_DUT
[aLTDR
e = I~ Retum to this page for another create operation
ALTDOS J

Mote: To compile a project successhully in the Quartus || software,
your design files must be in the project directary, in the glabal user
libraries specified in the Options dialog bax (Taals menu). or a user
library specified in the User Libraries page of the Settings didlog
i box [Aszignments menu).
-] ALTLYDS

Your current uger library directaories are:

Cancel ‘ < Back | Mest » | |

Figure 44. Megawizard Plug-In Manager Page2
-77 -

Configure the ALTPLL followed by the figures shown below.

MegaWizard Plug-ln Manager [pege 1o 81) —] D e B

O U ity Ao atine rige denvices only
Whatis the freauency of the indodd inpus?

L] St g0 PLL 1 LYDPS mode Dataraie: [30000 | v

P type
Which PLL iype wll you be using?)
C PastiyL
) Erharcrd P
+ Select the PLL type automatically
COperaton mode
Hm vl the PLL outpas ba gereisted
Use the feedback path Frsde the FLL
= In Homal Mode
1 In Searce Syrehroncun Comperaghion Made
- In Zevo Delay Buffer Mode
[Cannect e fmamc port hdeecaonal)
e e CompETEA
O Create an o input for n extemal feedback (Extemal Feedback Mode)

Which cusout clock il be compereated for? e [

| I T |

Figure 45. Step 1 PLL configuration
MegaWizard pluﬂManaanm&m T e

ALTPLL

cl

Able to implement the requested PLL

sdram_pll

—Optional inputs

Linclkd

inclkD frequency: 50.000 MHz =0

tion Mode: Narmal

[greate an ‘pllens input to selectively enable the PLL }

[] Create an ‘areset input to asynchronously reset the PLL
[] Create an ‘pfdena’ input to selectively enable the phase/freq. detector

I Tyaiane || plEsEsiEn
|] Create focked output |
[Enable selfreset on loss of lock
r - Advanced PLL parameter

Using these parameters is recommended for advanced users only
[Create output file(s) using the ‘Advanced PLL parameters
- Configurations with output dock(s) that use cascade counters are not supported

[cancel [<Back || Mext> || Emish |

Figure 46. Step 2 PLL configuration

-78 -

MegalWiard Plug-ln Manage: [page dof SLL
= a ALTPLL

— - f) - Core External Output Clock.
| b e enlemen the recuested UL

= Enter utput deck frequency:

Enter st clack parameters:
Dok mtiaton lacir

Clock ghvision factor & IR

ok phase shift

Clock dyty cyde (%) s00 [=0
More Detals »» |

Per Clock Feasbity Indcators

‘ o | <o | > | B |
Figure 47. Step 3 PLL configuration
Then Finish.

Then insert this module in the schematic like we did for adding the system
module.

Create other components modules and name the connecting wires between
them, and then we could obtain the schematic in Figure 5. After assigning the pin
assignment, compiling the project and downloading the sof file to the board, we
finish the hardware design part. We could close the Quartus Il Programmer or
leave it open in the background.

Open Nios Il IDE.

Choose File -> Switch Workspace to set the workspace to your project folder.

B Workspace Launcher @
Select a workspace

Mios 11 IDE stores your projects in a folder called a workspace.

Choose a workspace folder to use for this session.

Workspace: E\MyProject\Schedualing\Scheduling v [Browse..

Figure 48. Switch Workspace
-79-

Choose File -> New -> NIOS Il C/C++ Application to open the New Project
Wizard.
-

B New Project

Nios II C/C++ Application »
Click Finish to create application with a default system library as E:\MyProject

\Schedualing\Scheduling\software\Scheduling

Name: Scheduling

7] Specify Location

E\MyProject\Schedualing\Scheduling\software Browse...

Select Target Hardware.
SOPC Builder System PTF File: EA\MyProject\Schedualing\Scheduling\system_0.ptf «

CPU: cpu - l

Select Project Template

Board Diagnostics Description

Count Binary = Reads from a file system in flash memory

Hello Freestanding -

Hello MicroC/OS-II Details

Hello World Zip File System reads a zip file system that you program =
Hello World Small E into flash memary, opens two text files from the file |E|
Memary Test system, and prints each of their contents to STDOUT. L
Simple Socket Server

Web Server This software example runs on the following Nios II

Zip File System L =
@ | < Back][Next > | [== | [Cancel

Figure 49. New Project

Then fill the code in the part “Coding in NIOS II”.

Choose Tools -> Flash Programmer. Under Flash Programmer, create a new
flash programmer and configure it. See the figures below.

-80-

B Flash Programmer

Program project to flash memory on target board

@rrarget Connection]: Select a JTAG cable. If none are available, you must install one first.

@

Name: flash programmer

type filter text

LI Main m‘rarge\t Connection
=-4g Flash Programmer

.@ flash prcgrammer Target Board: CYCLONEIIL <no target board specified in the SOPC Builder system=
[[7] Program software project into flash memory]

Project:

scheduling 0

Debug/scheduling_0.elf

Search...
Target Hardware

E\MyProject\Schedualing\Scheduling\system_0.ptf
cpu

Additional nios2-flash-programmer arguments:

Additional sof2flash arguments:

[7|Program FPGA configuration data into hardware-image region of flash memary

EAMyProject\Schedualing\Scheduling\DE2_NIOS.sof

Custom Memory: cfi_flash Offset: | 0x0

[7] Program a file into flash memory

File: E:\MyProject\Schedualing\Scheduling\scheduling 0 syslib\files.zip

Memaory: | cfi_flash - Offset: 0x100000
Validate Nios II system ID before software download

Figure 50. Flash Programmer

Offset must be 0x100000 in this case. Then click Program Flash. Following
messages would appear and that is fine.

Choose Project -> Properties to open the wizard and choose Associated
System Library, then click System Library Properties..

-81-

BB FProperties for scheduling_0 L |

type filter text Associated System Library L=10 4 -
-~ Info)
|- Assaciated System Library Roiect
—Builders Target: Nios II Application
-~ CfC++ Build System Library: scheduling_0_syslib

- CfC++ Documentation
- CfC++ File Types

- CfC++ Include Paths and £ l| System Library Propeﬂiesmﬂ
- CfC++ Indexer

- CfC++ Make Project

- CfC++ Project Paths

- Project References

Mote: A rebuild of this project is recommended if the associated system library is changed.

B Help ’Restore Qe{aults] ’ Apply
] . b

| ok || cancel

Figure 51. Properties of the project

Remember to set the memory location to SDRAM and uncheck Small C library.
Small C library has no file relate operation command. See the figure below.

BB Properties for scheduling_0_syslib 5], -l
type filter text System Library f=IR -
Info
Builders Target Hardware

- CfC++ Build SOPC Builder System: | E\MyProject\Schedualing\Scheduling\system_0.ptf Browse...
C/C++ Documentation
-+ CfC++ File Types
-+ C/C++ Include Paths and ¢ System Library Contents Linker Script
C/C++ Indexer
-+ C/C++ Make Project
- CfC++ Project Paths RTOS Options ... Dels Select...

CPU: cpu

RTOS: Inone (single-threaded) vl (©) Custom linker script

Project References

T tdout: it rt
® System Library| staeu Il gais

@ Use auto-generated linker script

|
stderr: Iitag_uarl vl Program memory (text): sdram -
stdin: [tag_uart v| | Read-only data memory (rodata):
System clock timer: Inone vl Read/write data memory (.rwdata):
Timestamp timer: lnmne vl Heap memory:
Max file descriptors: 32 Stack memory:
] Program never exits Clean exit (flush buffers) [7] Use a separate exception stack
Support C++ "] Reduced device drivers Exception stack memory:
[Tl Lightweight device driver AP . . . ‘
[Link with profiling library T ModelSim only, no hardware support || 1 imum exception stack size (bytes):

[C]Unimplemented instruction handler [] Run time stack checking

Software Components...

Help] [Reslore De’lau\ls]

ok][conce

Figure 52. System Library

-82 -

Then click Software Components, check the following information to make sure it
is right.

BB Software Components

(= |
- Altera Host Based File System | Altera 7ip Read-Only File System
Altera Zip Read-Only File Syste
NicheStack TCP/IP Stack

Specify a Zip file to include in the HAL file system. The contents become available via C standard library functions, such as fopen().
[7] Add this software component

ke ey A |cﬂ_{|a;h -]

Offset 0x100000

Mount-point mntjrozipfs

Zip file (must be uncompressed) | files.zip

Browse...

.

Restore Defaults

Figure 53. Software Components

Finally, build up our project and Debug it and we could see the results on FPGA.

-83-

REFERENCES

[1] “The smart grid: An introduction,” U.S. Dept. Energy, 2009.

[2] M. Shinwari, "A Water-Filling Based Scheduling Algorithm for the Smart Grid."
Smart Grid, IEEE Transactions on., vol. 3(2): 710-719, Feb. 2012

[3] R. Krishnan, “Meters of tomorrow,” IEEE Power Energy Mag., vol. 6, pp. 92—
94, Mar. 2008.

[4] (2009). "Ontario's MicroGeneration Feed-Tarriff." Available:
http://renaud.ca/wordpress/?tag=cost-of-electricity

[5] “Ontario demand and market prices,” Independent Electricity System
Operator, Sep. 2011 [Online]. Available: http://www.ieso.ca

[6] (2012). “How does Power Stoplight help the environment?” Available:
http://www.powerstoplight.com/?page id=10

[7] A. Lew and H. Mauch, Dynamic Programming: A Computational Tool.
Springer-Verlag Berlin Heidelberg 2007

[8] (2013) “Ontario Hydro Rates: Time-of-use Pricing”, Apr. 2013, Available:
http://www.ontario-hydro.com/index.php?page=current_rates

[9] M. J. Osborne and A. Rubinstein, A Course in Game Theory. Cambridge, MA:
MIT, 1994.

[10] Osborne, Martin J., and Ariel Rubinstein. A Course in Game Theory.
Cambridge, MA: MIT, 1994. Print

[11] Barr, N. (2004). Economics of the welfare state. New York, Oxford
University Press (USA)

[12] Nash, J. F. "Non-Cooperative Games." Ann. Math. 54, 286-295, 1951.
[13] “DEO-Nano Development and Education Board,” Altera, Available:

http://www.altera.com/education/univ/imaterials/boards/de0-nano/unv-de0-
nano-board.html

[14] “Cyclone Il Device Handbook,” Altera, Available:
http://www.altera.com/literature/hb/cyc2/cyc2 cii5v1.pdf

-84 -

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5165411
http://renaud.ca/wordpress/?tag=cost-of-electricity
http://www.ieso.ca/
http://www.powerstoplight.com/?page_id=10
http://www.powerstoplight.com/?page_id=10
http://www.ontario-hydro.com/index.php?page=current_rates
http://en.wikipedia.org/wiki/Ariel_Rubinstein
http://www.altera.com/education/univ/materials/boards/de0-nano/unv-de0-nano-board.html
http://www.altera.com/education/univ/materials/boards/de0-nano/unv-de0-nano-board.html
http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf

[15]

[16]

[17]

[18]

[19]

“Nios Il Processor Reference Handbook,” Altera, Available:
http://www.altera.com/literature/lit-
nio2.isp?GSA pos=1&WT.oss r=1&WT.0ss=NI0S%2011%20Processor%

20System

Manual for Breville the Smart Oven, Available:
http://www.brevilleusa.com/media/mediaappearance/4539/BOV800XL.pdf

Manual for Breville the Risotto Plus, Available:
http://www.brevilleusa.com/media/mediaappearance/12563/BRC600XL |
B A12 FA LowRes.pdf

Features for Samsung 7.5 cu. Ft. King-size Capacity, Electric Touch
Screen LCD Front-Load Dryer, Available:
http://www.samsung.com/us/appliances/washers-
dryers/DV457EVGSGR/AA-specs

“Estimating Appliance and Home Electronic Energy Use”, Energy.gov,
August 31, 2012, Available:
http://energy.gov/energysaver/articles/estimating-appliance-and-home-
electronic-energy-use

-85-

http://www.altera.com/literature/lit-nio2.jsp?GSA_pos=1&WT.oss_r=1&WT.oss=NIOS%20II%20Processor%20System
http://www.altera.com/literature/lit-nio2.jsp?GSA_pos=1&WT.oss_r=1&WT.oss=NIOS%20II%20Processor%20System
http://www.altera.com/literature/lit-nio2.jsp?GSA_pos=1&WT.oss_r=1&WT.oss=NIOS%20II%20Processor%20System
http://www.brevilleusa.com/media/mediaappearance/4539/BOV800XL.pdf
http://www.brevilleusa.com/media/mediaappearance/12563/BRC600XL_IB_A12_FA_LowRes.pdf
http://www.brevilleusa.com/media/mediaappearance/12563/BRC600XL_IB_A12_FA_LowRes.pdf
http://www.samsung.com/us/appliances/washers-dryers/DV457EVGSGR/AA-specs
http://www.samsung.com/us/appliances/washers-dryers/DV457EVGSGR/AA-specs
http://energy.gov/energysaver/articles/estimating-appliance-and-home-electronic-energy-use
http://energy.gov/energysaver/articles/estimating-appliance-and-home-electronic-energy-use

	DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DISCRETE POWER LEVEL SMART HOME SCHEDULING USING FPGA
	Recommended Citation

	Report Advisor: Shiyan Hu
	Committee Member: Sumit Paudyal
	Committee Member: Chaoli Wang
	Department Chair: Daniel R. Fuhrmann

