
978-1-4799-5944-0/14/$31.00 c©2014 IEEE

An A-FPGA Architecture for Relative Timing
Based Asynchronous Designs

Jotham Vaddaboina Manoranjan Kenneth S. Stevens
Department of Electrical and Computer Engineering

University of Utah

Abstract—This paper presents an asynchronous FPGA archi-
tecture that is capable of implementing relative timing based
asynchronous designs. The architecture uses the Xilinx 7-Series
architecture as a starting point and proposes modifications that
would make it asynchronous design capable while keeping it fully
functional for synchronous designs. Even though the architecture
requires additional components, it is observed when implemented
on the 64-nm node, the area of the slice was increases marginally
by 7%. The architecture leaves configurable routing structures
untouched and does not compromise on performance of the
synchronous architecture.

I. INTRODUCTION

FPGAs play a predominant role in digital design world.

As asynchronous design emerges into application in the ASIC

world, there has been a growing interest in high performance

asynchronous FPGAs (A-FPGA). The first of these FPGAs

was proposed in 1994 [1]. Various other FPGAs were also

presented over the years, such as the ones in [2]–[4].

A significant use for an asynchronous FPGA will be to

prototype and model asynchronous ASICs before manufacture.

Increased manufacturing cost on sub-micron process nodes

had made this critical. Clocking in the latest process nodes

consumes a significant amount of power [5]. Also, accounting

for skew in clock distribution has become expensive in term

of design effort. A possible solution to this problem is the use

of local clocking mechanisms rather than a global clock. In

addition to this, creating smaller modules within designs with

independent clocking can reduce the power associated with

clock distribution. Asynchronous circuits inherently achieve

both these improvements. Numerous studies have shown the

power and performance benefits that asynchronous circuits

can provide on ASICs [6], [7]. Specifically, relative timing

based asynchronous designs have shown 2.4×, 2.4× and

3.2× benefits in terms of energy, area and performance re-

spectively, when compared to synchronous versions of the

designs [8]. The relative timing methodology uses explicitly

defined timing constraints to guarantee the conformance of a

circuit to its specification [9]. However, industrial acceptance

of the technology is contingent on trust. This trust in function

and performance can be bolstered with effective prototyping

techniques.

Since most commercial FPGAs are built to target syn-

chronous design, there are unique challenges associated with

implementing asynchronous designs on these chips. Probably

the most critical issue is to do with hazards that may occur in

asynchronous implementations on synchronous FPGAs [10],

[11].

Asynchronous FPGA architectures traditionally have been

built for highly pipelined and high throughput applications.

The ease of adding a pipeline stage and connecting modules

with minimal design time overhead is an advantage of asyn-

chronous design. In certain applications, such as cryptography,

this can prove very valuable.

In this paper we propose an FPGA architecture that is

capable of implementing relative timing based asynchronous

designs. However from the perspective of the architecture

becoming commercialized, we acknowledge the difficulty in

getting consumers to buy into purely asynchronous FPGAs.

Hence, this body of work has been guided by the intention

of using a standard synchronous FPGA architecture and mod-

ifying it just enough to create a fully capable A-FPGA. The

proposed architecture can be used either independently or in

a combination of synchronous and asynchronous designs.

II. BACKGROUND

Achronix Semiconductor Corp. was founded with the aim

of commercializing a unique asynchronous FPGA architec-

ture [4]. The motivation for the architecture was to develop

a high throughput FPGA. This was achieved by building an

architecture that was inherently composed of pipeline stages.

The architecture uses novel configuration logic implementa-

tions to achieve this fine grained pipelining. The proposed

benefits are: better pipelining, reduction in power consump-

tion, resistance to process variation and ease of transferability

of designs between traditional FPGAs and the A-FPGA.

The architecture utilized dual rail data encoding and a four

phased protocol for handshaking. Since each bit in dual rail

data encoding requires two signals for transmission, 80-90%

of the area was covered by configurable routing resources

and furthermore, 80-90% of the power was also consumed

by the routing resources. A revision to the architecture aimed

at removing some of the design overheads associated with

the initial architecture was proposed [12]. The first major

change was to replace the four phase protocol with a two

phase protocol and the second was to use voltage scaling

on certain signals. However, even though the revision does

provide a better power metric, this comes at the cost of a 10%

increase in area.

Another approach is to create an architecture that is capable

of implementing multiple styles of asynchronous logic [13].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276278005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The design goes on to show the implementation of a delay

insensitive adder based on a dual rail protocol, and also a

quasi delay insensitive adder on bundled data. Both use a

four-phase communication protocol. The architecture uses a

Programmable Delay Element (PDE). The PDE allows the

architecture to add and manipulate delays in the system easily.

The architecture has primarily looked to resolve the tight con-

nection between most asynchronous FPGA architectures and

the design entry methodology. Even though the architecture

is unique and capable of implementing many asynchronous

styles, it is quite possible that in attempting to bridge this gap,

the designers have compensated on over-all performance due

to the addition of more features. Furthermore, the work does

not elaborate on implementation based power/performance

numbers.

A unique approach is an architecture that aims to conserve

as much of the structure of conventional FPGAs as possi-

ble [14]. It seeks to keep the CLB and cluster logic, and replace

or redesign the control logic in the interconnects. To avoid

hazards on the communication signals, a delay insensitive

model is used for the interconnect. Delay insensitive dual

rail data encoding methods are used. The clock-based control

system is replaced by inter-block delay insensitive signals.

The architecture in the authors’ opinion had the right idea to

maintain conventional CLB structure to enable usage of EDA

tools. However, the use of dual rail protocol again brings to

the fore area and power issues associated with having multiple

wires representing the same bit. Furthermore, conventional

EDA tools can only be used for logic clustering into CLBs

and logic elements. Once this is done, the architecture would

require other tools to describe the asynchronous logic and

implement it.

Globally Asynchronous locally synchronous Programmable

Logic Array architecture (GAPLA) provides us with an eval-

uation of using asynchronous technology for routing in an

FPGA [15], [16]. The architecture is based on synchronous

logic blocks that are embedded in asynchronous islands.

The synchronous block are contained within an asynchronous

wrapper that has a local clock generator. The routing resources

between these islands are asynchronous and use the bundled

data protocol with 2-phase handshaking. GAPLA works under

timing assumptions for its bundled data protocol.

There have been various proposed asynchronous FPGA ar-

chitectures that target specific applications [17]–[20]. In these

examples the application is security and cryptography. These

FPGAs look to meet the need of high speed cryptography

co-processors than can be reconfigured to accommodate the

constantly evolving cryptography standards. These contribu-

tions primarily help ascertain the application based benefits of

an asynchronous-capable FPGA.

The rest of the paper is organized as follows, section III

states the motivation behind the design of the A-FPGA.

Section IV briefly introduces relative timing as our design

methodology. Section V describes the new architecture, and

Section VI gives the implementation based results of the

architecture.

III. MOTIVATION FOR THE PROPOSED ARCHITECTURE

The work done as part of this paper is aimed at designing a

commercially viable A-FPGA. The following summarizes the

motivation for the proposed architecture:

• Merging Synchronous and Asynchronous FPGAs: A key

component of the approach in this paper is building an

FPGA architecture that is capable of implementing both

synchronous and asynchronous designs. The intention is

to use a common synchronous FPGA architecture and

alter it just enough to allow for efficient implementation

of asynchronous designs. The architectural modifications

are done in a manner that does not compromise on

the performance of synchronous implementations on the

FPGA.

• Bundled Data: Bundled data single rail encoding is

used in the architecture, as it uses a data path that

is very similar to traditional synchronous architectures.

As previously noted, delay insensitive dual rail data

protocols results in a reported a 80-90% on die area

dedicated to routing resources [12]. Using a dual rail

protocol will require intricate architectural changes in

the routing resources, whereas bundled data protocol is

more suited for implementation on existing synchronous

routing architectures.

• Protocol: There may be benefits in using two phase proto-

col over four phase protocols [12]. However, any general

purpose A-FPGA should be capable of implementing

both.

• EDA Tools: The capability to use existing EDA tools

would be a tremendous boost to the commercial feasi-

bility of the architecture. Asynchronous designs require

communication protocols to be specified. In ASICs and in

FPGAs, timing assumptions need to be made based on the

handshaking protocols. This is achieved in one approach

by specifying the circuit behavior as a petri-net [14].

This is probably the hardest part of building an EDA

tool that is capable for supporting asynchronous circuits.

The current set of academic and commercial tools look

to achieve this in different ways.

The Balsa tool achieves this through syntax-directed com-

pilation of communicating handshaking components [21].

It uses high-level descriptions in the Balsa language.

The Handshake Solutions’ TiDE tool flow uses the Haste

language and also other high level specifications such as

MATLAB-Simulink to do this [22], [23].

Another way to achieve the desired functionality is to

derive Relative Timing (RT) constraints. Relative timing

(RT) provides a methodology to model and verify circuits

and protocols through timing assumptions [9].

IV. RELATIVE TIMING

Considering the various architectural guidelines discussed in

the previous section, the RT based design methodology was

chosen as the asynchronous circuit design technique that the

proposed A-FPGA architecture would support.

CL CL

FFi FFi+1 FFi+2

d q d q d q
n n

clock network

Fig. 1: Clocked design

CL CL

Li Li+1 Li+2

d q d q d q
n n

LCi LCi+1 LCi+2

reqi

acki

reqi+1

acki+1

reqi+2

acki+2

reqi+3

acki+3
delay delay

Fig. 2: Timed (bundled data) handshake design

RT methodology uses path based timing constraints to

specify an order to events that may occur in an asynchronous

circuit. When this order is enforced glitches in the circuit

become unreachable. This guarantees correct behavior of the

circuit. An instance of an RT constraint is shown below.

pod �→ poc0 +m ≺ poc1; (1)

The above RT constraint specifies the order of two events

point-of-convergence poc0 and poc1 relative to an initial event

point-of-divergent event pod. After the occurrence of the pod,

the constraint causes poc0 to always precede poc1. On a

circuit level this is realized by ensuring that the maximum

delay between pod and poc0 is less than the minimum delay

between pod and poc1. A margin is added for signal separation

requirements and robustness.

RT constraints are used in conjunction with bundled data

systems. Bundled data based asynchronous systems are par-

titioned into a control path and a data path. The data path

is similar to that of a synchronous system, and consists of

registers and combinational logic. In the absence of a global

synchronizing clock, the role of synchronizing operation be-

tween different modules in the circuit is carried out by the

control path. The control logic maintains and enforces the

timing and functional relationship between various pipeline

stages. This is done through handshaking and local clocking.

Fig. 1 shows an abstraction of a synchronous design with

a global clock. The frequency and data path delay of the first

pipeline stage is constrained by the following equation.

FFi/clk↑j �→ FFi+1/d+m ≺ FFi+1/clk↑j+1 (2)

Following a clock edge at a flip flop, the above constraint

sequences arrival of new data at the flip flop corresponding to

the next pipeline stage before the next respective clock edge.

Fig. 2 shows an asynchronous bundled data circuit structure

analogous to the synchronous structure shown in Fig. 1. The

global clock network is replaced by individual controllers for

each pipeline stage that carry out a handshaking protocol be-

tween them. The following equation defines an RT constraint

for the circuit.

reqi ↑ �→ Li+1/d+m ≺ Li+1/clk↑. (3)

Each reqi ↑ handshake on LCi indicates new data presented

to pin d of Li. The delays in the circuit are sized as per

the above RT constraint. Hence, after reqi ↑, the maximum

delay to Li+1/d must be smaller than the minimum delay to

Li+1/clk↑. This would ensure that valid data is present when

it is latched.
The RT based design methodology also extends to the

implementation of glitchless circuits. The control logic in

Fig. 2 comprises burst-mode controllers that carry out hand-

shaking between them. Burst-mode controllers are Mealy

type finite state machines. The controllers use a “request-

acknowledge” signal communication between them to carry

out handshaking. This handshaking can be based on signal

levels or transitions. A glitch on these handshaking signals can

cause a miscommunication between controllers and result in

the circuit settling in an unwanted state [24]. This can be fatal

to circuit operation. These glitches and hazards are primarily

caused due to unwanted signal transitions within the controller

caused by unexpected internal or input signal events.
FPGAs built for synchronous designs often times make

asynchronous designs prone to hazards. This is attributed to

the inability to exercise a high level of control over routing

delays and mapping processes [10], [11].
The Automatic Relative Timing Identifier based on Sig-

nal Traces (ARTIST) tool allows the generation of relative

timing constraints on signal paths from a formal verification

engine [25]. The tool creates RT constraints for a circuit

that orders signal transitions making hazards unreachable. The

relative timing methodology has been successfully applied to

create functionally correct bundled data based asynchronous

systems [26], and maps well to FPGA designs.

V. PROPOSED ARCHITECTURE

In this section we propose certain changes to the Xilinx

slice architecture that enable the implemention of RT based

asynchronous designs on an FPGA. Fig. 3 and 4 show an ab-

straction of the Xilinx 7-Series FPGA architecture [27]. Each

configuration logic block has two slices that are connected

by a routing matrix. Each slice is comprised of four 6-input

LUTs that can also be programmed as two 5-input LUTs.

Fig. 3 shows the building blocks of a slice. The LUTs have

various other components such as carry-chain logic and DFFs

associated with it. This building block is used to construct

a slice as shown in Fig. 4. For the purposes of this paper

the architecture has been simplified, and the Xilinx 7-Series

SLICEL was used to guide the design.
Fig. 3 and 4 also show the proposed changes to the tradi-

tional synchronous architecture. These changes are marked by

Fig. 3: Structure showing LUT and Logic Associated with Each LUT in a Slice. Additional logic to make is an A-FPGA has

been shown with shaded elements and dashed-wires

shaded logic elements and dashed wires. It is important to note

that it is possible to implement relative timed asynchronous

designs on current FPGAS. The architectural changes being

proposed here are aimed at creating a more favorable design

fabric for RT asynchronous designs. The following changes

are proposed:

Programmable Delay Structure:
It is easy to see how having a programmable delay element

(PDE) can tremendously simplify implementing RT based

asynchronous circuits on FPGAs. Since RT defines ordering

of events in a circuit, the easiest way to achieve this would be

to have control on the delays of various signals, particularly

the clock and handshake control logic.

RT based asynchronous designs use a local clocking mech-

anism as shown in Fig. 2. Since controllers drive the local-

clock for each pipeline stage, clock distribution with minimum

skew is a challenge. There are various ways to do this on

current FPGAs. The Xilinx 7-Series devices have 32 global

clock lines. The devices are also partitioned into clocking

regions. Each clocking region can support up to 12 global

clocks. Clocking regions also support regional clocks. Up to

four unique regional clocks can be supported in each of the

clock regions. Detailed information on the clocking structure

on Xilinx series-7 devices can be found in [28]. These clock

regions can be used to distribute the local clocks to various

latches in the design, however, there is a limit on the number

of clocks that can be distributed using this method in each

region and also in the chip.

There are designs that could potentially require a much

larger number of controllers [8]. Without, having to make

changes to the routing structure on the chip, it would be

possible to distribute clocks with minimal skew, using existing

routing resources, with the addition of a PDE to the slices.

Using the advance placement constraints it is possible to place

all latches associated with a controller in close proximity to the

controller on the chip, reducing the possible delays. Once the

delays have been minimized the programmable delay element

can be used to equate all the delays from the source clock pin

to the destination latches. Delay can be added to the faster

routing lines to match the delay of the slowest line. This final

clock to latch delay can now be used to adhere to the RT

constraints as discussed in section IV.

Also, as discussed, RT constraints help in building glitchless

control burst-mode controllers. This may require adding delays

in a combinational logic structure. Burst mode controllers

do not use any latches or flip flops, but instead use local

combinational logic feedback paths to implement state holding

logic. Hence, it would be possible to commandeer the PDE to

add the required additional delay to certain signals in the burst

mode controllers to implement required RT signal ordering.

Fig. 3 shows the added PDE. In this case each LUT has

a PDE associated with it. However, this may be an overkill.

The need to add delay to a logic line may be rare and sporadic

in terms of resource utilization. Hence adding a single PDE

per slice would suffice. Transmission gates are used to reduce

the load on the A output with the PDE is not being used, to

Fig. 4: Slice Structure. Additional logic to make an A-FPGA

has been shown with shaded elements and dashed-wires

conserve power, and also keep the performance metrics of the

output close to those of similar outputs without PDEs.

Simplified Feedback Routing:
Most burst-mode controllers use feedback signals for state

holding. These feedback signals are used to stabilize the circuit

in the right state. An input change before the feedback is

allowed to stabilize the circuit can often lead to hazards as

discussed in section IV. It is common to have RT constraints

that require feedback paths to be fast. This allows the circuit

to stabilize in its current state before a new input event.

Current FPGAs route feedbacks through the routing matrix.

This incurs high delays. Faster feedback paths may allow

significant boost in controller cycle times. An internal slice

feedback structure is shown in Fig. 3. A transmission gate

is used to turn the signal on and off. The signal needs to

be physically tied to only one of the A5:0 inputs. When the

feedback route in invoked, the associated input must be left

unconnected by the routing matrix. This will avoid two drivers

for the same signal. Using the transmission gate again reduces

the load on the Amux output when the feedback route is not

in use. Also as with the PDE, it may be an over kill to have

this feedback structure associated with each LUT. It may only

be used for the implementation of the burst mode controllers

on the FPGA fabric. Having one or two of the LUTs per

slice associated with this feedback may very well suffice. The

controllers are also usually a very small portion of the total

design. Hence it may be a viable alternative to have only some

slices with the feed-back structure and have these slices spread

across the FPGA.
Latches:
Bundled data asynchronous designs use level triggered

latches rather than edge triggered flip flop as registers and

synchronizing elements. On ASICs, using latches instead of D-

Flip Flops provides a significant power, area and performance

benefit. The current Xilinx architectures provide us with

sequential flip flops that can also be used as a latch. However,

there is very little power or performance benefit in using these

latches instead of the flip flops in current FPGA designs.
In terms of simply prototyping asynchronous ASICs on

an A-FPGA, it could be possible to use the flip flops as

latches as we are primarily concerned with functionality rather

than performance. However, it is also the intention of the

authors to present the proposed FPGA as a viable alternative

to purely synchronous FPGAs. There are a wide variety of

designs that could tremendously benefit from an asynchronous

based implementation on an A-FPGA. Hence, the addition

of latches to the architecture can help in achieving better

power and performance number compared to synchronous

implementations on the FPGA.

VI. RESULTS

The synchronous and the asynchronous FPGA architectures

were implemented on the 64nm node. When architecture

shown in Fig. 3 was implemented and compared to the

synchronous architecture, it showed a 30% increase in area.

This seemingly large area penalty is because of the primitive

programmable delay structure that was used in the implemen-

tation. The area penalty can be significantly reduced to under

15% by using custom programmable delay techniques [29].

However, the total slice area, as shown in Fig. 4 had only

a 7% increase in area. A significant portion in any FPGA

are the routing resources that consume over 50% of the

chip area. That being considered, the area increase to make

a synchronous FPGA capable of implementing RT based

asynchronous circuits falls below 4%. The implementation

included only the logic and register structure of the slice.

The configuration bits, usually implemented as SRAM cells,

were not included; rather the configuration bits were treated

as inputs to the design.
There was an insignificant change in the slice performance

of the A-FPGA being used synchronously when compared to

the performance of the synchronous architecture. This can be

attributed to the fact that while being used in the synchronous

fashion most additional A-FPGA components can be safely

ignored.

VII. CONCLUSION

The paper presents an A-FPGA architecture that uses a

traditional synchronous FPGA as a starting point and pro-

pose alterations to the slice architecture. The new A-FPGA

architecture can implement RT based asynchronous circuits.

Changes are made only to the logic resources, leaving the

routing resources untouched. The proposed changes include

a programmable delay element for clock and logic signals,

dedicated and faster feedback routing, and inclusion of latches

as an alternative to the flip flop.

The new FPGA architecture can be used for synchronous

or asynchronous designs, or for designs that have both com-

ponents. The architectural changes have little or no impact

on the synchronous performance of the FPGA. Only a small

area penalty is incurred in the logic resources. It is speculated

that the architecture will allow the transfer of benefits that

asynchronous designs have provided on ASICs to the FPGAs

fabric. However this remains to be verified with subsequent

research.

VIII. ACKNOWLEDGMENTS

This material is based upon the work supported by the

National Science Foundation under Grant Number 0810408.

REFERENCES

[1] S. Hauck, S. Burns, G. Borriello, and C. Ebeling, “ An FPGA for
Implementing Asynchronous Circuits,” IEEE DESIGN AND TEST OF
COMPUTERS, vol. 11, no. 3, pp. 60–69, 1994.

[2] C. Wong, A. Martin, and P. Thomas, “An Architecture for Asynchronous
FPGAs,” in Field-Programmable Technology (FPT), 2003. Proceedings.
2003 IEEE International Conference on, Dec 2003, pp. 170–177.

[3] A. Rettberg and B. Kleinjohann, “A Fast Asynchronous Re-configurable
Architecture for Multimedia Applications,” in Integrated Circuits and
Systems Design, 2001, 14th Symposium on., 2001, pp. 150–155.

[4] J. Teifel and R. Manohar, “Highly Pipelined Asynchronous FPGAs,” in
Proceedings of the 2004 ACM/SIGDA 12th International Symposium on
Field Programmable Gate Arrays, ser. FPGA ’04, 2004, pp. 133–142.

[5] A. P. Chandrakasan, W. J. Bowhill, and F. Fox, Design of High-
Performance Microprocessor Circuits, 1st ed. Wiley-IEEE Press, 2000.

[6] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K. Yun, R. Kol,
C. Dike, M. Roncken, and B. Agapiev, “RAPPID: An Asynchronous
Instruction Length Decoder,” in Advanced Research in Asynchronous
Circuits and Systems, 1999. Proceedings., Fifth International Symposium
on, 1999, pp. 60–70.

[7] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Desynchro-
nization: Synthesis of Asynchronous Circuits From Synchronous Spec-
ifications,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 25, no. 10, pp. 1904–1921, 2006.

[8] W. Lee, V. S. Vij, A. R. Thatcher, and K. S. Stevens, “Design of
Low Energy, High Performance Synchronous and Asynchronous 64-
point FFT,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2013, 2013, pp. 242–247.

[9] K. Stevens, R. Ginosar, and S. Rotem, “Relative Timing [Asynchronous
Design],” Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on, vol. 11, no. 1, pp. 129–140, 2003.

[10] K. Maheswaran and J. Lipsher, “A Cell Set for Self-Timed Design Using
Xilinx XC4000 Series FPGAs,” Tech. Rep., 1994.

[11] D. Oliveira, S. Sato, O. Saotome, and R. de Carvalho, “Hazard-Free
Implementation of the Extended Burst-Mode Asynchronous Controllers
in Look-Up Table based FPGA,” in Programmable Logic, 2008 4th
Southern Conference on, 2008, pp. 143–148.

[12] C. LaFrieda, B. Hill, and R. Manohar, “An Asynchronous FPGA with
Two-Phase Enable-Scaled Routing.” in ASYNC. IEEE Computer
Society, 2010, pp. 141–150.

[13] N. Huot, H. Dubreuil, L. Fesquet, and M. Renaudin, “FPGA Architecture
for Multi-Style Asynchronous Logic.” in DATE. IEEE Computer
Society, 2005, pp. 32–33.

[14] D. Shang, F. Xia, and A. Yakovlev, “Asynchronous FPGA Architecture
with Distributed Control,” in Circuits and Systems (ISCAS), Proceedings
of 2010 IEEE International Symposium on, May 2010, pp. 1436–1439.

[15] X. Jia and R. Vemuri, “The GAPLA: A Globally Asynchronous Lo-
cally Synchronous FPGA Architecture,” in Field-Programmable Custom
Computing Machines, 2005. FCCM 2005. 13th Annual IEEE Symposium
on, April 2005, pp. 291–292.

[16] ——, “A Novel Asynchronous FPGA Architecture Design and its Per-
formance Evaluation,” in Field Programmable Logic and Applications,
2005. International Conference on, Aug 2005, pp. 287–292.

[17] K. Sun, X. Pan, J. Wang, and J. Wang, “Design of A Novel Asyn-
chronous Reconfigurable Architecture for Cryptographic Applications,”
in Computer and Computational Sciences, 2006. IMSCCS ’06. First
International Multi-Symposiums on, vol. 2, June 2006, pp. 751–757.

[18] K. Sun, L. Ping, J. Wang, Z. Liu, and X. Pan, “Design of a Re-
configurable Cryptographic Engine,” in Advances in Computer Systems
Architecture, ser. Lecture Notes in Computer Science, C. Jesshope and
C. Egan, Eds. Springer Berlin Heidelberg, 2006, vol. 4186, pp. 452–
458.

[19] T. Beyrouthy, A. Razafindraibe, L. Fesquet, M. Renaudin, S. Chaudhuri,
S. Guilley, J.-L. Danger, and P. Hoogvorst, “A Novel Asynchronous e-
FPGA Architecture for Security Applications,” in Field-Programmable
Technology, 2007. ICFPT 2007. International Conference on, Dec 2007,
pp. 369–372.

[20] S. Chaudhuri, S. Guilley, P. Hoogvorst, J.-L. Danger, T. Beyrouthy,
A. Razafindraibe, L. Fesquet, and M. Renaudin, “A Secure Asyn-
chronous FPGA Architecture, Experimental Results and Some Debug
Feedback,” CoRR, vol. abs/1103.1360, 2011.

[21] A. T. P. Group, The Balsa Asynchronous Synthesis System, 2009.
[Online]. Available: http://apt.cs.manchester.ac.uk/projects/tools/balsa/

[22] H. Solutions, TiDE Manual, 2007.

[23] A. Peeters and M. de Wit, “Haste Manual.” Hanshake Solutions,
2007. [Online]. Available: www.handshakesolutions.com

[24] C. Myers, Asynchronous Circuit Design, 2001.

[25] Y. Xu and K. Stevens, “Automatic Synthesis of Computation Interference
Constraints for Relative Timing Verification,” in Computer Design, 2009.
ICCD 2009. IEEE International Conference on, 2009, pp. 16–22.

[26] K. Stevens, Y. Xu, and V. Vij, “Characterization of Asynchronous
Templates for Integration into Clocked CAD Flows,” in Asynchronous
Circuits and Systems, 2009. ASYNC ’09. 15th IEEE Symposium on, May
2009, pp. 151–161.

[27] X. Inc, 7 Series Configuration Logic Block: User Guide, 2013.

[28] I. ”Xilinx, 7 Series FPGAs CLocking Resources: User Guide, 2014.

[29] S. Kobenge and H. Yang, “A Power Efficient Digitally Programmable
Delay Element for Low Power VLSI Applications,” in Quality Electronic
Design, 2009. ASQED 2009. 1st Asia Symposium on, July 2009, pp. 83–
87.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

