18,030 research outputs found

    FO model checking of interval graphs

    Get PDF
    We study the computational complexity of the FO model checking problem on interval graphs, i.e., intersection graphs of intervals on the real line. The main positive result is that FO model checking and successor-invariant FO model checking can be solved in time O(n log n) for n-vertex interval graphs with representations containing only intervals with lengths from a prescribed finite set. We complement this result by showing that the same is not true if the lengths are restricted to any set that is dense in an open subset, e.g. in the set (1, 1 + ε)

    Twin-width VIII: delineation and win-wins

    Get PDF
    We introduce the notion of delineation. A graph class C\mathcal C is said delineated if for every hereditary closure D\mathcal D of a subclass of C\mathcal C, it holds that D\mathcal D has bounded twin-width if and only if D\mathcal D is monadically dependent. An effective strengthening of delineation for a class C\mathcal C implies that tractable FO model checking on C\mathcal C is perfectly understood: On hereditary closures D\mathcal D of subclasses of C\mathcal C, FO model checking is fixed-parameter tractable (FPT) exactly when D\mathcal D has bounded twin-width. Ordered graphs [BGOdMSTT, STOC '22] and permutation graphs [BKTW, JACM '22] are effectively delineated, while subcubic graphs are not. On the one hand, we prove that interval graphs, and even, rooted directed path graphs are delineated. On the other hand, we show that segment graphs, directed path graphs, and visibility graphs of simple polygons are not delineated. In an effort to draw the delineation frontier between interval graphs (that are delineated) and axis-parallel two-lengthed segment graphs (that are not), we investigate the twin-width of restricted segment intersection classes. It was known that (triangle-free) pure axis-parallel unit segment graphs have unbounded twin-width [BGKTW, SODA '21]. We show that Kt,tK_{t,t}-free segment graphs, and axis-parallel HtH_t-free unit segment graphs have bounded twin-width, where HtH_t is the half-graph or ladder of height tt. In contrast, axis-parallel H4H_4-free two-lengthed segment graphs have unbounded twin-width. Our new results, combined with the known FPT algorithm for FO model checking on graphs given with O(1)O(1)-sequences, lead to win-win arguments. For instance, we derive FPT algorithms for kk-Ladder on visibility graphs of 1.5D terrains, and kk-Independent Set on visibility graphs of simple polygons.Comment: 51 pages, 19 figure

    Twin-Width VIII: Delineation and Win-Wins

    Get PDF
    We introduce the notion of delineation. A graph class C is said delineated by twin-width (or simply, delineated) if for every hereditary closure D of a subclass of C, it holds that D has bounded twin-width if and only if D is monadically dependent. An effective strengthening of delineation for a class C implies that tractable FO model checking on C is perfectly understood: On hereditary closures of subclasses D of C, FO model checking on D is fixed-parameter tractable (FPT) exactly when D has bounded twin-width. Ordered graphs [BGOdMSTT, STOC \u2722] and permutation graphs [BKTW, JACM \u2722] are effectively delineated, while subcubic graphs are not. On the one hand, we prove that interval graphs, and even, rooted directed path graphs are delineated. On the other hand, we observe or show that segment graphs, directed path graphs (with arbitrarily many roots), and visibility graphs of simple polygons are not delineated. In an effort to draw the delineation frontier between interval graphs (that are delineated) and axis-parallel two-lengthed segment graphs (that are not), we investigate the twin-width of restricted segment intersection classes. It was known that (triangle-free) pure axis-parallel unit segment graphs have unbounded twin-width [BGKTW, SODA \u2721]. We show that K_{t,t}-free segment graphs, and axis-parallel H_t-free unit segment graphs have bounded twin-width, where H_t is the half-graph or ladder of height t. In contrast, axis-parallel H?-free two-lengthed segment graphs have unbounded twin-width. We leave as an open question whether unit segment graphs are delineated. More broadly, we explore which structures (large bicliques, half-graphs, or independent sets) are responsible for making the twin-width large on the main classes of intersection and visibility graphs. Our new results, combined with the FPT algorithm for first-order model checking on graphs given with O(1)-sequences [BKTW, JACM \u2722], give rise to a variety of algorithmic win-win arguments. They all fall in the same framework: If p is an FO definable graph parameter that effectively functionally upperbounds twin-width on a class C, then p(G) ? k can be decided in FPT time f(k) ? |V(G)|^O(1). For instance, we readily derive FPT algorithms for k-Ladder on visibility graphs of 1.5D terrains, and k-Independent Set on visibility graphs of simple polygons. This showcases that the theory of twin-width can serve outside of classes of bounded twin-width

    Faster Existential FO Model Checking on Posets

    Full text link
    We prove that the model checking problem for the existential fragment of first-order (FO) logic on partially ordered sets is fixed-parameter tractable (FPT) with respect to the formula and the width of a poset (the maximum size of an antichain). While there is a long line of research into FO model checking on graphs, the study of this problem on posets has been initiated just recently by Bova, Ganian and Szeider (CSL-LICS 2014), who proved that the existential fragment of FO has an FPT algorithm for a poset of fixed width. We improve upon their result in two ways: (1) the runtime of our algorithm is O(f(|{\phi}|,w).n^2) on n-element posets of width w, compared to O(g(|{\phi}|). n^{h(w)}) of Bova et al., and (2) our proofs are simpler and easier to follow. We complement this result by showing that, under a certain complexity-theoretical assumption, the existential FO model checking problem does not have a polynomial kernel.Comment: Paper as accepted to the LMCS journal. An extended abstract of an earlier version of this paper has appeared at ISAAC'14. Main changes to the previous version are improvements in the Multicoloured Clique part (Section 4

    Compact Labelings For Efficient First-Order Model-Checking

    Get PDF
    We consider graph properties that can be checked from labels, i.e., bit sequences, of logarithmic length attached to vertices. We prove that there exists such a labeling for checking a first-order formula with free set variables in the graphs of every class that is \emph{nicely locally cwd-decomposable}. This notion generalizes that of a \emph{nicely locally tree-decomposable} class. The graphs of such classes can be covered by graphs of bounded \emph{clique-width} with limited overlaps. We also consider such labelings for \emph{bounded} first-order formulas on graph classes of \emph{bounded expansion}. Some of these results are extended to counting queries

    FO-Definability of Shrub-Depth

    Get PDF
    Shrub-depth is a graph invariant often considered as an extension of tree-depth to dense graphs. We show that the model-checking problem of monadic second-order logic on a class of graphs of bounded shrub-depth can be decided by AC^0-circuits after a precomputation on the formula. This generalizes a similar result on graphs of bounded tree-depth [Y. Chen and J. Flum, 2018]. At the core of our proof is the definability in first-order logic of tree-models for graphs of bounded shrub-depth

    Successor-Invariant First-Order Logic on Graphs with Excluded Topological Subgraphs

    Get PDF
    We show that the model-checking problem for successor-invariant first-order logic is fixed-parameter tractable on graphs with excluded topological subgraphs when parameterised by both the size of the input formula and the size of the exluded topological subgraph. Furthermore, we show that model-checking for order-invariant first-order logic is tractable on coloured posets of bounded width, parameterised by both the size of the input formula and the width of the poset. Our result for successor-invariant FO extends previous results for this logic on planar graphs (Engelmann et al., LICS 2012) and graphs with excluded minors (Eickmeyer et al., LICS 2013), further narrowing the gap between what is known for FO and what is known for successor-invariant FO. The proof uses Grohe and Marx's structure theorem for graphs with excluded topological subgraphs. For order-invariant FO we show that Gajarsk\'y et al.'s recent result for FO carries over to order-invariant FO
    • …
    corecore