2,505 research outputs found

    Regularized system identification using orthonormal basis functions

    Full text link
    Most of existing results on regularized system identification focus on regularized impulse response estimation. Since the impulse response model is a special case of orthonormal basis functions, it is interesting to consider if it is possible to tackle the regularized system identification using more compact orthonormal basis functions. In this paper, we explore two possibilities. First, we construct reproducing kernel Hilbert space of impulse responses by orthonormal basis functions and then use the induced reproducing kernel for the regularized impulse response estimation. Second, we extend the regularization method from impulse response estimation to the more general orthonormal basis functions estimation. For both cases, the poles of the basis functions are treated as hyperparameters and estimated by empirical Bayes method. Then we further show that the former is a special case of the latter, and more specifically, the former is equivalent to ridge regression of the coefficients of the orthonormal basis functions.Comment: 6 pages, final submission of an contribution for European Control Conference 2015, uploaded on March 20, 201

    T-PHOT: A new code for PSF-matched, prior-based, multiwavelength extragalactic deconfusion photometry

    Get PDF
    We present T-PHOT, a publicly available software aimed at extracting accurate photometry from low-resolution images of deep extragalactic fields, where the blending of sources can be a serious problem for the accurate and unbiased measurement of fluxes and colours. T-PHOT has been developed within the ASTRODEEP project and it can be considered as the next generation to TFIT, providing significant improvements above it and other similar codes. T-PHOT gathers data from a high-resolution image of a region of the sky, and uses it to obtain priors for the photometric analysis of a lower resolution image of the same field. It can handle different types of datasets as input priors: i) a list of objects that will be used to obtain cutouts from the real high-resolution image; ii) a set of analytical models; iii) a list of unresolved, point-like sources, useful e.g. for far-infrared wavelength domains. We show that T-PHOT yields accurate estimations of fluxes within the intrinsic uncertainties of the method, when systematic errors are taken into account (which can be done thanks to a flagging code given in the output). T-PHOT is many times faster than similar codes like TFIT and CONVPHOT (up to hundreds, depending on the problem and the method adopted), whilst at the same time being more robust and more versatile. This makes it an optimal choice for the analysis of large datasets. In addition we show how the use of different settings and methods significantly enhances the performance. Given its versatility and robustness, T-PHOT can be considered the preferred choice for combined photometric analysis of current and forthcoming extragalactic optical to far-infrared imaging surveys. [abridged]Comment: 23 pages, 20 figures, 2 table

    On adaptive filter structure and performance

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D75686/87 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Convolutive Blind Source Separation Methods

    Get PDF
    In this chapter, we provide an overview of existing algorithms for blind source separation of convolutive audio mixtures. We provide a taxonomy, wherein many of the existing algorithms can be organized, and we present published results from those algorithms that have been applied to real-world audio separation tasks

    Regularized linear system identification using atomic, nuclear and kernel-based norms: the role of the stability constraint

    Full text link
    Inspired by ideas taken from the machine learning literature, new regularization techniques have been recently introduced in linear system identification. In particular, all the adopted estimators solve a regularized least squares problem, differing in the nature of the penalty term assigned to the impulse response. Popular choices include atomic and nuclear norms (applied to Hankel matrices) as well as norms induced by the so called stable spline kernels. In this paper, a comparative study of estimators based on these different types of regularizers is reported. Our findings reveal that stable spline kernels outperform approaches based on atomic and nuclear norms since they suitably embed information on impulse response stability and smoothness. This point is illustrated using the Bayesian interpretation of regularization. We also design a new class of regularizers defined by "integral" versions of stable spline/TC kernels. Under quite realistic experimental conditions, the new estimators outperform classical prediction error methods also when the latter are equipped with an oracle for model order selection

    An algorithm for extracting the PPG Baseline Drift in real-time

    Get PDF
    Photoplethysmography is an optical technique for measuring the perfusion of blood in skin and tissue arterial vessels. Due to its simplicity, accessibility and abundance of information on an individual’s cardiovascular system, it has been a pervasive topic of research within recent years. With these benefits however there are many challenges concerning the processing and conditioning of the signal in order to allow information to be extracted. One such challenge is removing the baseline drift of the signal, which is caused by respiratory rate, muscle tremor and physiological changes within the body as a response to various stimuli. Over the years there have been many methods developed in order to condition the signal such as Wavelet Transform, Cubic Spline Interpolation, Morphological Operators and Fourier-Based filtering techniques. All have their own individual benefits and drawbacks. These drawbacks are that they are unsuitable for real-time usage due to the computation power needed, or have the trade-off of being real-time at the cost of deforming the signal which is unideal for accurate analysis. This thesis aims to explore these techniques in order to develop an algorithm that can be used to condition the signal against the baseline drift in real-time, while being able to achieve good computational efficiency and the preservation of the signal form

    System Identification with Applications in Speech Enhancement

    No full text
    As the increasing popularity of integrating hands-free telephony on mobile portable devices and the rapid development of voice over internet protocol, identification of acoustic systems has become desirable for compensating distortions introduced to speech signals during transmission, and hence enhancing the speech quality. The objective of this research is to develop system identification algorithms for speech enhancement applications including network echo cancellation and speech dereverberation. A supervised adaptive algorithm for sparse system identification is developed for network echo cancellation. Based on the framework of selective-tap updating scheme on the normalized least mean squares algorithm, the MMax and sparse partial update tap-selection strategies are exploited in the frequency domain to achieve fast convergence performance with low computational complexity. Through demonstrating how the sparseness of the network impulse response varies in the transformed domain, the multidelay filtering structure is incorporated to reduce the algorithmic delay. Blind identification of SIMO acoustic systems for speech dereverberation in the presence of common zeros is then investigated. First, the problem of common zeros is defined and extended to include the presence of near-common zeros. Two clustering algorithms are developed to quantify the number of these zeros so as to facilitate the study of their effect on blind system identification and speech dereverberation. To mitigate such effect, two algorithms are developed where the two-stage algorithm based on channel decomposition identifies common and non-common zeros sequentially; and the forced spectral diversity approach combines spectral shaping filters and channel undermodelling for deriving a modified system that leads to an improved dereverberation performance. Additionally, a solution to the scale factor ambiguity problem in subband-based blind system identification is developed, which motivates further research on subbandbased dereverberation techniques. Comprehensive simulations and discussions demonstrate the effectiveness of the aforementioned algorithms. A discussion on possible directions of prospective research on system identification techniques concludes this thesis
    • …
    corecore