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The subject of this thesis is the design, performance and structure of algorithms 
for discrete time adaptive filtering. Both finite impulse response (FIR) and infinite 
impulse response (HE.) filters are considered. However, while it- has been possible to 
look at FIR filters in a general, application - independent, manner, KR filters have 
only been examined in the specific application of linear equalisation of digital 
communications channels.

A broad selection of adaptive FIR filter algorithms are examined to assess relative 
convergence performance ( as indicated by currently available theoretical results ) and 
computational requirements. From this examination a classification system evolves in 
which the available algorithms are grouped into three classes according to performance 
and complexity. Of particular note is the unified approach to block least mean squares 
(BLMS) adaptive filtering which simplifies the application of efficient convolution 
algorithms other than the fast Fourier transform (FFT) to the construction of 
computationally efficient adaptive filters.

The classification system is confirmed through the use of computer simulation. 
The convergence performance of the various algorithms is compared in the specific 
application areas of system identification and channel equalisation. It is believed that 
such a comparison has not previously been attempted even in the recent textbooks on 
the subject.

A new adaptive FIR filter algorithm is presented. Analytic and experimental 
results confirm that this so-called self orthogonalised block adaptive filter (SOBAF) 
provides a unique combination of robust convergence performance and computational 
efficiency.

A closed form expression for the optimum HR equalising filter is derived using 
Wiener filtering theory. The closed form solution highlights the structure of the 
optimum HR equaliser and the difficulties incurred in developing an adaptive IIR 
equaliser. A comparison of the mean-square error (MSE) performance of FIR and 
DR. equalisers illustrates the inherent order advantage in using an ITR filter in this 
application.

The minimum phase spectral factorisation, which is an integral part of the Wiener 
formulation of the DR filter is circumvented through the use of the Kalman equaliser 
of Lawrence and Kaufman. The Kalman equaliser is then made adaptive by 
combining it with a least mean squares (LMS) system identification algorithm and a 
novel technique, which both estimates the channel noise variance and compensates the 
Kalman filter for uncertainty in the channel impulse response. Comparisons of the 
computational load and convergence performance of this adaptive Kalman equaliser 
with a conventional linear equaliser are provided. Further a method for improving the 
convergence performance of the adaptive Kalman equaliser is described which involves 
replacing the LMS system identification algorithm with a recursive least squares (RLS) 
counterpart.
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Chapter 1 

INTRODUCTION

1.1 ADAPTIVE FILTERS

This thesis is primarily concerned with the design of algorithms for adaptive 

filtering. The key words which require further explanation are: filter, adaptive and 

algorithm. By filter is meant a linear discrete time filter which operates on an input 

sequence of data samples { x (n )} to produce an output sequence of data samples 

()>(rt) }. The filter, illustrated in Figure 1.1, is characterised by the impulse response 

sequence { hn } [1]. Such filters find application in many situations where it is 

necessary to reconstruct a signal which has been corrupted by additive noise and 

possibly linear distortion. Design rules for the calculation of the impulse response 

sequence may be obtained from the work of Wiener [2] or Kalman [3]. The former is 

optimal in a minimum mean-square error (MMSE) [2] sense and may be applied in 

stationary or non time varying environments. The latter is optimal in a minimum 

variance sense and may also be applied to non stationary or time varying environments 

[4]. Both techniques require explicit a priori knowledge of the environment either in 

the form of auto- and cross- spectral densities for the Wiener filter or a state space 

model for the Kalman filter [5]. When the environment is unknown or poorly defined 

these optimal filters cannot be designed and an adaptive filter must be considered.

An adaptive filter differs from an non adaptive filter in that the a priori 

information required to design an optimal non adaptive filter is replaced by a second 

input sequence, known as a training or desired input ( Figure 1.2 ). The training 

signal is in some sense close to or approximates the output of an optimal filter. Such 

an input is more readily available in a practical situation than specific knowledge of the 

environment in the form of spectral densities and/or a state space model. The impulse 

response of the adaptive filter is then altered as more of the input and training
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sequence become available so that the output y gets closer in mean-square error (MSE) 

sense to the training sequence and hence to the output of the optimal filter. The 

strategy by which the impulse response of the adaptive filter is altered is the adaptive 

filter algorithm.

An adaptive filter is thus a time varying filter whose impulse response at a 

particular time is dependent on the input sequence, the training sequence and the 

adaptive filter algorithm. The time varying nature of an adaptive filter gives rise to the 

concept of convergence. In a stationary environment, the convergence performance is 

a measure of how many data samples are required for the impulse response of the 

adaptive filter to come within a specified distance from the impulse response of the 

Wiener filter. In a non-stationary environment the convergence performance is also a 

measure of how closely the impulse response of the adaptive filter follows the the time 

varying impulse response of some optimal filter, which can be identified as the Kalman 

filter if the underlying process is Markov [5].



1.2 APPLICATION AND MODES OF OPERATION

One of the major modes of operation of an adaptive filter is in system 

identification ( Figure 1.3 ). Given an input sequence (x(n)}, and an output 

sequence {y(n)} associated with an unknown system, the function of the adaptive 

filter is to estimate the impulse response sequence { hn } that relates the output 

sequence to the input sequence. The function is effected in the adaptive filter by 

processing the data pairs, (x(n),y(n) ), serially one pair at a time ( or in blocks of 

several consequetative pairs at a time ). As each new data pair ( or block of data pairs 

) becomes available, the impulse response of the adaptive filter is updated so as to 

reduce the size of the error, e(n), which is the difference between the system output, 

y(n), and the output of the adaptive filter, y(n). In this mode, the optimal filter to 

which the adaptive filter aspires is the unknown system itself.

A practical example of this mode of operation is echo cancellation across the 

hybrid transformer used in telephone networks [6]. The hybrid transformer of Figure 

1.4 performs the conversion from the two wire section, where transmission of 

information occurs in both directions on a single pair of wires, to the four wire section, 

where transmission only occurs in one direction on a pair of wires. Talker echo is the 

leakage of the signal from the transmitter across the hybrid into the receiver. One 

method of reducing the talker echo is to construct a filter in parallel with the hybrid 

which models the echo path across the hybrid. The echo can then be cancelled by 

subtracting the output of the filter, j?(/i), from the output of the hybrid, y(n). The 

error sequence, { e(n ) }, is then used as the input to the receiver. Because the impulse 

response of echo path across the hybrid is unknown a priori and time varying, an 

adaptive filter is usually employed.

A second major mode of operation of an adaptive filter is in inverse system 

modelling or deconvolution, where a sequence, { y '(n ) }, is subjected to linear 

distortion ( filtering ) and additive noise in an unknown system to produce a second
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sequence, {x(n) } ( Figure 1.5 ). If the linear distortion and additive noise could be 

characterised then the techniques developed by Wiener and Kalman could be applied 

to design an optimal filter. Application of the corrupted sequence, { x (n ) }, to the 

optimal filter would produce a third sequence which would be close in a minimum 

mean-square error (MMSE) sense to the original sequence. In a simple case where the 

unknown system consists of a minimum phase filter alone [7], the optimal filter is the 

inverse of the minimum phase filter and the output of the optimal filter is the original 

sequence ie. perfect reconstruction. When the system which causes the distortion is 

unknown and hence an optimal filter cannot be designed a priori, an adaptive filter 

solution is possible if the original uncorrupted sequence is accessible for a limited 

period, the convergence time.

A practical example of this second mode of operation is the equalisation of 

intersymbol interference on a digital communications channel [8]. Such a channel may 

be modelled by an equivalent discrete time transversal filter with additive white noise 

[9]. The digital signal which is applied to the channel is a sequence of symbols taken 

randomly from a finite alphabet. If the impulse response of the transversal filter 

consists of anything other than a single impulse, the elements of the output sequence 

will contain contributions from several symbols as well as noise ie. intersymbol 

interference. The function of the adaptive filter is to reconstruct the transmitted 

symbol sequence in a MMSE sense from the received sequence before a final decision 

is made as to which symbol was transmitted ( Figure 1.6 ). A training sequence for 

the adaptive filter is obtained by transmitting a predetermined sequence, known to the 

receiver, as a precursor to actual data. Subsequent to this training period it is still 

possible to track slow variations in the channel characteristics by using the output of 

the decision circuit as a training sequence for the adaptive filter. This is known as a 

decision directed equaliser [8].

The final mode of operation of an adaptive filter that will be considered in this 

section is linear prediction [10]. This mode differs from the previous two is that the
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adaptive filter operates on a single sequence rather than two sequences. The function 

of the adaptive filter in this mode is to either characterise the sequence or to separate 

the correlated, coloured or predictable part of the sequence from the uncorrelated, 

white unpredictable part. This arrangement is illustrated in Figure 1.7. The optimal 

filter for this mode of operation is obtained by the minimum phase factorisation of the 

spectral density of the sequence { y (n ) }. The inverse of the minimum phase filter is a 

realisable whitening filter [5]. Practical examples of linear prediction can be found in 

spectral estimation [11], linear predictive coding of speech [12] and automatic 

enhancement of sinsusoids in noise [13].

1.3 THESIS LAYOUT

To return to the theme enunciated at the start of the Chapter, this thesis is 

primarily concerned with the design of algorithms for discrete time adaptive filtering. 

The foregoing two sections are included for the purposes of definition and to indicate 

the need for, and briefly discuss practical applications of, adaptive filtering. The thesis 

is divided into two halves: the first, containing Chapters 2, 3 and 4, is devoted solely to 

adaptive finite impulse response (FIR) filter algorithms; the second, containing 

chapters 5 and 6, documents the development of an adaptive infinite impulse response 

(IDR) linear equaliser for digital communications channels.

In Chapter 2, a broad selection of adaptive finite impulse response (FIR) filter 

algorithms are examined to assess relative convergence performance ( as indicated by 

currently available theoretical results ) and computational requirements. From this 

examination a classification system evolves in which the available algorithms are 

grouped into three classes according to performance and complexity. Of particular 

note is the unified approach to block least mean squares (BLMS) adaptive filtering [14] 

which simplifies the application of efficient convolution algorithms other than the fast 

Fourier transform (FFT) [1] to the construction of computationally efficient adaptive

10
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filters.

The classification system is confirmed in Chapter 3 where the convergence 

performance of the various algorithms is compared by computer simulation in the 

specific application areas of system identification and channel equalisation. It is 

believed that such a comparison has not previously been attempted even in the recent 

textbooks on the subject [15,16,17].

A new adaptive FIR filter algorithm is presented in Chapter 4. Analytic and 

experimental results confirm that this so-called self orthogonalised block adaptive filter 

(SOBAF) provides a unique combination of convergence performance and 

computational efficiency.

In Chapter 5 a closed form solution to the MMSE linear equaliser problem is 

derived using discrete time Wiener filtering theory. This formulation highlights the 

structure of the optimum IIR equaliser and the difficulties incurred in developing an 

adaptive IIR equaliser.

Central to Chapter 6 is the recognition that the optimum HR equaliser can be 

realised as a particular case of the Kalman equaliser of [18]. To make the Kalman 

equaliser adaptive, an adaptive FIR filter is operated in parallel with the equaliser to 

estimate the impulse response of the unknown channel. Combining two algorithms in 

this manner leads to problems of interaction which are overcome through the 

development of a novel compensation technique. Comparisons of the performance of 

this adaptive Kalman equaliser with a conventional linear equaliser are provided.

Finally Chapter 7 summarises the conclusions that have been drawn and provides 

suggestions for further investigation.

12



Chapter 2 

ADAPTIVE FIR FILTER ALGORITHMS

2.1 INTRODUCTION

The aims of this chapter are threefold; (i) to describe and define a broad selection 

of adaptive FIR filter algorithms, (ii) to give an indication of the convergence 

performance that currently available theoretical results would predict for these 

algorithms, and (iii) to provide a comparison of the computational requirements of the 

algorithms. The function of an adaptive FIR filter algorithm was identified in the 

seminal work of Widrow [19,20,21], and that is to find the optimum FIR filter from 

available data rather than from the second order statistics of the data. Widrow used 

the Wiener minimum mean-square error (MMSE) definition of optimum [2]. Thus in 

section 2.2 the MMSE cost function is defined and an expression for the optimum 

MMSE FIR filter is given in terms of autocorrelation and cross-correlation functions 

[22]. To illustrate the role of the Wiener FIR filter in the design of adaptive filter 

systems, the important problem of system identification is examined.

Application of the Wiener FIR filter to a signal estimation, prediction or 

smoothing problem requires explicit knowledge of an autocorrelation function and a 

cross-correlation function. In practice, these statistical functions may be unknown or 

time-varying. The heuristic sampled matrix (SM) solution, presented in section 2.3, is 

to estimate the necessary terms in the auto- and cross- correlation functions from the 

available data and proceed to the Wiener solution as if the estimates were exact [23]. 

Alternatively in the least squares (LS) approach of section 2.4, the statistical MSE cost 

function is replaced with the data dependent LS error cost function [24]. The solution 

to the LS minimisation problem is in terms of the available data and may be updated 

using a time recursion as new data appears. This LS estimate will converge to the 

optimum Wiener FIR filter as the amount of data increases provided the random

13



processes are stationary. Although the recursive least squares (RLS) algorithm exhibits 

consistent convergence properties it is computationally expensive to implement even with 

the availability of the fast algorithms such as [25]. The stochastic gradient least-mean- 

squares (LMS) [21] and block least-mean-squares (BLMS) [14] algorithms of section 

2.5 provide computationally less expensive alternatives to the RLS algorithm. However 

most of the available theoretical results [21,26,27,28] and practical experiment [26] 

indicates that the convergence properties of the stochastic gradient algorithms is highly 

dependent on the autocorrelation function associated with the input signal to the FIR 

filter. These observations lead to the transform domain or quasi-orthogonalising 

adaptive filter algorithms of section 2.6. The philosophy behind these algorithms is to 

approximately whiten the input signal before applying an LMS algorithm. This has the 

effect of reducing the sensitivity of the LMS algorithm to the autocorrelation function 

associated with the input signal [29], Finally in section 2.7 the computational 

requirements of the algorithms discussed in this chapter are compared.

2.2 OPTIMUM LINEAR ESTIMATION

The structure of a typical linear signal estimation problem is illustrated in Figure 

2.1. Given an observed random sequence {.r(/i) } which is a distorted version of a 

signal or information-bearing random sequence { y (n ) }, find a linear filter which 

operates on (x(n) } to yield an estimate, {y(n) }, of (y(n) }. The quality of the 

estimate is a function, f(.), of the error (e(n)}, which is the difference between the 

information-bearing sequence and the estimated sequence.

e (n ) = >» -?(«) (2.2.1)

The loss function / ( e (n) ) assigns a price or penalty incurred when the estimate is 

incorrect [4]. Clearly the loss function should be: (i) positive

14



and (ii) non-decreasing.

i) if e 2 > *, = 0

Examples of loss functions with these properties are: e 2 , e 4 , and | e |. Since both 

{*(«)} and (y(n)} are random sequences, {«(»)} is also a random sequence. 

Hence an optimal or best choice for the linear filter is that which minimises a cost 

function /(.), which is the expected value of the loss function / (.).

The most commonly used cost function, and the one adopted here, is the mean-square 

error [2] (MSE) £(n).

€(n) = E[*2(/0] (2.2.2)

Thus the optimal filter is defined as that filter of of the set of all possible linear filters 

which minimises the MSE.

15
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2.2.1 The Optimum FIR Filter

The output y(n ) of a causal linear filter may be written as the convolution of the 

input sequence { x(n) } and the impulse response sequence { hn }.

?(«)= 2 ht *(n-i)
i=0

This is by definition an IIR filter since it includes terms to h^fy — «). In this section 

only FIR filters will be discussed leaving consideration of IIR filters until Chapter 4. 

The output of a FIR filter of order N-l may be written as a finite summation of N 

products since

hn = 0 for n > AT , n < 0 

Thus

y(n) = N±l hiX (n-i)
i=0

This finite sum of products may be written more compactly as a vector inner product.

>'(") = h T £(n) (2.2.3)

where & is a column vector containing the N non-zero elements of the impulse 

response sequence { hn }

h = 

and i(n) is a column vector containing the last N elements of the input sequence

£ (n) = [x(n)x(n-l) • - • x(n -N + I) ] T

The superscript T denotes vector or matrix transposition. The structure of a FIR filter 

is illustrated in Figure 2.2.

17



If the sequences { JT(/I) } and { y(/i ) } are wide sense stationary then substitution 

of (2.2.1) and (2.2.3) into (2.2.2) yields an expression for the MSE cost function

£ = E[ y 2 ] + li T ^ li - 2 II T $.„ (2.2.4) 

where <£„ is an (N x N ) autocorrelation matrix

=£[i(«)ir («)l (2.2.5) 

and 3^ is an N element cross-correlation vector.

£* = £U(>0 >'(«)] (2.2.6)

Thus for a FIR filter the MSE cost function has a quadratic form in the impulse 

response vector h and the minimum can be obtained by setting the gradient N-vector V 

to zero [22].

v- = SL

M. ... 
dh Q d/ij

(2.2.7)

The optimum impulse response bpt which minimises the MSE is thus the solution to a 

set of N simultaneous linear equations.

If the power spectral density of the input sequence { x(n ) } has no nulls ie. frequencies 

where it is zero, then the autocorrelation matrix <£„ is positive definite and hence is 

nonsingular. Under this condition, the optimum impulse response is unique and is is 

given by

(2.2.9)

18



The filter defined by (2.2.9) is the Wiener FIR filter or Levinson filter. The minimum 

MSE, i,,,,, is obtained by substitution of (2.2.9) in (2.2.4).

U -*[y2 ]-Ai,$* (2-2.10)

Equation (2.2.9) provides a means for designing optimum linear FIR filters. 

However in order to calculate the impulse response of the optimum filter precise 

knowledge of the autocorrelation matrix and the cross correlation vector is required. 

In practice it is the data sequences rather then their second order statistics that are 

directly available. Determining the optimal filter from the data rather then the second 

order statistics is the function of an adaptive FIR filter [21]. An adaptive FTR filter 

can be defined as an algorithm which operates on the sequences { x (n ) } and {>•(«) } 

to form a time-varying impulse response vector &(£) which converges in the mean as 

k ~w to the optimum impulse response /^p,. The Wiener FIR filter is thus the goal of 

adaptive FIR filtering and can provide insight into how the adaptive filter should be 

applied and what the performance might be once the algorithm has converged. In 

order to highlight the role of the Wiener FIR filter in the design of adaptive filters, the 

important problem of FIR system identification is examined.

19
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2.2.2 FIR System Identification

Consider the system identification problem illustrated in Figure 2.3. An 

unknown FIR system with N-point impulse response vector h, has an input sequence 

{ a(n) } and an output sequence { |3(« ) }. They are related by a vector inner product 

expression similar to (2.2.3).

POO- 

where

n ) = [ a(w ) a(« -1) • • • a(;i -N + 1) ]

In forming a model, denoted by the N-point impulse response vector &, of the 

unknown system all that is available are two sequences { x (n ) } and { y (n ) } which are 

noisy observations of the input and output sequence respectively.

Jt(n) = a(n) + v(/i)

v(n)= p(n) + r\(n)

The sequences { a(/i) }, { v(n) }, and { T|(/I) } are assumed to wide sense stationary 

mutually uncorr elated random processes. The noise sequences { v(/i) }, and { T)(H) } 

are white with variances crv and cr^ respectively.

Application of the Wiener filter to this problem involves constructing an estimate 

y (n ) of the observed output y (n ) by passing the observed input sequence { x (n ) } 

through a system modelling filter with impulse response vector £. The impulse 

response of the system model is chosen to minimise the MSE.

E[(y(n) -?(")

The solution, hop1 , provided by (2.2.9), is an estimate of the unknown system impulse 

response. To calculate this estimate it is necessary to first form the autocorrelation

21



matrix

<£« = $«a + °v IN (2.2.11) 

where

and then the cross correlation vector.

(2.2.12)

IN is the (N x N) identity matrix. Substitution of (2.2.11) and (2.2.12) in (2.2.9) 

yields.

which after application of the matrix inversion lemma [24] can be re-arranged to give 

an expression for the impulse response of the Wiener FIR filter in terms of the impulse 

response of the unknown system.

hop, = h, ~ <*„ ( £«a + <*„ IN )"' &

This equation provides some useful results. First the Wiener filter is a biased estimate 

of the unknown system impulse response. Second the bias is removed if there is no 

noise on the input process ie.

Finally the noise on the output process, { -r\(n ) }, does not affect the estimate.
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Figure 2.3 FIR SYSTEM IDENTIFICATION

UNKNOWN 

SYSTEM

h.
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2.3 SAMPLED MATRIX INVERSION

As indicated in the previous section, the optimum tap vector, &,p, , in a MSE 

sense for an adaptive FIR filter is given by the solution of the Wiener equation, 

(2.2.9). The calculation of hopt from (2.2.9) requires the solution of N simultaneous 

linear equations in N unknowns. For a general non singular matrix the most efficient 

method of solution is Gaussian elimination which requires order N 3 operations ie. the 

number of calculations is proportional to the cube of the number of coefficients in the 

impulse response vector. However the matrix <!>,, has two structural properties: (i) it is 

symmetric i.e.

(ii) it is Toeplitz i.e.

where <£„[/,./] is the element in row i column j of the matrix <!>„ and { ^^(m) } is 

the autocorrelation sequence associated with the wide sense stationary sequence 

{ x (n ) }. All the elements of the autocorrelation matrix can be generated from 

knowledge of its first row. A more efficient method of solution, which exploits this 

very special structure, was originally devised by Levinson [22] . The Levinson 

algorithm requires order N 2 operations, a significant improvement on Gaussian 

elimination.

The direct application of the Wiener solution requires prior knowledge of the 

second order statistics of the process. This runs contrary to the concept of adaptive 

filtering. However, the efficiency of the Levinson algorithm and the availability of 

current large scale integration (LSI) techniques [30] still makes the direct Wiener 

solution appear attractive. An intuitive approach, known as sampled matrix inversion 

(SMI), has been suggested for spectral analysis [11] and automatic equalisation
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[23,31]. This techniques involves two stages.

In the first stage, parameter estimation, the autocorrelation and cross correlation 

coefficients are estimated from the available data. In the second stage, these estimated 

coefficients are used to form the Wiener equation which is then solved using the 

Levinson algorithm. The Wiener equation can thus be rewritten,

h = &? &, (2.3.1)

where the symbol " denotes an estimate. Since <£>,„ and sfe^ are estimates of the 

correlation matrices <£„ and c^ respectively, the solution h. is no longer the Wiener 

optimum hep, but an estimate of it.

For a wide sense stationary process, the autocorrelation coefficients ^(m), 

m = 0,1 ,..^V — 1, from which ^^ is composed are given exactly by the time average.

= E[x(n)x(n+m)

= Km , , . . 2 jr(n)jr(n+m) (2.3.2)
L-» { LL, -I- 1 ) n= _L

In practice, only a finite data set { x(n ) }, n = 1,2,..,& , is available. So the summation 

of (2.3.2) is truncated. Three techniques for doing this have been suggested in the 

literature. These are described briefly. (Note: only the autocorrelation estimate is 

considered here as the cross correlation estimate is analogous). An unbiased estimate 

of the autocorrelation coefficients, as suggested in [11] and [32] is

x (n } x (" + m

m = 0, 1, • • • ^V-l

Alternatively, an estimate which has been used for autoregressive spectral estimation 

[11] is
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This is a biased estimate which has a smaller variance than (2.3.3). Finally Butler and 

Cantoni [23] suggest using

-AT + 1) (2-3.5)

The estimate <f>3 differs from the other two estimates in that the number of product 

terms of the form x (n )x (n+m) which are added to form the estimate is the same for 

all lags, m. For the estimates <f>! and <f>2 the number of product terms decreases with 

increasing lag. In (2.3.3) the summation is divided by the number of products, 

(k —m ), while in (2.3.4) it is divided by the number of data points, k.

While all three techniques will converge to <$„ (m ) as the number of data points, 

k, tends to infinity, what is of primary interest from the point of view of adaptive 

filtering is their performance in the short term eg. when k<10N. Equations (2.3.3) 

and (2.3.4) are examined in some detail in [33] with the conclusion that both perform 

poorly in the short term. In fact, it is suggested in [32] that as a rule of thumb k 

should be greater than ION. In [23] an expression for the variance of <f> 3 is derived 

which is only valid when k»N.
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2.4 LEAST SQUARES ESTIMATION

The MSE cost function, £, includes the expectation operator, £[.], because the 

processes involved in the estimation problem are random. This cost function leads to 

an optimum solution, (2.2.8), in terms of ensemble averages or expected values ie. the 

autocorrelation matrix <£„ and the cross-correlation vector ^ . When only finite data 

sets, ( i(/i), y(fl), « = 0, .. k ), rather than ensemble averages are available, the 

expectation operator, £[.], in the MSE cost function may be replaced by a summation, 

, over the available data, to yield the least squares (LS) cost function.

(2.4.1)

Minimisation of this cost function with respect to the impulse response vector, &, 

associated with the estimate, y(n), leads to a LS estimate. The impulse response 

vector, &(&), which minimises the LS cost function is now a function of the available 

data rather than ensemble averages. Just as the LS cost function can be obtained from 

the MSE cost function by replacing expectation with summation, likewise, h.(k) can be 

obtained from (2.2.8) by replacing expectation with summation ie. there is a duality 

between the MSE and LS minimisation problems. Thus

where

k 
£«(*) = 2 £(n )&. T (n ) (2.4.3)

n=0

and

i («)>'(«) (2.4.4)

A unique solution to (2.4.2) will exist if £„(*) is nonsingular. For small data sets, ie. 

k <#-!,£„ is always singular. In this case, the number of data points, k+1, is less
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nverse 

a

than the number of unknowns, N, which describe the impulse response and hence no 

unique solution can exist. For k > N , the singularity of tu (k ) will depend on the 

particular data sets that are available. The singularity problem in LS squares 

estimation is often avoided through the use of either the Moore-Penrose pseudoi 

[34], where the solution of minimum length is chosen when (2.4.2) does not provide 

unique solution, or by adding a small positive scalar, a, to the leading diagonal of

*«(*)-

2^(*)= 2 JcOi)*r («) + a/A, (2.4.5) «=o

The latter method while ensuring that the solution to (2.4.2) is always unique is not in 

a strict sense LS.

Four different forms of LS estimate are possible depending upon what 

assumptions are made about the available data [35]. These are the covariance form, 

the pre-windowed form, the post-windowed form and the autocorrelation form. Of 

these the covariance form is the most straightforward as it involves no assumptions 

about the data. The other three forms are constructed from permutations of the pre- 

windowed assumption,

x(n) = 0, n < 0 

and the post-windowed assumption.

x(n) = 0, n > k-N + 1

The autocorrelation form is at the other extreme from the covariance form combining 

both pre-windowed and post-windowed assumptions. These data windows are usually 

invoked with the view to reducing the number of computations necessary to solve 

(2.4.2). However as the available data is usually taken from continuous data sequences 

the pre-windowed and post windowed assumptions will in general be invalid and hence 

will lead to a degradation in the quality of the LS estimate.
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Unlike the autocorrelation matrix, <£„, the LS matrix, £„(*)» is not Toeplitz. 

However it does have a significant structural property which can be identified by 

rewriting the summation of (2.4.3) as the product of two matrices.

= 2
«=o

(2.4.6) 

where &(k ) is a Af x (k + 1) rectangular matrix.

*(*) = [*(0) ••• *(«) •••*(*)]

Since &(k) is Toeplitz, £„(£) is the product of two Toeplitz matrices. This near to 

Toeplitz structure [36] has lead to the development of efficient algorithms for the 

solution of (2.4.2) which lie between Gaussian elimination and the Levinson algorithm 

in computational complexity [37,38]. If however the autocorrelation form is assumed, 

ie. the data is both pre- and post-windowed, the LS matrix Lxx (k) becomes Toeplitz 

and the computational load is further reduced since the Levinson recursion can be used 

to solve (2.4.2).

An expression for the element in row i column j of the matrix £„(£) can be 

written down directly from (2.4.3).

(2 .4.7)

The time index (k) has been dropped from £„(£) for this discussion to simplify the 

notation. To prove that the autocorrelation form of £„ (k ) is Toeplitz it is sufficient to 

show that (2.4.7) may be rewritten as a function of a single variable (i-j) as opposed to 

a function of two variables i and j. First a change of variable is made to highlight the 

effect of the pre-windowed assumption. Let

m — n-i
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and replace n in (2.4.7) with m+i.

*-; 
£»[',./']— 2 x(m)x(m+i—j) (2.4.8)

m = -i

Since z^ (k ) is symmetric, (2.4.6), generality will not be lost if it is assumed that

In which case the pre-windowed assumption implies that the range of m must be 

limited at its lower end to

m > 0 

and hence (2.4.8) may be rewritten

m = 0

Performing a second change of variable,

/ = m + i — j , 

which highlights the effect of the post-windowed assumption, yields the desired result.

'' (/+/-y) (2.4.9)

Equation (2.4.9) is similar in form to the autocorrelation estimate <X> 2 of (2.3.4) since 

the number of products x (/ ),t (/ -I- / —j ) that are added decreases linearly with 

increasing lag, /— y. In fact for a given data set the SM technique based on (2.3.4) 

will produce the same estimate of ^ as the autocorrelation form of LS.
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2.4.1 Recursive Least Squares

In many applications it is necessary to update the LS estimate provided by the 

solution to (2.4.2) as new data becomes available. The simplest approach is to 

reconstruct (2.4.2) and resolve it. However this is equivalent to performing a matrix 

inversion as each new data point becomes available and thus has the possibility of 

being expensive computationally. An alternative is to seek a time recursion for h. (k ) 

in terms of the previous least squares solution b.(k— 1) and the new data, &(k) and 

y(k). A recursive solution for b(k), may be obtained as follows. From the definitions 

of (2.4.3) and (2.4.4) and assuming that the data has not been post-windowed.

!) + *(*Ur (*) (2.4.10)

D + *(*)>(*) (2A11) 

Substitute forz^ in (2.4.11) using (2.4.2).

l) + *(k)y(k) 

Then using (2.4.10).

After rearrangement this yields

!) + *(*)*(*) (2.4.12)

where

e(k) = y(k) - h 1 '(k -1) i(*) (2.4.13)

and

i(k) (2.4.14)
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A recursion for &*(£) may be obtained by application of the Sherman-Morrison 

identity [39] to (2.4.10).

"'- r! - „.,-.
(2.4.15)

(i + j'Wsj'Ofc-i)*(*) )

This recursion is often initialised using the definition of (2.4.5) ie.

£«(<>)= ^/A,

Collectively, (2.4.12), (2.4.13), (2.4.14) and (2.4.15) are known as the recursive 

least squares (RLS) algorithm. Godard [40] derived an almost identical algorithm by 

using a Kalman filter [3] to update the coefficients of an adaptive transversal equaliser. 

The number of arithmetic operations per iteration that are necessary for the RLS is:

3Af 2 5N 3N 2 9N-r— + -r— additions/subtractions, —— + -^— multiplications, and 1 division. Thus

it can be an expensive algorithm to implement even for a system of moderate order.
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2.4.2 Data Windows

In a non-stationary or time varying environments, the least squares estimate 

provided by (2.4.2) and the corresponding recursive least squares algorithm of 

subsection 2.4.1 are inappropriate [24]. This is because the tap vector, h.(k), 

associated with this growing memory LS estimate [24] is a function of all the data in a 

window from n = 0 to ;i = k . The optimum filter may itself be time varying within 

the data window. One possible approach to this problem is to replace the sum of 

squares cost function of (2.4.1) with an exponentially weighted sum of squares cost 

function

2 (y(n)-y(n)f\k -" , (2.4.16)
n = 0

where

0 < X < 1 .

This essentially reduces the effect of old data samples on the current estimate, &(£)> °f 

the optimum tap vector. The parameter, X, controls the length of the memory. When 

X = 1 all the available data is weighted equally and this exponential LS algorithm 

reduces to the growing memory form discussed previously. However as X is reduced 

the effective memory of the algorithm is also reduced and the algorithm may then be 

capable of tracking changes in the optimum tap vector.

Minimisation of the cost function of (2.4.16) give rise to a recursive least squares 

algorithm which is very similar in form to that presented in subsection 2.4.1. The only 

difference is that (2.4.15) is now replaced [24] with

7—— Lfjf \K I ) 

X

Thus the recursive form of the exponentially weighted LS algorithm represents only a
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slight increase in computational load over the growing memory form. Other data 

windows are possible. These include the sliding window least squares algorithm where 

the cost function of (2.4.1) is altered to

(y(n)-y(n))2

in order to include only the last M data points in the estimate of the optimal tap 

vector. However the computational burden of the sliding form is significantly greater 

than both the growing memory and exponentially weighted least squares algorithms 

[24]. There is also evidence to suggest that the sliding window algorithm may not offer 

any improvement in performance over the exponential form in nonstationary 

environments. [41]

2.4.3 Fast Algorithms

While equations (2.4.12)-(2.4.13) provide a RLS algorithm, the near to Toeplitz 

structure of the LS matrix £„ (k ) is not exploited in their derivation. This structure is 

a result of the shifting property of the data vector s.(k). The shifting property can be 

illustrated by comparing z(k} with &(k -1) and observing that they have N-l common 

elements.

l).r(*-2),r(*-3) ••• x(k -N + 1} x(k-N)

In fact s. T (k) can be obtained from £T (k— 1) by shifting the elements of &T (k -1) to 

the the right, hence losing x(k— N). and then replacing the leftmost element of 

yT^ _i) wjth x(k). In 1978 Ljung et al [25] derived a recursion for the calculation of 

£ (k ) , which uses the concept of forward and backwards least squares linear prediction 

to exploit the shifting property. This recursion, known as the fast Kalman algorithm, is
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an order of magnitude more efficient computationally than equations (2.4.12)-(2.4.15). 

The fast Kalman algorithm for the pre-windowed form of LS is derived in Appendix 

A. The number of arithmetic operations per new data point (iteration) that are 

necessary for the fast Kalman algorithm is: 9N+1 additions/subtractions, ION-Hi 

multiplications, and 2 divisions. This is a significant increase in computational 

efficiency compared to the standard RLS algorithm, (2.4.12)-(2.4.14).

Since the publication of [25] , other fast least squares algorithm have appeared. 

Covariance forms of the algorithm were developed [42] . Computationally more 

efficient forms appeared such as: (i) the fast a posteriori error technique (FAEST) [43] 

, and (ii) the fast transversal filter (FTP) which is derived through the geometrical 

interpretation of least squares [44]. With the increased efficiency of this family of fast 

algorithms with respect to the standard RLS algorithm has come an increase in 

sensitivity to the effects of finite precision arithmetic e.g. [45]. In an attempt to 

alleviate these problems square root or normalised forms of the algorithm have been 

developed [44] , and periodic re-initialisation techniques suggested [46]. Finally, in an 

attempt to solve certain non-stationary problems, sliding window forms of the 

algorithm have been developed [47,48].

The transversal filter structure illustrated in Figure 2.2. is not the only realisation 

of a FIR filter that is possible. A significant alternative is the lattice or ladder filter 

structure [49,50], which exhibits several properties not found in a transversal filter 

realisation. These properties, which include modularity and good numerical round-off 

characteristics, are achieved at the expense of increased computational load for a given 

order of filter [51]. A lattice filter structure is illustrated in Figure 2.4. The major 

developments in fast RLS lattice structures have parallels with those in fast transversal 

filter form. Prewindowed and square root normalised algorithms first appeared in [52] 

and [53]. Because the square root normalised lattice algorithm has a natural 

interpretation as a set of rotations it can be realised efficiently using a coordinate 

rotation digital computer (CORDIC) [54]. Both normalised and unnormalised,
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covariance and sliding window forms have also been developed [55]. The effects of 

fixed point implementation on the RLS lattice is examined in [56]. Recently 

alternative lattice structures have been developed for certain classes of nonstarionary 

process [57].
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Figure 2.4 A LATTICE FIR FILTER
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2.4.4 Properties of the Least Squares Estimate

For wide sense stationary random processes ensemble averages may be replaced 

by time averages. Therefore the MSE cost function, £, may be replaced by an infinite 

summation.

4(/i) - E[ e*(n) ] = Hm i- £ * 2(«) (2.4.17)

The summation on the right hand side of (2.4.17) is recognisable as the LS cost 

function, (2.4.1). The scaling factor — does not affect the LS solution given by

(2.4.2). Thus for an infinite data set, the MSE cost function and the LS cost function 

are minimised by the same tap vector \^pl . Hence it is concluded that the solution to 

the LS problem h(k) converges asymtotically to the Wiener solution hcp, [58,59,60]. 

However for finite data sequences analytic results for the properties of the LS estimate 

are more difficult to derive. The approximate analysis presented in [58] gives the 

following three useful results which are applicable to what is termed long sequences ie. 

N « k < oo.

= 0 (2.4.18)

E((h(k)-hop,

E[e2(k)] = $op, + -4op, (2.4.20)

These results suggest that: (i) for finite data sets the LS solution, h(k), is an unbiased 

estimate of the Wiener solution, /kpr , (ii) the error covariance of the estimate, 

(2.4.19), whilst being a function of the signal autocorrelation $La , decreases with the

N size of the available data set, k, and (iii) the excess MSE, — £,pf , increases linearly
rv

with the number of coefficients, N, in the impulse response and decreases with the size
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of the data set. Equation (2.4.18) to (2.4.20) concur with the results obtained in [40] 

for a channel equaliser application. Equation (2.4.20) is commonly used to conclude 

that the RLS algorithm converges within 2N iterations since for A: = 2N ,

E(e2(2N)]
- l.SdB. (2.4.21)

The MSE is within 1.8 dB of the MMSE in 2N iterations of the RLS algorithm. This 

rule of thumb has to be used with caution as (2.4.21) is a relative measure, relative to 

the MMSE. Adequate performance with respect to the MMSE in one application 

might not be adequate performance with respect to the MMSE in another application.

By far the most rigorous analysis of the performance of the LS estimator appears 

in [24] and applies to the specific example of the system identification problem 

illustrated in Figure 2.3. when the input noise term is removed. If the input sequence, 

{ x (n ) }, is considered to be a known deterministic process then the only random 

process is the noise sequence, { TJ(/I ) }, and the LS estimate, h(k) k >W , of the system 

impulse response, &,, is the best linear unbiased estimate (BLUE). The error 

covariance of the h(k} with respect to the noise sequence, { -r\(n ) }, is given by

Em [(h(k) -h. )

Further if the random noise sequence is Gaussian then the LS estimate achieves the 

Cramer-Rao lower bound and is the minimum variance unbiased estimate (MVUE).
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2.5 STOCHASTIC GRADIENT METHODS

While Gaussian elimination or the Levinson recursion provide the means for 

solving the Wiener equation, (2.2.8), in a fixed number of calculations, iterative 

techniques are also available where the number of calculations necessary to find the 

solution are not known beforehand [34]. The method of steepest decent is an iterative 

technique that has been used in linear programming and optimisation problems to find 

a variable, ( eg. fa,pt ), which minimises an objective or cost function ( eg. g ). To 

apply the method to the solution of (2.2.8) a guess at the solution, fa, is made. The 

subscript i is used to denote the ith step in an iterative process rather than a time 

recursion such as (2.4.12). This guess will have associated with it a particular value of 

the MSE cost function, (•(&,), given by (2.2.4). This guess is then improved by a two 

stage process. First the gradient vector , V,, associated with the guess is calculated 

using (2.2.7). The gradient vector is in the direction of the greatest rate of change of 

the MSE cost function. Second a scaled version of the gradient, (JtV^), is subtracted 

from the guess to form a new guess fa+ v . The MSE at the new guess will be smaller 

than the MSE at the initial guess if the small positive scalar JJL is chosen correctly. 

Hence if the two stages are repeated the MSE associated will be reduced until it 

reaches the minimum, £opl , at which point the guess fa will equal fa,pt . The method of 

steepest descent is defined by the following two equations.

ht+i = fa ~ n V, (2.5.1)

V = -( h )*• ^ ' '

= 2 &„ fa - 2 ^ (2.5.2)

The method will converge to the optimum solution provided the step size or 

convergence factor, JJL, lies within the range
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0 < M. < T—. (2.5.3)

where X,,^ is the largest eigenvalue of the autocorrelation matrix, ^ [21]. However 

the importance of the method of steepest descent in adaptive filtering is not as an 

iterative alternative to direct methods such as Gaussian elimination or the Levinson 

recursion, rather it is that it is the basis of the least mean squares (LMS) [21] and the 

block least mean squares (BLMS) [61] stochastic gradient algorithms.

2.5.1 The Least Mean Squares Algorithm

While application of the method of steepest descent avoids the direct matrix 

inversion inherent in the Wiener equation, (2.2.9), explicit knowledge of the 

autocorrelation matrix, <!>„, and the cross-correlation vector, S^, is still required, 

(2.5.2). The requirement for knowledge of these statistics is circumvented in the LMS 

stochastic gradient algorithm by replacing the iterative step, (2.5.1), with a time 

recursion and the gradient with an estimate of the gradient.

&(* + !) = &(*) -M.4(*) (2-5.4)

The vector h(k) is an estimate of the Wiener filter, hopt , at time sample k and the 

vector $(&) is an estimate of the gradient, Y(£), of the MSE cost function at the 

point where the impulse response is &(£). The exact gradient, V(£), is defined in 

similar manner to V,, (2.5.2).

(2.5.5)

After some rearrangment (2.5.5) yields

- -2£U(/0(v(/0 -& T (*)JC(*))]. (2.5.6)
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To form an estimate, £(*), of the gradient, V(*), the ensemble average of (2.5.6) 

could be replaced by a time average over n. However since A (A:) changes at every 

data point, (2.5.4), the time average reduces to a single value at n = Jk + 1.

£(*) = -2*(* + !)*(* + !) (2.5.7)

e(k + l) = y(k + l) -/1T (*U(* + 1) (2.5.8)

This gradient estimate is unbiased [21] . Substitution of (2.5.7) into (2.5.4) yields the 

LMS algorithm.

&(* + !) = &(*) + 2 ^ *(* + !) *(* + !) (2.5.9)

Although the LMS algorithm is considerably simpler than the RLS algorithm of 

subsection 2.4.1 its convergence properties are nonetheless difficult to analysis 

rigorously. The simplest approach is to examine the evolution of the mean of the 

estimated impulse response vector. Taking expected values of both sides of (2.5.9) 

gives

l - 2 p. ,i(* + l)£r (* + !)

Evaluation of the first expected value on the right hand side is difficult because of the 

dependence of the vectors s (k + l) and li(k). If however they are assumed to be 

independent, the algebra becomes more tractable and a simple recursion for E[ h(k} ] 

is obtained.

2,i^ (2.5.10)

Although the independence assumption is in a strict sense invalid it does yield results 

that agree well with experiment [26]. From (2.5.10) bounds on the step size, JJL, that 

ensure convergence in the mean of li(k) to hop, can be obtained.
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Rewriting (2.5.10) in terms of an error vector

gives

(2.5.11)

If E[ h(k) ] converges to the zero vector as k - «, then E[ b.(k) ] converges to &,,»• 

Assuming that the autocorrelation matrix, <£„ , is symmetric and positive definite it can 

be factorised as

- V A VT , (2.5.12) 

where A is the diagonal matrix of eigenvalues

A = diag [X0 \! • • • Xw _j ]

and V is the orthonormal matrix whose jth column is the eigenvector of ^ associated 

with the jth eigenvalue. Substitution of (2.5.12) into (2.5.11) effectively transforms 

the error vector b.(k) to a vector £L(k) whose components, Hj(k), evolve in time 

independently of each other. Thus

= (/ -2M-A )£[(*)] 

where

= VT

Since VT is unitary the vectors U. (k ) and !i(k) have the same Euclidean norm , and 

hence convergence of tL(k) to the zero vector is equivalent to convergence of H(k) to 

the zero vector. Further since the matrix (7-2p.A) is diagonal, a separate 

recursion for each element, ///(*), of //(#) can be obtained.

, y = 0,1, ...,N-
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(2.5.14) 

Each of these modes decays exponentially to zero provided

Convergence of all the elements of U. (k ) to zero is assured if

o < JJL < ~i~ , (2.5.15)

which is identical to the condition for convergence of the method of steepest descent, 

(2.5.3). The time constant, T, associated with equation (2.5.14) is given 

approximately by

T; =

Hence the longest time constant, rmax , is associated with the smallest eigenvalue, X,,^.

(2.5.16)§max 2M-X, 

Combining (2.5.15) with (2.5.16) gives.

(2.5.17) 

which suggests that the larger the eigenvalue ratio ( condition number ), max , of <£„
^min

the longer the LMS algorithm will take to converge.

Analyses of the MSE convergence properties of the LMS algorithm are available 

in [27] and [26]. Again the independence of the vectors i(£ + l) and &(&) is assumed 

in order to make the algebra tractable. In both [27] and [26], the bounds on the step 

size, (x, that ensure MSE convergence of the LMS algorithm are more restrictive than 

those of (2.5.15). For example in [27] the bounds on the step size are

(2 - 5 - 18)
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These analysis also indicate that the rate of convergence of the MSE is dependent on 

the eigenvalues of 3U* but in a more complex way than that suggested by (2.5.17).

2.5.2 The Block Least Mean Squares Algorithm

If the estimated impulse response, &(£), is held constant for a block of L data 

points, the recursion of (2.5.4) becomes

h(k +L ) = &(*)- IH $(*) . (2.5.19)

The gradient estimate of (2.5.7) can then be improved by replacing the ensemble 

average of (2.5.6) with a time average over the L values of the time index n for which 

the estimated impulse response is constant.

9 k+L 
— — =- V
"" L 2,** it = k+l

This can be written more succinctly as

£(*) = ~ r £(*+!)*(*+*.) (2.5.20)

where x(£+£) is an (W x L ) matrix constructed from L input vectors

), n = k + l, k+2. - • • k+L

and the (L x 1) error vector, e_(k +L ), is the difference between the signal vector

y(k+L) = 

and the estimated signal vector

£(*+£)= \T (k+Ln(k) (2-5.21) 

that is,
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e.(k +L ) = i(k +L) - v (k +L ). (2.5.22)

Together (2.5.19) to (2.5.22) define the BLMS adaptive filter algorithm [14].

Equations (2.5.20) and (2.5.21) represent linear convolution operations. For 

example, the gradient estimate of (2.5.20) contains N scaled outputs at

n = k+L-N + l, k+L-N+2, • • • k+L-l, k+L

of a FIR filter with impulse response vector e.(k+L). Similarly the estimated signal 

vector of (2.5.21) contains L outputs at

n = fc + 1, *+2, • • • K+L-I, k+L

of a FIR filter with impulse response vector li(k). The input sequence { x(n)} for 

n = k—N + 2 • - • k - • • k+L is applied to both filters. These linear convolution 

operations can be implemented using a combination of a circular convolution algorithm 

such as the fast Fourier transform (FFT) [7], the rectangular transform (RT) [62], or 

the number theoretic transform (NTT) [63], and the overlap add or overlap save data 

sectioning technique [7]. The relationship between circular and linear convolution and 

the use of the method of overlap save are described in Appendix B. This 

implementation results in a substantial computational saving on the direct time domain 

approach and is the major motivation behind the use of the BLMS algorithm. 

Although it is possible to use any block length, L, the most efficient adaptive filter 

structures are obtained when the block length is equal to the filter length, N [61]. As 

this condition also simplifies the algebra it is the only one that is considered here.

In order to calculate N outputs of a N-point FIR filter a 2N-point circular 

convolution is required [7]. Such a circular convolution can be performed using a 

transform domain processor defined in general by two (M x 2N) matrices A^ and 

BW arjd a (2# x A/) matrix C 2yv , where M ^ 2N. Applying the techniques 

described in Appendix B to (2.5.21), for L = N
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(2.5.23)

where

and

In 
0N h(k)

The symbol x represents the point by point multiplication of the vectors £(k+N) and 

££(*). The matrix IN is the (N x N) identity matrix and the (AT x N) matrix ON has 

all zero elements. The reversal matrix TN has 1's on the secondary diagonal and zero 

elsewhere. The linear convolution of (2.5.20) can be performed in a similar manner,

= ~ (0N TN ]C 2N (2.5.24)

where

0N

Since £(k +N) appears in both (2.5.23) and (2.5.24) it is only necessary to calculate it 

once per block of data. The complete circular convolution implementation of the 

BLMS algorithm is summarised in Table 2.1.

Using a similar analysis to that presented in section 2.5.1 for the LMS algorithm, 

convergence in the mean of the BLMS algorithm is assured provided

0< (2.5.25)
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and the time constant, T, , associated with the jth mode is given approximately by

T. = - — r— blocks

However for the BLMS algorithm the time constant is measured in blocks of L data 

points and must be multiplied by L to give an equivalent time constant in samples in 

order to facilitate comparisons with the LMS algorithm.

samples

In common with the LMS algorithm the largest time constant Tn^,, is associated with 

the smallest eigenvalue,

Tmax = o —— r —— samples (2.5.26)
^ P- *min

Comparing (2.5.26) and (2.5.15) for a given value of the step size, the largest time 

constant associated with the BLMS algorithm is L times larger then the largest rime 

constant associated with the LMS algorithm. In order to achieve the same rate of 

convergence as the LMS algorithm the value of \L b must be made L rimes greater than 

u, in which case there is greater danger of the stability condition of (2.5.25) being 

infringed. If (2.5.26) and (2.5.24) are combined the dependence of the rate of 

convergence of the BLMS algorithm on the eigenvalue ratio is illustrated.

^ '-' ^max /•/» c "V7\> r —— (2.5.27)

The MSE analysis of the BLMS algorithm presented in [28] is an extension of the 

convergence analysis of the LMS algorithm which appears in [27] and also indicates 

that the rate of convergence of the BLMS algorithm decreases with increasing block 

length L. However the relationship is not as simple as (2.5.27). The MSE analysis 

also reveals that the bounds on »i 6 that ensure convergence are more restrictive than 

(2.5.25).
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This condition simplifies to (2.5.18) when L = 1. In conclusion the computational 

advantages afforded by the BLMS algorithm when compared with the LMS algorithm 

are obtained at the expense of degraded convergence performance.
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Table 2.1 THE BLMS ADAPTIVE FILTER

XO)-

-1) = A- In 

0N
A 0-1)

y(ri = [ON TN

£0') = [^ ^
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2.6 TRANSFORM DOMAIN ALGORITHMS

The convergence analyses of the LMS algorithm ( either in a mean or a MSE 

sense ) strongly indicate that the rate of convergence of the algorithm is dependent on 

the spread of the eigenvalues of the autocorrelation matrix, <£„ . This dependency can 

be removed by first applying a linear transformation defined in terms of a (N x N) 

matrix P, to the input vector, i(/i ), to form a second vector, i(n ),

i(n) = P *(/0 (2.6.1) 

such that

&a = EU(/OiT (/0] = IN • (2.6.2)

If i(n) is then used as the input vector to the LMS algorithm instead of i(n), the 

convergence performance of the algorithm will be improved since the eigenvalues of 

<£„ are all unity. The matrix P is obtained from the square root factorisation of the 

autocorrelation matrix. If <£„ is a positive definite matrix then a matrix P exists such 

that

P T = 1N (2-6.3) 

and hence

= />-'(/>-Mr . (2-6.4)

The factorisation of (2.6.4) is not unique [39] and thus for a given autocorrelation 

matrix there are many transforms such as P which exhibit the property summarised in 

(2.6.1) and (2.6.2).

The linear transformation of (2.6.1) reduces the symmetric positive definite 

matrix, <!>„, to the identity matrix, <!>„. This whitening of the signal can be 

performed in two stages. First a linear transformation is applied to the input vector, 

/0« to produce an intermediate vector whose autocorrelation matrix is diagonal ie.



the input vector is orthogonaliscd. Then each element of the intermediate vector is 

scaled to produce a vector, z(n), whose autocorrelation matrix is the identity. The 

second stage is known as power normalisation. The two stage process is dependent on 

the existence of factorisations of the form,

^ - W D WT (2.6.5)

where D is an (AT x N) diagonal matrix. The transform of the input vector, i(/i), to 

the vector z.(n ) is defined as the product of two matrices W~l and D'^2 .

The (N x AT) diagonal matrix D~m contains the reciprocals of the positive square 

roots of the elements on the diagonal of D. For a symmetric positive matrix two 

factorisations of this form are possible: Cholesky factorisation and eigenvalue 

decomposition. For the latter, which is described in section 2.5.1, the transform 

matrix, W~l , is the Karhunen-Loeve transform (KLT). For the Cholesky factorisation 

the (N x N) matrix W is a lower or upper diagonal with a unit leading diagonal. The 

transformation matrix, W~l , is of the same form. In fact the lower ( upper ) diagonal 

matrix, W'1 , contains the coefficients of all backward ( forward ) prediction error 

filters from order 0 to order N-1 [64,35] and hence multiplication of the input vector 

X.(n) by W"1 can be implemented efficiently using a lattice filter structure [35].

The forward prediction error of order j , e{(n ), is the output of a FIR filter with 

j+ 1 taps.

*/(n) - jc(n) + 2 fltf *(/!-/)
i = i

The forward prediction coefficients, atj / = 1, • • • y, are chosen to minimise the 

MSE cost function.

52



Similarly the jth order backward prediction error, **(/i), is the output of a backward 

prediction filter with j+ 1 taps.

e/(n) = x(n-N) + bu
1=1

The coefficents, btj9 are chosen to minimise a MSE cost function.

All forward and backward prediction errors from order 0 to order N-l can be 

generated using the following equations which define one stage of a lattice filter.

«/(« )-«/-! (*-!) + KJ '/-i 00

The partial correlation (PARCOR) coefficients, KJ, can be calculated using the 

Levinson recursion [22].

The two factorisations summarised in (2.6.5) cannot be used to construct an 

adaptive filter algorithm since explicit knowledge of the autocorrelation matrix, <£„ , is 

required before any factorisation can be performed. However approximate 

factorisations of this form lead to adaptive filter algorithms whose convergence 

properties are less sensitive to the eigenvalue spread of the autocorrelation matrix than 

the LMS algorithm. The two major classes of transform domain algorithm are based 

on the two possible factorisation of the form given in (2.6.5). Since the Cholesky 

factorisation can be implemented using a lattice filter structure, the transformation 

matrix, W"1 , can be estimated from the available data by estimating the PARCOR 

coefficients that define the lattice filter. The simplest such algorithm is the stochastic 

gradient (SG) adaptive lattice filter of [65], where the PARCOR coefficients are 

estimated using the forward and backward prediction error and a constant
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The convergence properties of the SO adaptive lattice filter are analysed in [66]. 

Alternatively the eigenvalue decomposition leads the signal dependent KLT which can 

be approximated using non signal dependent unitary transforms such as the discrete 

Fourier transform (DFT) [67], the discrete cosine transform (DCT) [29] and the Walsh 

transform (WT) [68]. To illustrate a transform domain adaptive filter the DFT based 

structure is examined in more detail.

2.6.1 The Sliding DFT Adaptive Filter

In the DFT based structure of [67] the input vector, i(n), is transformed to a 

vector, K(n) using the (N x N) complex DFT matrix FN .

(2.6.6) 

The element in row / column m of the DFT matrix is a complex exponential term.

The elements of the transformed vector, 2C(«)> are weighted and summed to produce 

an estimate, y (n ), of y (n ).

The value of the vector ft which minimises the MSE cost function, £ (), is H^p, •

Since the matrix FN is complex the vector £(n ) will in general be complex even if 

i is real and hence the complex LMS algorithm [69] must be used to estimate the 

optimum vector U^p, which minimises the MSE.
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2jtf />-'*'(* + !) *(* + !) (2.6.7)

The superscript * denotes complex conjugate. The real positive constant, nc , is the 

convergence factor or step size. The autocorrelation matrix, E[ X.(n) ( 2C*(n ) )r ]» is 

assumed to be diagonal.

Z> = diag[DQ Dl • • • />„_

The elements of the diagonal matrix D are estimated from the data using a recursion of 

the form,

( 1 -a2 )*,(* + !) *;(* + !)

where a is a positive constant less than unity. The use of D'1 in (2.6.7) to control the

adaptive step size, _ / )x .. . is equivalent to power normalisation and avoids the/),(& + !)

square root operation associated with D'1'2 . An efficient structure for implementing 

(2.6.6) is obtained by using the following recursion [7].

*,.(* + !) = exp(- V(-l) —— -)*,(*) + jc(* + l) -x(k-N).
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2.7 ALGORITHM SUMMARY AND COMPLEXITY COMPARISON

Table 2.2 shows a summary of the computational complexity of a selection of 

time recursive adaptive FIR filter algorithms. The algorithms are divided into three 

types; recursive least squares, stochastic gradient and transform domain or quasi- 

orthogonalising algorithms. Two RLS algorithms are considered; the original fast 

Kalman algorithm of [25] which is derived in Appendix A, and the lattice filter 

algorithm of [52]. Both algorithms are prewindowed. A more comprehensive 

comparison of the computational complexity of the various RLS implementation 

options is given in [16]. Two stochastic gradient algorithms are considered; the LMS 

algorithm of [21] described in subsection 2.5.1 and the FFT-based BLMS of [14] 

described in subsection 2.5.2. Finally the sliding transform algorithm of subsection 

2.6.1 is taken as an example of a transform domain or quasi-orthogonalising algorithm. 

The computational load of each algorithm is assessed in terms of the three major 

arithmetic operations ie. divisions, multiplication and additions/subtractions. The 

figures quoted are numbers of operations to process each new pair of data points data 

point x (k +1) and >• (k +1).

The stochastic gradient algorithms are the least demanding computationally of all 

the adaptive FIR filter algorithms with the BLMS requiring even less computations 

than the LMS for N ^ 64. Unfortunately they exhibit the poorest convergence 

performance since, as indicated in section 2.5, the convergence rate is dependent on 

the eigenvalues of the autocorrelation matrix associated with the input signal. The 

RLS algorithms, on the other hand, exhibit consistent fast convergence properties, as 

indicated by (2.4.19), but are the most expensive computationally. Finally the 

transform domain or quasi-orthogonalising algorithms are less sensitive to the 

eigenvalue spread of the input autocorrelation matrix than the stochastic gradient 

algorithms. Thus they offer convergence performance that lies between the RLS and 

SG algorithms. However the sliding DFT algorithm is closer to the RLS algorithms

56



than the SG algorithms in computational load.

The convergence characteristics of stochastic gradient, recursive least squares and 

transform domain algorithms are examined further in chapter 3 through the medium of 

computer simulation.
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Table 2.2 COMPLEXITY COMPARISON 
( Adaptive FIR Filter Algorithms )

Algorithm

Recursive Least Squares

Stochastic Gradient

Transform Domain

Implementation

fast Kalman

lattice

LMS

BLMS (FFT)

Sliding DFT

Computational Load

mult add/sub div

10N+1

8N

2N

101og(N) + 8

8N+16

9N+1

8N

2N

151og(N) + 30

6N+9

2

6N

-

-

N
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Chapter 3 

PERFORMANCE COMPARISONS

3.1 INTRODUCTION

While logistics preclude a comparison of the complete set of algorithms that have 

been mentioned in chapter 2, it is possible to examine the performance of a subset 

whose elements are representative of the three classes into which adaptive filters may 

be divided. These three classes are: (i) stochastic gradient search algorithms such as 

the LMS algorithm of subsection 2.5.1 and the BLMS algorithm of subsection 2.5.2, 

(ii) quasi-orthogonalising or transform domain algorithms such as the sliding DFT 

structure of subsection 2.6.1, and (iii) least squares techniques such as the simple RLS 

algorithm of subsection 2.4.1. The convergence performance of one or two algorithms 

from each class will be studied by computer simulation.

In the literature on adaptive filters, the LMS is taken as the benchmark against 

which all other algorithms are compared. This is appropriate because of the relative 

simplicity and hence popularity of this algorithm. Conventional analysis of the LMS 

[21,26] indicates that the time to converge is a function of the eigenvalues of the 

autocorrelation matrix <£.„.. The greater the spread of the eigenvalues, the more 

coloured or ill-conditioned the input signal is and the longer the algorithm takes to 

converge. The best performance that can be achieved with an LMS algorithm occurs 

when all the eigenvalues of the autocorrelation matrix are equal and hence the signal is 

white. The analysis of the RLS algorithm is more complex than that of the LMS 

[24,70,58]. However it is apparent that the convergence rate of the RLS is insensitive 

to eigenvalue spread and hence the RLS will in general converge faster than the LMS 

algorithm. In fact it will outperform the LMS even under white input conditions [71]. 

There are thus three performance goals at which an adaptive FIR filter algorithm may 

be aimed. These are: (i) LMS performance, (ii) LMS performance under white input
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conditions, and (iii) least squares performance. The goals (i), (ii), and (iii) coincide 

with the three classes of algorithm already enumerated.

In comparing the performance of the various algorithms two specific applications 

are considered. In section 3.2, system identification, the adaptive filter is used to 

estimate the impulse response of an unknown system. In section 3.3, channel 

equalisation, the adaptive filter is used to reduce the effects of intersymbol interference 

on a digital communications channel. Although these two examples do not cover the 

complete spectrum of adaptive filter applications, they represent the two major modes 

of operation ie. direct and inverse system modelling. Also considered are the effects of 

adding a white noise term first to the training input and second to the signal input of 

the adaptive filter.

3.2 SYSTEM IDENTinCATION

The architecture that was employed for the simulation of a system identification 

problem is illustrated in Figure 3.1. A coloured input sequence {x(n) }, formed by 

passing a zero mean white Gaussian sequence { z (n ) } through a 3-tap FIR channel 

with impulse response { cn }, was applied both to the input of the unknown system and 

to the input of the adaptive filter. The system output, corrupted by an additive white 

Gaussian noise term, TJ(/I), was subtracted from the adaptive filter output, y(n), to 

form the error term, e(n). The number of coefficients in the adaptive filter was 16, 

corresponding exactly with the number of coefficients in the fixed FIR filter which was 

used to simulate the unknown system. A selection of three channel impulse responses 

was used in order to vary the degree of ill-conditioning on the sequence { x (n ) }. The 

impulse responses are given in Table 3.1 along with the associated condition number or 

eigenvalue ratio [29] of the (16 x 16) autocorrelation matrix ^XI . All three channels

and the unknown system were chosen to have unit gain eg. ^,c? = 1. Thus with the
n
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variance of the white sequence { z (n ) } at unity, both the input and output sequences 

of the unknown system had unit variance. This gave a convenient reference for the 

variance of the additive noise and for calculating the step size of the stochastic gradient 

algorithms.

The scenario illustrated in Figure 3.1 is essentially the same as that of subsection 

2.2.2 with the exception that the input additive noise term has been removed. If a 

unique solution to (2.2.8) exists, ie. if $>.„ has a unique inverse, then the optimum 

solution hopt is equal to the impulse response of the unknown system. Multiple 

solutions may exist when the power spectral density of the input sequence { x (n ) } has 

nulls. For all the examples considered here the input power spectral density is 

broadband and hence a unique solution will always exist. In a more general system 

identification scenario, as discussed in section 2.2.2, where another white noise term is 

added to the input of the adaptive filter alone, the Wiener solution will not equal the 

impulse response of the unknown system and hence the estimate formed by the 

adaptive filter will at best be biased.

The performance measure which is most appropriate to the system identification 

problem considered here is the norm

= E[ (b(k) -kP,)

where h(k) is the impulse response of the adaptive filter at iteration k, and ^,pr is the 

impulse response of the unknown system. This was estimated in all the simulations by 

averaging over an ensemble of 25 runs of the adaptive filter. In all cases the adaptive 

filter was initialised with an impulse response vector of all zero elements. The variance 

of the noise sequence { T\(n ) } was set at -70dB with respect to unity.

The performance of five adaptive filter algorithms in the system identification 

scenario of Figure 3.1 is illustrated in the graphs of Figure 3.2. The traces labelled "1" 

and "2" are for the LMS algorithm defined in subsection 2.5.1 and the BLMS 

algorithm defined in subsection 2.5.2 respectively. The trace labelled "3" is for the SM
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approach of section 2.3 using a autocorrelation estimate defined by (2.3.5). Only one 

example of the SM algorithm is provided because of the poor performance of the 

algorithm [31] and because no recursive form exists. The trace labelled "4" is for the 

RLS algorithm defined in subsection 2.4.1. Finally the trace labelled "5" is for the 

sliding DFT adaptive filter of subsection 2.6.1.

In a broad comparison of this nature, the selection of the step size or convergence 

factor JJL for the stochastic gradient algorithms is not straightforward. The results of 

[26] indicate that bounds on JJL necessary to ensure convergence in the mean of h. (k ) of 

the LMS algorithm are not restrictive enough to ensure convergence in a MSE sense. 

Recently [72] and [27] suggest an even more restrictive bound on \L with similar results 

being presented in [28] for the BLMS algorithm. Selection of the optimum value of p, 

that will produce the fastest convergence is more difficult still as it depends on having 

an exact knowledge of the eigenvalues of the autocorrelation matrix <£„ [27]. In order 

to make the analysis tractable, the results presented in [21,26,72,27], and [28] makes 

assumptions that are more valid for a narrowband adaptive array applications than for 

transversal filter applications. Hence these theoretical results cannot be expected to 

predict the behaviour of a stochastic gradient adaptive filter exactly but they do explain 

general trends and are aids in the selection of jx.

For the purposes of this comparison a pragmatic approach was adopted. The 

region of convergence [72,27]

0 < JL <
3N E[x2(n)]

was chosen because of its practical advantages and because it is the most conservative 

available in the literature. The value of jx for the LMS algorithm was then chosen 

arbitrarily to be at the midpoint of this region.

6NE [ x2(n
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= W 

The step size for the BLMS algorithm, jx fc , was set to N times this value ie.

in an attempt to achieve the same convergence rate of the tap vector mean as the LMS 

algorithm [14]. However in the light of the bounds on pb , [28], that ensure MSE 

convergence of the BLMS algorithm ie.

0 < u <

divergence of the adaptive filter might be expected under some input conditions. For

ti­ the sliding DFT adaptive filter, the use of the adaptive step size, -prrr—rp is
Uj \K T1^

equivalent to normalising the variance of each of the DFT bins to unity [Narayan et al 

83]. Thus the variance at each input to the linear combiner is unity which implies that

a consistent choice of jxc for this algorithm is also -r—.o/V

Under white input conditions the system identification problem of Figure 3.1 is 

similar to data driven echo canceller problem discussed in [71] and the results obtained 

for the LMS and RLS algorithms, Figure 3.2(a), are consistent with those obtained in 

[71]. The performance of the LMS algorithm under these conditions is predicted well 

by the theoretical results of [26] and [73]. These results indicate that the LMS 

algorithm will converge at a constant rate in dB/iteration until the noise floor is 

reached, in this case -70.0 dB. The rate is determined by the value of p, which is 

chosen and the number of taps N. The final value which is achieved is a function of p. 

and the noise variance E[t\ 2(n)]. The fastest rate of convergence that can be 

obtained under white input conditions is,

10 log10 N-l dB/iteration (3.2.2)
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and is obtained when \L is 2 . . This gives a final value for p of
£ ^ •* \fl f J

VOO ]• The value of u. used here, (3.2.1), is smaller than this and hence the rate 

of convergence would be expected to be slower than (3.2.2) and the final value 

expected to be smaller than E[t\2(n)]. As noted in [71] , the RLS algorithm 

outperforms the LMS algorithm even under white input conditions. An important 

point to note about the performance of the RLS algorithm is the sudden decrease in 

convergence rate once the noise floor has been reached, Figure 3.2(a). Thus in 

choosing between the LMS and the RLS for a particular application, consideration 

must be given as to where the required performance level is with respect to the noise 

floor. If the performance goal was -50dB then clearly the RLS is the best choice. 

However if the performance goal was -90dB then the LMS might be expected to reach 

this level in a similar time to the RLS if the value of jx was set initially for fastest 

convergence and then decreased by a factor of 5 once the noise floor was reached [26]. 

The LMS is then the best choice since it is the simplest algorithm. In general, when 

the noise level is high and the eigenvalue ratio is small, the convergence rates of the 

LMS and RLS algorithms are almost the same [44]. Turning to the BLMS algorithm, 

it is evident that under white input conditions its performance is very similar to the 

LMS algorithm, Figure 3.2(a). The staircase nature of trace '2' emphasises the block 

nature of the algorithm ie. the tap vector is only updated every N data points.

As the ill-conditioning of the input sequence is increased, Figure 3.2(b), the 

performance of the LMS algorithm degrades and it takes longer to converge than 

under white input conditions. The performance of the RLS, on the other hand, is 

only slightly affected by the increase in eigenvalue ratio. The only noticeable 

difference being below the noise floor. The BLMS algorithm is inferior to the LMS 

under these coloured input conditions. Turning to the sliding DFT algorithm, the 

performance illustrated in Figure 3.2(b) for a mildly ill-conditioned input sequence is 

very close to the performance of the LMS under white input conditions, Figure 3.2(a). 

This result emphasises an important point, namely that the performance goal for the
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transform domain or quasi-orthogonalising algorithms such as the sliding DFT is LMS 

performance under white input conditions and not RLS performance. An ideal 

orthogonalising transform is of coarse the Karhunen-Loeve transform or a lattice filter 

structure whose PARCOR coefficients where calculated from prior knowledge of the 

autocorrelation matrix <£„. This is in sharp contrast to the least squares lattice 

structure [52], whose PARCOR coefficients are calculated from £„(*) and are hence 

time varying.

Finally if the input sequence is highly ill-conditioned, Figure 3.2(c), the LMS and 

BLMS algorithms do not converge even as far as the noise floor within a dme window 

of 1000 iterations. In fact for this example the BLMS algorithm appears to be on the 

verge of instability. Even the performance of the RLS algorithm is degraded under 

these severe conditions. This result is to be expected in the light of (2.4.19) which is 

restated here.

E[ ( h(k) - &,„ ) ( &(*) - hopt )r ] = - $.2

An expression for the norm can be obtained by taking the trace of the above error 

covariance matrix and applying the eigenvalue decomposition of (2.5.12).

A"1 VT

£ N —1 -\^opt ir-i JL /•/•> /•» o \= -T- 2 v— (3.2.3)
K i=0 A «

When the input sequence, {*(/*) }, is white all the eigenvalues are equal and the 

expression for the norm reduces to,

P(*)= %-*• (3.2.4)
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Thus the effect of the coloured input sequence is to increase the norm from the the 

baseline of (3.2.4) by a factor

i=0 i

The sliding DFT adaptive filter has degraded noticeably from the performance of the 

LMS under white input conditions. Such a loss in performance is to be expected as the 

sliding DFT is only a quasi-orthonalising structure. Thus the algorithms in order of 

increasing sensitivity to eigenvalue spread are: RLS, sliding DFT, LMS, and BLMS.
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Table 3.1 CHANNEL IMPULSE RESPONSES

Channel No. Impulse Response Eigenvalue Ratio

1.0000 -I- 0.0000 r'1 -I- 0.0000 z -2
1.0

0.2602 + 0.9298 z'1 + 0.2602 r'2 11.8

0.3842 + 0.8704 r'1 + 0.3482 z~2 68.6

the eigenvalue ratio is for a 16-tap filter.
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Figure 3.2(a) SIMULATION RESULTS ( System Identification ) 
eigenvalue ratio « 1.0 ( channel no. 1 ) 
additive noise = -70.0 dB 
no. of taps = 16 
ensemble = 25
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Figure 3.2(b) SIMULATION RESULTS ( System Identification ) 
eigenvalue ratio = 11.8 (channel no. 2 ) 
additive noise = -70.0 dB 
no. of taps = 16 
ensemble = 25
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Figure 3.2(c) SIMULATION RESULTS ( System Identification ) 
eigenvalue ratio = 68.6 ( channel no. 3 ) 
additive noise = -70.0 dB 
no. of taps = 16 
ensemble = 25
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3.3 CHANNEL EQUALISATION

The structure that was used for the simulation of a channel equalisation problem 

is illustrated in Figure 3.3. For this example the block marked 'channel' is used to 

model the intersymbol interference on a digital communications channel [9]. The zero 

mean white binary sequence, (y(/i) }, represents the digital message which is first 

convolved with the channel impulse response sequence, { cn }, and then corrupted by 

adding a zero mean white Gaussian noise term, { v(/i) }, to form the input to the 

adaptive filter in the receiver, (x(n)}. The adaptive filter then forms a linear 

estimate, y(n ), of the each symbol, y(n). As in section 3.2, the number of coefficients 

in the adaptive filter was 16 and a selection of three channel impulse responses, Table 

3.1, was used in order to vary the degree of ill-conditioning on the input sequence to 

the adaptive filter. The variance of the message sequence, { y (n ) }, was set to unity, 

again to provide a convenient reference point for the variance of the additive noise and 

for calculating the step size jx.

The purpose of the adaptive filter in the receiver is to minimise the MSE,

E[(y(n-d)-y(n))2 ] (3.3.1)

The positive integer d, where 0 < d < N , is to allow for the possibility of fixed lag 

smoothing, which is often necessary to achieve a particular performance level. For the 

purposes of these simulations a value of 8 was used for d. The impulse response, h,,^ , 

which minimises the MSE is again provided by the solution of the Wiener equation 

(2.2.9). However in this scenario, because the additive noise term contributes to the 

input sequence { x (n ) } and hence to the autocorrelation matrix <£„, it will effect 

both the optimum solution h^pt and the MMSE that is achievable.

The performance measure which was used for this adaptive equalisation problem 

was the MSE of (3.3.1). This is perhaps not as appropriate as the probability of error 

for this scenario, but it is more straightforward to calculate and illustrates the transient
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behaviour of the adaptive filter algorithms well. The MSE was estimated in all 

simulations by averaging over an ensemble of 25 runs. In all cases the adaptive filter 

was initialised with an impulse response vector of zero elements. The variance of the 

noise sequence, { v(n ) }, was set to -35 dB with respect to unit variance. The results 

of the simulations are illustrated in the graphs of Figure 3.4. The labelling of the 

traces and the choice of fi is consistent with what was used for the system identification 

problem.

The channel equalisation problem is not as useful as the system identification 

problem for comparing the performance of a range of adaptive filter algorithms. This 

is because in changing the channel in order to increase the ill-conditioning of the input 

sequence, the optimum solution, h^p, , and hence the MMSE is also altered. However 

channel equalisation is an important practical problem and is a classic example of 

inverse system modelling or deconvolution. Also, unlike system identification, the 

training signal to the adaptive filter is noise free. This is reflected particularly in the 

performance of the RLS algorithm, where the time to converge to the minimum MSE 

is independent of eigenvalue spread of the input sequence {jc(n) }, Figure 3.4. Most 

of what was stated about the other algorithms in section 3.1 is also evident in the 

channel equalisation problem. The LMS degrades rapidly as the degree of ill- 

conditioning increases. The performance of the sliding DFT algorithm under mildly 

coloured input conditions, Figure 3.4(b), is close to LMS performance under white 

input conditions, Figure 3.4(a). Under severely coloured input conditions. Figure 

3.4(c), the performance of sliding DFT algorithm degrades slightly. One notable 

difference between the channel equalisation examples and the system identification 

examples is in the performance of the BLMS algorithm, eq. in Figure 3.4(c) the 

convergence rates of the BLMS and LMS algorithms are almost identical whereas in 

Figure 3.2(c) they differ significantly. This may seem suprising at first as the 

autocorrelation matrices for the examples of Figure 3.2(c) and Figure 3.4(c) were 

almost identical. However the higher order statistics of the input sequence in the two
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scenarios were different. Therefore since most of the standard analysis of the LMS 

and BLMS algorithms only take account of first and second order statistics [26,14], or 

assume that all random variables are Gaussian [27,28], it is to be expected that some 

changes in performance will occur when the distribution of the input and training 

signals change in such a way as to leave their first and second order moments 

unaltered. Thus, for the channel equalisation problem, the algorithms, in order of 

increasing sensitivity to eigenvalue spread, are: RLS, sliding DFT, and LMS/BLMS.
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Figure 3.4(a)
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Figure 3.4(b) SIMULATION RESULTS ( Channel Equalisation ) 
eigenvalue ratio = 11.8 (channel no. 2 ) 
additive noise = -35.0 dB 
no. of taps = 16 
ensemble = 25
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Figure 3.4(c)
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3.4 SUMMARY AND CONCLUSIONS

Because of the difficulty in obtaining rigorous analytic results for the convergence 

properties of a broad selection of adaptive FIR filter algorithms, an experimental 

comparison was made using computer simulation. The results of these experiments 

confirm many of the key properties suggested by approximate analysis. In particular, 

the performance degradation of the SG algorithms when the input sequence is highly 

ill-conditioned, the fast consistent convergence of the LS algorithms, and the role of 

the quasi-orthogonalising algorithms as a compromise in performance between the 

LMS and the RLS algorithms. It is not believed that a broad comparison of this 

nature appears anywhere else in the literature.
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Chapter 4 

A SELF ORTHOGONALISED BLOCK ADAPTIVE FILTER

4.1 INTRODUCTION

In the area of adaptive filtering the RLS [24] and the LMS [21] are the two 

major alternatives in a trade off of convergence performance against computational 

complexity. The conventional RLS algorithm requires a number of computations per 

new data point that is a function of the square of the number of coefficients (N) in the 

finite impulse response (FIR) filter ie. order N 2 ( O( N2 ) ). By exploiting the shift 

invariance properties [25] this has been reduced to O(N ). This and subsequent 

developments [52,55,47,48] make available the consistent rapid MSE convergence 

properties of the RLS algorithms at a computational cost, which is of the same order as 

the more commonly used LMS algorithm, whose convergence properties are generally 

poor [26]. However the RLS algorithm still represents a computational load which is 

significantly higher than the LMS algorithm. Typical figures being ION multiplications 

per new data point for the RLS algorithm compared with 2N for the LMS algorithm. 

The original aim of work that is presented in this chapter and in [74] was to find an 

algorithm that lay between the RLS and the LMS in both computational complexity 

and performance and whose rate of convergence was independent of the input signal 

conditioning. In fact the algorithm that has been developed goes beyond this initial 

goal in that it represents a significant reduction in computational load compared to an 

LMS algorithm for moderate to large values of N.

The first question to pose is what algorithms already exist which might provide a 

combination of computational complexity and performance which is between that of 

the LMS and RLS algorithms? A survey of the literature rapidly yields the term self 

orthogonalising. The concept originated in [75,76,77] and was a result of the 

convergence analysis of the LMS algorithm and the recognition of the associated
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dependence of the rate of convergence of the LMS algorithm on the eigenvalues of the 

input autocorrelation matrix [21]. A self orthogonalised algorithm involves 

constructing a linear operator ( transform or preprocessor ) which maps the input N- 

vector £ to an N-vector u such that the elements of u. are mutually orthogonal. Given 

this the matrix E[ m7 ] is a diagonal whose eigenvalue spread can be normalised to 

unity by dividing each element of u. by the square root of the appropriate eigenvalue. 

The resultant N-vector z. is white with unit variance ie. E [ zz. ] is an (N x #) identity 

matrix. If the vector z. forms the input to an LMS algorithm it is straightforward to 

predict using the convergence analyses of [26] and [27] that the complete structure ( 

linear operator + eigenvalue normalisation + LMS ) will converge ( in a MSE sense ) 

under any input conditions at the same rate as an LMS algorithm would under white 

input conditions. This technique is equivalent to multiplying the gradient term in an 

LMS algorithm by the inverse of the input autocorrelation matrix E[ £CT ] [77,29].

Only in a limited number of applications such as [78] is the input autocorrelation 

matrix, or equivalently an orthogonalising operator, known a priori and hence for 

general purpose applications two suboptimum techniques have been suggested. In the 

first a fixed linear operator such as a DFT or DCT is chosen that performs an 

approximate orthogonalisation of the input vector [29,67]. The subsequent processing 

proceeds as if the orthogonalisation was exact. In the second the autocorrelation 

matrix is estimated directly from the data, inverted and used to multiply the gradient 

estimate [77]. These two techniques might be classified as explicit and implicit 

orthogonalisation respectively. However it should be noted that the form of estimate 

for the input autocorrelation matrix identified in [77] as the ideal self orthogonalising 

algorithm gives rise to the RLS algorithm. It is clear from [71] that even under white 

input conditions the RLS algorithm may outperform the LMS algorithm. 

Consequently it must be concluded that an RLS algorithm does more than merely 

orthogonalise the input signal and therefore it should not be classified as an self 

orthogonalising algorithm.
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Explicit orthogonalisation techniques have been applied to FFT [79] based block 

adaptive filters [ 80,81]. The FFT is used in the BLMS algorithms of [ 14] and [82] to 

provide fast convolution and fast estimation of the gradient. As a by-product of this 

implementation the FFT of an augmented input vector is available ie. a fixed transform 

that performs approximate orthogonalisation. Bartlett spectral estimation has also been 

considered in an attempt to improve the quality of this approximation [81]. If however 

other fast convolution algorithms such as the Fermat number transform (FNT) [83] or 

the rectangular transform (RT) [62] are to be applied to a self orthogonalised block 

adaptive filter as they have been applied to the BLMS algorithm [84,85] then since 

they cannot be assumed to exhibit even approximate orthogonalising properties an 

implicit approach must be considered.

The self orthogonalising block adaptive filter (SOBAF) [74] that is described in 

this chapter is a unique alternative to the RLS and LMS algorithms. It provides a 

combination of computational load, which is significantly less than the LMS algorithm, 

and consistent convergence performance, which lies between that of the LMS and RLS 

algorithms, but unlike the LMS is virtually independent of the input statistics. 

Therefore it is well suited to applications where neither the LMS nor the RLS 

algorithm can provide the correct trade off of computational load against convergence 

performance. The computational efficiency is achieved by using a block filtering 

structure which is similar to the BLMS algorithm [14] and hence may exploit either 

FFT [79] or RT [62] efficient circular convolution algorithms. The convergence 

performance is achieved by using an implicit self orthogonalising technique, which 

ensures that the algorithm will converge under any input conditions at the same rate as 

an LMS algorithm would under white input conditions.

The chapter is subdivided in the following manner. In section 4.2 the theoretical 

development of the algorithm is presented and the results verified, in section 4.3, by 

computer simulation. Section 4.4 contains the arguments that lead to a practical 

SOBAF algorithm along with details of how it can be implemented efficiently. In

82



section 4.5 the computational load of the proposed filter is assessed. Finally, in section 

4.6, results from computer simulations are presented which confirm that the practical 

SOBAF achieves the convergence performance that was promised in the theoretical 

considerations of section 4.2.

4.2 THEORY

Consider a stationary sequence of N-vectors {*(/)}, which is zero mean 

uncorrelated in time and jointly Gaussian. The sequence is completely described by 

the (N x N ) autocorrelation matrix £„ where,

Although the matrix is positive semi -definite, in many applications it can be assumed 

to be positive definite in which case there exists an (N x N ) matrix Q such that

Q T <£« Q = 1N

where 7^ is an (N x N) identity matrix. The matrix Q is not unique [39]. A second 

sequence of N-vectors, {z.(0 }, which is uncorrelated in time and zero mean may be 

generated from { i (i ) } using the matrix Q T .

*(/) = Q T *(0 (4.2.1) 

Therefore Q T may be considered to be a whitening filter since,

Because of the special structure of <I>H ie. it is diagonal with equal eigenvalues, a 

stochastic gradient search adaptive filter with input (i(/)} will achieve rapid 

consistent convergence rates. Further, since (2(1) } is also uncorrelated in time zero 

mean and jointly Gaussian [24], the theoretical results of [27,28] may be applied 

directly to give: (i) bounds on the step size \ib that ensure convergence in a MSE
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sense, and (ii) a single optimum value \i opt for fastest convergence.

To the sequence of N-vectors {i(i) } apply a BLMS algorithm [14] of block 

length L to form an estimate { y(i ) } of the stationary scalar sequence { y(i') }. The 

aim is to minimise the MSB

The estimate y (i ) is linear and is formed using the weight N-vector n> ie.

lK (4.2.2) 

The optimum solution which minimises the MSE is given by,

The BLMS algorithm is defined by the following three equations [14].

(4-2.3)

(4.2.4)

(4.2.5) 

where

y(jL-L+l)]T

\) ••• y(jL-L + l 

and

y (j) = [ i(JL) L(jL-1} '- i(jL-L+l)] 

The index j is known as the block number, where a block contains L data vectors.
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The weight vector & is only updated once per block.

Using the theoretical results of [28], a recursive relationship for the block MSE 

o•* is obtained.

(4.2.6) 

where

and (Topt is the minimum MSE that is obtained when the weight vector H^,, is used.

Equation (4.2.6) yields bounds that ensure MSE convergence,

0 £

and a value |xopr which gives fastest convergence [28].

2(1

Equations (4.2.1), (4.2.3), (4.2.4), and (4.2.5) thus define a self orthogonalising block 

adaptive filter whose MSE convergence is ensured provided \L b is chosen within the 

limits of (4.2.7) and whose rate of convergence is independent of the eigenvalues of 

the autocorrelation matrix ^ , (4.2.6).

This self orthogonalising block adaptive filter may be reformulated in terms of an 

overall weight vector h. where

(4-2.9)
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such that explicit knowledge of the matrix Q is unnecessary. Combining (4.2.9) and 

(4.2.1),

from which a relationship between h and n: is obtained.

h = Q * (4.2.10) 

Application of (4.2.1) and (4.2.10) to (4.2.3) and (4.2.5) yields

Z<J) = XC/UC/-1) (4.2.11) 

and

(4.2.12) i*i —

where

xr O) =

4.2.1 Comparison of Theory with Simulation

The theoretical results presented above rely on the assumption that the sequence 

{ £. (i )} is uncorrelated in time and jointly Gaussian. For an adaptive transversal filter 

application the sequence { £ (/' ) } is never uncorrelated in time since

and

i(i-l) = [jt(|--l)jr(/-2) - • • x(i-N)]T

and is rarely exactly Gaussian. The aim of this section is to test the validity of the 

theoretical convergence results, summarised in (4.2.6), for the particular case of an
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adaptive transversal communications channel equaliser where neither assumption is 

true.

A typical equaliser scenario is illustrated in Figure 3.3. The digital message is a 

zero mean binary distributed white random sequence { y (n ) }. The channel is 

modelled by a FIR filter whose output is corrupted by a zero mean white Gaussian 

sequence { v(n ) }. The role of the adaptive filter is to form a fixed lag estimate of the 

channel input. The training signal for the adaptive filter is thus { y(n -d) }, where d 

is a positive integer. For the purposes of the simulations presented here, a 3-tap 

channel was used ( channel no.3, Table 3.1 ). The signal-noise ratio, defined as 

E[ y 2 ]/E[ v2 ], was set at 35dB. The self orthogonalising adaptive algorithm, defined 

by (4.2.4), (4.2.7), (4.2.11), and (4.2.12), was used to update a 16-tap transversal 

equaliser. The block length, L, was set at 16. Under these conditions the 

autocorrelation matrix, <&„ , has a maximum/minimum eigenvalue ratio of 68.8. To be

consistent with chapter 3 the step size, \Lb , was set at —. The convergence

performance of the algorithm is illustrated in Figure 4.1 on which is shown both a 

measured MSE calculated from an ensemble of 25 runs and a theoretical MSE 

calculated from (4.2.6). This clearly emphasises the close agreement between theory 

and practice.
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4.3 A PRACTICAL ALGORITHM

In this section a new block adaptive filter algorithm is described. This algorithm 

is a unique combination of three concepts. The first involves the performance goal, 

which is chosen to be the MSE convergence of a self orthogonalised stochastic gradient 

search algorithm, summarised in (4.2.6). In words, the adaptive filter should 

converge, in a MSE sense, under any input conditions, at the same rate as it would if 

the input sequence was white. Thus the self orthogonalised algorithm will not, by 

definition, exhibit a sensitivity to the eigenvalue spread of the autocorrelation matrix 

^ that is a characteristic of both LMS [26, 27] and BLMS [28] algorithms. However 

it should also be noted that this performance goal is not equivalent to the performance 

of a RLS algorithm, since even under white input conditions the RLS algorithm will 

outperform a stochastic gradient search algorithm [71].

The second concept involves the choice of an estimator for the autocorrelation 

matrix. In a general adaptive filter application, the autocorrelation matrix is unknown 

and hence the tap weight update, (4.2.12), must be replaced by,

(4-3.1)

where <£„(./) is an estimate of <£„ at block j. Several possible estimates of <£„ exist in 

the literature. The most notable is.

However the use of this estimate would produce a RLS block adaptive filter structure 

[85]. Hence it is considered inappropriate here as its convergence performance would 

not be that of a self orthogonalised stochastic gradient filter. Further, computationally 

efficient RLS block adaptive filter algorithms already exist [38]. In the estimation 

technique that is considered here the matrix ffe^C/) IS assumed to be symmetric 

Toeplitz. Thus each element may be generated from knowledge of the first column
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£ 0) where

and

1 * 0 < k < N .

The vector p (J ) may thus be updated on a block by block basis

1
r ~r_ \j / (4.J.3J

£(/)= j£'(7) (4.3.4) 

where

ty(j) ~ Xr O) XL(J) (4.3.5) 

and

The Toeplitz assumption also allows the application of computationally efficient 

techniques such as the Levinson recursion [22] and more recently [86] for the solution 

of

$»(/)8AO') = c(/) (4-3-6) 

where

£0') = Xr C/) SO)- (4.3.7)

It is well known in equaliser [31], and spectral estimation [11] applications that the 

Toeplitz assumption produces poorer performance than the estimate of (4.2.2). Hence 

the choice of a Toeplitz assumption here may be interpreted as reflecting a desire to 

degrade the performance of the algorithm from that of an RLS structure to that of a
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self orthogonaiised structure.

The third concept involves the application of computationally efficient circular 

convolution algorithms, of which the fast Fourier transform (FFT) [79] and the 

rectangular transform (RT) [62] are but two examples, to produce an adaptive filter 

algorithm which is itself computationally efficient. This technique has been the 

motivation behind the development of the BLMS algorithm, which is computationally 

superior to the LMS algorithm. To utilise this technique, the linear convolution 

operations are first identified. In this case they are (4.2.11), (4.3.5), and (4.3.7). Of 

these three, (4.2.11) and (4.3.7) are common to both the BLMS and the self 

orthogonaiised structures. The existence of (4.3.5) is a direct result of the Toeplitz 

assumption on <!>.„, and is a significant factor in making that assumption. Each of 

these linear convolution operations is then performed using a combination of either 

overlap-add or overlap-save data sectioning [7] and a circular convolution algorithm. 

To simplify the notation, only overlap-save and a block length L = N will be 

considered here as these are known to produce the most efficient adaptive filter 

structures [61] This does not however detract from the generality of the results.

The linear convolution of (4.2.11), (4.3.5), and (4.3.7) are obtained in the 

following way. Taking (4.2.11) as an example,

IH 

0N

= [0N TN }C 2N

where
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N

and

0N

The two (M x 2W) matrices A-& and B^ and me (2# x A/) matrix, C w , define a

circular convolution machine which operates on 2N-vectors, M ^ 2N . The matrix IN 

is an (W x N) identity matrix, the matrix ON is (N x N) with all zero elements, and 

the (N x Af) time reversal matrix, Tw , has I's on the secondary diagonal and zeros 

elsewhere. The complete algorithm is summarised in Table 4.1.
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Table 4.1 A SELF ORTHOGONALISED BLOCK ADAPTIVE FILTER

2CO)

IN 

0N

20) = [0N TN ]C 2N

£0) - A :

X'O) =

(/')= ^'
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4.4 COMPUTATIONAL COMPLEXITY

Computationally efficient implementations of the SOBAF are obtained when the 

AW, BW a°d Cw matrices are replaced with the appropriate matrices which define 

the RT, FFT, or NTT. An FFT based implementation is considered here for the 

evaluation of the computational load of the algorithm. The particular FFT algorithm 

is based on the radix-2 formulation [1] and efficiently exploits the fact that real data 

rather than complex data processing is required [87]. It is also assumed that a complex 

multiplication is implemented through four real multiplications and two real additions. 

The Toeplitz system of equations, (4.3.6), is solved using the Levinson recursion [22]. 

Given these assumptions, the average computational load involved in processing each 

new data point is as given below.

A = 2N + 21 Iog2 N + 41 + ~ (4.4.1)

M = 2N + 14 Iog2 N + 11 + ~- (4.4.2)

D = 1 - i- (4.4.3)

The symbols A, M and D denote numbers of additions and/or subtractions, 

multiplications and divisions respectively [74].

In computing the number of operations in the filter structure, the well known 

Levinson recursion [22] has been used to solve the Toeplitz system of equations, 

(4.3.6). Significant further computational savings can be achieved by exploiting 

recently reported fast algorithms for solving the Toeplitz system of equations 

[88,89,86]. The technique dealt with in [86] is of particular interest since the FFT 

algorithm is employed to perform block convolution. The entire algorithm of [86] 

requires
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2.5N lo&AT lo&N + 11.5N log^ + 6N multiplications

and the same number of additions to solve a Toeplitz system of N equations. Applying 

this technique to the FFT based SOBAF and computing the number of operations, the 

average number of operations per single output sample of the filter is found to be

A = Iog2 N [ 2.5 Iog2 N + 25.5 ] + 18 + 2L (4.4.4)

M = Iog2 N [ 2.5 Iog2 N + 32.5 1 + 47 4- H- (4.4.5)

- (4.4.6)

The computational load of an LMS algorithm is O(N ), ie. the number of 

operations increases linearly with the number of taps in the transversal filter. An FFT 

based BLMS algorithm on the other hand is O( logN ). Thus an FFT based BLMS 

algorithm has a significant advantage in computational efficiency over an LMS 

algorithm for moderate to large N. As mentioned already, the SOBAF requires the 

solution of a Toeplitz set of equations. Using the Levinson recursion this requires 

O ( N2 ) operations, which reduces to O ( N ) since the equations are only solved once 

per block. Although the remaining operations in (4.4.1) and (4.4.2) are at most 

O( logN ), the linear term will dominate and hence the overall computational load is 

O(N ), which is the same as an LMS algorithm. If however the fast inversion 

technique of [86] is applied to the solution of the Toeplitz equations, then the 

computational load of the SOBAF is O ( logN ), (4.4.4) and (4.4.5).

In Figure 4.2 and Figure 4.3 the computational requirements of two FFT based 

SOBAF implementations are compared with an LMS algorithm and an FFT based 

BLMS algorithm. Both an implementation using the Levinson recursion and one using

the fast algorithm of [86] are considered. These graphs clearly illustrate the dramatic 

reduction in computational load that can be achieved when the fast inversion technique
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is employed in the SOBAF. Thus, in common with the BLMS algorithm, the SOBAF 

can exhibit a significant decrease in computational load with respect to the LMS 

algorithm for moderate to large N.
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Figure 4.2 COMPARISON OF FFT-BASED BLOCK ADAPTIVE FILTERS 
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Figure 4.3 COMPARISON OF FFT-BASED BLOCK ADAPTIVE FILTERS 
( Additions )
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4.5 SIMULATION RESULTS

The performance of the SOBAF, summarised in Table 4.1, was examined using 

the equaliser scenario described in section 3.3 and illustrated in Figure 3.3. As in 

chapter 3 the FIR channels of Table 3.1 where used in order to vary the 

maximum/minimum eigenvalue ratio of the autocorrelation matrix, <£„. For these 

experiments a 16-tap transversal equaliser was used, the signal/noise ratio was set at

35dB, the step size u. fc was — and the MSE was calculated from an ensemble of 25o

runs. The BLMS algorithm of subsection 2.5.2 was used as a reference against which 

to compare the performance of the SOBAF. The results are illustrated in Figure 4.4 

and Figure 4.5.

As the eigenvalue ratio of the input autocorrelation matrix is increased from 11.8 

to 68.6 the performance of the BLMS algorithm gets poorer. The performance of the 

SOBAF, on the other hand, changes very little as the eigenvalue ratio is increased. 

Comparison of Figures 4.5 and 4.1 indicates that the MSE convergence performance of 

the SOBAF of Table 4.1 is well predicted by the theoretical result summarised in 

(4.2.6) and is very similar to the exact algorithm of section 4.2 which uses a-priori 

knowledge of the autocorrelation matrix. It is clear from Figures 4.4 and 4.5 that the 

SOBAF is insensitive to the eigenvalue spread of the input autocorrelation matrix and 

has a MSE convergence performance equivalent to a BLMS algorithm under white 

input conditions.
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Figure 4.4
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Figure 4.5
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4.6 CONCLUSIONS

The SOBAF of Table 4.1 is a unique adaptive filter algorithm. In computational 

load, an FFT based SOBAF is superior to an LMS algorithm for moderate to large N, 

being of the same order as a BLMS algorithm ie. O( logN ). The SOBAF is thus a 

very efficient algorithm, computationally. The block nature of the SOBAF also 

permits the use of other efficient circular convolution algorithms such as the RT and 

the NTT. In performance, the SOBAF achieves the MSE convergence of a self 

orthogonalised structure, ie. the adaptive filter converges under any input conditions 

at the same rate as it would if the input was white. Further, the selection of the step 

size \Lh is more straightforward than for LMS and BLMS algorithms. This is because 

both the range of \Lb that ensures MSE convergence and the value of \L b for fastest 

convergence are independent of the input autocorrelation matrix. In fact, for a given 

application, the approximate performance of the algorithm is easily predicted a-priori 

from (4.2.6).
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Chapter 5 

THE INFINITE IMPULSE RESPONSE LINEAR EQUALISER

5.1 INTRODUCTION

In many adaptive filtering problems, solutions that use purely FIR filters can 

provide acceptable performance [73,8,90]. Indeed FIR filters are generally to be 

preferred as they are unconditionally stable and because of the wide selection of well 

understood adaptive FIR filter algorithms that are available, cf. chapter 2. However 

these FIR realisations suffer from problems of indeterminate order when it is necessary 

to model transfer function poles. In particular, when the poles of transfer function are 

close to the unit circle in the z-plane, a FIR filter of high order may be required to 

meet a particular performance goal [91]. The obvious alternative has been the 

adoption of adaptive IIR filters.

Adaptive IIR filtering is a less mature, less well-understood subject than adaptive 

FIR filtering, witness recent textbooks such as [15,16,92] that are devoted almost 

exclusively to adaptive FIR filtering in comparison with a review article such as [93] 

that chronicles the current state of knowledge and major open issues to be resolved in 

adaptive IIR filtering. In the light of this situation only one specific application of 

adaptive IIR filtering is considered in this chapter rather than a broad comparison such 

as that which was presented in chapters 2 and 3 for adaptive FIR filters. The 

particular application is an adaptive IIR linear equaliser whose function is to mitigate 

the effects of intersymbol interference on a digital communications channel.

The IIR equaliser has received little attention in recent years due to the 

development of the decision feedback equaliser (DFE) [94]. However, although the 

DFE has superior MSE performance compared to the HR equaliser, the latter has an 

inherent advantage in that it does not utilise previous decisions in forming an estimate
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of the transmitted symbol and hence, unlike the DFE [95], will not propagate decisions 

errors.

This chapter is organised in the following manner. In section 5.2, the linear 

equaliser is defined, a closed form solution to the optimum IIR equaliser is derived 

and the structure of the ITR equaliser is investigated. In section 5.3, the MSE 

performance of IIR and FIR linear equalisers is compared. Finally in section 5.4, the 

adaptive nR equaliser is investigated and reformulated as a system identification 

problem. Several candidate adaptive IIR solutions are described.

5.2 THE LINEAR EQUALISER

A digital communications channel with intersymbol interference may be modelled 

by an equivalent discrete time transversal filter with additive white noise [9]. Thus the 

channel output x(k) may be written in terms of the channel input s(k) and the noise 

n(k) as,

x(k) = hr *(*) + n(k) (5.2.1) 

where h is the M point impulse response vector

h T - 

and the vector s.(k} contains the last M inputs to the channel.

= t s(k)s(k-l)

One possible equaliser structure is illustrated in Figure 5.1. This equaliser consists of a 

linear filter section followed by a non-linear slicer or decision circuit. The linear filter 

is designed to minimise the error between the filter output and the input to the 

channel. A MSE cost function, L, is usually used.

L = E((u(k)-u(k))2 ]
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where

«(*)- a(k-d) 

and

&(k) = s(k-d) .

Since the filter is linear, s(k-d) is a linear estimate of s(k-d). The delay term d, 

d ^ 0, allows for the possibility of fixed lag smoothing. The non-linear slicer makes 

decisions on a symbol by symbol basis. Thus for binary pulse code modulation where 

s(k) may be either +1 or -1 the slicer output, m(k), is defined by:

m(k) = +1 ifs(k) > 0

m(Jk) = -1 ifs(k) < 0

From the above it is clear that the major design effort for this form of equaliser is 

concentrated on the linear filter section, where linear estimation theory is applied with 

a view to minimising the mean-square error L at the input to the decision circuit. 

Hence this structure is described as a linear equaliser.

Usually the linear filter takes the form of a finite impulse response (FIR) 

transversal filter of order N-l [9].

*(*) = £r *(*) 

where

£r = [ CQ c\ ' ' ' CN- 

and

d < N - 1
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Under these conditions and provided the processes s(k) and x(k) are jointly stationary 

then the tap vector c^, which minimises the mean-square error L is given by the 

solution of the Wiener equation.

(5.2.2)

where

and

The MMSE, LF , that can be achieved using a FIR filter of order N-l is

L = (5.2.3)

The FIR filter is extensively used in practical linear equalisers because it is 

unconditionally stable and because of the existence of many adaptive filter algorithms 

for the calculation of ^ when the channel impulse response vector h is unknown.

In deriving the optimum transversal equaliser the MSE, L, is minimised subject to 

the constraint that the impulse response is finite, causal and stable. If this condition is 

replaced with a less stringent one, i.e. the filter should be causal and stable, the 

solution to the minimisation problem is provided by the infinite impulse response (KR) 

Wiener filter. The optimum IIR filter is defined in terms of the z transform of its 

impulse response sequence { g (fc) } [96].

•*-»

1
/coo

' *„(*)
*„-(*) (5.2.4)
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where

*„(/)-£[ «(*+/)*(*)]

The power spectrum /?„ (z ) is factorised as follows:

R£(z) has all poles and zeros inside the unit circle in the z-plane. R^(z) has all 

poles and zeros outside the unit circle. The notation [.]+ represents the causal part of 

[.] i.e.

____" r *„(*) 
R~(z)

All the poles of [.]+ are inside the unit circle and all the poles of [.]_ are outside the 

unit circle. The optimum IIR Wiener equalising filter, assuming a white input signal 

s(k), can be written down from (5.2.4).

000 =

where

h} =
M-\

(5.2.5)

(5.2.6)
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and

E[n(k)

= ",2 8(0

8(/ ) is the Dirac delta function. The MMSE L, that can be achieved by use of the IIR 

Wiener filter is obtained by use of the orthogonality principle [96].

Lt =

H (*)-*(*) )«(*)]

= E(u 2(k)]-E(u(k)u(k)]

(5.2.7)

The summation is the convolution of the channel impulse response and the equaliser 

impulse response evaluated at sample d.
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5.2.1 Structure of an IIR Equaliser

The power spectral density, Ra (z), of the channel output sequence, { x(n ) }, is

which is a polynomial of degree 2M-1. Since the autocorrelation function, <£„(/), is 

symmetric about the origin ie. <£„(/ )=<*>„(-/), the zeros of Rxx (z) have symmetry. 

In particular if RJa (z) is zero at z = z, then it will also be zero at z = z( ~l . Thus 

/?« (z ) may be factorised in terms of a polynomial P(z) which is of degree M-1 and has 

all its zeros inside the unit circle ie.

where

k=0

P(z~1 ) is a polynomial of degree M-1 which has all its zeros outside the unit circle. 

The Wiener HR equaliser of (5.2.5) may be rewritten

G(z) = 

where

and

z ~d

Since the transfer function P(z) is a minimum phase FIR filter, of order M-1, W(z) is 

a stable autoregressive filter of order M-1 . The effect of the filter, W(z), is to whiten 

the output sequence, { x(n ) } [96].
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The nature of [ B (z ) ]+ is now examined. By definition

+ 40

*<0- 2*=-«

2 *(*)*-* + 2 
*=o *=-«

B(z) has d poles at the origin and M-1 poles outside the unit circle. In order to ensure 

the convergence of both the causal part , [ B (z) ]+, and the anticausal part , [ B (z) ]_ 

, of the series the region of convergence must be [7].

0< I z I < 1

Therefore the causal part of b(k), k > 0, is given by

b (k) = 2[ residues of B (z)z*"1 at the poles at the origin ]

This is abbreviated to

b(k) = ^[res. B(z)z k ~1 at O ]

where O is the origin in the z-plane. The z-transform of the causal part can thus be 

written,

+ 00 ,-k
k=0

B (z)z*"1 has poles at the origin provided k < d . Therefore

[B(z)]+ =
k=0

The transfer function [B(z) ]+ represents a FIR filter of order d. The Wiener HR 

equaliser is thus the cascade of an autoregressive whitening filter of order M-1, W(z), 

and a FIR filter of order d. This arrangement is illustrated in Figure 5.2.
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In order to highlight the effect of the channel phase characteristics on the 

structure of the Wiener IIR equaliser, consider an example where the signal/noise ratio 

is high ie. a 2 » a 2 , and the signal power, a 2 , is normalised to unity. When all the 

zeros of H (z ) are inside the unit circle the channel is minimum phase and the Wiener 

IIR equaliser is given approximately by,

In which case the estimate with lag d, £(£-</), is merely the estimate with lag zero, 

£(£), delayed by d samples and there is no advantage in using a fixed lag estimate of 

the channel input when an estimate of the current input can be obtained without loss 

of quality. If however the channel is non-minimum phase the Wiener filter in the 

absence of noise is still the cascade of an autoregressive whitening filter of order M-l 

and a FIR filter of order d and hence the MSE performance will improve with 

increasing lag d [97].
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5.3 COMPARISON OF FIR AND OR EQUALISER PERFORMANCE

The OR Wiener filter is the best linear unbiased estimator of the channel input 

s(k-d) in a MSE sense under steady state conditions [5]. The FIR Wiener filter must 

then be regarded as an approximation to the IIR filter and be expected to perform less 

well than an IIR filter of the same order. It should be noted however that while it is 

possible to construct a FIR filter of any order, the minimum order of the IIR filter is 

constrained by the order of the autoregressive whitening filter, W(z), and hence by 

the order of the channel to M-l. If the channel impulse response vector h is known, 

the MMSE, LF , that can be obtained by a FIR filter is calculated by constructing <!>„ 

and QK and then using (5.2.2) and (5.2.3). If the order of the FIR filter is fixed at 

(N-l), the MMSE LF varies with lag /, 0 < / < N-1. The value of the lag 1 which 

produces the minimum value of LF for a given order of FIR filter is known as the 

optimum lag [98]. The HR Wiener filter for a known channel may be constructed 

using (5.2.5) and the MMSE, Lt , calculated from (5.2.7).

A comparison of the MSE performance of the FIR and IIR filters as a function 

of the filter order is illustrated in Figures 5.3 to 5.5. For the sake of this comparison 

the FIR filter with optimum lag for a given order was chosen. Thus the MSE for the 

FIR filter is a lower bound on the performance that would be expected in a practical 

situation. The three channels that were used are summarised in Table 5.1. For 

channel 3, which is minimum phase, the MSE ( Figure 5.3 ) does not vary with the 

order of the IIR filter and is only limited by the noise floor. This is consistent with the 

remarks made in subsection 5.2.1 on the performance of an HR filter in the absence of 

noise when the channel is minimum phase i.e. the quality of the estimate is not a 

function of the lag. The order of the FIR filter increases linearly with decrease in 

MSE. The lowest MSE that is achievable is the same as that for the IIR filter. For 

channel number 1, which is non-minimum phase, the MSE ( Figure 5.4 ) decreases 

linearly with the order of the IIR filter until it reaches a level just above the noise
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floor. Again this is consistent with the remarks made in subsection 5.2.1 on the 

performance of an IIR filter in the absence of noise when the channel is non-minimum 

phase i.e. the MSE is a function of lag. The FIR filter exhibits the same general 

trends for this channel as the IIR filter in that the MSE decreases linearly with an 

increase in filter order until a level just above the noise floor is reached. However it 

should be noted that for a particular MSE value the order of the IIR filter is always 

less than the order of the FIR filter. The results for channel number 2, which is also 

non-minimum phase, are similar to those obtained for channel number 1 ( Figure 5.5

In conclusion, these results indicate that an IIR filter outperforms a FIR filter of 

the same order in a MSE sense. Two particular cases can be identified. When the 

channel is minimum phase, an IIR filter of the same order as the channel produces the 

lowest MSE that is achievable with a linear filter. A FIR filter of order greater than 

the channel order is required to obtain the same result. When the channel is non- 

minimum phase, the performance of an IIR filter continues to improve when the order 

is increased beyond the order of the channel until a level just above the noise floor is 

obtained. The FIR filter exhibits similar characteristics but the initial rate of 

improvement in performance with increasing order is significantly smaller than that for 

the HR filter.
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Table 5.1 CHANNEL IMPULSE RESPONSES

Channel No. Impulse Response Classification

0.2602

0.9298Z'1 +

0.26022

non-minimum phase

0.3482 + 

0.8704Z-1 + 

0.3482;-2

non-minimum phase

0.6082 + 

0.7603Z'1 + 

0.2280z~2

minimum phase
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Figure 5.3
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Figure 5.4 FIR/TO EQUALISER PERFORMANCE COMPARISON 
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Figure 5.5 F1R/IIR EQUALISER PERFORMANCE COMPARISON 
non - minimum phase ( channel no. 2 )
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5.4 SYSTEM IDENTIFICATION

Given the considerations of subsection 5.2.1, the optimum UK equaliser defined 

in (5.2.5) is an ARMA filter whose output sop,(k~d) may be expressed in terms of 

M-l previous outputs and d inputs, ie.

sopt (k-d) = f «, v(* -<*-<) + £ P; *(k~J) (5-4.1)

where the coefficients a, and fy are chosen to minimise the MSE,

E[( s (k-d)- Sopt (k-d)f],

and are defined by (5.2.5). Thus the minimum variance error sequence { eopl (k) } is 

given by

= s(k-d) -sopt (k-d)

which when combined with (5.4.1) provides an expression for the observable sequence 

{ s (k — d ) } in terms of the observable sequence { x (k ) } and an unobservable noise 

sequence { v(k) }.

s(k~d) = Y «< s(k-d-i) + £ 3; x(k-j) + v(k) (5.4.2)
<=1 ;=0

The additive noise term v(k) is a filtered version of eopt (k).

v (k ) = "j? a, eopt (k -i ) + eopt (k ) (5.4.3)

Together (5.4.2) and (5.4.3) define a autoregressive moving average with exogeneous 

input (ARM AX) model. Thus the adaptive IIR equaliser problem may be re­ 

interpreted as an ARMAX system identification problem, where a recursive estimate 

of the coefficients a, and (3, is required from an observable input sequence { x (i ) } 

and an observable output sequence { s(i -d) }.
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5.4.1 Adaptive IIR Solutions

Adaptive solution to this system identification problem are obtained by rewriting 

(5.4.3) as a vector inner product of the aggregate vectors i(Jt) and f^,

(5.4.4) 

where

= [ s(k-d-i) -•• s(k-d-M + l)x(k) ••• x(k-d)]r 

and

Since (5.4.4) is similar in form to the FIR system of (3.3), it is tempting initially to 

apply an adaptive FIR filter algorithm such as those described in chapter 2 in order to 

estimate Q^pt . The first choice adaptive FIR filter algorithm is the RLS of subsection 

2.4, since, from chapter 3, it is clear that it exhibits the best convergence properties. 

The resultant ARMA system identification algorithm is summarised in the following 4 

equations which are identical in form to (2.4.12) - (2.4.15).

ft(*) = ft(*-l) + *(*)*(*) (5.4.5)

e(k) = s(k-d) -fir (*-!)*(*) (5.4.6)

(5 - 4 - 7 )

(5.4.8)

The vector Q.(k) is the current estimate of ^,pr . However unlike the system 

identification problem of subsection 3.2, the additive noise term in (5.4.4) is not white 

even if it could be assumed that eopt (k) was white. Under these non-white noise
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conditions the RLS algorithm will produce an asymmtotically biased estimate of the 

coefficients of the optimum OR equaliser, ^ [24]. For the equaliser scenario this 

biased estimate is recognisable as the decision feedback equaliser (DFE) [9] with 

output

s#(k-d) = 2 -y, s(k-d-i) + 2 &, x(k-j) 

where the coefficients 7, and 8; are chosen to minimise the MSE

E[(*(k-d)-*+(k-d)f].

In order to find the linear IIR equaliser the additive noise term v(k) must be 

whitened. This can be done approximately by replacing eopt (k) in the summation of 

(5.4.3) with the instantaneous error e(k) [99] where

= s(k-d) -sopt (k-d) 

sopt (k —d) is the current estimate of sopt (k -d). Equation (5.4.2) then becomes

«, $opt (k-d-i) + ^ X (k-j) + eopt (k)
j=0

(5.4.9) 

where

i(*) = [^,(*-^-l) ' • ' v(^-^-M + l) jc(*) • • • x(k-d)]T .

If the RLS algorithm is applied to (5.4.9) to form an estimate of Q^,pt , the result is an 

extended least squares (ELS) [99] adaptive equaliser algorithm which is summarised by 

the following 4 equations.

= £(*-!) + £(*)*(*) (5.4.10)

e(k) = s(k-d) -fir (*-!)*(*) (5.4.11)
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(5 . 4 . 13)

Convergence of the ELS algorithm is not guaranteed [99].

An alternative approach that can remove the asymtotic bias of the RLS algorithm 

under coloured noise conditions is the recursive intrumental variable (RTV) algorithm, 

which again can be summarised by 4 equations.

(5.4.14)

(5.4.15)

(5.4.16)

The vector,

i(k) = [z(k)z(k-l) • • • z(k-M + l)x(k) • • • x(k-d)]T

contains the instrumental variables { z (n ) }. If the instrumental variables are chosen to 

meet conditions which are described in [100], the RIV algorithm will produce 

consistent estimates of the optimum UK equaliser. Common choices for the 

instrumental variables are:

z(k) = s(k-d-t) 

where t > M [101] or

= ar (*)*(*)
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5.5 CONCLUSIONS

A closed form expression for the optimum IIR equalising filter was derived using 

Wiener filtering theory. The optimum IIR filter was shown to be the cascade of an 

AR whitening filter of order N-l, the order of the FIR channel, and a FIR filter of 

order d, where d is the estimation lag. A comparison of the MSE performance of FIR 

and IIR equalisers illustrated the inherent order advantage in using a IIR structure, 

particularly for minimum phase channels, and higlighted the effect non-minimum 

phase distortion has on the performance of linear equaliser structures. The adaptive 

IIR equaliser problem was shown to be equivalent to the identification of an ARMA 

plant which is embedded in an ARMAX process. Although the bias associated with 

RLS estimates can be avoided through resort to algorithms such as RIV, the MSE 

convergence of these algorithms is poorly understood and hence they cannot be 

considered to be robust solutions.
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Chapter 6 

AN ADAPTIVE IIR EQUALISER

6.1 INTRODUCTION

While the EIR Wiener filter exhibits a distinct performance advantage over a FIR 

filter of the same order when used to equalise a known channel, significant problems 

are encountered with the former when the channel is unknown or time-varying and an 

adaptive filter structure is required. An initial approach to the problem might be to 

postulate an adaptive algorithm such as those suggested in [91] that would recursively 

estimate the coefficients of the IIR Wiener filter in the same manner as the LMS 

algorithm [21] is used to estimate the coefficients of the FIR Wiener filter. However, 

in the process of adaptation, there is a finite probability that the poles of the filter will 

move outside the unit circle in the z-plane. This can lead to instability if the poles 

remain outside the unit circle for an extended period [91]. As discussed in chapter 5, 

adaptive IIR filter algorithms do exist whose convergence in a mean sense is assured 

but few theoretical results are available with which to predict the MSE convergence 

properties ot these algorithms.

Central to this chapter is the recognition that the optimum Wiener IIR equaliser 

may be realised using state space concepts ie. the Kalman equaliser of [18]. This 

formulation simultaneously circumvents the minimum phase spectral factorisation 

which is integral to the Wiener solution and reduces the number of coefficients which 

define the equaliser and hence which must be estimated in any adaptive scheme from 

M + d + l to M. To make the Kalman equaliser adaptive a system identification 

algorithm is used in parallel with it to estimate the M coefficients of the channel 

impulse response. This contrasts with the adaptive Kalman equaliser suggested in [18] 

where the state of the Kalman filter is augmented to include the coefficients of the 

unknown channel, which results in a non-linear estimation problem to which the
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extended Kalman filter (EKF) is applied. However the convergence of the EKF is not 

guarenteed [102]. Further advantage acrues because the input to the system 

identification algorithm is the channel input which is usually a white process. Thus the 

LMS algorithm will provide consistent predictable convergence performance under 

these conditions. Contrast this with the adaptive FIR equaliser of section 3.3 where 

the channel output, an unknown non-white process, forms the input to the adaptive 

FIR filter algorithm.

The discrete time Kalman filter of [3] is defined in section 6.2 and subsequently 

applied to the channel equalisation problem in section 6.3 to derive the non adaptive 

smoothing filter of [103], which for a fixed channel and under steady-state conditions 

is equivalent to the optimum IIR equaliser of section 5.2. In Section 6.4 an adaptive 

Kalman equaliser structure is presented. This adaptive structure is fundamentally 

different from those considered in [18,104] and [105]. In essence it is the combination 

of the adaptive Kalman equaliser of [106,107] with the non-adaptive smoothing filter 

of [103], but unlike [106,107], the full form of the Kalman gain equations [3] are used 

in order to exploit the capacity of the Kalman filter to handle nonstationary 

environments. This combination produces an adaptive structure which is capable of 

equalising both minimum and non-minimum phase channels. A new technique is 

presented for both the on-line estimation of the channel noise variance and the 

compensation of the Kalman filter for the modelling uncertainty inherent in the 

imperfect knowledge of the channel impulse response. The complete adaptive Kalman 

equaliser is compared with a RLS FIR equaliser in both performance and 

computational complexity. Finally in section 6.5 the LMS system identification 

algorithm is replaced with an RLS algorithm to improve the convergence performance 

of the adaptive Kalman equaliser.
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6.2 THE KALMAN FILTER

With the publication of [3] and [4], Kalman and Bucy defined a powerful 

recursive estimation technique which has come to be known as the Kalman filter. 

Application of the Kalman filter assumes that the studied system may be described by a 

pair of state space equations. These are the state transition equation,

and the observation equation.

The M-vector z(k) contains the values of the M parameters which define the state of 

the system at time k and is thus the state vector. The (M x M ) matrix A (k ) is the 

state transistion matrix and the (L x M ) matrix ft (k ) is the observation matrix. The 

M-vector it> and the L-vector u. are uncorrelated zero mean and white with covariances 

W. and U respectively. Thus

The system matrices A, Bf, H and LL may be time varying but are assumed to be 

known a priori. Optimal estimates of the state vector &(k) are generated recursively 

from the sequence of noisy observations {z.(k) } by use of the following equations. 

The notation s.(k/j) reads "the estimate of £(£) given data from sample 0 to sample j".

The estimation equation.

*(*/*) = *(*/*-!) + £(*)[*(*) -fl(*) l(k/k-l)] (6.2.1) 

The prediction equation.

i (*/*-!) = A (*)i(* -!/*-!) (6.2.2)
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The Kalman gain equation.

£(*) - Y(k/k-l}iLT (k) [fl(*) y.(k/k-l)tt T (k) + U(k) ]-1 (6.2.3) 

The error covariance equations

]L(k/k -1) = d(*) ¥(k -l/k -1) A r (fc) + &(k) (6.2.4) 

and

%(k~l/k-l) = £(*-!/* -2) -K(k-l)H.(k-l)Y(k-l/k-2) (6.2.5) 

where

-i(*/*) )r 

and

In [3] Kalman showed that this filter was the solution to two different linear systems 

problems. First, the filter is the optimal estimator against a wide class of cost functions 

given that the noise processes are Gaussian and second, the filter is also the linear 

minimum variance estimator without the assumption of Gaussian noise.
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6.3 THE KALMAN FILTER AS AN IIR EQUALISER

The major difficulty with the IIR Wiener equalising filter is the minimum phase 

spectral factorisation of the power spectrum Rxx (z). One possible solution to the 

problem involves the use of a Kalman filter. If all processes are stationary and the 

observation noise is white, the steady-state Kalman filter and the IIR Wiener filter are 

identical [5]. Thus by use of a Kalman filter the spectral factorisation problem is 

solved indirectly. However this does not imply that the IIR Wiener filter formulation 

of section 5.2 is of no value. On the contrary it can provide insight into the 

relationship between the channel characteristics and the structure and performance of 

the Kalman equalising filter.

Although a FIR channel model lends itself readily to state-space representation 

and hence to a Kalman filter formulation of the equalising filter, care must be taken in 

the choice of states to form the state vector. A FIR filter with M tap coefficients has 

order M-l and could be completely described by M-l states. A state vector with M-l 

states leads to a formulation where the plant noise and the observation noise are 

correlated. While it is still possible to derive a Kalman filter to handle this situation, 

such a filter is only conditionally stable. Its stability is dependent upon the impulse 

response of the channel [5]. In [18] and [108] the channel is represented by M states, 

which leads to a formulation where the plant noise and the observation noise are 

uncorrelated, and the Kalman filter is unconditionally stable.

Following [18], the state of the FIR channel model is represented by M-vector 

l(k), where

s(k-l) • • • 

The state transition equation is therefore,

(6.3.1)

129



where a. is an (A/ x M) shift matrix whose elements a(i J) are equal to unity if i-j= 1 

and are zero otherwise, £ is a column vector with M elements.

b. T = [ 1 0 0 • • • 0 ] 

The observation equation is then obtained directly from (5.2.1).

x(k) = h T l(k) + n(k)

As in section 5.2, s(k) and n{k) are assumed to be zero mean uncorrelated white 

noise sequences with variances <r,2 (& ) and v*(k ) respectively.

The above state-space description is adequate if all that is required is an estimate 

of the current state of the channel s.(k). However, to handle non-minimum phase 

channels, a fixed lag smoothing form of the Kalman filter is used [5]. A fixed lag 

smoother with lag d is usually derived by augmenting the state vector to

Ur (*Ur (*-l) • • • s*(k-d)]T .

However because the state transition matrix a is a shift matrix, this degree of 

complexity is not necessary. The state vector is merely augmented to contain d+1 

elements [103].

&T (k) = (s(k)s(k-l) ••• s(k-M + l) ••• s(k-d)]

The resultant state transition equation and observation equation are identical in form 

to (6.3.1) and (5.2.1) respectively with a and £ redefined as follows: a is a 

(d + l x d + l) shift matrix, & is a vector with d+1 elements

h T = [100 • • • 0],

and the (1 x d + l) observation matrix, H., constructed by augmenting the channel 

impulse response with zeros.

OJ.
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The Kalman IIR equaliser equations can be written down directly from the above 

definitions.

i(k/k) - i(*/*-l) + £(*) [*(*) -Zi(k/k-l) ] (6.3.2)

i(k/k -1) = a l(k -l/k -1) (6.3.3)

-l) tL T + cr* I'1 (6.3.4)

-1) = a ^(* -I/* -1) <L T + kb. T CT/ (6.3.5)

= [/ -£(*)£ ] If (*/*-!) (6.3.6)

The structure of the Kalman equalising filter is illustrated in Figure 6.1. In the steady 

state the elements of the Kalman gain vector

K T = [K0 K, "- Kd ]

will be constant. In which case the Kalman filter structure illustrated in Figure 6.1 is a 

canonical form of the Wiener filter structure illustrated in Figure 5.2. Unlike the 

optimum FIR equaliser and the Wiener IIR equaliser the Kalman equaliser provides 

estimates of the channel input at a range of lags ie. from lag 0 to lag d.
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Figure 6.1 KALMAN EQUALISER STRUCTURE
•o
A
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6.4 AN ADAPTIVE KALMAN EQUALISER

In order to make the Kalman equaliser of section 6.3 adaptive, a system 

identification algorithm is used in parallel with it to estimate the impulse response of 

the unknown channel. This adaptive equaliser, ( Figure 6.2 ), operates in the 

following manner. During an initial training period a predetermined sequence is 

transmitted and the system identification algorithm forms an estimate h of the channel 

impulse response vector £. The estimate is passed to the Kalman filter which is then 

initialised and transmission of data begins. Because a training sequence is employed, 

initialisation of the Kalman filter is exact. The state vector at time zero, 1(0/0), 

consists of the last d samples of the training sequence. The error covariance matrix 

£(0/0), is the zero matrix since i(0/0) is known with probability one. In addition to 

estimating the signal at all lags up to lag d, the Kalman filter provides the error 

variance of these estimates on the leading diagonal of the error covariance matrix, 

Y.(k/k}. Thus once the Kalman filter has reached a steady state, the element of the 

state vector s.(k/k) which achieves a predetermined performance bound is used as the 

input to the decision circuit or slicer. During data transmission it is possible to operate 

the adaptive equaliser in decision directed mode. In this mode, the output of the 

slicer, m, is used as an input to the system identification algorithm. Thus, provided 

the slicer makes correct decisions, the system identification algorithm and hence the 

adaptive equaliser will be capable of tracking time varying channels, when the channel 

is non-minimum phase adequate performance may only be achieved by using a fixed 

lag d. Under these conditions the output of the slicer will represent the channel input 

d samples ago. In order that the system identification algorithm produce correct results 

a delay d must be introduced between the channel output and the training input to the 

system identification algorithm.
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6.4.1 System Identification

Since the channel input sequence { j (k ) } is white, the autocorrelation matrix 

E[ i(k) ir (£) ] is diagonal with equal eigenvalues. Under these conditions a 

stochastic gradient LMS algorithm achieves its best performance [21] and hence it is 

well suited to perform the system identification task. Of course, a RLS adaptive 

transversal filter converges faster than the LMS algorithm even under white input 

conditions [71]. However this performance gain is achieved at the expense of 

increased complexity and since a Kalman algorithm has already been postulated to 

perform the equalisation task, it is natural to choose the simpler LMS algorithm for 

initial study.

The stochastic gradient LMS algorithm is summarised by the following two 

equations:

+ 2jji ^(fc + 1) e(* + l) (6.4.1) 

l) - h T (k)i(k + l) (6.4.2)

A

The constant jx is the convergence factor and the M- vector £ is an estimate of the 

channel impulse response vector h. • For system identification, the performance 

measure which is of most use is the norm p of the estimated tap weight error vector h. 

where

= h(k) -h (6.4.3)

In geometrical terms, the norm is the average length of the error vector h and hence is 

a measure of how close the estimate h is to the vector h .

Standard theoretical analysis of the LMS algorithm [73,26], yields the following 

equations which summarise the convergence properties when the input signal is white.
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E[ e2(k + l) ] = 1 - 4^ + Va/M E[ r.2

(6.4.4)

(6.4.5)

0 < fJL <
^ Ma,2

Although the analysis relies on assumptions that are often invalid, it produces figures 

which agree well with experimental results and hence is useful in the understanding 

and operation of the adaptive Kalman equaliser. Combining (6.4.4) and (6.4.5) a 

recursive equation for the norm p(&) is obtained.

T,2cj 2M (6.4.6) /

In order to achieve fast convergence, let

M- = 

If the signal power is normalised to unity ie.

<T,= 1

equation (6.4.6) becomes

P(*) =

Equation (6.4.7) provides two important results: (i) the fastest convergence rate that 

can be obtained using the LMS algorithm is

I M ——— I dB i'iteration M —L
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and (ii) the final value of the norm under these conditions is determined by the 

variance of the noise i.e.

Ump(^) =
Jk-O)

6.4.2 Model Uncertainty

The two parameters in the channel model, (5.2.1), of which there is uncertainty 

or imperfect knowledge are the channel impulse response vector £ and the additive 

noise variance a*. In [109] it is shown that if the noise variance used in the Kalman 

filter is greater than the actual noise variance, then the diagonal elements of the error 

covariance matrix Y.(k/k) are an upper bound on the MSE performance of the filter. 

The effect is illustrated in Figure 6.3, which also indicates that the MSE is not 

significantly degraded by using a noise variance parameter in the Kalman filter that is 

10 dB greater than the actual noise variance. The theoretical result presented in [109] 

and experimental results such as Figure 6.3 combine to suggest a simple solution to the 

problem of uncertainty in the observation noise i.e. the noise variance in the Kalman 

filter should be set to a maximum or worst case value that is expected in a particular 

application. There are however two disadvantages with this strategy: (i) the 

performance of the Kalman filter will be degraded if only slightly, and (ii) the diagonal 

elements of the error covariance matrix will be greater than the actual MSE and hence 

will not be useful as indicators of the equaliser performance. An alternative solution is 

to estimate the noise variance directly from the channel [108]. Before considering this 

solution, the effect of uncertainty in the channel tap vector h. on the performance of 

the Kalman filter will be considered briefly.

In subsection 6.4.1 it was shown that the lower bound on the norm p is <r n2 , 

when the convergence factor JJL is set for fastest convergence. Experiment indicates 

that this is the point at which the uncertainty in the tap vector h. starts to degrade the
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performance of the Kalman filter ( Figure 6.4 ). For this experiment the estimated tap 

vector h used in the Kalman filter was formed by adding a suitably scaled random 

noise term to each coefficient of the channel tap vector h. - Recent developments [110] 

provide the means for incorporating some of the effects of model uncertainty into the 

Kalman filter formulation. However these rely on spectral factorisation. The 

technique that is now presented provides a method for both estimating the noise 

variance and compensating the Kalman filter for the uncertainty in the channel impulse 

response vector.

Combining (5.2.1) with (6.4.2) and (6.4.3) yields.

hi) + £»(* + !) (6.4.8)

If, to a first order approximation, { e(k + l) } is considered to be a white noise process, 

then (6.4.8) provides an alternative interpretation of how the observation sequence
A

{x(k + l) } was formed. If it is assummed that h(k) and s.(k + l) are uncorrelated 

then a simple expression for the variance cr 2 of the error e can be obtained from 

(6.4.5).

a 2(*) = <r,2 p(*) + a 2 (6.4.9)

In words, x(k+1) is formed by adding the output of a time varying FIR filter with tap 

vector b(k) to a time varying white noise sequence with variance a 2(£ +1). This 

variance combines both the effects of model uncertainty, represented by the norm 

p(£), and the variance of the additive noise a 2 . Using the alternative model of (6.4.8) 

the observation noise variance, U(k) used in the Kalman equaliser is replaced by 

o-e2(*). Although cr 2(*) will not be known a priori in a particular application the
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parameter e(k+l) is directly available as it is an output of the LMS system 

identification algorithm (6.4.2) and thus a 2(* + l) may be readily estimated on-line.

Since a 2 is the output of a process with a time constant determined by 

suitable recursive estimate d 2 is.

1 ,,

. (6.4.10)
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Figure 6.3 MODELLING ERRORS ( Observation Noise ) 
non - minimum phase ( channel- no. 1 ) 
actual additive noise = -40.0 dB 
noise variance in Kalman filter = -30.0 dB 
ensemble = 100
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Figure 6.4 MODELLING ERRORS ( Channel Impulse Response ) 
non - minimum phase ( channel no. 1 ) 
additive noise = -40.0 dB 
ensemble = 100
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6.4.3 Verification of Compensation Technique

While the compensation technique postulated in subsection 6.4.1 has an intuitive 

appeal, it is not an exact result and hence it was necessary to examine its validity by 

experiment. For this and subsequent simulations, the channel was modelled by 

(5.2.1), a zero mean binary white sequence of unit variance was used as the channel 

input, and a zero mean white Gaussian sequence was used for the additive noise. The 

results are summarised in Figure 6.5. For this particular experiment the observation 

noise variance in the Kalman filter, U(k), was calculated from (6.4.4) using exact 

knowledge of the channel noise variance, or^ ( = —IQdB ). The estimated impulse 

response, &(&), from the LMS algorithm was used to form the (1 x d + 1) observation 

matrix, H(k) ie.

H(k) = [ h 0(k) £,(*) ' ' ' 4-i 0 0 • • • 0 ]

A 3-tap FIR filter was used in both the channel simulation and the LMS algorithm. 

The Kalman filter was initialised after 20 iterations of the LMS algorithm with an error 

covariance matrix, Y(0/0), of all zero elements. Hence the initial divergence of the 

filter state 5 to a MSE value that is above the level of the observation noise variance, 

cre2 , is to be expected. It then reconverges due to the subsequent reduction in the 

observation noise, as the LMS algorithm converges, until a final MSE value of -53dB is 

achieved. Because the channel is non-minimum phase ( channel no. 1, Table 5.1 ), 

the MSE of the states decreases with increasing state number and increasing estimation 

lag. Thus the significant difference in performance between states 0 and 5 is to be 

expected. For clarity the performance of the intermediate states has not been included. 

The close agreement between the measured MSE of states of the Kalman equaliser and 

the theoretical performance predicted by the error covariance equations indicates that 

the compenation technique is a valid one.
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Figure 6.5 COMPENSATION FOR MODEL UNCERTAINTY 
non - minimum phase ( channel no. 1 ) 
additive noise = -70.0 dB 
ensemble = 100
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6.4.4 Comparison with an RLS FIR Equaliser.

In this section, the results of a simulation study of the adaptive Kalman equaliser 

are presented. In contrast to subsection 6.4.3 the observation noise variance, a*(k], 

was estimated directly from the LMS error sequence { e (n ) }, using (6.4.10). Thus the 

equaliser is fully adaptive in that a priori knowledge of the channel noise variance, a,2 

or the tap vector norm, p(£), is not required. The measured values of the tap norm, 

p(fc), are included as a check on the theoretical result summarised in (6.4.7). A RLS 

adaptive transversal equaliser [40] was chosen as a benchmark against which to 

compare the adaptive Kalman equaliser.

The results for channel no.l are illustrated in Figure 6.6(a). The norm, p(&), 

converges to the noise floor of -70dB at a rate that is consistent with (6.4.7). Like the 

channel the LMS algorithm has 3 taps. Thus the rate of convergence should be 

Iog10( 1.5 ) dB/iteration or -70dB in 40 iterations. While the elements of the error 

covariance matrix Y.(k/k) track the measured MSE values of states 0 and 5 of the 

Kalman equaliser closely there is a noticable seperation during the transient periods 

when the observation noise variance is changing. This is due to the inherent lag in the 

estimator of (6.4.10). However comparison of Figures 6.5 and 6.6(a) indicates that 

the measured MSE of state 5 of the Kalman equaliser is not altered by this seperation. 

A measured MSE of -50dB is achieved by state 5 of this 5th order adaptive Kalman 

equaliser within 38 iterations. To obtain the same MSE with a FIR equaliser, a filter 

of order 9 is required. The optimum lag under these conditions is 5. Using a RLS 

algorithm to train the FIR filter, it converges in approximately 30 iterations, Figure 

6.6(b).

The results for a minimum phase channel are illustrated in Figure 6.7. The three 

states of the Kalman filter ( states 0, 1 and 2 ) exhibit similar MSE performance 

because the channel is minimum phase. Again the elements of the error covariance 

matrix, y.(k/k)y track the measured MSE values closely. In order to achieve a MSE
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value of -50dB under exactly the same conditions a FIR equaliser of order 22 and 

estimation lag 0 is required ( Figure 6.7(a) ). Using a RLS algorithm to train the 

filter, it converges in approximately 50 iterations ( Figure 6.7(b) ). The second order 

adaptive Kalman equaliser converges to -50dB in about 40 iterations.

Finally the results for a second non-minimum phase channel are illustrated in 

Figure 6.8. An 8th order Kalman equaliser is required to obtain a MSE of -48dB. 

The equaliser converges in 45 iterations. Figure 6.8(b) illustrates the MSE 

performance of 17-tap RLS transversal equaliser with an estimation lag of 9. The RLS 

equaliser converges within 35 iterations.
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Figure 6.6 COMPARISON WITH RLS FIR EQUALISER 
non - minimum phase ( channel no. 1 ) 
additive noise = -70.0 dB 
ensemble = 100
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Figure 6.7 COMPARISON WITH RLS FIR EQUALISER 
minimum phase ( channel no. 3 ) 
additive noise — -70.0 dB 
ensemble = 100
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Figure 6.8 COMPARISON WITH RLS FIR EQUALISER 
non - minimum phase ( channel no. 2 ) 
additive noise = -70.0 dB 
ensemble = 100
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6.4.5 Computational Complexity

A breakdown of the computation required to process one data point using the 

adaptive Kalman equaliser of Figure 6.2 is presented in Table 6.1. The complete 

algorithm includes the Kalman equaliser, (6.3.2) - (6.3.5), LMS system identification, 

(6.4.1) and (6.4.2), and estimation of the error variance cre2(&), (6.4.10). In total

y-+ y- + </M + 4M + 6

multiplications,

^- - i + dM + 4M

additions and/or subtractions and 1 division are required to process one sample. The 

major computational burden of the algorithm lies in the the Kalman equaliser itself, in 

particular the computation of the error covariance matrix, Y.(k/k). Some saving can 

be made with respect to the general Kalman filter, (6.2.1) - (6.2.5), since the state 

transition matrix, A(&), is a shift matrix, a, and hence (6.3.5) requires no 

computation. Further the observation matrix, ZZ(&), contains many zero elements.

The total number of multiplications required to implement the algorithm is 

illustrated in Figure 6.9 for various values of the number of channel taps, M, and the 

estimation lag, d. For minimum phase channels the estimation lag does not affect the 

performance of the adaptive Kalman equaliser and the computational complexity of the 

algorithm is obtained by setting d = M - I . This is the minimum phase boundary of 

Figure 6.9. For a non-minimum phase channel a value of d > M — 1 may be 

required to obtain adequate performance. For a given number of channel taps, 

increasing the estimation lag increases the computational burden.

To extend the comparison with a RLS FIR equaliser from one of performance to 

one of computational complexity is not straightforward since the order of both 

structures to achieve a particular performance goal depends on the characteristics of
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the channel. Because of this dependency the comparison presented here is a limited 

one which is derived from the performance comparison of IIR and FIR equalisers 

which was presented in section 5.3. Using Figures 5.3 - 5.5, values for the order of 

the IIR equaliser ( and hence d ) and the order of the FIR equaliser ( and hence N ) 

were chosen which would give the same MSE performance for a given channel and 

noise conditions. As in section 5.3 the FIR equaliser of optimum lag was used. Given 

these values for d and N, the number of computations required to process one data 

sample was calculated. It was assumed that the RLS FIR was implemented using the 

fast Kalman algorithm of Appendix A. The number of computations is given in Table 

2.2. The results presented in Table 6.2 indicate the savings in computation that can be 

achieved using the adaptive Kalman equaliser structure. These savings range from 11- 

18% for the minimum phase channel ( no. 3 ) and 50-70% for the non-minimum 

phase channels.
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Table 6.1 ADAPTIVE KALMAN ER EQUALISER 
( Complexity )

no. of states = d+1

no. of channel taps = M

operation

VJklk-l) ff(fc)
r 2H (k) V(klk-l) H(k) + o^

T *

V<k/t-l) H(t) [ ffr (*) V<t/t-l) H(t) + a,2 ]~1
* T* *

£(*) ff (fc) V(Jfc/Jt-l)

TV(fc/Jfc-l) - K(k) H (Jfc) V(Jfe/t-l)

7*
ii/£»\ — fc /'t _ 1\ -rflr\y\K) ,n {K i) *\K )

2 ^«tt)(y(t)-*r(t -!)£(*))

h f Is ^ 1 ^ ^ 7 ti TI^I ^ vftl ^ h (If ^ 1 i TI IT 1 i f* I /C A J i 4b ^JbA^^i \^\'*/ " V / \x /

1 " 2 (lt-<[\ * 2(fc)
\ *• / fi \ /

A/ Af

mult.

^(Af-D+1

M

M-l

d+1

d+1

d2 d—— + —
2 2

M

M+l

3

add/sub.

«C*'-2)

M

M-l

d

rf 2 J—— + —
2 2

M

M

1

total mult.

total add/sub. = 4- - I- 4M

154



Figure 6.9 MUITIPLICATION REQUIREMENTS 
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Table 6.2 COMLEXITY COMPARISON

channel

no.

3

3

1

1

1

1

2

2

noise

-40.0

-70.0

-40.0

-40.0

-70.0

-70.0

-70.0

-70.0

Kalman/LMS

d

2

2

2

3

4

5

8

11

mult.

29

29

29

36

44

53

86

128

add/sub.

19

19

19

24

30

37

64

100

FIR/RLS

N

16

27

4

6

8

10

17

21

mult.

161

271

41

61

81

101

171

211

add/sub.

145

244

37

55

73

91

154

190
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6.5 RLS SYSTEM IDENTIFICATION

From the results presented in section 3.2 and in [71], it is clear that the RLS 

algorithm provides faster converging system identification than the LMS algorithm. 

Thus, if the LMS system identification block of Figure 6.2 is replaced with a RLS 

system identification block, the complete adaptive Kalman equaliser will converge 

faster than the structure considered in section 6.4. The only issue to be resolved is 

how then to compensate the Kalman equaliser for the uncertainty in the channel 

impulse response estimate provided by the RLS algorithm and how to remove the need 

for a priori knowledge of the variance of the channel noise, a* .

The approximate analysis, summarised by (2.4.17) - (2.4.19) [58], indicates that, 

in common with the LMS algorithm, the variance of the error sequence, (e(k) }, 

associated with the RLS algorithm is a simple function of the channel noise variance 

and the norm, p(fc). Using (2.4.18) an expression for the norm can be derived when 

the channel input sequence, { x(k) }, is white.

= tr(E((h(k)-h)(ll(k)-h)T ])

An expression for v?(k) is then obtained from (2.4.19).

This is identical to (6.4.9). Unfortunately the fast converging property of the RLS 

algorithm implies that the sequence { e (k ) } is highly nonstationary and hence it would
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be inappropriate to estimate a*(*) directly from the data using a time average 

technique such as (6.4.10). The solution that is now proposed is to exploit some of the 

properties of the RLS algorithm itself in forming a recursive estimate of cr*(&).

A satisfactory estimate could be obtained if the impulse response estimate 

provided by the system identification algorithm was held constant for a finite number 

of data points. Such an estimate would have the form,

where

= 2 (y(«)-Ar (*-i)*(«))2 .
«=o

To find a time recursion for Ep (k), first isolate the term due to the latest data point at 

n = k.

" *2 (>(») -
ii =0

= Em (k -1) + e\k) (6.5.2)

The summation, £„,(&—!), is recognisable as the LS cost function evaluated using k 

data points, and h(k— 1) is the impulse response that minimises that cost function. 

The minimum value of the least squares cost function, Em (k}, is obtained by setting 

the impulse response to its optimum value ie.

Thus,

= 2 (y(")-&r
«=0
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y\n) - h T (k) ^(k) (6.5.3)

To develope a time recursion for Em (k), time recursions for each term on the right 

hand side of (6.5.3) are first derived.

2 ? 2(") = *2 y 2(«) + yW (6-5.4)
»=0 ii =0

(6-5.5) 

(6-5.6)

(6.5.7) 

Substitution of (6.5.4) - (6.5.7) in (6.5.3) yields

,, ^(1 + i

The denominator is of course directly available in the RLS algorithm. Together 

(6.5.1), (6.5.2) and (6.5.8) form a recursive estimate of the time varying variance

To assess the potential improvement in performance some of the simulations of 

subsection 6.4.4 were repeated with the LMS system identification replaced with RLS 

system identification and with the observation noise variance in the Kalman equaliser 

calculated using (6.5.1), (6.5.2) and (6.5.8). The results are illustrated in Figures 6.10 

and 6.11 for a non-minimum phase and a minimum phase channel respectively. The 

most noticeable difference between these results and those of Figures 6.6(a) and 6.7(a) 

is the speed advantage of the RLS solution. For the minimum phase channel, the 

adaptive Kalman equaliser now converges to -53dB in 12 iterations compared with 50 

iterations and for the non-minimum phase channel, it now converges to -53dB in 10 

iteration compared with 40 iterations. Note also the close agreement between the
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measured MSE of the states of the Kalman equaliser and the values predicted by the 

error covariance equations.
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Figure 6.10 PERFORMANCE WITH RLS TRAINING 
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Figure 6.11 PERFORMANCE WITH RLS TRAINING 
minimum phase ( channel no. 3 ) 
additive noise = -70.0 dB 
ensemble = 100

dB 

0

-10

-20

-30

-40

-50

-60

-70

-80

O

0

states 0 and 2 
———I—————

°0°oooooooo

8 12 16 20

ITERATIONS

KEY
O

* *
r ——

measured norm of system identification
error covariance

measured MSE of Kalman equaliser

162



6.6 CONCLUSIONS

A new adaptive IIR linear equaliser [111] has been presented which is based on 

the Kalman filter structure of [18]. In the steady state this structure is a canonical 

form of the optimum IIR Wiener equaliser. The Kalman equaliser structure has been 

made adaptive by combining it with a LMS system identification algorithm and a novel 

technique, which both estimates the channel noise variance and compensates the 

Kalman filter for uncertainty in the channel impulse response. Simulation results have 

been presented showing the operation of this equaliser in the specific context of a 

communications channel suffering from minimum and non-minimum phase distortion.

Comparisons show that the convergence performance is roughly equivalent to a 

FIR equaliser which is trained with an RLS algorithm. However the order of the new 

filter is always lower than the FIR filter. This is particularly evident in the case of 

minimum phase channels. Unlike the FIR equaliser, the new filter produces estimates 

of the channel input at a range of lags up to the filter order. Hence the timing problem 

inherent in FIR based systems does not occur with this new filter structure. A 

comparison of the computational load of the proposed structure with an RLS FIR filter 

indicates that the former offers an advantage of 11-18% for a mimimum phase channel 

and 50-70% for non-minimum phase channels. Finally a method for improving the 

convergence performance of the adaptive Kalman equaliser has been described which 

involves replacing the LMS system identification algorithm with a RLS counterpart.
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Chapter 7 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

7.1 GENERAL REMARKS

The subject of this thesis has been the design of algorithms for adaptive filtering. 

To this end both FIR and IIR filter structures have been considered. However, while 

it has been possible to look at FIR filters in a general application - independent 

manner in Chapters 2,3 and 4, IIR filters have only been examined in the specific 

application of linear equalisation in Chapters 5 and 6. This difference in approach 

reflects the maturity of adaptive FIR filtering, witnessed by the publication of 

textbooks on the subject, compared to adaptive IIR filtering. If a theme other than the 

title of adaptive filters unites Chapters 2,3 and 4 with Chapters 5 and 6 it is the 

concept of white input performance. In a FIR adaptive filter white input performance 

is obtained by contructing a whitening network ( either explicitly or implicitly ) at the 

input to the filter. In the adaptive IIR equaliser of section 6.3, white input 

performance is obtained by reconfiguring the equaliser so that the input to the adaptive 

filter is the transmitted signal which is usually white. The subsequent paragraphs 

summarise the conclusions which have been drawn in this thesis and highlight specific 

achievements.

7.2 SPECIFIC ACHIEVEMENTS

A broad selection of adaptive finite impulse response (FIR) filter algorithms was 

examined to assess their theoretical convergence performance and computational 

requirements. From this examination a classification system evolved in which the 

available algorithms were grouped into three classes according to convergence
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performance and computational complexity. These three classes are: (i) stochastic 

gradient algorithms, (ii) self-orthogonalising algorithms and (iii) recursive least squares 

algorithms. Formerly classes (ii) and (iii) had been grouped together. Movement 

from class (i) through (ii) to (iii) improves convergence performance at the expense of 

increasing computational complexity.

The stochastic gradient algorithms are the least demanding computationally of all 

the adaptive MR filter algorithms. Unfortunately they exhibit the poorest convergence 

performance since the convergence rate is dependent on the eigenvalues of the 

autocorrelation matrix associated with the input signal. The RLS algorithms, on the 

other hand, exhibit consistent fast convergence properties but are the most expensive 

computationally. Finally the transform domain or quasi-orthogonalising algorithms are 

less sensitive to the eigenvalue spread of the input autocorrelation matrix than the 

stochastic gradient algorithms. Thus they offer convergence performance that lies 

between the RLS and SG algorithms. However the sliding DFT algorithm is closer to 

the RLS algorithms than the SG algorithms in computational load.

Because of the difficulty in obtaining rigorous analytic results for the convergence 

properties of a broad selection of adaptive FIR filter algorithms, an experimental 

comparison was made using computer simulation. The results of these experiments 

confirm many of the key properties suggested by approximate analysis. In particular, 

the performance degradation of the SG algorithms when the input sequence is highly 

ill-conditioned, the fast consistent convergence of the LS algorithms, and the role of 

the quasi-orthogonalising algorithms as a compromise in performance between the 

LMS and the RLS algorithms.

Developments have been made in the area of block adaptive filtering. A unified 

approach to the BLMS algorithm has been presented which simplifies the application 

of efficient convolution algorithms other than the FFT ( eg. the rectangular transform 

) to the construction of computationally efficient block adaptive filters. A significant 

contribution to the field has been the development of the self-orthogonalised block
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adaptive filter which exhibits convergence performance characteristic of class (ii) in 

combination with computational complexity characteristic of class (i).

A closed form expression for the optimum IIR equalising filter was derived using 

Wiener filtering theory. This formulation highlighted the structure of the optimum IIR 

equaliser. A comparison of the MSE performance of FIR and IIR equalisers 

illustrated the inherent order advantage in using an IIR filter in this application. The 

adaptive IIR equaliser problem was shown to be equivalent to the identification of an 

ARM A plant which is embedded in an ARM AX process. Although the bias 

associated with RLS estimates can be avoided through resort to algorithms such as 

RTV, the MSE convergence of these algorithms is poorly understood and hence they 

cannot be considered to be robust solutions.

A new adaptive IIR linear equaliser [111] has been presented which is based on 

the Kalman filter structure of [18]. In the steady state this structure is a canonical 

form of the optimum IIR Wiener equaliser. The Kalman equaliser has been made 

adaptive by combining it with a LMS system identification algorithm and a novel 

technique, which both estimates the channel noise variance and compensates the 

Kalman filter for uncertainty in the channel impulse response. Comparisons show that 

the convergence performance is roughly equivalent to a FIR equaliser which is trained 

with an RLS algorithm. However the order of the new filter is always lower than the 

FIR filter. A comparison of the computational load of the proposed structure with an 

RLS FIR equaliser indicates that the former offers an advantage, which is dependent 

on the channel characteristics. Further a method for improving the convergence 

performance of the adaptive Kalman equaliser has been described which involves 

replacing the LMS system identification algorithm with a RLS counterpart.
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7.3 LIMITATIONS AND FURTHER WORK

In Chapter 1, it was stated that adaptive filters find application in environments 

which are both stationary and non-stationary in nature. It is evident from subsequent 

chapters that the latter has not been considered in any detail. Performance in a non- 

stationary environment is merely implied from the convergence performance in a 

stationary environment. However other authors such as [112] present observations 

which indicate that in a continuously changing non-stationary environment such as a 

high frequency (HF) communications channel, this deduction is misleading and SG 

algorithms such as the LMS may outperform the RLS algorithm. A clear direction for 

future research is to study the performance of adaptive FIR filter algorithms in a 

continuously varying non-stationary environment using both analytic and experimental 

techniques.

The investigation of adaptive IIR filtering has been limited to the specific 

application of adaptive equalisation. The solution presented in Chapter 6 is 

application dependent and thus it is not believed that it could be applied to a general 

adaptive IIR filtering problem. However in the adaptive equaliser scenario the 

Kalman filter formulation makes it relatively straightforward to extend the algorithm of 

Chapter 6 to include decision feedback and fractionally spaced IIR equalisers. The 

question then arises as to how such equalisers compare in performance and complexity 

with more conventional decision feedback and fractionally spaced equaliser structures.
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Appendix A 

THE FAST KALMAN ALGORITHM

In [25] Ljung et al derived a recursion for the calculation of £(fc), (2.4.14), 

which is an order of magnitude more efficient than (2.4.15). This recursion, which 

has since come to be known as the fast Kalman algorithm, depends fundamentally 

upon the shifting property of the vector i(£) and upon the use of forward and 

backwards least squares prediction to exploit this property. Before proceeding to the 

fast algorithm it is necessary to develop the forward and backward linear predictors 

and some of the variables associated with them.

An Nth order linear prediction xf of the process x is given by the output of an N 

tap transversal filter.

where

As with linear estimation, this linear prediction is considered to be least squares if the 

filter coefficient vector a is chosen to minimise a sum of squared errors cost function,

(A.I)

The value of a which minimises this cost function is given by

where

(A.3)
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The minimum value, af (k), of the cost function, (A.I), can then be calculated by 

combining (A.I) and (A.2).

(A.4) 

where

Again in common with last squares estimation, the tap vector fl(fc) may be generated 

recursively.

fl(*) = fl(*~l) + *(*-!)«'(*) (A.5)

*'(*) = x(k) - a. T (k -1) &(k -I) (A.6)

Note that the recursion for a (k ) requires the same gain vector £ (& ) as the recursion 

for A (*), (2.4.12).

The defining equations for backwards linear least squares prediction are 

analogous to those for forward linear least squares prediction. They are as follows: a 

backward prediction

x b (n-N) = tf i(/i) 

a sum of squared errors cost function

2 (x(n-N)-Jcb (n-N))2 (A.I) 
»=o

with solution

where
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The minimum value, a*(fc), of the cost function, (A.7), is

(A.8)

where

a recursion for

(A.9)

The method used by Ljung et al to exploit the shifting property of x.(k) involves 

first increasing the order of the system by 1 from order N to order (N + 1).

X? (n ) = [ x (n ) x (n —1) .. .x (n —N + 1) x (n —N ) ]

The vector &(n ) contains both the new data sample x(n) and the data sample x(n-N) 

which is disregarded. To highlight the effect of these two data points, the vector £(n ) 

is partitioned in two ways.

f (n ) =
x(n) 

i(n-l)
=

i(/0

x(n-N)
(A.10)

This concept of increase in order and what might be called forward and backward 

partitions respectively is then applied to the matrix ^.

£,(*)= 2
»=o

170



This particular form assumes that the data is prewindowed. The matrix £a may then be 

inverted by the use of two standard results from matrix algebra: the inversion rule for 

partitioned matrices [113] and the Sherman-Morrison identity. [39]

*'(*)

"'(*)

«*(*)

«*(*)

«*(*)

«*(*)
(A.11)

The next step is to calculate the increased order gain vector k(k + 1) using the defining 

equation.

(* + !)£(* + !)

Application of the forward and backward forms of (A. 10) and (A. 11) in turn yields 

two expressions for k (k + 1)

0 

*(*)
(A.12)

0

6*(*
(A.13)
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where

and

The variables €? and e* are known as the a posteriori forward and backward 

prediction errors respectively to distinguish them from ef and e b , the a priori errors 

[43]. Equations (A. 12) and (A. 13) give the required recursion ie. an expression for 

+1) in terms of £(fc). Using a backwards partition k(k + 1) may be rewritten.

where

'(*

and

(A. 14)

Substitution for b. (fc + 1) in (A. 14) using (A.9) followed by some rearrangement gives

1 +

All that remains to complete the recursion is an expression for af (k + 1). By definition

(A.15)

A recursion for 2^ is obtained from (A.3).

(A.16)

Substitution for a (k +1) and ^(* +1) in (A. 15) yields
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The complete algorithm is summarised in Table A.I
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Table A.I THE FAST KALMAN ALGORITHM ( PRE-WINDOWED )

0

1 + 8(^ + 1) €*(*
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Appendix B 

CIRCULAR AND LINEAR CONVOLUTION

The circular convolution of the N point input vector

X. = [Jt(0)*(l) ••• x(N-l)]T 

and an N-point impulse response vector

h = 

is the N-point output vector

where

N-l

hj x( (n-j)mod N ) , n = 0, 1, • • • N-l.

The notation j mod N indicates j modulo N ie. the remainder when j is divided by N. 

The circular convolution operation is indicated by the circular convolution operator, *.

y c = x, * h (B.I)

Equation (B.I) is computed efficiently using the FFT [7], RT [62] or NTT [63]. In 

general these three transform domain techniques may be defined in terms of two 

(N x M) matrices AN and BN and a (M x N) matrix CN , where M > N [85]. The 

subscript N is used to indicate an N-point circular convolution operation. The input 

vector XT and the impulse response vector h. are multiplied by the BN and AN matrices 

to form the M-point vectors X and U. respectively.

2C = BN x,
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a. = AN h
Each element of the vector 2C is then multiplied by the corresponding element of the 

vector ££ to form the vector Z .

y, = X, Hit i = 0, 1, • • • Jlf-1 

This point by point multiplication is denoted by the operator, x .

I =2C x U 

Finally the ouput vector y c is formed by multiplying Y. by the C matrix.

y c = C I

Turning to the linear convolution operation, the output y(n) of a N-tap FIR filter 

with impulse response vector h may be described by the vector inner product of two 

N-vectors

H , (B.2) 

where

The output sequence (y(n)} is the linear convolution of the finite sequence { /i, }, 

0 ^ / < N —I, with the infinite sequence {*(«) }. For notational convenience the 

impulse response vector h is defined with its elements in time increasing order and the 

input vector £(/i) is defined with its elements in time decreasing order. Thus the data 

ordering that is convenient for the representation of the filtering operation is not the 

same ordering that is convenient for the representation of circular convolution. To 

facilitate block processing it is also convenient to define an output N- vector y (k ) which 

is contructed from N outputs of the FIR filter defined in (B.2).
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The (N x N) matrix x(*), where

x(*) = [*(*)*(*-!) •••

is symmetric.

Circular convolution may be used to perform linear convolution if it is used in 

conjunction with an overlap save or overlap add data sectioning technique [7]. Only 

overlap save will be considered here as it leads to more computationally efficient 

adaptive filter structures than overlap add [61]. To calculate the output vector y (*) a 

2N-point circular convolution is required. First the impulse response vector of (B.2) is 

combined with an N-point zero vector to form a 2N-point impulse response vector.

In 
0N (B.3)

The matrix IN is an (N x N ) identity matrix and the matrix ON is an (N x N ) matrix 

with all zero elements. Then a 2N-point input vector is formed from i(£) and

N

TN
(B.4)

The (N x N) time reversal matrix, TN , has 1's on the secondary diagonal and zeros 

elsewhere. Finally the 2N-point circular convolution of the input vector of (B.4) and 

the impulse response vector of (B.3) is calculated. The elements of the N-point vector 

y(£) can be recovered from the resultant 2N-point output vector by multiplying the 

latter by the window matrix, [ ON IN J. The overlap save technique is summarised by 

the following vector matrix equation,
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TN
TN OH (B.5)

where

Since circular covolution is defined in terms of vectors in time increasing order both 

overlap add and overlap save techniques produce an output vector y_T (k ) which is the 

time reverse of the vector y (k ).

The circular convolution operation indicated in (B.5) can be computed efficiently 

using any of the 2N-point circular convolution algorithms which are defined in general 

by two (2N x M ) matrices A^ and B^ and a (M x 2N) matrix C^, where 

M ^ 2N . The output vector >• (k ) is obtained from y,. (k ) by multiplying the latter by 

the (AT x N ) reversal matrix TN .

= TN y,(k)

= [0N TN ]C 2N

where

and

fl = A 2N

TN

TN

IN
0N

x ££}
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Appendix C 

RELEVANT PUBLICATIONS

[1] Mulgrew, B., "The Application of Kalman Filtering to Channel Equalisation," IEE 

Saraga Colloquium on Electronic Filters, London, 21st May 1984.

[2] Mulgrew, B. and Cowan, C.F.N., "Kalman Filter Techniques in Adaptive 

Filtering," IEE Colloquium on Adaptive Filters, London, 10th Oct. 1985.

[3] * Mulgrew, B. and Cowan, C.F.N., "An Adaptive IIR Equalizer: A Kalman Filter 

Approach," International Conference on Acoustics Speech and Signal Processing, 

Tokyo, April 1986.

[4] * Panda, G., Mulgrew, B., Cowan, C.F.N. and Grant, P.M., "On the Rectangular 

Transform Approach to BLMS Adaptive Filtering," International Conference on 

Acoustics Speech and Signal Processing, Tokyo, April 1986.

[5] Mulgrew, B. and Cowan, C.F.N., "An Adaptive Infinite Impulse Response 

Equaliser," U.K. Patent Application, no. 8523286, Sept. 1985.

[6] * Panda, G., Mulgrew, B., Cowan, C.F.N. and Grant, P.M., "A Self 

Orthogonalising Efficient Block Adaptive Filter," IEEE Transactions Acoustics Speech 

and Signal Processing, vol. ASSP-34, no.6, pp 1573-1582, Dec. 1986.

[7] Mulgrew, B., "Kalman Filter Techniques in Adaptive Filtering," accepted for 

publication in IEE Proceedings Part F.

[8] Mulgrew, B., Cowan, C.F.N., "An Adaptive Kalman Equaliser: Structure and 

Performance," accepted for publication in IEEE Transactions Acoustics Speech and 

Signal Processing.

[9] Panda, G., Mulgrew, B., Cowan, C.F.N. and Grant, P.M., "Rectangular 

Transform Approach for Block Least Mean Squares Adaptive Filtering," accepted for

publication in IEEE Transactions Acoustics Speech and Signal Processing. 
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ABSTRACT

Using discrete time Wiener filtering theory a 
closed fon for the optnum mean-square error (USE) 
infinite impulse response (IIR) linear equaliser is 
derived. The minimum phase spectral factorisation, 
which is an integral part of the derivation of the 
IIR equaliser, nay be circumvented through the use 
of a Kalian equaliser such as that originally pro­ 
posed by Lawrence and Kaufman. The structure is 
•ade adaptive by using a systei identification 
algorithm operating in parallel with a Kalian 
equaliser. In common with Luvison & Plrani, a 
least lean squares (LMS) algorithm was chosen for 
the systei identification because the input to the 
channel is white. A new technique Is introduced 
which both estinates the variance of channel noise 
and compensates the Kalian filter for errors in the 
estimate of the channel impulse response.

1. iHTRooocnoii
A digital communications channel with inter- 

symbol interference may be modelled by an 
equivalent discrete time transversal filter with 
additive white noise (1J. Thus the channel output 
x(k) may be written in terms of the channel input 
s(k) and the noise n(k) as,

n(k) (1) 
where h. is the M point impulse response vector and 
the vector s.(k) contains the last H inputs to the 
channel .

aT (k) = [ s(k) s(k-1) ... s(k-«+1) ] 
The superscript T denotes transpose. A linear 
equaliser consists of a linear filter section fol­ 
lowed by a non-linear slicer or decision circuit. 
The linear filter is designed to minimise the error 
between the filter output and the input to the 
channel. A mean-square error cost function, L, is 
usually used.

L = E[ ( s(k-d) - s(k-d) ) 2 ]
The superscript " denotes an estimate The delay 
term d, d > 0, allows for the possibility of fixed 
lag smoothing. The non-linear slicer makes deci­ 
sions on a symbol by symbol basis. From the above 
it is clear that the ma^or design effort for this 
form of equaliser is concentrated on the linear 
filter section, where linear estimation theory is 
applied with a view to minimising the mean-square 
error L at the input to the decision circuit.

2. OPTUTOII LDBJLB ESTTJttTIOII

Usually the linear filter takes the form of a 
FIR transversal filter of order N-1 (1). In deriv­ 
ing the optimum transversal equaliser the mean- 
square error L Is minimised subject to the con­ 
straint that the impulse response is finite, causal 
and stable. If this condition is replaced with a 
less stringent one, i.e. the filter should be 
causal and stable, the solution to the minimisation 
problem is provided by the US Wiener filter. The 
optimum IIR filter is defined in terms of the z 
transform, G(z), of its impulse response sequence 
( g(k) I (2).

GUI

( H(z)H(z~ 1 )o^ * o 2 I H(Z)H(z' 1 )o 2 + o 2 }"

where E( n(k) n(k+l) ] - o 5(1) n

E( s(k) 3(k*l) ] - o^ 5(1)

5(1) is the Dlrac delta function. The notation 
[.] represents the causal part of [.]. The power 
spectrum (.) is factorised ,

I.) = I.) {.I
where the term with the superscript + 
phase.

is minimum

In the absence of noise and with the input 
signal power normalised to unity the 118 wiener 
equaliser may be expressed in terms of the zeros of 
the channel frequency response H(z), which is 
assumed to have P zeros inside the unit circle at 
z, and 0 zeros outside the unit circle at z,.

G(z) = WU) [ BID

where

W(z)

vJ -«*-!:
j 
J
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and

B(z) 'M
3-1 l

The transfer function W(z) Is of u\ autoregressive 
noise whitening filter of order M-1 The transfer 
function [ B(z) J represents a FIR filter of order d. *

3. U ADAPTIVE KAUUfl EQUALISES

While the 118 Wiener filter exhibits a dis­ 
tinct performance advantage over a FIR filter of 
the same order when used to equalise a known chan­ 
nel, significant problems are encountered with the 
former when the channel is unknown or time-varying 
and an adaptive filter structure is required. An 
initial approach to the problem might be to postu­ 
late an adaptive algorithm such as those suggested 
in [3] that would recursively estimate the coeffi­ 
cients of the IIR Wiener filter in the same manner 
as the LHS algorithm (3) is used to estimate the 
coefficients of the FIR wiener filter However, 
in the process of adaptation, there is a finite 
probability that the poles of the filter will move 
outside the unit circle in the z-plane. This can 
lead to instability if the poles remain outside the 
unit circle for an extended period (3] An alterna­ 
tive approach is to follow Lawrence and Kaufman [A) 
and use a Kalman filter to directly estimate the 
vector 3. For unknown channels the state vector is 
then augmented to include the channel impulse 
response. The result of this formulation is a 
non-linear estimation problem to which an extended 
Kalman filter (EKF) is applied. However the con­ 
vergence of the EKF is not guaranteed [5]. The

structure that is considered here consists of a 
system Identification algorithm in parallel with a 
Kalman equaliser (Fig.D In essence it is the com­ 
bination of the adaptive Kalman filter structure of 
(6] with the non-adaptive smoothing filter of [71. 
but unlike (6], the full form of the Kalman filter 
gain equations are used in order to exploit the 
full capacity of the filter to handle nonstationary 
environments This combination produces an adap­ 
tive structure which is capable of equalising both 
minimum and non-minimum phase channels.

The adaptive equaliser, (Fig.1), operates in 
the following manner. During an initial training 
period a predetermined sequence is transmitted and 
the system identification algorithm forms an esti­ 
mate of the channel impulse response vector The 
estimate is passed to the Kalman filter which is 
then initialised and transmission of data begins. 
Because a training sequence is employed, initiali­ 
sation of the Kalman filter is exact. The state 
vector at time lero, consists of the last d samples 
of the training sequence. The error covariance 
matrix is the zero matrix since the state vector 
is known with probability one. The Kalman filter 
forms estimates of the signal at all lags up to lag 
d. In addition the variance of these estimates is 
available on the leading diagonal of the error 
covariance matrix. Thus once the Kalman filter 
has reached a steady state, the element of the 
state vector which achieves a predetermined per­ 
formance bound is used as the input to the decision 
circuit or slicer. During data transmission it is 
possible to operate the adaptive equaliser in deci­ 
sion directed mode In this mode, the output of 
the slicer is used as an input to the system iden­ 
tification algorithm. Thus, provided the slicer 
makes correct decisions, the system identification 
algorithm and hence the adaptive equaliser will be 
capable of tracking time varying channels. When 
the channel is non-minimum phase adequate

s(k-di ilk-d)

Ttraining y decision direct

d«culon directed

Fig.1: An Adaptive Kalman F^ualiser
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performance Bay only be achieved by using a fixed 
lag d Under these conditions the output of the 
slicer mil represent the channel input !l samples 
ago In order that the system identification algo­ 
rithm produce correct results a delay d lust be 
Introduced between the channel output and the 
training input to the system identification algo­ 
rithm.

3.1 System Identification

Since the channel input sequence is white, its 
autocorrelation matrix is diagonal with equal 
eigenvalues. Under these conditions a stochastic 
gradient LMS algorithm achieves its best perfor­ 
mance and hence it is well suited to perform the 
system identification task. Of course, a recursive 
least squares (RLS) adaptive transversal filter [3] 
converges faster than the LMS algorithm even under 
white input conditions [8]. However this perfor­ 
mance gain is achieved at the expense of increased 
complexity and since a Kalian algorithm has already 
been postulated to perform the equalisation task, 
it is natural to choose the simpler LMS algorithm 
for initial study.

Standard theoretical analysis of the LMS algo­ 
rithm [91 yields the following equation which sum­ 
marises the convergence properties when the input 
signal is white and the step size u is set for 
fastest convergence.

o 2 
_n
M (2)

The norm pU) is defined as

E[ ( too - b ) T ( b.(k) - b ) )
and the M-vector h. is the estimated impulse 
response of the channel. Although the analysis 
relies on assumptions that are often invalid, it 
produces figures which agree well with experimental 
results and hence is useful in the understanding 
and operation of the adaptive Kalman equaliser. 
Equation (2) provides two important results: (il 
the fastest convergence rate that can be obtained 
using the LMS algorithm is

10 log 10
JL 
K-1 dB/iteration

and (li) the final value of the norm under these 
conditions is determined by the variance of the 
noise i.e.

lim

of uncertainty in the observation noise i.e. the 
noise variance in the Kalman filter should b« jet 
to a maximum or worst case value that Is expected 
in a particular application. There are however two 
disadvantages with this strategy (ii the perfor­ 
mance of the Kalman filter will be degraded if only 
slightly, and (ill the diagonal elements of the 
error covanance matrix will be greater than 
the actual MSE and hence will not be useful as 
indicators of the equaliser performance. An 
alternative solution is to estimate the noise vari­ 
ance directly from the channel. Before considering 
this solution, the effect of uncertainty in the 
channel tap vector h. on the performance of the Kal­ 
ian filter will be considered briefly.

In the previous section it was shown that the 
lower bound on the norm is the additive noise 
variance, when the convergence factor u Is set for 
fastest convergence. Experiment indicates that 
this is the point at which the uncertainty in the 
tap vector h. starts to degrade the performance of 
the Kalaan filter (Fig. 2). For this experiment 
the estimated tap vector used in the Kalman filter 
was formed by adding a suitably scaled random noise 
term to each coefficient of the channel tap vector. 
The technique that is now presented provides a 
method for both estimating the additive noise vari­ 
ance and compensating the Kalman filter for the 
uncertainty in the channel impulse response vector.

J" tddltiwe fioLae - 40 0 dB

-60

Fig 2 The effect of Hofelllng Error on Ul» 
Equilijcr Perlormutce.

The definition of the error eU+1), when rearranged 
yields.

3.2 Model Oncertainty

The two parameters in the channel model (1) of 
which there is uncertainty or imperfect knowledge 
are the channel inpulse response vector and the 
additive noise variance. If the noise variance 
used in the Kalman filter is greater than the 
actual noise variance, then the diagonal elements 
of the error covanance matrix are an upper bound 
on the USE performance of the filter [2). This 
result suggests a simple solution to the problem

xU+1) = h.()O s.U+1) + e(k+1) (3) 
If. to a first order approximation, ( e(ktl) ) Is 
considered to be a white noise process, then (3) 
provides an alternative interpretation of how the 
observation sequence { x(k+i) I was formed. The 
variance of the error e can be written down 
directly from [9].

E[ e 2 ()ctl) ] = o 2 = o 2 pU) * o 2

In words, x(xt1) is formed by adding the output of 
a time varying FIR filter to a time varying white
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noise sequence { elk) ) . The variance of the 
sequence , elk) i combines both the effects of 
model uncertainty, represented by the norm . and 
the variance of the additive noise The parameter 
elk+1) u of course directly available as it is an 
output of the LXS system identification algorithm 
and thus its variance lay Be readily estimated on­ 
line. A suitable recursive estimate is

1 - i o'(k) » S-^ (4)

3.3 Simulation Results

In this section, the results of a simulation 
study of the adaptive Kalman equaliser are 
presented (Fig.3). For this siaulation, the chan­ 
nel was modelled by (1), a zero mean binary white 
sequence of unit variance was used as the channel 
input, and a zero mean white Gaussian sequence was 
used for the additive noise The channel had 
impulse response [ 0.26, 0.93, 0.26 ]. The trace 
labelled ' ? ' is the measured value of the norm 
elk). The traces labelled ' 0 V and ' 5 ' are 
the measured MSE of the states 0, and 5 respec­ 
tively of the Kalman filter. The traces labelled 
'0' ', and ' 5' ' are the elements on the leading 
diagonal of the error covariance matrix, being 
(0.0], and [5,5] respectively. The norm jlk) con­ 
verges to the noise floor of -70dB at a rate that 
is consistent with (2). Like the channel the LMS 
algorithm has 3 taps. Thus the rate of convergence 
should be log,.,! 1.5 ) dB/iteration or -70dB in 40 
iterations. Tne Kalman filter is initialised after 
20 iterations of the L«S algorithm with a USE of 
zero. After initialisation the Kalman filter 
diverges to MSE values that are determined by the 
level of additive noise and of the norm It then 
reconverges due to the subsequent reduction in the 
norm until a final MSE value of -50dB for state 5 
is achieved. Because the channel is non-minimum 
phase, the MSE of the states decreases with 
increasing state number and the total number of 
states is greater than the number of coefficients 
in the channel vector. There is a noticeable lag 
between the error covariance and the measured MSE 
of state 5, which is due to the inherent lag in the 
estimate of (4). To obtain the same MSE with a FIR 
equaliser, 10 taps are required. Using a RLS algo­ 
rithm to train the FIR filter, it converges in 
approximately 30 iterations (Fig. 4), compared with 
38 Iterations required by the adaptive IIR filter.

4. COHCLDSIOdS

The adaptive IIR equaliser presented here con­ 
verges to a given MSE performance goal in the same 
timescale as an RI^ FIR equaliser. However the 
order of the IIB filter required to achieve that 
goal is always lower than the order of the FIR 
filter.
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ABSTBACJ

This paper presents a new Block Least 
Mean Squares(BLMS) adaptive filter struc­ 
ture by exploiting the use of an efficient 
circular convolution algorithm known as 
the rectangular transf orm(RT). The BLMS 
algorithm is presented as an approximation 
to a recursive block least squares (RBLS) 
algorithm The analysis is used to 
develop the computationally superior over­ 
lap save adaptive filter structure even 
though the structure of the overlap add 
adaptive filter may be easily worked out 
in a similar manner. The computational 
requirements of the proposed filter are 
investigated and compared with an FIT 
based filter. The proposed filter is 
found to be a useful alternative to its 
FFT counterpart. For completeness , the 
convergence properties of the filter 
obtained from simulations are also 
included.

I. IWTRODOCTIOH

In recent years continuous effort has been expended 
on the design and implementation of frequency 
domain adaptive finite impulse response (FIR) digi­ 
tal filters [1-4]. These filters implement a block 
form of the least mean squares (LMS) algorithn 
which was proposed by Widrow [5]. The main motive 
behind the development of frequency domain adaptive 
filters Is to exploit the efficiency of the fast 
Fourier Transform (FFT) as a circular convolution 
algorithm. An efficient circular convolution algo­ 
rithm, known as the rectangular transfers (RT) [6], 
has been successfully employed to develop adaptive 
filter that perfoms circular convolution [7-8] 
In this paper, the RT is chosen as a basis for the 
development of a new BLHS linear adaptive filter 
structure. A detailed version of this paper has 
been submitted for publication [9]. In section II 
.the rectangular transform circular convolution 
algorithm is briefly described Modifications are 
made to the basic RT algorithms in order to facili­ 
tate efficient adaptive filter operation In sec­ 
tion III, two RT based linear convolution algo­ 
rithms are described. The development of the BLMS 
as a simplification of the recursive block least 
squares (RBLS) is presented in section IV. In sec­ 
tion V ,a detailed examination of the computational 
requirements of the overlap save structure is made

A direct comparison is made between an FFT based 
and RT based overlap save structure for a wide 
range of filter lengths.A brief examination of the 
convergence properties of the proposed algorithm is 
presented in section VI. Finally, in section VII 
,the simulation results of the proposed RT BLMS 
adaptive filters are presented.

II. THE RECTANGULAR TRANSFORM

The N-point circular convolution ( y c (i) ) of two 
finite sequences I x(i) ) and ) h. ) is defined as

N-1 
E h.
J=0 ]

yc (i) = E h s . x( [i-3] mod N )

1=0, 1, ....... N-1; 3 * 0, 1, ....... N-1

(1)

The rectangular transform is a dedicated convolu­ 
tion algorithm which efficiently computes (1) in 
the following steps [6].

a = H = I = i • H c I
where the column vectors x and h. contain the 
elements of the input sequence I x(i) ) and the 
impulse response sequence ( h.. ) respectively. The 
matrices A, B and C are real and rectangular and 
contain only simple elements. The symbol • denotes 
point-by-point multiplication of two vectors.The 
input, the output and the impulse response vectors 
are defined with their elements in time increasing 
order. The A, B and C matrices for small N values 
of 2, 3, 4, 5, 7, 8 and 9 are given in the litera­ 
ture [6]. To obtain convolution of long sequences, 
matrices of relatively prime Ns must be suitably 
nested For a multifactor RT the A.B and C 
matrices have the form:

D = Dt 4 A D

where A is the Kronecker product of matrices and t 
denotes the number of stages to be nested The 
transform matrices being real, the convolution of 
two real sequences by this approach involve only 
real processing and this simplifies the overall 
filter structure. Besides .this transform is more 
attractive than the FFT approach as it has been 
shown to be computationally more efficient up to a 
length of 420 [6]. In general, the existing A and 
B matrices are not equal But in adaptive filter­ 
ing .computation with A and B matrices are required 
•ore than once. Therefore ,for each short
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transfer*, it is Advantageous to 
suitably modifying C.

sake A B by

III. UflEAJt COHVOU7TTOM OSHC IT

The output ylk) of a finite impulse response (FIR) 
filter with Impulse response vector h. may be 
described by the vector inner product of two M- 
vectors.

y(k) » njlkj.&where h* * ( hg h 1 ... h^]

and xlk) » [ x(X) x(k-1) xlk-N+1) ]

For notation*! convenience the Impulse response 
vector h. Is defined with its elements in time 
Increasing order and the input vector ju is defined 
with Its elements in time decreasing order To 
facilitate block processing it is also convenient 
to define an output "-vector y0 (k) as

ylk-N+D ] » a(k).h.

where 4T (k, » [ j^ lk) -D x^ lk-N-H) ]

The matrix a(k) is symmetric. It is well known 
that a circular convolution machine may be used to 
perform linear convolution if used in conjunction 
with an overlap save or overlap add data sectioning 
technique. The overlap save may be described suc­ 
cinctly In matrix notation.

Overlap save

Ilk)

Os ing the RT-matrlces, we have

ylk) -[01] C [ 
where - " " ZH

• fl(k) ]

b(k)

and ylk) - [ y(k-M+D ... y(k-D ylk) ]' 
The symbol • represents circular convolution. The 
matrix L, is an (NxN) identity matrix and the 
matrix 0 "is an (NxN) matrix with all zero ele­ 
ments. The overlap save technique produces an 
output vector ylk) which is the time reverse of the 
vector yR l*>• ~

IV. A BLOCK ADAPTIVE UUEAS COHVOLUTIOH ALGORTTW

proceeds as follows. A linear estimate f of the 
process y Is given by the output of an N-tap finite 
Impulse response (FIR) filter.

y(n) where

This estimate Is considered to be least squares if 
the filter impulse response vector h. is chosen to 
minimise the sum of squared errors ,

n-O
ty(n) - y(n) ] (2)

given the two data sequences (x(n)l- and <y(n)|, 
where n - 0,1,2,... ,k. The value of & which minim­ 
ises the sum of the squared errors is given by the 
Wlener-Hopf equation.

(3)
,(n)

and t_(k) • E x^lnl.ytn) 
One block of data la?eV at sample (k+N)

Using (3) and (4) ,a block recursion for hjk) 
be obtained.

H(k)

where - yR <k+")

and yR (k+N) = 5 (k+N)

(4)

may

(5)

(6)

The vectors Y.B <k+«) and ig(*+N) are defined with 
their elements in time decreasing order. Equations 
(5), and (6) do not completely describe a RBLS 
algorithm as a recursion for r has been neglected 
but they are sufficient to develop a BLHS algo­ 
rithm. For a stationary data sequence (x(nl),

If the limiting operation is removed, the approxi­ 
mation results in a self orthogonalising algorithm 
[11] in block form. Further, If the sequence (x(n)l 
is assumed to be white, the Input autocorrelation 
matrix,^ ,

E[
2

= o
N

,*here o ' is the power of the input signal x(k) 
The tap vector update equation for the BLMS algo­ 
rithm [3,4] is then obtained as,

The available literature on the BLMS algorithms is 
somewhat unclear on the subject of data ordering 
and thus does not lend itself to the formulation of 
RT based BLMS adaptive filter, since RT does not 
exhibit all the symmetry properties which are 
associated with the discrete Fourier 
transform IDFT).In this text ,a recursive block 
least squares (RBLS) approach to the formulation of 
an RT based BLMS adaptive filter which circumvents 
the above problem is presented. The formulation

2u a(k+«) e,,(k+H) (7)
The BLMS algorithm is summarised^ by 15), (6) and 
17).Convergence in the mean of this algorithm is 
guaranteed provided the step size u falls with in 
the limits

0 < R xmax
where x is the maxlum eigenvalue of the inputmax
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signal autocorrelation matrix, j» 
rlthm contains two linear convolutions.

The algo-

and
h.(k>

C^Ot+N) - j(k N)

There is no necessity to distinguish between convo­ 
lution and correlation operations as in [3,4] The 
ordering of the data is completely described by the 
definitions of the relevant vectors. The two 
linear convolutions may be generated by using an RT 
circular convolution machine in conjunction with an 
overlap add or overlap save data sectioning tech­ 
nique. The complete overlap save algorithm is sum­ 
marised in Table 1. The development of an overlap 
add adaptive filter proceeds along similar lines 
The (N x N) , time reversal matrix ,T , has 1's on 
the secondary diagonal and zero's elsewhere It is 
used to convert vectors in natural order to vectors 
in time reversed order and vice versa.

V. COHPuTAnOHAL REQOIBEXEHTS

The computational requirements of the linear adap­ 
tive filter proposed here are dealt with in this 
section.The total computational load on an 
adaptive filter employing a t-factors RT may be
expressed as overlap save

Additions « A = 2H * A., ",H,. . .H. +
1 v,\ (8)

where A- = A, 

Multiplications
K M HA „ "^...n. T

;l=1,2,....t.

= N = 2(

w c, ; 
".„ )

••v
(9)

where 2N = " 1 x H^ and

V- \
involved ifl 
respectively

are the number of multiplications
the multiplication stage of N. and N- 
A., A_ , A and B represent the

total number of additions, additions in the B 
stage, additions in the C stage and multiplications 
in the C stage respectively for an N point short 
transform.

Optimum ordering fii aliflli transforms

The order of nesting of the short RT modules 
affects the number of operations. Therefore 
to obtain minimum computation proper ordering of 
the short modules is essential. Following the 
technique dealt in [6], we derive an optimum order­ 
ing of the modules which states that the transfor­ 
mation to be performed first is the one for which 
the quantity ( % - N )/( A+A^ + A ) is smaller. 
Computation of this quantity suggests the order of 
nesting to be 2, 6. 4, 3, 8, 9, 5 and 7.

To compare the computational efficiency of the 
RT-based adaptive filters, the FTT-based linear 
adaptive filter proposed in the literatures 
(3,],[4] is considered Further, the FTT employs 
radix-2 arithmetic and efficiently exploits the 
real input signal situation. The calculation also 
assumes that one complex multiplication is imple­ 
mented through four real multiplications and two 
real additions To obtain one block of N-point 
output, the FFT-based adaptive filter requires

N * 10N log N + 8N + 22 (10) 
A = 15N log^N + 30N +10 (nj 

The average number of operation counts per single 
output sample!iteration) for various order RT and 
FFT BLMS adaptive filters, computed from (8), (9), 
(10), and (11), are illustrated in Fig.1.This fig­ 
ure also includes the plots of the operation counts 
for the LKS algorithm [5] which requires 2« multi­ 
plications per iteration and 2N additions per 
iteration. The results can be summarised by the 
following remarks. The RT filter requires less 
multiplications than the FFT filter if the filter 
length is less than -1000. Except for short filter 
length, i.e. N < 16, where the LHS algorithm is 
probably the best choice, the RT filter requires 
more additions than the FFT filter. By using a RT 
BLHS structure instead of a FFT BLMS structure the 
number of multiplications is reduced by Increasing 
the number of additions The RT BLJC5 adaptive 
filter structure is thus a useful alternative in 
applications where filter length of moderate order, 
e.g. 60, 126, 252, are required but multiplications 
are more expensive than additions.

VII. SIMULATION RESULTS

To justify the validity of the proposed adaptive 
filter structure .the convergence rates for both 
white and correlated inputs were studied To 
facilitate such a study the channel equalisation 
problem was chosen for simulation. The channel 
input was assumed to be a zero mean white binary 
sequence. The white sequence is convolved with a 
3-tap symmetric channel having an eigenvalue ratio 
of 11 84 . If the impulse response of the channel 
is adjusted to an impulse, then the input to the 
equaliser filter becomes white The equaliser 
under consideration is a 15-tap RT block LHS adap­ 
tive filter. The desired signal IB obtained by 
delaying the channel input sequence by 8 samples. 
The simulation results for both input situations 
are illustrated in Fig.2. From this the charac­ 
teristic dependency of a BLHS adaptive filter on 
input statistics can be clearly observed.

VIII. COHCLOSIOHS

The use of rectangular transform (RT) has been 
demonstrated in the implementation of a transform 
domain linear adaptive filter structure The adap­ 
tive filter update recursions were derived by using 
a simplification of a formulation based on a block 
recursive least squares algorithm to yield a block 
least mean squares filter structure. An evaluation 
of computational requirements shows this structure 
to be superior to equivalent structure realised 
using fast Fourier transform (FFT) algorithms.
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A Self-Orthogonalizing Efficient Block Adaptive
Filter

GANAPATI PANDA, BERNARD MULGREW, COLIN F. N. COWAN. MEMBER. IEEE. 
AND PETER M. GRANT. SENIOR MEMBER. IEEE

Abstrael—This paper deals with Ibc development of • unique wlf- 
orthogonalizing block adaptive filter (SOBAF) algorithm that yields 
efficient Unite impulse response (FIR) adaptive filter structures. Com­ 
putationally, the SOBAF is shown to be superior to the least mean 
squares (LMS) algorithm. The consistent convergence performance 
which it provides lies between thai of the LMS and the recursive least 
squares (RLS) algorithm, but. unlike the LMS. is virtually indepen­ 
dent of input statistics. The block nature of the SOBAF exploits the 
use of efficient circular convolution algorithms such as the FFT, the 
rectangular transform (RT). the Fermat number transform (FNT), and 
the fast polynomial transform (FPT). In performance, the SOBAF 
achieves the mean squared error (MSE) convergence of a self-ortho- 
gonalizing structure, that is. the adaptive filter converges under any 
input conditions, at the same rate as an LMS algorithm would under 
white input conditions. Furthermore, the selection of the step size for 
the SOBAF is straightforward as the range and the optimum value of 
the step size are independent of the input statistics.

I. INTRODUCTION

I N the area of adaptive filtering, the recursive least 
squares (RLS) [1] and the least mean squares (LMS) [2] 

are the two major alternatives in a tradeoff of convergence 
performance against computational complexity. The con­ 
ventional RLS algorithm requires a number of computa­ 
tions per new data point that is a function of the square of 
the number of coefficients (N) in the finite impulse re­ 
sponse (FIR) filter, i.e., order N~ (O(N 2 )). By exploiting 
the shift invariance properties [3], this has been reduced 
to O(/V). This and subsequent developments [4]-[7] make 
available the consistent rapid mean square error (MSE) 
convergence properties of the RLS algorithms at a com­ 
putational cost, which is of the same order as the more 
commonly used LMS algorithm, whose convergence 
properties are generally poor [8]. However, the RLS al­ 
gorithm still represents a computational load which is sig­ 
nificantly higher than the LMS algorithm, typical figures 
being 1CW multiplications per new data point for the RLS 
algorithm, compared to 2N for the LMS algorithm. The 
original aim of the work that is reported here was to find
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an algorithm that lay between the RLS and the LMS in 
both computational complexity and performance, and 
whose rate of convergence was independent of the input 
signal conditioning. In fact, the algorithm that has been 
developed goes beyond this initial goal in that it repre­ 
sents a significant reduction in computational load com­ 
pared to an LMS algorithm for moderate to large values 
of N.

The first question to pose is what algorithms already 
exist which might provide a combination of computa­ 
tional complexity and performance which is between that 
of the LMS and RLS algorithms? A survey of the litera­ 
ture rapidly yields the term "self-orthogonalizing." The 
concept originated in f9]-[l 1] and was a result of the con­ 
vergence analysis of the LMS algorithm and the recog­ 
nition of the associated dependence of the rate of conver­ 
gence of the LMS algorithm on the eigenvalues of the 
input autocorrelation matrix [2]. A self-orthogonalized al­ 
gorithm involves constructing a linear operator (transform 
or preprocessor) which maps the input jV-vector x to an 
N-vector u such that the elements of u are mutually or­ 
thogonal. Given this, the matrix E[uu T ] is a diagonal 
whose eigenvalue spread can be normalized to unity by 
dividing each element of u by the square root of the ap­ 
propriate eigenvalue. The resultant /V-vector z is white 
with unit variance, i.e., E[zz T ] is an A' x .V identity ma­ 
trix. If the vector z forms the input to an LMS algorithm, 
it is straightforward to predict, using the convergence 
analyses of [8] and [12], that the complete structure (lin­ 
ear operator + eigenvalue normalization + LMS) will 
converge (in a mean square error (MSE) sense) under any 
input conditions at the same rate as an LMS algorithm 
would under white input conditions. This technique is 
equivalent to multiplying the gradient term in an LMS 
algorithm by the inverse of the input autocorrelation ma­ 
trix E\xx T }'\\\]. [13].

Only in a limited number of applications such as 114] 
is the input autocorrelation matrix, or equivalently an or- 
thogonalizmg operator, known a priori, and hence, for 
general purpose applications two suboptimum techniques 
have been suggested. In the first, a fixed linear operator 
such as a discrete Founer transform (DFT) or discrete co­ 
sine transform (DCT) is chosen that performs an approx­ 
imate orthogonalization of the input vector (13], [15]. The 
subsequent processing proceeds as if the orthogonaliza-
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tion was exact. In the second, the autocorrelation matrix 
is estimated directly from the data, inverted, and used to 
multiply the gradient estimate |11). These two techniques 
might be classified as explicit and implicit orthogonali- 
zation, respectively. However, it should be noted that the 
form of estimate for the input autocorrelation matrix iden­ 
tified in [11] as the ideal self-orthogonalizmg algonthm 
gives nse to the RLS algonthm. It is clear from [16] thai 
even under white input conditions, the RLS algonthm may 
outperform the LMS algonthm. Consequently, it must be 
concluded that an RLS algonthm does more than merely 
orthogonalize the input signal, and therefore it should not 
be classified as self-orthogonalizing algonthm.

Explicit orthogonalization techniques have been ap­ 
plied to fast Fourier transform (FFT) [17] based block 
adaptive filters [18], [19]. The FFT is used in the block 
LMS (BLMS) algonthms of [18], [20]-[22], and [42] to 
provide fast convolution and fast estimation of the gra­ 
dient. As a by-product of this implementation, the FFT 
of an augmented input vector is available, i.e., a fixed 
transform that performs approximate orthogonal ization. 
Bartlett spectral estimation has also been considered in an 
attempt to improve the quality of this approximation [19]. 
If, however, other fast convolution algorithms such as the 
Fermat number transform (FNT) [23] or the rectangular 
transform (RT) [24] are to be applied to a self-orthogon- 
alized block adaptive filter as they have been applied to 
the BLMS algonthm [25], [26], then since they cannot be 
assumed to exhibit even approximate orthogonalizing 
properties, an implicit approach must be considered.

The self-orthogonalizing block adaptive filter (SOBAF) 
that is presented here is a unique alternative to the RLS 
and LMS algonthms. It provides a combination of com­ 
putational load, which is significantly less than the LMS 
algorithm, and consistent convergence performance, 
which lies between that of the LMS and RLS algorithms 
but, unlike the LMS, is virtually independent of the input 
statistics. Therefore, it is well suited to applications where 
neither the LMS nor the RLS algorithm can provide the 
correct tradeoff of computational load against conver­ 
gence performance. The computational efficiency is 
achieved by using a block filtenng structure which is sim­ 
ilar to the BLMS algorithm [20], [21] and. hence, may 
exploit either FFT [17] or RT [24]. The rapid conver­ 
gence performance is achieved by using an implicit self- 
orthogonalizing technique, which ensures that the algo­ 
rithm will converge under any input conditions at the same 
rate as an LMS algorithm would under white input con­ 
ditions.

The paper is subdivided in the following manner. In 
Section II the theoretical development of the algonthm is 
presented and the results venfied by computer simulation. 
Section III contains the arguments that lead to a practical 
SOBAF algorithm, along with details of how it can be 
implemented efficiently. In Section IV the computational 
load of the proposed filter is assessed. Finally, in Section 
V, results from computer simulations are presented which 
confirm that the practical SOBAF achieves the conver­

gence performance that was promised in the theoretical 
considerations of Section II.

II. THEORETICAL CONSIDERATIONS

A. Theory
Consider a stationary sequence of N- vectors [x(i)\, 

which is zero mean uncorrelated in time and jointly 
Gaussian. The sequence is completely described by the N 
x ,V) autocorrelation matnx yu , where

The superscnpt T denotes transpose. Although the matrix 
is positive semidefinite, in many applications it can be 
assumed to be positive definite, in which case there exists 
an (N x ,V) matrix Q such that

where IK is an (N x N) identity matnx. The matrix Q is 
not unique [27]. A second sequence of N- vectors, (z(/)}, 
which is uncorrelated in time and zero mean, may be gen­ 
erated from {•*(()} using the matrix Q 7 '.

zd) = Q Tx(i). (2,1)
therefore, Q T may be considered to be a whitening filter, 
since

<p.. = £[z(i) zr(/)] = V

Because of the special structure of <p.., i.e., it is diagonal 
with equal eigenvalues, a stochastic gradient search adap­ 
tive filter with input (z(')} will achieve rapid consistent 
convergence rates. Furthermore, since (z(/)} is also un­ 
correlated in time, zero mean, and jointly Gaussian [1], 
the theoretical results of [12] and [28] may be applied 
directly to give 1) bounds on the step size n that ensure 
convergence in a MSE sense, and 2) a single optimum 
value Mopi f° r fastest convergence.

To the sequence of N- vectors {z(i)}. apply a BLMS 
algorithm [21] of block length L to form an estimate {>(/')} 
of the stationary scalar sequence {>>(/)}. The aim is to 
minimize the MSE

The estimate v(/) is linear and is formed using the weight 
/V-vector H>, i.e..

v(0 = zr(<>. (2.2)
The optimum solution which minimizes the MSE is given
by

»„, = »»' Elz(i)y(i)]

The BLMS algonthm is defined by the following three 
equations [21].

= SO)

~ JO)

(2-3) 
(2-4)
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(2.5)

and

[yijL)y(jL - 1) • • • yijL - L 

[\(jL)y(jL -!)••• y(jL - L
and

; r(y) = \z(jL) KjL -!)••• Z(jL - L + 1)1.

The index 7 is known as the block number, where a block 
contains L data vectors. The weight vector w is only up­ 
dated once per block.

Using the theoretical results of [28]. a recursive rela­ 
tionship for the block MSE cr, is obtained.

+ -(L + N + l)a;0 - 1)

4/T
'opt (2.6)

where

and ff^p, is the minimum MSE that is obtained when the 
weight vector H^, is used.

Equation (2.6) yields bounds that ensure MSE conver­ 
gence.

L0 <
(L 1)

(2.1)

and a value ^opi which gives fastest convergence [28].

L
Mopt 2(L +

1)' (2.8)

Equations (2.1). (2.3), (2.4), and (2.5) thus define a self- 
orthogonalizmg block adaptive filter whose MSE conver­ 
gence is ensured, provided n is chosen within the limits 
of (2.7), and whose rate of convergence is independent of 
the eigenvalues of the autocorrelation matrix <p u , (2.6).

This self-orthogonalizing block adaptive filter may be 
reformulated in terms of an overall weight vector h where

v(i') = xTh (2.9)

such that explicit knowledge of the matrix Q is unneces­ 
sary. Combining (2.9) and (2.1),

from which a relationship between h and w is obtained.

h = O- (2.10) 

Application of (2.1) and (2.10) to (2.3) and (2.5) yields

and

where

, T (2.12)

= \x(jL)x(jL - x(jL - L

B. Comparison with Simulation
The theoretical results presented above rely on the as­ 

sumption that the sequence {*(/)} is uncorrelated in time 
and jointly Gaussian. For an adaptive transversal filler ap­ 
plication. the sequence {*(;')} is never uncorrelated in 
time, since

JT(/) = [*(/) x(i - 1) • • • jc(i - .V + I)] 7"

and
x(i - 1) = - 1) x(i - x(i -

and is rarely exactly Gaussian. The aim of this section is 
to test the validity of the theoretical convergence results, 
summarized in (2.6). for the particular case of an adaptive 
transversal communcations channel equalizer where nei­ 
ther assumption is true.

A typical equalizer scenario is illustrated in Fig. 1. The 
digital message is a zero-mean binary distributed white 
random sequence {«(/)}. The channel is modeled by an 
FIR filter whose output is corrupted by a zero mean white 
Gaussian sequence (n(i)}. The role of the adaptive filter 
is to form a fixed lag estimate of the channel input The 
training signal for the adaptive filter is thus

y(i') = u(i - d)

where d is a positive integer. For the purposes of the sim­ 
ulations presented here, a three-tap channel was used 
(channel 2. Table I). The signal-noise ratio, defined as 
E[u~]/E[n~], was set at 40 dB The self-onhogonalizing 
adaptive algorithm, defined by (2.4). (2.7). (2.11), and 
(2.12). was used to update a 15-tap transversal equalizer. 
The block length L was set at 15. Under these conditions 
the autocorrelation matrix. q> u . has a maximum/minimum 
eigenvalue ratio of approximately II. The convergence 
performance of the algorithm is illustrated in Fig. 2. on 
which is shown both a measured MSE calculated from an 
ensemble of 20 runs and a theoretical MSE calculated 
from (2.6). This clearly emphasizes the close agreement 
between theory and practice.

III. A PRACTICAL ALGORITHM
In this section a new block adaptive filter algorithm is 

described. This algorithm is a unique combination of three 
concepts. The first involves the performance goal, which 
is chosen to be the MSE convergence of a self-orthogon- 
alized stochastic gradient search algorithm, summarized 
in (2.6). In words, the adaptive filter should converge, in 
an MSE sense, under any input conditions, as the same 
rate as it would if the input sequence was white Thus, 
the self-orthogonalized algorithm will not by definition
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«M«.« Input

Miptln rilur

Fig I. A typical equalizer block diagram

TABLE 1 
CHANNEL IMPULSE RESPONSES

Channel Number Impulse Response
Eigenvalue Ratio 

(15-tap filter)

1.0 1- 00;"' 
0.2602 -i- 0.9298;" 
0.3482 f 0.8704;-

00;' : 
i- 0.2602; ~ 2 
* 0.3482;" :

1.0
118
68 6

application, the autocorrelation matrix is unknown, and 
hence, the lap weight update, (2. 12), must be replaced by

(3.1)

where 0«0) ' s an estimate of <pu at block;. Several pos­ 
sible estimates of <pu exist in the literature. The most not­ 
able is

(3.2)

a Z :BB Z7B 3BB <» 54B 533 ~2B SIB

Fig 2. Companson between theoretical and measured MSE

exhibit a sensitivity to the eigenvalue spread of the auto­ 
correlation matrix <pu that is a characteristic of both LMS 
[8], [12] and BLMS [281 algorithms. However, it should 
also be noted that this performance goal is not equivalent 
to the performance of a RLS algorithm, since even under 
white input conditions the RLS algorithm will outperform 
a stochastic gradient search algorithm [16).

The second concept involves the choice of an estimator 
for the autorcorrelation matrix. In a general adaptive filter

However, the use of this estimate would produce an RLS 
block adaptive filter structure [26]. Hence, it is consid­ 
ered inappropriate here, as its convergence performance 
would not be that of a self-orthogonalized stochastic gra­ 
dient filter. Furthermore, computationally efficient RLS 
block adaptive filter algorithms already exist [29]. In the 
estimation technique that is considered here, the matnx 
0uO ) ' s assumed to be symmetric Toeplitz. Thus, each 
element may be generated from knowledge of the first col­ 
umn p(j '). where

and

) = [p0(jL)p,(jD •

I v-= — L jc(/) T(I - k) ./L.-i 0 S k < N.

The vector p(j) may thus be updated on a block-by-block 
basis.

= P'U ~ 1 + 7 (3.3)

where
5)
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and

XL = (x(jL)x(jL - 1) • • • x(jL - L + l)] r
The Toeplitz assumption also allows the application of 
computationally efficient techniques such as the Levmson 
recursion in [30] and more recently [31] for the solution 
of

where
= Xr(y)

(3.6)

(3.7)

It is well known in equalizer [32] and spectral estimation 
[33] applications that the Toeplitz assumption produces 
poorer performance than the estimate of (3.2). Hence, the 
choice of a Toeplitz assumption here may be interpreted 
as reflecting a desire to degrade the performance of the 
algorithm from that of an RLS structure to that of a self- 
orthogonalized structure.

The third concept involves the application of compu­ 
tationally efficient circular convolution algorithms, of 
which the fast Fourier transform (FFT) [17] and the rect­ 
angular transform (RT) [24] are but two examples, to pro­ 
duce an adaptive filter algorithm which is itself compu­ 
tationally efficient. This technique has been the motivation 
behind the development of the BLMS algorithm, which is 
computationally superior to the LMS algorithm [20], [21], 
[25], [26]. To utilize this technique, the linear convolu­ 
tion operations are first identified. In this case they are 
(2.11), (3.5), and (3.7). Of these three, (2.11) and (3.7) 
are common to both the BLMS and the self-orthogonal - 
ized structures. The existence of (3.5) is a direct result of 
the Toeplitz assumption on <J» U , and is a significant factor 
in making that assumption. Each of these linear convo­ 
lution operations is then performed using a combination 
of either overlap-add or overlap-save data sectioning [34] 
and a circular convolution algorithm. To simplify the no­ 
tation, only overlap-save and a block length L = N + 1 
will be considered here, as these are known to produce 
the most efficient adaptive filter structures [21]. This does 
not. however, detract from the generality of the results.

Let the circular convolution of two W-vectors a(j) and 
p(_/) be defined by the .V-vector f(j), where a(j) and 
P(_/) contain the last N samples from the scalar sequences 
{ad)} and {0(i)}, respectively, in time-increasing order; 
thus.

1(}} = 0(7) * PO) 
where

= [a(jN - N + 1) • • • a(jN - 1) a(jN)] T 
= [0(jN - N + 1) • • • 0(jN - 1) 0(jN)] T .

The symbol * denotes circular convolution. This opera­ 
tion may be performed using a transform based processor, 
which is defined by the two (M x N) matrices AN and flv 
and the (N x M) matrix CN .

TABLE II
Sn F-ORTH«K;OS»LI/INC BLOCK ADAPTI\F FILUH

• 7"v x( I ' 1 1 i

H(j - 1 1 = A,M i ' h(j - 1 1
Ov i

><;> = I O v rv ]C:v (*<;•) * Hi; - I)} 
'I J I = »l J ) - JH ; I

l/v }
E( j I = A*,, I t( i)

|0 v rv ] C:v
:'s

= /1, v i z( j\ 
O v i

*(;')

The symbol ® denotes the point-by-point multiplication 
of the jW-vectors Aya(J) and B VPO). M > N. This is a 
generalized transform based circular convolution proces­ 
sor. For example, an FFT structure would be obtained if 
M = N. A N = Bf, = Fv . and C\ = Fy'/iV, where Fv is 
the (A/ x N) discrete Fourier transform matrix [35].

The linear convolutions of (2.11), (3.5), and (3.7) are 
obtained in the following way [26]. Taking (2.11) as an 
example.

l*(y- D!

where

= [0V 7-V]

= fl,.v |
\T,x(j - 1)]

and

r/.v
J - 1).

The two (M x 2A/) matnces X :v and 8:v and the (2N x 
A/) matrix C:v define a circular convolution machine 
which operates on 2/V-vectors. M > 2N. The matnx / s is 
an (N x ;V) identity matnx. the matnx O v is (A' x .V) 
with all zero elements, and the (N x N) time reversal 
matnx 7\, has 1's on the secondary diagonal and zeros 
elsewhere. The complete algorithm is summanzed in Ta­ 
ble II and illustrated in Fig. 3.
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Fig. 3 A generalized overlap-save SOBAF adaptive filler

IV. COMPUTATIONAL COMPLEXITY
As mentioned earlier, efficient structures for the pro­ 

posed adaptive filters are obtained when block convolu­ 
tion algorithms such as the RT and the FFT are employed 
in conjunction with a 50 percent overlap-save technique. 
These efficient structures are considered here for the eval­ 
uation of computational loads. In case of the RT-based 
filter, the algorithms in which A = B are chosen to find 
the overall number of operations. To facilitate the evalu­ 
ation procedure, the adaptive filter structure is divided into 
three main parts, namely, the BLMS, the autocorrelation 
estimator, and Levinson's recursion [30]. The computa­ 
tion of the number of operations assumes the filter input 
to be real. The filter under consideration has TV-taps, and 
hence, the matrices of the algorithms correspond to 2N- 
points. For an RT of transform length 2/V, let there be ; 
numbers of nested RT modules, N,, related by

/
2N = II N,.i = i

Each short module ,V, has the following parameters:
A Si number of additions in the B-stage 
A Cl number of additions in the C-stage 
MM{ number of multiplications in the multiplication

(A/)-stage 
MCi number of multiplications in the C-stage.

The total number of multiplications encountered in the A/­ 
stage of a 2jV-point RT is given by

/
MM = n MM,

i = I

Using this notation, the number of operations in each pan 
of the RT-based adaptive filter is obtained as follows.

For processing one block of .V-pomt data, the BLMS 
pan requires computation of three B and two C matrices 
Besides, it includes 2MW multiplications for weighting and 
updating, and IN additions for weighting and compari­ 
son. The autocorrelation estimator involves computation 
of one C and two B matrices. It also requires (Mv + 1) 
multiplications and A/ additions for averaging and weight­ 
ing. It is worth mentioning here that the computation of 
one B matrix is common to both the pans. For processing 
two .V-pomt vectors, the Levinson recursion requires 2A/~ 
- 3/V additions, 2N 2 - N - 3 multiplications, and A/ - 
1 divisions. Combining all these, the overall computa­ 
tional effort required for processing each sample of an it­ 
eration of an jV-point RT filter may be expressed as

A = 2N zmz (4.1)

N = 1 N, (.4-0 -V*

(4.2)

(4.3)

where

A, = 4A t 3A C,

The symbols A. M. and D denote the total number of ad­ 
ditions, multiplications, and divisions, respectively In 
(4.1) and (4.2), the initial value M0/A/0 is assumed to be 
unity. .As pointed out in [26], the total number of opera­ 
tions depend on the ordering of the nested modules. 
Therefore, there exists an optimum order which yields a 
minimum overall operations. Based on their results, the 
order of nesting of the short RT modules is given as 2, 6, 
4. 3. 8, 9.5, 7.

In an identical manner, the computational requirements 
of the FFT-based orthogonalized BLMS adaptive filter 
may be obtained. The FFT algorithm chosen here is based 
on the radix-2 formulation and efficiently employs real 
inputs [35]. It is also assumed that a complex multipli­ 
cation is implemented through four real multiplications 
and two real additions. Considering all these, the pro­ 
cessing load on each sample of an iteration of the /V-point 
FFT based adaptive filter is computed as

A = 2N + 21 log; N + 41
J4~N

28

(4.4)

M = 2N + 14 log; N + II + — (4.5)

(4.6)

where the symbols are defined earlier.
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There are a variety of algorithms [30]. [36|-(38] which 
may be employed to solve the Toeplitz system of equa­ 
tions. In computing the number of operations in the filter 
structure, we have used only the well-known Levinson 
recursion |30]. But significant further computational sav­ 
ings can be achieved by exploiting the use of recently re­ 
ported fast algorithms for solving the Toeplitz system of 
equations [31], [39). [40], The technique dealt with in 
[31] is of particular interest to us. since it uses the FFT 
algorithm to perform block convolution. This entire al­ 
gorithm of [31] requires

2.5/V log: /V log: M -t- \\.5N log: N -t- 6/V

multiplications and the same number of additions to solve 
a Toeplilz system of .V equations. It may be pointed out 
here that the other block convolution algorithms such as 
the RT [24]. FNT [23], and the fast polynomial transform 
(FPT) [41] may be efficiently used for the same purpose. 
As an illustration, let us apply this technique to the FFT- 
based filter and compute the number of operations. The 
average number of operations per single output sample of 
the FFT based filter is found to be

A = log, ,V[2.5 log : /V + 25.5] + 18 -t- — (4.7)

M = log, /V[2.5 log, N + 32.5] + 47 + —. (4.8)
N

In assessing the computational load of the SOBAF, it 
is easier at first to consider an FFT-based formulation, 
since this yields simple closed-form expressions: see (4.4) 
and (4.5). The computational load of an LMS algorithm 
is O(A/), i.e., the number of operations increases linearly 
with the number of taps in the transversal filter. An FFT- 
based BLMS algorithm, on the other hand, is 0(log N). 
Thus, an FFT-based BLMS algorithm has a significant 
advantage in computational efficiency over an LMS al­ 
gorithm for moderate to large /V. As mentioned already, 
the SOBAF requires the solution of a Toeplitz set of equa­ 
tions. Using the Levinson recursion this requires O(N~) 
operations, which reduces to O(N) since the equations are 
only solved once per block. Although the remaining op­ 
erations in (4.4) and (4.5) are at most O(log ,V), the linear 
term will dominate, and hence, the overall computational 
load is O(N), which is the same as an LMS algorithm. A 
more detailed comparison is illustrated in Figs. 4 and 5 
for the LMS algorithm and RT-based BLMS and SOBAF 
algorithms.

If. however, the fast inversion technique of [31] is ap­ 
plied to the solution of the Toeplitz equations, then the 
computational load of the SOBAF is 0(log /V); see (4.7) 
and (4.8). In Figs. 6 and 7 the computational require­ 
ments of two FFT-based SOBAF filter structures are il­ 
lustrated. For one adaptive filter, the set of Toeplitz equa­ 
tions is solved using the Levinson recursion, and for the 
other the fast inversion technique of [31] is used. These 
graphs clearly illustrate the dramatic reduction in com­ 
putational load that can be achieved when the fast inver-

Fig 4 Comparison of number of multiplications between SOBAF LMS. 
and BLMS

a a? a.26 a. 52 a ?e

Fig 5 Comparison of number of additions between SOBAF. LMS. and 
BLMS

xie
2. 30

Fig 6 Comparison of number of additions between FFT (Levinson s 
technique) and FFT (Kumar's technique)

sion technique is employed in the SOBAF. Thus, in com­ 
mon with the BLMS algorithm, the SOBAF can exhibit a 
significant decrease in computational load with respect to 
the LMS algorithm for moderate to large N.
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Fig. 7 Comparison of number of multiplications between FFT (Levin- 
son's technique) and FFT (Kumar s technique)

V. PERFORMANCE COMPARISON SIMULATIONS

The performance of the SOBAF, which is summarized 
in Table II, was examined using the equalizer scenario 
described in Section II-B and illustrated in Fig. 1. Three 
different channels were used in order to vary the maxi­ 
mum/minimum eigenvalue ratio of the autocorrelation 
matnx, (p lr . The three channels are defined in Table I. For 
all the experiments, the signal-noise ratio was set at 40 
dB, and the MSE was calculated from an ensemble of 20 
runs. All block adaptive filter algorithms were coded in 
RT form.

When the algorithm of Table II is first switched on, the 
quality of the autocorrelation estimate will be poor and 
may lead to initial divergence: see Fig. 8. This problem 
may be avoided by using a BLMS algorithm for the first 
few blocks while the quality of the autocorrelation estimte 
improves. The overall performance of the algorithm is not 
significantly degraded by this measure (Fig. 8). In all sub­ 
sequent simulations the SOBAF of Table II is initialized 
by using a BLMS algorithm for the first four blocks of 
data.

It is to be expected that the performance of the practical 
algorithm of Table II will not be as good as the theoret­ 
ical algorithm defined by (2.4). (2.7). (2.111. and (2.12). 
since in the former the autocorrelation matnx is estimated 
and in the the latter it is known a priori. Expenment in­ 
dicates that the performance is indeed degraded but not 
by a significant amount: see Fig. 9.

Finally, the performance of the SOBAF was compared 
to that of a BLMS algorithm for the three channels de- 
scnbed in Table I. The results are illustrated in Figs 10- 
12. As the eigenvalue ratio of the input autocorrelation 
matnx increases, the performance of the BLMS algorithm 
gets poorer. The performance of the SOBAF. on the other 
hand, changes very little as the eigenvalue ratio is in­ 
creased. This indicates that the SOBAF is insensitive to 
the eigenvalue spread of the input autocorrelation matrix 
and has an MSE convergence performance equivalent to 
a BLMS algonthm under white input conditions.

-. - a ai3D

«oi«»- 40 o m
• «0 1IUII41 UJC
6 ffltn timi4l >Ue ol 4 atoen

-40

90 see 770 360 450 5*3 53B 730 810 900 

Fig 8 Initialization effects on the convergence characteristics of SOBAF

~ - i;:ac

Bo 2ttVI*11 II
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Fig 9. Performance of exaci and esnmaied autocorrelation

™_ - a 2130

;8B J72 360 450 543

Fig 10 Convergence characteristics of BLMS and SOBAF for channel I
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Fig 11. Convergence characteristics of BLMS and SOBAF for channel 2

^ - aaiae

V<

Fig. 12. Convergence charactenslics of BLMS and SOBAF for channel 3

VI CONCLUSIONS
The SOBAF of Table II is a unique adaptive filter al­ 

gorithm. In computational load, an FFT-based SOBAF is 
superior to an LMS algorithm for moderate to large .V, 
being of the same order as a BLMS algorithm, i.e., O(log 
jV). The SOBAF is thus a very efficient algorithm, com­ 
putationally. The block nature of the SOBAF also permits 
the use of other efficient circular convolution algonthms 
such as the RT and the FNT. In performance, the SOBAF 
achieves the MSE convergence of a self-orthogonalized 
structure, i.e.. the adaptive filter converges under any in­ 
put conditions at the same rate as it would if the input 
was white. Further, the selection of the step size ^ is more 
straightforward than for LMS and BLMS algonthms. This 
is because both the range of n that ensures MSE conver­ 
gence and the value of ^ for fastest convergence are in­ 
dependent of the input autocorrelation matnx. In fact, for

a given application, the approximate performance of the 
algonthm is easily predicted a priori from (2.6).
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