168 research outputs found

    A low power and high performance hardware design for automatic epilepsy seizure detection

    Get PDF
    An application specific integrated design using Quadrature Linear Discriminant Analysis is proposed for automatic detection of normal and epilepsy seizure signals from EEG recordings in epilepsy patients. Five statistical parameters are extracted to form the feature vector for training of the classifier. The statistical parameters are Standardised Moment, Co-efficient of Variance, Range, Root Mean Square Value and Energy. The Intellectual Property Core performs the process of filtering, segmentation, extraction of statistical features and classification of epilepsy seizure and normal signals. The design is implemented in Zynq 7000 Zc706 SoC with average accuracy of 99%, Specificity of 100%, F1 score of 0.99, Sensitivity of  98%  and Precision of 100 % with error rate of 0.0013/hr., which is approximately zero false detectio

    A low power and high performance hardware design for automatic epilepsy seizure detection

    Get PDF
    An application specific integrated design using Quadrature Linear Discriminant Analysis is proposed for automatic detection of normal and epilepsy seizure signals from EEG recordings in epilepsy patients. Five statistical parameters are extracted to form the feature vector for training of the classifier. The statistical parameters are Standardised Moment, Co-efficient of Variance, Range, Root Mean Square Value and Energy. The Intellectual Property Core performs the process of filtering, segmentation, extraction of statistical features and classification of epilepsy seizure and normal signals. The design is implemented in Zynq 7000 Zc706 SoC with average accuracy of 99%, Specificity of 100%, F1 score of 0.99, Sensitivity of  98%  and Precision of 100 % with error rate of 0.0013/hr., which is approximately zero false detectio

    Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation

    Get PDF
    The epileptogenic focus is a brain area that may be surgically removed to control of epileptic seizures. Locating it is an essential and crucial step prior to the surgical treatment. However, given the difficulty of determining the localization of this brain region responsible of the initial seizure discharge, many works have proposed machine learning methods for the automatic classification of focal and non-focal electroencephalographic (EEG) signals. These works use automatic classification as an analysis tool for helping neurosurgeons to identify focal areas off-line, out of surgery, during the processing of the huge amount of information collected during several days of patient monitoring. In turn, this paper proposes an automatic classification procedure capable of assisting neurosurgeons online, during the resective epilepsy surgery, to refine the localization of the epileptogenic area to be resected, if they have doubts. This goal requires a real-time implementation with as low a computational cost as possible. For that reason, this work proposes both a feature set and a classifier model that minimizes the computational load while preserving the classification accuracy at 95.5%, a level similar to previous works. In addition, the classification procedure has been implemented on a FPGA device to determine its resource needs and throughput. Thus, it can be concluded that such a device can embed the whole classification process, from accepting raw signals to the delivery of the classification results in a cost-effective Xilinx Spartan-6 FPGA device. This real-time implementation begins providing results after a 5 s latency, and later, can deliver floating-point classification results at 3.5 Hz rate, using overlapped time-windows

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems

    Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing

    Get PDF
    Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its nonlinear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both EEG and EMG biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90% and 84% for epileptic seizure detection and EMG prosthetic finger control respectively

    Scalable Digital Architecture of a Liquid State Machine

    Get PDF
    Liquid State Machine (LSM) is an adaptive neural computational model with rich dynamics to process spatio-temporal inputs. These machines are extremely fast in learning because the goal-oriented training is moved to the output layer, unlike conventional recurrent neural networks. The capability to multiplex at the output layer for multiple tasks makes LSM a powerful intelligent engine. These properties are desirable in several machine learning applications such as speech recognition, anomaly detection, user identification etc. Scalable hardware architectures for spatio-temporal signal processing algorithms like LSMs are energy efficient compared to the software implementations. These designs can also naturally adapt to dierent temporal streams of inputs. Early literature shows few behavioral models of LSM. However, they cannot process real time data either due to their hardware complexity or xed design approach. In this thesis, a scalable digital architecture of an LSM is proposed. A key feature of the architecture is a digital liquid that exploits spatial locality and is capable of processing real time data. The quality of the proposed LSM is analyzed using kernel quality, separation property of the liquid and Lyapunov exponent. When realized using TSMC 65nm technology node, the total power dissipation of the liquid layer, with 60 neurons, is 55.7 mW with an area requirement of 2 mm^2. The proposed model is validated for two benchmark. In the case of an epileptic seizure detection an average accuracy of 84% is observed. For user identification/authentication using gait an average accuracy of 98.65% is achieved

    Massively-parallel bit-serial neural networks for fast epilepsy diagnosis: a feasibility study

    No full text
    There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures

    An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works

    Get PDF
    Epilepsy is a disorder of the brain denoted by frequent seizures. The symptoms of seizure include confusion, abnormal staring, and rapid, sudden, and uncontrollable hand movements. Epileptic seizure detection methods involve neurological exams, blood tests, neuropsychological tests, and neuroimaging modalities. Among these, neuroimaging modalities have received considerable attention from specialist physicians. One method to facilitate the accurate and fast diagnosis of epileptic seizures is to employ computer-aided diagnosis systems (CADS) based on deep learning (DL) and neuroimaging modalities. This paper has studied a comprehensive overview of DL methods employed for epileptic seizures detection and prediction using neuroimaging modalities. First, DLbased CADS for epileptic seizures detection and prediction using neuroimaging modalities are discussed. Also, descriptions of various datasets, preprocessing algorithms, and DL models which have been used for epileptic seizures detection and prediction have been included. Then, research on rehabilitation tools has been presented, which contains brain-computer interface (BCI), cloud computing, internet of things (IoT), hardware implementation of DL techniques on field-programmable gate array (FPGA), etc. In the discussion section, a comparison has been carried out between research on epileptic seizure detection and prediction. The challenges in epileptic seizures detection and prediction using neuroimaging modalities and DL models have been described. In addition, possible directions for future works in this field, specifically for solving challenges in datasets, DL, rehabilitation, and hardware models, have been proposed. The final section is dedicated to the conclusion which summarizes the significant findings of the paper

    EpilepsyNet: Novel automated detection of epilepsy using transformer model with EEG signals from 121 patient population

    Get PDF
    Background: Epilepsy is one of the most common neurological conditions globally, and the fourth most common in the United States. Recurrent non-provoked seizures characterize it and have huge impacts on the quality of life and financial impacts for affected individuals. A rapid and accurate diagnosis is essential in order to instigate and monitor optimal treatments. There is also a compelling need for the accurate interpretation of epilepsy due to the current scarcity in neurologist diagnosticians and a global inequity in access and outcomes. Furthermore, the existing clinical and traditional machine learning diagnostic methods exhibit limitations, warranting the need to create an automated system using deep learning model for epilepsy detection and monitoring using a huge database. Method: The EEG signals from 35 channels were used to train the deep learning-based transformer model named (EpilepsyNet). For each training iteration, 1-min-long data were randomly sampled from each participant. Thereafter, each 5-s epoch was mapped to a matrix using the Pearson Correlation Coefficient (PCC), such that the bottom part of the triangle was discarded and only the upper triangle of the matrix was vectorized as input data. PCC is a reliable method used to measure the statistical relationship between two variables. Based on the 5 s of data, single embedding was performed thereafter to generate a 1-dimensional array of signals. In the final stage, a positional encoding with learnable parameters was added to each correlation coefficient’s embedding before being fed to the developed EpilepsyNet as input data to epilepsy EEG signals. The ten-fold cross-validation technique was used to generate the model. Results: Our transformer-based model (EpilepsyNet) yielded high classification accuracy, sensitivity, specificity and positive predictive values of 85%, 82%, 87%, and 82%, respectively. Conclusion: The proposed method is both accurate and robust since ten-fold cross-validation was employed to evaluate the performance of the model. Compared to the deep models used in existing studies for epilepsy diagnosis, our proposed method is simple and less computationally intensive. This is the earliest study to have uniquely employed the positional encoding with learnable parameters to each correlation coefficient’s embedding together with the deep transformer model, using a huge database of 121 participants for epilepsy detection. With the training and validation of the model using a larger dataset, the same study approach can be extended for the detection of other neurological conditions, with a transformative impact on neurological diagnostics worldwide

    Effective electroencephalogram based epileptic seizure detection using support vector machine and statistical moment’s features

    Get PDF
    Epilepsy is one of the widespread disorders. It is a noncommunicable disease that affects the human nerve system. Seizures are abnormal patterns of behavior in the electricity of the brain which produce symptoms like losing consciousness, attention or convulsions in the whole body. This paper demonstrates an effective electroencephalogram (EEG) based seizure detection method using discrete wavelet transformation (DWT) for signal decomposition to extract features. An automatic channel selection method was proposed by the researcher to select the best channel from 23 channels based on maximum variance value. The records were segmented into a nonoverlapping segment with long 1-S. The support vector machine (SVM) model was used to automatically detect segments that contain seizures, using both frequency and time domain statistical moment features. The experimental result was obtained from 24 patients in CHB-MIT database. The average accuracy is 94.1, sensitivity is 93.5, specificity is 94.6 and the false positive rate average is 0.054
    • 

    corecore