2,320 research outputs found

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    低電力非同期回路の面積高効率化設計

    Get PDF
    Tohoku University亀山充隆課

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    A low cost reconfigurable soft processor for multimedia applications: design synthesis and programming model

    Get PDF
    This paper presents an FPGA implementation of a low cost 8 bit reconfigurable processor core for media processing applications. The core is optimized to provide all basic arithmetic and logic functions required by the media processing and other domains, as well as to make it easily integrable into a 2D array. This paper presents an investigation of the feasibility of the core as a potential soft processing architecture for FPGA platforms. The core was synthesized on the entire Virtex FPGA family to evaluate its overall performance, scalability and portability. A special feature of the proposed architecture is its simple programming model which allows low level programming. Throughput results for popular benchmarks coded using the programming model and cycle accurate simulator are presented

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    A polymorphic hardware platform

    Get PDF
    In the domain of spatial computing, it appears that platforms based on either reconfigurable datapath units or on hybrid microprocessor/logic cell organizations are in the ascendancy as they appear to offer the most efficient means of providing resources across the greatest range of hardware designs. This paper encompasses an initial exploration of an alternative organization. It looks at the effect of using a very fine-grained approach based on a largely undifferentiated logic cell that can be configured to operate as a state element, logic or interconnect - or combinations of all three. A vertical layout style hides the overheads imposed by reconfigurability to an extent where very fine-grained organizations become a viable option. It is demonstrated that the technique can be used to develop building blocks for both synchronous and asynchronous circuits, supporting the development of hybrid architectures such as globally asynchronous, locally synchronous

    Self-timed field programmmable gate array architectures

    Get PDF
    corecore