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The subject of this thesis is the design, performance and structure of algorithms
for discrete time adaptive filtering. Both finite impulse response (FIR) and infinite
impulse response (IIR) filters are considered. However, while it has been possible to
look at FIR filters in a general, application - independent, manner, IR filters have
only been examined in the specific application of linear equalisation of digital
communications channels.

A broad selection of adaptive FIR filter algorithms are examined to assess relative
convergence performance ( as indicated by currently available theoretical results ) and
computational requirements. From this examination a classification system evolves in
which the available algorithms are grouped into three classes according to performance
and complexity. Of particular note is the unified approach to block least mean squares
(BLMS) adaptive filtering which simplifies the application of efficient convolution
algorithms other than the fast Fourier transform (FFT) to the construction of
computationally efficient adaptive filters.

The classification system is confirmed through the use of computer simulation.
The convergence performance of the various algorithms is compared in the specific
application areas of system identification and channel equalisation. It is believed that

such a comparison has not previously been attempted even in the recent textbooks on
the subject.

A new adaptive FIR filter algorithm is presented. Analytic and experimental
results confirm that this so-called self orthogonalised block adaptive filter (SOBAF)

provides a unique combination of robust convergence performance and computational
efficiency.

A closed form expression for the optimum IR equalising filter is derived using
Wiener filtering theory. The closed form solution highlights the structure of the
optimum IR equaliser and the difficulties incurred in developing an adaptive IIR
equaliser. A comparison of the mean-square error (MSE) performance of FIR and
IR equalisers illustrates the inherent order advantage in using an IIR filter in this
application.

The minimum phase spectral factorisation, which is an integral part of the Wiener
formulation of the IIR filter is circumvented through the use of the Kalman equaliser
of Lawrence and Kaufman. The Kalman equaliser is then made adaptive by
combining it with a least mean squares (LMS) system identification algorithm and a
novel technique, which both estimates the channel noise variance and compensates the
Kalman filter for uncertainty in the channel impulse response. Comparisons of the
computational load and convergence performance of this adaptive Kalman equaliser
with a conventional linear equaliser are provided. Further a method for improving the
convergence performance of the adaptive Kalman equaliser is described which involves

replacing the LMS system identification algorithm with a recursive least squares (RLS)
counterpart.
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Chapter 1

INTRODUCTION

1.1 ADAPTIVE FILTERS

This thesis is primarily concerned with the design of algorithms for adaptive
filtering. The key words which require further explanation are: filter, adaptive and
algorithm. By filter is meant a linear discrete time filter which operates on an input
sequence of data samples { x(n)} to produce an output sequence of data samples
{y(n)}. The filter, illustrated in Figure 1.1, is characterised by the impulse response
sequence { h, } [1]. Such filters find application in many situations where it is
necessary to reconstruct a signal which has been corrupted by additive noise and
possibly linear distortion. Design rules for the calculation of the impulse response
sequence may be obtained from the work of Wiener [2] or Kalman [3]. The former is
optimal in a minimum mean-square error (MMSE) [2] sense and may be applied in
stationary or non time varying environments. The latter is optimal in a minimum
variance sense and may also be applied to non stationary or time varying environments
[4]. Both techniques require explicit a priori knowledge of the environment either in
the form of auto- and cross- spectral densities for the Wiener filter or a state space
model for the Kalman filter [S]. When the environment is unknown or poorly defined

these optimal filters cannot be designed and an adaptive filter must be considered.

An adaptive filter differs from an non adaptive filter in that the a priori
information required to design an optimal non adaptive filter is replaced by a second
input sequence, known as a training or desired input ( Figure 1.2 ). The training
signal is in some sense close to or approximates the output of an optimal filter. Such
an input is more readily available in a practical situation than specific knowledge of the
environment in the form of spectral densities and/or a state space model. The impulse

response of the adaptive filter is then altered as more of the input and training



Figure 1.1 A LINEAR DISCRETE TIME FILTER
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sequence become available so that the output y gets closer in mean-square error (MSE)
sense to the training sequence and hence to the output of the optimal filter. The
strategy by which the impulse response of the adaptive filter is altered is the adaptive

filter algorithm.

An adaptive filter is thus a time varying filter whose impulse response at a
particular time is dependent on the input sequence, the training sequence and the
adaptive filter algorithm. The time varying nature of an adaptive filter gives rise to the
concept of convergence. In a stationary environment, the convergence performance is
a measure of how many data samples are required for the impulse response of the
adaptive filter to come within a specified distance from the impulse response of the
Wiener filter. In a non-stationary environment the convergence performance is also a
measure of how closely the impulse response of the adaptive filter follows the the time
varying impulse response of some optimal filter, which can be identified as the Kalman

filter if the underlying process is Markov [5].



1.2 APPLICATION AND MODES OF OPERATION

One of the major modes of operation of an adaptive filter is in system
identification ( Figure 1.3 ). Given an input sequence {x(n)}, and an output
sequence { y(n) } associated with an unknown system, the function of the adaptive
filter is to estimate the impulse response sequence { h, } that relates the output
sequence to the input sequence. The function is effected in the adaptive filter by
processing the data pairs, ( x(n).y(n) ), serially one pair at a time ( or in blocks of
several consequetative pairs at a time ). As each new data pair ( or block of data pairs
) becomes available, the impulse response of the adaptive filter is updated so as to
reduce the size of the error, e(n), which is the difference between the system output,
y(n), and the output of the adaptive filter, y(n). In this mode, the optimal filter to

which the adaptive filter aspires is the unknown system itself.

A practical example of this mode of operation is echo cancellation across the
hybrid transformer used in telephone networks [6]. The hybrid transformer of Figure
1.4 performs the conversion from the two wire section, where transmission of
information occurs in both directions on a single pair of wires, to the four wire section,
where transmission only occurs in one direction on a pair of wires. Talker echo is the
leakage of the signal from the transmitter across the hybrid into the receiver. One
method of reducing the talker echo is to construct a filter in parallel with the hybrid
which models the echo path across the hybrid. The echo can then be cancelled by
subtracting the output of the filter, y(n), from the output of the hybrid, y(n). The
error sequence, { e(n) }, is then used as the input to the receiver. Because the impulse
response of echo path across the hybrid is unknown a priori and time varying, an

adaptive filter is usually employed.

A second major mode of operation of an adaptive filter is in inverse system
modelling or deconvolution, where a sequence, {y’(n)}, is subjected to linear

distortion ( filtering ) and additive noise in an unknown system to produce a second
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sequence, { x(n) } ( Figure 1.5 ). If the linear distortion and additive noise could be
characterised then the techniques developed by Wiener and Kalman could be applied
to design an optimal filter. Application of the corrupted sequence, { x(n) }, to the
optimal filter would produce a third sequence which would be close in a minimum
mean-square error (MMSE) sense to the original sequence. In a simple case where the
unknown system consists of a minimum phase filter alone [7], the optimal filter is the
inverse of the minimum phase filter and the output of the optimal filter is the original
sequence ie. perfect reconstruction. When the system which causes the distortion is
unknown and hence an optimal filter cannot be designed a priori, an adaptive filter

solution is possible if the original uncorrupted sequence is accessible for a limited

period, the convergence time.

A practical example of this second mode of operation is the equalisation of
intersymbol interference on a digital communications channel [8]. Such a channel may
be modelled by an equivalent discrete time transversal filter with additive white noise
[9]. The digital signal which is applied to the channel is a sequence of symbols taken
randomly from a finite alphabet. If the impulse response of the transversal filter
consists of anything other than a single impulse, the elements of the output sequence
will contain contributions from several symbols as well as noise ie. intersymbol
interference. The function of the adaptive filter is to reconstruct the transmitted
symbol sequence in a MMSE sense from the received sequence before a final decision
is made as to which symbol was transmitted ( Figure 1.6 ). A training sequence for
the adaptive filter is obtained by transmitting a predetermined sequence, known to the
receiver, as a precursor to actual data. Subsequent to this training period it is still
possible to track slow variations in the channel characteristics by using the output of
the decision circuit as a training sequence for the adaptive filter. This is known as a

decision directed equaliser [8].

The final mode of operation of an adaptive filter that will be considered in this

section is linear prediction [10]. This mode differs from the previous two is that the
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adaptive filter operates on a single sequence rather than two sequences. The function
of the adaptive filter in this mode is to either characterise the sequence or to separate
the correlated, coloured or predictable part of the sequence from the uncorrelated,
white unpredictable part. This arrangement is illustrated in Figure 1.7. The optimal
filter for this mode of operation is obtained by the minimum phase factorisation of the
spectral density of the sequence { y(n) }. The inverse of the minimum phase filter is a
realisable whitening filter [5]. Practical examples of linear prediction can be found in

spectral estimation [11], linear predictive coding of speech [12] and automatic

enhancement of sinsusoids in noise [13].

1.3 THESIS LAYOUT

To return to the theme enunciated at the start of the Chapter, this thesis is
primarily concerned with the design of algorithms for discrete time adaptive filtering.
The foregoing two sections are includced for the purposes of definition and to indicate
the need for, and briefly discuss practical applications of, adaptive filtering. The thesis
is divided into two halves: the first, containing Chapters 2, 3 and 4, is devoted solely to
adaptive finite impulse response (FIR) filter algorithms; the second, containing
chapters 5 and 6, documents the development of an adaptive infinite impulse response

(IIR) linear equaliser for digital communications channels.

In Chapter 2, a broad sclection of adaptive finite impulse response (FIR) filter
algorithms are examined to assess relative convergence performance ( as indicated by
currently available theoretical results ) and computational requirements. From this
examination a classification system evolves in which the available algorithms are
grouped into three classes according to performance and complexity. Of particular
note is the unified approach to block least mean squares (BLMS) adaptive filtering [14]
which simplifies the application of efficient convolution algorithms other than the fast

Fourier transform (FFT) [1] to the construction of computationally efficient adaptive

10
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filters.

The classification system is confirmed in Chapter 3 where the convergence
performance of the various algorithms is compared by computer simulation in the
specific application areas of system identification and channel equalisation. It is
believed that such a comparison has not previously been attempted even in the recent

textbooks on the subject [15, 16, 17].

A new adaptive FIR filter algorithm is presented in Chapter 4. Analytic and
experimental results confirm that this so-called self orthogonalised block adaptive filter

(SOBAF) provides a unique combination of convergence performance and

computational efficiency.

In Chapter 5 a closed form solution to the MMSE linear equaliser problem is
derived using discrete time Wicner filtering theory. This formulation highlights the
structure of the optimum IIR equaliser and the difficulties incurred in developing an

adaptive IIR equaliser.

Central to Chapter 6 is the recognition that the optimum IIR equaliser can be
realised as a particular case of the Kalman equaliser of [18]. To make the Kalman
equaliser adaptive, an adaptive FIR filter is operated in parallel with the equaliser to
estimate the impulse response of the unknown channel. Combining two algorithms in
this manner leads to problems of interaction which are overcome through the
development of a novel compensation technique. Comparisons of the performance of

this adaptive Kalman equaliser with a conventional linear equaliser are provided.

Finally Chapter 7 summarises the conclusions that have been drawn and provides

suggestions for further investigation.
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Chapter 2

ADAPTIVE FIR FILTER ALGORITHMS

2.1 INTRODUCTION

The aims of this chapter are threefold; (i) to describe and define a broad selection
of adaptive FIR filter algorithms, (ii) to give an indication of the convergence
performance that currently available theoretical results would predict for these
algorithms, and (iii) to provide a comparison of the computational requirements of the
algorithms. The function of an adaptive FIR filter algorithm was identified in the
seminal work of Widrow [19,20, 21], and that is to find the optimum FIR filter from
available data rather than from the second order statistics of the data. Widrow used
the Wiener minimum mean-square error (MMSE) definition of optimum [2]. Thus in
section 2.2 the MMSE cost function is defined and an expression for the optimum
MMSE FIR filter is given in terms of autocorrelation and cross-correlation functions
[22]. To illustrate the role of the Wiener FIR filter in the design of adaptive filter

systems, the important problem of system identification is examined.

Application of the Wiener FIR filter to a signal estimation, prediction or
smoothing problem requires explicit knowledge of an autocorrelation function and a
cross-correlation function. In practice, these statistical functions may be unknown or
time-varying. The heuristic sampled matrix (SM) solution, presented in section 2.3, is
to estimate the necessary terms in the auto- and cross- correlation functions from the
available data and proceed to the Wiener solution as if the estimates were exact [23].
Alternatively in the least squares (LS) approach of section 2.4, the statistical MSE cost
function is replaced with the data dependent LS error cost function [24]. The solution
to the LS minimisation problem is in terms of the available data and may be updated
using a time recursion as new data appears. This LS estimate will converge to the

optimum Wiener FIR filter as thc amount of data increases provided the random

13



processes are stationary. Although the recursive least squares (RLS) algorithm exhibits
consistent convergence properties it is computationally expensive to implement even with
the availability of the fast algorithms such as [25]. The stochastic gradient least-mean-
squares (LMS) [21] and block least-mean-squares (BLMS) [14] algorithms of section
2.5 provide computationally less expensive alternatives to the RLS algorithm. However
most of the available theoretical results [21,26,27,28] and practical experiment [26]
indicates that the convergence properties of the stochastic gradient algorithms is highly
dependent on the autocorrelation function associated with the input signal to the FIR
filter. These observations lead to the transform domain or quasi-orthogonalising
adaptive filter algorithms of section 2.6. The philosophy behind these algorithms is to
approximately whiten the input signal before applying an LMS algorithm. This has the
effect of reducing the sensitivity of the LMS algorithm to the autocorrelation function
associated with the input signal [29]. Finally in section 2.7 the computational

requirements of the algorithms discussed in this chapter are compared.

2.2 OPTIMUM LINEAR ESTIMATION

The structure of a typical linear signal estimation problem is illustrated in Figure
2.1. Given an observed random sequence { x(n) } which is a distorted version of a
signal or information-bearing random sequence { y(n) }, find a linear filter which
operates on {x(n) } to yield an estimate, { y(n) }, of { y(n) }. The quality of the
estimate is a function, f(.), of the error { e(n) }, which is the difference between the

information-bearing sequence and the estimated sequence.

e(n) =y() —yn) (2.2.1)

The loss function f( e(n) ) assigns a price or penalty incurred when the estimate is

incorrect [4]. Clearly the loss function should be: (i) positive

14



f(e(n))=0

and (ii) non-decreasing.
f(0)=20

f(ea)=f(e;) ifeyze, =0

Examples of loss functions with these properties are: e?, e, and | e |. Since both
{x(n)} and {y(n)} are random sequences, { e(n) } is also a random sequence.
Hence an optimal or best choice for the linear filter is that which minimises a cost

function /(.), which is the expected value of the loss function f (.).

I(e(n)) =E[f(e(n))]

The most commonly used cost function, and the one adopted here, is the mean-square

error [2] (MSE) &(n).

g&(n) = E[ e*(n) ] (2.2.2)

Thus the optimal filter is defined as that filter of of the set of all possible linear filters

which minimises the MSE.

15



Figure 2.1 OPTIMUM LINEAR ESTIMATION
DESIRED
SIGNAL ERROR
{y(n)} {e(n)}
+ =
DISTORTED ESTIMATED
SIGNAL SIGNAL
{x(n)} {y(n)}
>J LINEAR

16



2.2.1 The Optimum FIR Filter

The output y(n) of a causal linear filter may be written as the convolution of the

input sequence { x (n) } and the impulse response sequence { h, }.
y(n) =3 h x(n-i)
i=0

This is by definition an IIR filter since it includes terms to hx(n —=). In this section
only FIR filters will be discussed leaving consideration of IIR filters until Chapter 4.

The output of a FIR filter of order N-1 may be written as a finite summation of N

products since

h, =0 for n=2N,n<90

Thus

N -1
$(n) =3 b x(n—i)
i=0
This finite sum of products may be written more compactly as a vector inner product.

y(n)=h" x(n) (2.2.3)

where 4 is a column vector containing the N non-zero elements of the impulse

response sequence { h, }

/] =[hoh1 hN—l]T

and x(n) is a column vector containing the last N elements of the input sequence

{x(n)}.
x(ny=[x(n)x(n-1) - x(n-=N+1 ]|

The superscript T denotes vector or matrix transposition. The structure of a FIR filter

is illustrated in Figure 2.2.

17



If the sequences { x(n) } and { v(n) } are wide sense stationary then substitution

of (2.2.1) and (2.2.3) into (2.2.2) yields an expression for the MSE cost function

E=E[y*|+4" Q.4 -24" D, (2.2.4)

where @, is an (N X N) autocorrelation matrix

P, =E{x(n)x"(n)] (2.2.5)

and P, is an N element cross-correlation vector.

@, = E[x(n)y(n)] (2.2.6)
Thus for a FIR filter the MSE cost function has a quadratic form in the impulse
response vector i and the minimum can be obtained by setting the gradient N-vector ¥
to zero [22].

14

Y= 3

aho ahl 6/1,, -1

2d.h -2, =0 (2.2.7)

The optimum impulse response /i,,, which minimises the MSE is thus the solution to a

set of N simultaneous linear equations.

D, hop = D, (2.2.8)

If the power spectral density of the input sequence { x(n) } has no nulls ie. frequencies
where it is zero, then the autocorrelation matrix @, is positive definite and hence is
nonsingular. Under this condition, the optimum impulse response is unique and is is

given by

bop = D31 D, (2.2.9)

18



The filter defined by (2.2.9) is the Wiener FIR filter or Levinson fiiter. The minimum
MSE, &, , is obtained by substitution of (2.2.9) in (2.2.4).

£ = E[Y?] — b, 2, (2.2.10)

Equation (2.2.9) provides a means for designing optimum linear FIR filters.
However in order to calculate the impulse response of the optimum filter precise
knowledge of the autocorrelation matrix and the cross correlation vector is required.
In practice it is the data sequences rather then their second order statistics that are
directly available. Determining the optimal filter from the data rather then the second
order statistics is the function of an adaptive FIR filter [21]. An adaptive FIR filter
can be defined as an algorithm which operates on the sequences { x(n) } and {y(n) }
to form a time-varying impulse response vector 4 (k) which converges in the mean as
k- to the optimum impulse response J,. The Wiener FIR filter is thus the goal of
adaptive FIR filtering and can provide insight into how the adaptive filter should be
applied and what the performance might be once the algorithm has converged. In
order to highlight the role of the Wiener FIR filter in the design of adaptive filters, the

important problem of FIR system identification is examined.

19



Figure 2.2 A FINTIE IMPULSE RESPONSE FILTER
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2.2.2 FIR System Identification

Consider the system identification problem illustrated in Figure 2.3. An
unknown FIR system with N-point impulse response vector 4, has an input sequence

{ a(n) } and an output sequence { B(n) }. They are related by a vector inner product

expression similar to (2.2.3).

B(n) = Al a(n)

where

an)=[lam)a(r-1) - - a(n-=N+1)]

In forming a model, denoted by the N-point impulse response vector k, of the
unknown system all that is available are two sequences { x(n) } and { y(n) } which are

noisy observations of the input and output sequence respectively.

x(n) = an) + v(n)

y(n) = B(n) + n(n)

The sequences { a(n) }, {v(n) }, and {n(n) } are assumed to wide sense stationary
mutually uncorrelated random processes. The noise sequences { v(n) }, and { m(n) }

are white with variances o, and o, respectively.

Application of the Wiener filter to this problem involves constructing an estimate
y(n) of the observed output y(n) by passing the observed input sequence { x(n) }
through a system modelling filter with impulse response vector . The impulse

response of the system model is chosen to minimise the MSE.

E[(y(n) =3(n))*]

The solution, &,,, provided by (2.2.9), is an estimate of the unknown system impulse

response. To calculate this estimate it is necessary to first form the autocorrelation

21



matrix

D = + 0, (2.2.11)

where

P = E[a(n) a™(n) ]

and then the cross correlation vector.
@, = E[a(n)B(n)]

= DQup (2.2.12)
Iy is the (N X N) identity matrix. Substitution of (2.2.11) and (2.2.12) in (2.2.9)
yields.
hopl = (an + O, IN )—1 Qaa

which after application of the matrix inversion lemma [24] can be re-arranged to give
an expression for the impulsc response of the Wiener FIR filter in terms of the impulse

response of the unknown system.

h-opl =h.r _Gu(gaa-*-o-le )‘]hx

This equation provides some useful results. First the Wiener filter is a biased estimate
of the unknown system impulse response. Second the bias is removed if there is no

noise on the input process ie.

Finally the noise on the output process, { n(n) }, does not affect the estimate.
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Figure 2.3 FIR SYSTEM IDENTIFICATION
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2.3 SAMPLED MATRIX INVERSION

As indicated in the previous section, the optimum tap vector, h,,, in a MSE
sense for an adaptive FIR filter is given by the solution of the Wiener equation,
(2.2.9). The calculation of 4,, from (2.2.9) requires the solution of N simultaneous
linear equations in N unknowns. For a general non singular matrix the most efficient
method of solution is Gaussian elimination which requires order N3 operations ie. the
number of calculations is proportional to the cube of the number of coefficients in the

impulse response vector. However the matrix @, has two structural properties: (i) it is

symmetric i.e.

(ii) it is Toeplitz i.e.

Qu[l’.]] = q)u(l _.])

where @, [i,j] is the element in row i column j of the matrix $, and { D, (m) } is
the autocorrelation sequence associated with the wide sense stationary sequence
{x(n)}. Al the elements of the autocorrelation matrix can be generated from
knowledge of its first row. A more efficient method of solution, which exploits this
very special structure, was originally devised by Levinson [22] . The Levinson
algorithm requires order N2 operations, a significant improvement on Gaussian

elimination.

The direct application of the Wiener solution requires prior knowledge of the
second order statistics of the process. This runs contrary to the concept of adaptive
filtering. However, the efficiency of the Levinson algorithm and the availability of
current large scale integration (LSI) techniques [30] still makes the direct Wiener
solution appear attractive. An intuitive approach, known as sampled matrix inversion

(SMI), has been suggested for spectral analysis [11] and automatic equalisation
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[23,31]. This techniques involves two stages.

In the first stage, parameter estimation, the autocorrelation and cross correlation
coefficients are estimated from the available data. In the second stage, these estimated
coefficients are used to form the Wiener equation which is then solved using the

Levinson algorithm. The Wiener equation can thus be rewritten,

=939, (2.3.1)

where the symbol * denotes an estimate. Since ¢, and _(f{,y are estimates of the

correlation matrices ®,, and P, respectively, the solution 4 is no longer the Wiener

optimum 4, but an estimate of it.

For a wide sense stationary process, the autocorrelation coefficients @, (m),

m = 0,1,..,N —1, from which @, is composed are given exactly by the time average.

Q. (m)=E[x(n)x(n+m)]

- lim L = i x(n) x(n+m) (2.3.2)

~L

In practice, only a finite data set { x(n) }, n = 1,2,..,k, is available. So the summation
of (2.3.2) is truncated. Three techniques for doing this have been suggested in the
literature. These are described briefly. (Note: only the autocorrelation estimate is
considered here as the cross correlation estimate is analogous). An unbiased estimate

of the autocorrelation coefficients, as suggested in [11] and [32] is

‘(—E':l—-;l—T kim X (ll ) X (II +m) (2‘33)

n=1

é’l(’”) =

m=20,1, --- N-1

Alternatively, an estimate which has been used for autoregressive spectral estimation

[11] is
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1!—.

&,(m) = £ 2 x(n) x(n+m) (2.3.4)

a=1

This is a biased estimate which has a smaller variance than (2.3.3). Finally Butler and

Cantoni [23] suggest using

1 k-N+1

(k=N + 1) > x(n)x(n+m) (2.3.5)

n=1

<f)3(m ) =

The estimate &, differs from the other two estimates in that the number of product
terms of the form x(n)x(n+m) which are added to form the estimate is the same for
all lags, m. For the estimates ®, and &, the number of product terms decreases with
increasing lag. In (2.3.3) the summation is divided by the number of products,

(k—m ), while in (2.3.4) it is divided by the number of data points, k.

While all three techniques will converge to ®,,(m) as the number of data points,
k, tends to infinity, what is of primary interest from the point of view of adaptive
filtering is their performance in the short term eg. when k<10N. Equations (2.3.3)
and (2.3.4) are examined in some detail in [33] with the conclusion that both perform
poorly in the short term. In fact, it is suggested in [32] that as a rule of thumb k
should be greater than 10N. In [23] an expression for the variance of ®, is derived

which is only valid when k>>N.
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2.4 LEAST SQUARES ESTIMATION

The MSE cost function, &, includes the expectation operator, E[.], because the
processes involved in the estimation problem are random. This cost function leads to
an optimum solution, (2.2.8), in terms of ensemble averages or expected values ie. the
autocorrelation matrix ®,, and the cross-correlation vector ®,,. When only finite data
sets, ( x(n), y(n), n = 0, .. k ). rather than ensemble averages are available, the
expectation operator, E|[.], in the MSE cost function may be replaced by a summation,

>, over the available data, to yicld the lcast squares (LS) cost function.

é G (n) - $(n))? 2.4.1)

Minimisation of this cost function with respect to the impulse response vector, 4,
associated with the estimate, y(n), leads to a LS estimate. The impulse response
vector, 4 (k), which minimises the LS cost function is now a function of the available
data rather than ensemble averages. Just as the LS cost function can be obtained from
the MSE cost function by replacing expectation with summation, likewise, A (k) can be
obtained from (2.2.8) by replacing expectation with summation ie. there is a duality

between the MSE and LS minimisation problems. Thus

Lo (k) B(Kk) = £, (k) (2.4.2)
where

ra(k) = S x(n) 7 (0) (2.43)
and

£ (k) = 3 x(n) y(n) (2.4.4)

A unique solution to (2.4.2) will exist if r, (k) is nonsingular. For small data sets, ie.

k = N -1, r,, is always singular. In this case, the number of data points, k+1, is less
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than the number of unknowns, N, which describe the impulse response and hence no
unique solution can exist. For k = N, the singularity of r. (k) will depend on the
particular data sets that are available. The singularity problem in LS squares
estimation is often avoided through the use of either the Moore-Penrose pseudoinverse
[34], where the solution of minimum length is chosen when (2.4.2) does not provide a

unique solution, or by adding a small positive scalar, a, to the leading diagonal of

Lo (k).

L.(k) = éox(n) xT(n) + al, (2.4.5)

The latter method while ensuring that the solution to (2.4.2) is always unique is not in

a strict sense LS.

Four different forms of LS estimate are possible depending upon what
assumptions are made about the available data [35]. These are the covariance form,
the pre-windowed form, the post-windowed form and the autocorrelation form. Of
these the covariance form is the most straightforward as it involves no assumptions
about the data. The other three forms are constructed from permutations of the pre-

windowed assumption,

x(n)=0, n <0

and the post-windowed assumption.

x(n) =0, n > k-N+1

The autocorrelation form is at the other extreme from the covariance form combining
both pre-windowed and post-windowed assumptions. These data windows are usually
invoked with the view to reducing the number of computations necessary to solve
(2.4.2). However as the available data is usually taken from continuous data sequences
the pre-windowed and post windowed assumptions will in general be invalid and hence

will lead to a degradation in the quality of the LS estimate.
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Unlike the autocorrelation matrix, ®,,, the LS matrix, r,(k), is not Toeplitz.
However it does have a significant structural property which can be identified by

rewriting the summation of (2.4.3) as the product of two matrices.

L (k) éoa:(n)x’(n)

= s(k) s"(k) (2.4.6)
where s(k) is a N X (k +1) rectangular matrix.

s(k) =[x(©0) --- x(n) ---x(k)]

Since s(k) is Toeplitz, r, (k) is the product of two Toeplitz matrices. This near to
Toeplitz structure [36] has lead to the development of efficient algorithms for the
solution of (2.4.2) which lie between Gaussian elimination and the Levinson algorithm
in computational complexity [37,38]. If however the autocorrelation form is assumed,
ie. the data is both pre- and post-windowed, the LS matrix r,, (k) becomes Toeplitz
and the computational load is further reduced since the Levinson recursion can be used

to solve (2.4.2).

An expression for the element in row i column j of the matrix (k) can be

written down directly from (2.4.3).

k

relijl= 3 x(n—=i) x(n—j) (2.4.7)

n=0

The time index (k) has been dropped from r, (k) for this discussion to simplify the
notation. To prove that the autocorrelation form of r (k) is Toeplitz it is sufficient to
show that (2.4.7) may be rewrittcn as a function of a single variable (i-j) as opposed to
a function of two variables i and . First a change of variable is made to highlight the

effect of the pre-windowed assumption. Let

m=n-—i
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and replace n in (2.4.7) with m+i.

k—i

Lelijl= X x(m)x(m+i-j) (2.4.8)

Since r,, (k) is symmetric, (2.4.6), generality will not be lost if it is assumed that
i —-j=0.

In which case the pre-windowed assumption implies that the range of m must be

limited at its lower end to

and hence (2.4.8) may be rewritten

k~i

Le[i,j]= 3 x(m)x(m+i-j).

m=0

Performing a second change of variable,
l=m+i-j,
which highlights the effect of the post-windowed assumption, yields the desired result.

k-N -1

relijl= 3 x()x(I+i—j) (2.4.9)

I =i-j

Equation (2.4.9) is similar in form to the autocorrelation estimate &, of (2.3.4) since
the number of products x(/)x(/+i—j) that are added decreases linearly with
increasing lag, i —j. In fact for a given data set the SM technique based on (2.3.4)

will produce the same estimate of j,, as the autocorrelation form of LS.
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2.4.1 Recursive Least Squares

In many applications it is necessary to update the LS estimate provided by the
solution to (2.4.2) as new data becomes available. The simplest approach is to
reconstruct (2.4.2) and resolve it. However this is equivalent to performing a matrix
inversion as each new data point becomes available and thus has the possibility of
being expensive computationally. An alternative is to seek a time recursion for h(k)
in terms of the previous least squares solution 4 (k —1) and the new data, x(k) and
y(k). A recursive solution for j (k). may be obtained as follows. From the definitions

of (2.4.3) and (2.4.4) and assuming that the data has not been post-windowed.
Lo (k) = r(k-1) + x(k) 2" (k) (2.4.10)

Ly (k) = oy (k—1) + x(k) y (k) (2.4.11)

Substitute for r,, in (2.4.11) using (2.4.2).

L (k) B(k) = £ (k=1) h(k=1) + x(k) y (k)

Then using (2.4.10).

La (k) BOE) = {2a(6) = 2(k) £ () J h(k=1) + x(k) y (k)

After rearrangement this yields

h(k) = h(k—1) + k(k) e(k) (2.4.12)
where

e(k) = y(k) —h"(k-1) x(k) (2.4.13)
and

k(k) = (k) a(k) (2.4.14)
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A recursion for r;!(k) may be obtained by application of the Sherman-Morrison

identity [39] to (2.4.10).

rA(k) = rM(k-1) - re'(k—1) x(k) x7 (k) r;'(k ~1) (2.4.15)

(1+ 5700 ik -1) 2k) )

This recursion is often initialised using the definition of (2.4.5) ie.
ra(0) = 7
a N

Collectively, (2.4.12), (2.4.13). (2.4.14) and (2.4.15) are known as the recursive
least squares (RLS) algorithm. Godard [40] derived an almost identical algorithm by
using a Kalman filter [3] to update the coefficients of an adaptive transversal equaliser.

The number of arithmetic operations per iteration that are necessary for the RLS is:

2 2
32’ + Sév additions/subtractions, 312V + 9—;’- multiplications, and 1 division. Thus

it can be an expensive algorithm to implement even for a system of moderate order.
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2.4.2 Data Windows

In a non-stationary or time varying environments, the least squares estimate
provided by (2.4.2) and the corresponding recursive least squares algorithm of
subsection 2.4.1 are inappropriate [24]. This is because the tap vector, k(k),
associated with this growing memory LS estimate [24] is a function of all the data in a
window from n = 0 to n = k. The optimum filter may itself be time varying within
the data window. One possible approach to this problem is to replace the sum of

squares cost function of (2.4.1) with an exponentially weighted sum of squares cost

function

éo (y(n) =3n) Y M, (2.4.16)
where

O=A=1.

This essentially reduces the effect of old data samples on the current estimate, i (k), of
the optimum tap vector. The parameter, A, controls the length of the memory. When
A = 1 all the available data is weighted equally and this exponential LS algorithm
reduces to the growing memory form discussed previously. However as A\ is reduced
the effective memory of the algorithm is also reduced and the algorithm may then be

capable of tracking changes in the optimum tap vector.

Minimisation of the cost function of (2.4.16) give rise to a recursive least squares
algorithm which is very similar in form to that presented in subsection 2.4.1. The only

difference is that (2.4.15) is now replaced [24] with

re'(k=1) x(k) &7 (k) rs'(k ~1)
(M + 570zt -1 1K)

k) = & | k1) -

Thus the recursive form of the exponentially weighted LS algorithm represents only a
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slight increase in computational load over the growing memory form. Other data
windows are possible. These includc the sliding window least squares algorithm where
the cost function of (2.4.1) is altered to

S (y(r) -$(n) )

n=k-M+1

in order to include only the last M data points in the estimate of the optimal tap
vector. However the computational burden of the sliding form is significantly greater
than both the growing memory and exponentially weighted least squares algorithms
[24]. There is also evidence to suggest that the sliding window algorithm may not offer

any improvement in performance over the exponential form in nonstationary

environments. [41]

2.4.3 Fast Algorithms

While equations (2.4.12)-(2.4.13) provide a RLS algorithm, the near to Toeplitz
structure of the LS matrix r (k) is not exploited in their derivation. This structure is
a result of the shifting property of the data vector x(k). The shifting property can be
illustrated by comparing x (k) with x(k —1) and observing that they have N-1 common

elements.
x"(k) =[xk) xtk-1)x(k-2) -+ x(k-=N+2)x(k-N+1) ]

xT(k=1) = [x(k=1) x(k=2) x(k=3) -+ x(k—N+1) x(k—=N) ]

In fact x7 (k) can be obtained from x”(k —1) by shifting the elements of x” (k —1) to
the the right, hence losing x(k—N), and then replacing the leftmost element of
x7(k —1) with x(k). In 1978 Ljung et al [25] derived a recursion for the calculation of
k (k), which uses the concept of forward and backwards least squares linear prediction

to exploit the shifting property. This recursion, known as the fast Kalman algorithm, is
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an order of magnitude more efficient computationally than equations (2.4.12)-(2.4.15).
The fast Kalman algorithm for the pre-windowed form of LS is derived in Appendix
A. The number of arithmetic operations per new data point (iteration) that are
necessary for the fast Kalman algorithm is: 9N+1 additions/subtractions, 10N+ 1
multiplications, and 2 divisions. This is a significant increase in computational

efficiency compared to the standard RLS algorithm, (2.4.12)-(2.4.14).

Since the publication of [25] , other fast least squares algorithm have appeared.
Covariance forms of the algorithm were developed [42] . Computationally more
efficient forms appeared such as: (i) the fast a posteriori error technique (FAEST) [43]
, and (ii) the fast transversal filter (FTF) which is derived through the geometrical
interpretation of least squares [44]. With the increased efficiency of this family of fast
algorithms with respect to the standard RLS algorithm has come an increase in
sensitivity to the effects of finite precision arithmetic e.g. [45]. In an attempt to
alleviate these problems square root or normalised forms of the algorithm have been
developed [44] , and periodic re-initialisation techniques suggested [46]. Finally, in an
attempt to solve certain non-stationary problems, sliding window forms of the

algorithm have been developed [47. 48].

The transversal filter structure illustrated in Figure 2.2. is not the only realisation
of a FIR filter that is possible. A significant alternative is the lattice or ladder filter
structure [49, 50], which exhibits several properties not found in a transversal filter
realisation. These properties, which include modularity and good numerical round-off
characteristics, are achieved at the expense of increased computational load for a given
order of filter [51]. A lattice filter structure is illustrated in Figure 2.4. The major
developments in fast RLS lattice structures have parallels with those in fast transversal
filter form. Prewindowed and square root normalised algorithms first appeared in [52]
and [53). Because the square root normalised lattice algorithm has a natural
interpretation as a set of rotations it can be realised efficiently using a coordinate

rotation digital computer (CORDIC) [54]. Both normalised and unnormalised,

35



covariance and sliding window forms have also been developed [55]. The effects of
fixed point implementation on thc RLS lattice is examined in [56]. Recently

alternative lattice structures have been developed for certain classes of nonstationary

process [57].



A LATTICE FIR FILTER

Figure 2.4
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2.4.4 Properties of the Least Squares Estimate

For wide sense stationary random processes ensemble averages may be replaced

by time averages. Therefore the MSE cost function, &, may be replaced by an infinite

summation.

&n) = E[ e(n) ] = lim + S e¥(n) (2.4.17)

n=0
The summation on the right hand side of (2.4.17) is recognisable as the LS cost

function, (2.4.1). The scaling factor 71(- does not affect the LS solution given by

(2.4.2). Thus for an infinite data set, the MSE cost function and the LS cost function
are minimised by the same tap vector 4, . Hence it is concluded that the solution to
the LS problem j (k) converges asymtotically to the Wiener solution #4,, [58,59, 60].
However for finite data sequences analytic results for the properties of the LS estimate
are more difficult to derive. The approximate analysis presented in [58] gives the
following three useful results which are applicable to what is termed long sequences ie.

N <k < oo,

E[b(k) — b, ]=0 (2.4.18)
ELCRG) = by ) (106) =l )7 ] = 221 (2.4.19)
E[eXk)] = &, + 1—,:'~ Eopr (2.4.20)

These results suggest that: (i) for finite data sets the LS solution, i (k), is an unbiased
estimate of the Wiener solution, 4,,, (ii) the error covariance of the estimate,

(2.4.19), whilst being a function of the signal autocorrelation @,,, decreases with the

size of the available data set, k, and (iii) the excess MSE, %—- €,pr » INCreases linearly

with the number of coefficients, N, in the impulse response and decreases with the size
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of the data set. Equation (2.4.18) to (2.4.20) concur with the results obtained in [40]
for a channel equaliser application. Equation (2.4.20) is commonly used to conclude
that the RLS algorithm converges within 2N iterations since for k = 2N,

E[e*(2N) ]
gopl

10 loglo[ ] = 1.8 dB. (2.4.21)

The MSE is within 1.8 dB of the MMSE in 2N iterations of the RLS algorithm. This
rule of thumb has to be used with caution as (2.4.21) is a relative measure, relative to
the MMSE. Adequate performance with respect to the MMSE in one application

might not be adequate performance with respect to the MMSE in another application.

By far the most rigorous analysis of the performance of the LS estimator appears
in [24] and applies to the specific example of the system identification problem
illustrated in Figure 2.3. when the input noise term is removed. If the input sequence.
{x(n)}, is considered to be a known deterministic process then the only random
process is the noise sequence, { m(n) }, and the LS estimate, (k) k=N, of the system
impulse response, 4., is the best linear unbiased estimate (BLUE). The error

covariance of the k (k) with respect to the noise sequence, { n(n) }. is given by

E,[(h(k) —h ) (hk) —b, ) ]=rs'(k)o,.
Further if the random noise sequence is Gaussian then the LS estimate achieves the

Cramer-Rao lower bound and is the minimum variance unbiased estimate (MVUE).
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2.5 STOCHASTIC GRADIENT METHODS

While Gaussian elimination or the Levinson recursion provide the means for
solving the Wiener equation, (2.2.8), in a fixed number of calculations, iterative
techniques aré also available where the number of calculations necessary to find the
solution are not known beforehand [34]. The method of steepest decent is an iterative
technique that has been used in linear programming and optimisation problems to find
a variable, ( eg. h,, ), which minimises an objective or cost function ( eg. £ ). To
apply the method to the solution of (2.2.8) a guess at the solution, A, is made. The
subscript i is used to denote the ith step in an iterative process rather than a time
recursion such as (2.4.12). This guess will have associated with it a particular value of
the MSE cost function, &(4;), given by (2.2.4). This guess is then improved by a two
stage process. First the gradient vector , V,, associated with the guess is calculated
using (2.2.7). The gradient vector is in the direction of the greatest rate of change of
the MSE cost function. Second a scaled version of the gradient, wV(4;), is subtracted
from the guess to form a new guess ;... The MSE at the new guess will be smaller
than the MSE at the initial guess if the small positive scalar p is chosen correctly.
Hence if the two stages are repeated the MSE associated will be reduced until it
reaches the minimum, £, , at which point the guess 4; will equal h,,,. The method of

steepest descent is defined by the following two equations.

hi+1 =h —p 2.‘ (251)
v o= 8 (n)
=2¢,. b —-22, (2.5.2)

The method will converge to the optimum solution provided the step size or

convergence factor, p, lies within the range
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0<p< ——. (2.5.3)

A max

where A\, is the largest eigenvalue of the autocorrelation matrix, @, [21]. However
the importance of the method of steepest descent in adaptive filtering is not as an
iterative alternative to direct methods such as Gaussian elimination or the Levinson
recursion, rather it is that it is the basis of the least mean squares (LMS) [21] and the

block least mean squares (BLMS) [61] stochastic gradient algorithms.

2.5.1 The Least Mean Squares Algorithm

While application of the method of steepest descent avoids the direct matrix
inversion inherent in the Wiener equation, (2.2.9), explicit knowledge of the
autocorrelation matrix, @,,, and the cross-correlation vector, @, , is still required,
(2.5.2). The requirement for knowledge of these statistics is circumvented in the LMS
stochastic gradient algorithm by replacing the iterative step, (2.5.1), with a time

recursion and the gradient with an estimate of the gradient.

hk+1) = h(k) ~ p Y(k) (2.5.4)

The vector 4 (k) is an estimate of the Wiener filter, h,, , at time sample k and the
vector V(k) is an estimate of the gradient, ¥(k), of the MSE cost function at the
point where the impulse response is fi(k). The exact gradient, V(k), is defined in

similar manner to V,, (2.5.2).

Y(k) = g—z-(h(k))

= 2 E[(y() = 4"(k) £(n) '] (2.5.5)

After some rearrangment (2.5.5) yields

Y(k)=—2E[x(n)(y(n) —b"(k)x(n))]. (2.5.6)
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To form an estimate, i(k), of the gradient, V(k), the ensemble average of (2.5.6)
could be replaced by a time average over n. However since A (k) changes at every

data point, (2.5.4), the time average reduces to a single value atn = k+1.

Vk) = =2 g(k+1) e(k+1) (2.5.7)

e(k+1) = y(k+1) — h7 (k) x(k+1) (2.5.8)

This gradient estimate is unbiased [21] . Substitution of (2.5.7) into (2.5.4) yields the
LMS algorithm.

B(k+1) = h(k) + 2 p x(k+1) e(k+1) (2.5.9)

Although the LMS algorithm is considerably simpler than the RLS algorithm of
subsection 2.4.1 its convergence properties are nonetheless difficult to analysis
rigorously. The simplest approach is to examine the evolution of the mean of the
estimated impulse response vector. Taking expected values of both sides of (2.5.9)

gives
E[h(k+1)]=FE[(] =2 px(h+1)x"(k+1))h(k)]

+ 2 E[x(k+1) y(k+1)].

Evaluation of the first expected value on the right hand side is difficult because of the
dependence of the vectors x(k+1) and (k). If however they are assumed to be
independent, the algebra becomes more tractable and a simple recursion for E| h(k) ]

is obtained.

E[ak+)]=(] -2p 2, )E[L(k)]+2pn D, (2.5.10)

Although the independence assumption is in a strict sense invalid it does yield results
that agree well with experiment [26]. From (2.5.10) bounds on the step size, y, that

ensure convergence in the mean of /i (k) to I, can be obtained.
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Rewriting (2.5.10) in terms of an error vector

E(k) = h(k) _hopl
gives
E[a(k+1)]= (1 -2pn @, )E[L]. (2.5.11)

If E[ A(k) ] converges to the zero vector as k - o, then E[ 4 (k) ] converges to h,p, .

Assuming that the autocorrelation matrix, @,, , is symmetric and positive definite it can

be factorised as

@, =VAVT, (2.5.12)

where A is the diagonal matrix of eigenvalues

A =diag [N Ny - Ay ]

and V is the orthonormal matrix whose jth column is the eigenvector of ®,, associated
with the jth eigenvalue. Substitution of (2.5.12) into (2.5.11) effectively transforms
the error vector k(k) to a vector H (k) whose components, I-i,- (k), evolve in time

independently of each other. Thus

E[H(k+1)]= (I -2p A)E[H(K)]

where

Hk) = VT h(k).

Since VT is unitary the vectors { (k) and I (k) have the same Euclidean norm , and
hence convergence of H (k) to the zero vector is equivalent to convergence of /i (k) to
the zero vector. Further since the matrix (7 —2 p A ) is diagonal, a separate

recursion for each element, ﬁj (k). of H (k) can be obtained.

E[H;(k+1)]=(1=2p\, )E[H;(k)]), j=0,1,..,N-1
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(2.5.14)

Each of these modes decays exponentially to zero provided
Convergence of all the elements of /{ (k) to zero is assured if

0<pu< )-\-1- | (2.5.15)

max

which is identical to the condition for convergence of the method of steepest descent,

(2.5.3). The time constant, T, associated with equation (2.5.14) is given

approximately by

Tmax = (2.5.16)
Combining (2.5.15) with (2.5.16) gives,

A
Tmax > 5 (2.5.17)

which suggests that the larger the eigenvalue ratio ( condition number ), -2—'—"%"-, of .,
the longer the LMS algorithm will take to converge.

Analyses of the MSE convergence properties of the LMS algorithm are available
in [27] and [26]. Again the independence of the vectors x (k+1) and 4 (k) is assumed
in order to make the algebra tractable. In both [27] and [26], the bounds on the step
size, ., that ensure MSE convergence of the LMS algorithm are more restrictive than

those of (2.5.15). For example in [27] the bounds on the step size are

1
INE[x¥(n)] " (2.5.18)

O<p<
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These analysis also indicate that the ratc of convergence of the MSE is dependent on

the eigenvalues of ®,, but in a more complex way than that suggested by (2.5.17).

2.5.2 The Block Least Mean Squares Algorithm

If the estimated impulse response, [1(k), is held constant for a block of L data

points, the recursion of (2.5.4) becomes

Bk+L) = h(k) — p, Y(k). (2.5.19)

The gradient estimate of (2.5.7) can then be improved by replacing the ensemble
average of (2.5.6) with a time average over the L values of the time index n for which

the estimated impulse response is constant.

Vk) = -

h[N

z () (y(n) ~47() x(m))

This can be written more succinctly as

(k) = -

S

x(k+L)e(k+L) (2.5.20)

where x(k+L) is an (N X L) matrix constructed from L input vectors

x(n),n = k+1,k+2. -+ k+L

x(k+L) = [x(k+L) x(k+L -1) - - - x(k+1) ]
and the (L X 1) error vector, ¢ (k +L), is the difference between the signal vector

y(k+L) = [y(k+L)y(k+L-1) - - -yt T
and the estimated signal vector

yk+L) = x"(k+L) (k) (2.5.21)

that is,
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e(k+L) = y(k+L) - §(k+L). (2.5.22)

Together (2.5.19) to (2.5.22) dcfinc the BLMS adaptive filter algorithm [14].

Equations (2.5.20) and (2.5.21) represent linear convolution operations. For

example, the gradient estimate of (2.5.20) contains N scaled outputs at

n=k+L-N+1,k+L-N+2, --- k+L -1, k+L

of a FIR filter with impulse response vector ¢(k+L). Similarly the estimated signal

vector of (2.5.21) contains L outputs at

n=rk+1,k+2, --- K+L—-1,k+L

of a FIR filter with impulse response vector 4 (k). The input sequence { x(n) } for
n=k-N+2 --- k --- k+L is applied to both filters. These linear convolution
operations can be implemented using a combination of a circular convolution algorithm
such as the fast Fourier transform (FFT) [7], the rectangular transform (RT) [62], or
the number theoretic transform (NTT) [63]. and the overlap add or overlap save data
sectioning technique [7]. The relationship between circular and linear convolution and
the use of the method of overlap save are described in Appendix B. This
implementation results in a substantial computational saving on the direct time domain
approach and is the major motivation behind the use of the BLMS algorithm.
Although it is possible to use any block length, L, the most efficient adaptive filter
structures are obtained when the block length is equal to the filter length, N [61]. As

this condition also simplifies the algebra it is the only one that is considered here.

In order to calculate N outputs of a N-point FIR filter a 2N-point circular
convolution is required [7]. Such a circular convolution can be performed using a
transform domain processor defined in general by two (M X 2N) matrices A,, and
B,y and a (2N XM ) matrix C,y, where M = 2N. Applying the techniques

described in Appendix B to (2.5.21), forL = N
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y(k+N) = x(k+N) h(k)

=[Oy Ty | Coy {X(k+N) x H(k) } (2.5.23)

where

x(k)
k =
X(k+N) = B,, [&(HN)
and
H(k) = A [3; L(k) .

The symbol X represents the point by point multiplication of the vectors X (k +N ) and
H (k). The matrix Iy is the (N X N) identity matrix and the (N X N) matrix O, has
all zero elements. The reversal matrix 7y has 1’s on the secondary diagonal and zero

elsewhere. The linear convolution of (2.5.20) can be performed in a similar manner,

V(k)

%x_(k+N) e(k+N)

~ 2 [ 0w Ty 1 Coy {X(K+N) X E(R+N) ) (2.5.24)

where

Iy

E(k+N) = A,y [ON e(k+N) .

Since X (k +N) appears in both (2.5.23) and (2.5.24) it is only necessary to calculate it
once per block of data. The complete circular convolution implementation of the

BLMS algorithm is summarised in Table 2.1.

Using a similar analysis to that presented in section 2.5.1 for the LMS algorithm,

convergence in the mean of the BLMS algorithm is assured provided

0< p, < (2.5.25)

Xll\lx
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and the time constant, 7;, associated with the jth mode is given approximately by

blocks

T 2R

However for the BLMS algorithm the time constant is measured in blocks of L data

points and must be multiplied by L to give an equivalent time constant in samples in

order to facilitate comparisons with the LMS algorithm.

j TN samples

i
In common with the LMS algorithm the largest time constant Tp,,, is associated with

the smallest eigenvalue, A ;,.

= _._é__.__
T max T samples (2.5.26)

Comparing (2.5.26) and (2.5.195) for a given value of the step size, the largest time
constant associated with the BLMS algorithm is L times larger then the largest time
constant associated with the LMS algorithm. In order to achieve the same rate of
convergence as the LMS algorithm the value of p, must be made L times greater than
i in which case there is greater danger of the stability condition of (2.5.25) being
infringed. If (2.5.26) and (2.5.24) are combined the dependence of the rate of

convergence of the BLMS algorithm on the eigenvalue ratio is illustrated.

L Apax
>
Tmax = N

(2.5.27)

The MSE analysis of the BLMS algorithm presented in [28] is an extension of the
convergence analysis of the LMS algorithm which appears in [27] and also indicates
that the rate of convergence of the BLMS algorithm decreases with increasing block
length L. However the relationship is not as simple as (2.5.27). The MSE analysis

also reveals that the bounds on p, that ensure convergence are more restrictive than

(2.5.25).
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L
< (L+2)N E[ x*(n) ]

O<p (2.5.28)

This condition simplifies to (2.5.18) when L = 1. In conclusion the computational
advantages afforded by the BLMS algorithm when compared with the LMS algorithm

are obtained at the expense of degraded convergence performance.
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Table 2.1 THE BLMS ADAPTIVE FILTER

Ty x(j-1)

X() =By l T, ()

Iy
H(G-1) = Ay [ON ] b(i-1)

2(.1) =[0On Ty ] Cyy {X(J) X H(-1) }
e() = yU) = 3)
Iy
E()=Aw O e(j)
c(U)=[0xTy ]Cxn {X(J') X E(5) }

BG) = hG-1) + ()
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the input vector is orthogonalised. Then each element of the intermediate vector is
scaled to produce a vector, z(n), whose autocorrelation matrix is the identity. The
second stage is known as power normalisation. The two stage process is dependent on

the existence of factorisations of the form,

®, =WDWT (2.6.5)

where D is an (M X N) diagonal matrix. The transform of the input vector, x(n), to

the vector z(n) is defined as the product of two matrices W~! and D12,
z(n) =D W x(n)

The (N X N) diagonal matrix D' contains the reciprocals of the positive square
roots of the elements on the diagonal of D. For a symmetric positive matrix two
factorisations of this form are possible: Cholesky factorisation and eigenvalue
decomposition. For the latter, which is described in section 2.5.1, the transform
matrix, W1, is the Karhunen-Loeve transform (KLT). For the Cholesky factorisation
the (N X N) matrix W is a lower or upper diagonal with a unit leading diagonal. The
transformation matrix, W1, is of the same form. In fact the lower ( upper ) diagonal
matrix, W1, contains the coefficients of all backward ( forward ) prediction error
filters from order O to order N-1 [64, 35] and hence multiplication of the input vector

x(n) by W1 can be implemented efficiently using a lattice filter structure [35].

The forward prediction error of order j . ef(n). is the output of a FIR filter with

j+1 taps.

ef(n) = x(n) + é} a; x(n—i)

The forward prediction cocfficients, a; i = 1, - - - j, are chosen to minimise the

MSE cost function.

E[(ef(n) )]
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Similarly the jth order backward prediction error, e}’(n), is the output of a backward

prediction filter with j+ 1 taps.
j
ef(n) =x(n=N) + 3 b; x(n—i+1)
i=1

The coefficents, b;;, are chosen to minimise a MSE cost function.

E[(ef(n) )]

All forward and backward prediction errors from order 0 to order N-1 can be

generated using the following equations which define one stage of a lattice filter.

ef(n) = ef_1(n) + K; e/, (n-1)

ef(n) = ef_1(n—1) + K; el_;(n)

The partial correlation (PARCOR) coefficients, K;, can be calculated using the

Levinson recursion {22].

The two factorisations summarised in (2.6.5) cannot be used to construct an
adaptive filter algorithm since explicit knowledge of the autocorrelation matrix, ®,,, is
required before any factorisation can be performed. However approximate
factorisations of this form lead to adaptive filter algorithms whose convergence
properties are less sensitive to the eigenvalue spread of the autocorrelation matrix than
the LMS algorithm. The two major classes of transform domain algorithm are based
on the two possible factorisation of the form given in (2.6.5). Since the Cholesky
factorisation can be implemented using a lattice filter structure, the transformation
matrix, W1, can be estimated from the available data by estimating the PARCOR
coefficients that define the lattice filter. The simplest such algorithm is the stochastic
gradient (SG) adaptive lattice filter of [65], where the PARCOR coefficients are

estimated using the forward and backward prediction error and a constant p.,, .

K (k+1) = K;(k) + t (ef(k+1) el (k) + ef -y (k+1) ek +1) )
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The convergence properties of thc SG adaptive lattice filter are analysed in [66].
Alternatively the eigenvalue decomposition leads the signal dependent KLT which can
be approximated using non signal dependent unitary transforms such as the discrete
Fourier transform (DFT) [67], the discrete cosine transform (DCT) [29] and the Walsh

transform (WT) [68]. To illustrate a transform domain adaptive filter the DFT based

structure is examined in more detail.

2.6.1 The Sliding DFT Adaptive Filter

In the DFT based structure of [67] the input vector, x(n), is transformed to a

vector, X (n) using the (N X N) complex DFT matrix Fy .

X(n)=[XoX, -~ Xy [

= Fy x(n) (2.6.6)

The element in row / column m of the DFT matrix is a complex exponential term.

Fyll,m] = exp (- V(-1) 25

The elements of the transformed vector, X (n), are weighted and summed to produce

an estimate, y (n), of y(n).
y(n) =H" X(n)

17 =[H0H1 HN—]]T

The value of the vector i which minimises the MSE cost function, & (), is &, -

Since the matrix Fy is complex the vector X (n) will in general be complex even if
x is real and hence the complex LMS algorithm [69] must be used to estimate the

optimum vector H,, which minimises the MSE.
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Hk+1) = H(k) +2p. DT X" (k+1) e(k+1) (2.6.7)

e(k+1) = y(k+1) = y(k+1)

The superscript * denotes complex conjugate. The real positive constant, p_, is the
convergence factor or step size. The autocorrelation matrix, E[ X(n) (X*(n) ) ], is

assumed to be diagonal.

D = diag [DyDy - - Dy, ]

= E[X(n) (X (n))" ]

The elements of the diagonal matrix D are estimated from the data using a recursion of

the form,

Di(k+1)=aD(k) + (1 —a?)X;(k+1) X (k+1)

where a is a positive constant less than unity. The use of D7 in (2.6.7) to control the

adaptive step size, is equivalent to power normalisation and avoids the

—
D;(k+1)
square root operation associated with D2, An efficient structure for implementing

(2.6.6) is obtained by using the following recursion [7].

X,(k+1) = exp( — V(=1) %gi)x,.(k) + x(k+1) = x(k=N) .
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2.7 ALGORITHM SUMMARY AND COMPLEXITY COMPARISON

Table 2.2 shows a summary of the computational complexity of a selection of
time recursive adaptive FIR filter algorithms. The algorithms are divided into three
types; recursive least squares, stochastic gradient and transform domain or quasi-
orthogonalising algorithms. Two RLS algorithms are considered; the original fast
Kalman algorithm of [25] which is derived in Appendix A, and the lattice filter
algorithm of [52]. Both algorithms are prewindowed. A more comprehensive
comparison of the computational complexity of the various RLS implementation
options is given in [16]. Two stochastic gradient algorithms are considered; the LMS
algorithm of [21] described in subscction 2.5.1 and the FFT-based BLMS of [14]
described in subsection 2.5.2. Finally the sliding transform algorithm of subsection
2.6.1 is taken as an example of a transform domain or quasi-orthogonalising algorithm.
The computational load of each algorithm is assessed in terms of the three major
arithmetic operations ie. divisions, multiplication and additions/subtractions. The
figures quoted are numbers of operations to process each new pair of data points data
point x(k+1) and y (k+1).

The stochastic gradient algorithms are the least demanding computationally of all
the adaptive FIR filter algorithms with the BLMS requiring even less computations
than the LMS for N = 64. Unfortunately they exhibit the poorest convergence
performance since, as indicated in section 2.5, the convergence rate is dependent on
the eigenvalues of the autocorrelation matrix associated with the input signal. The
RLS algorithms, on the other hand. exhibit consistent fast convergence properties, as
indicated by (2.4.19), but are the most expensive computationally. Finally the
transform domain or quasi-orthogonalising algorithms are less sensitive to the
eigenvalue spread of the input autocorrelation matrix than the stochastic gradient
algorithms. Thus they offer convergence performance that lies between the RLS and

SG algorithms. However the sliding DFT algorithm is closer to the RLS algorithms
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than the SG algorithms in computational load.

The convergence characteristics of stochastic gradient, recursive least squares and

transform domain algorithms are examined further in chapter 3 through the medium of

computer simulation.
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Table 2.2 COMPLEXITY COMPARISON
( Adaptive FIR Filter Algorithms )
Algorithm Implementation Computational Load
mult add/sub div
Recursive Least Squares | fast Kalman 10N+1 ON+1 2
lattice 8N 8N 6N
Stochastic Gradient LMS 2N 2N .
BLMS (FFT) 10log(N)+8 | 15log(N)+30 -
Transform Domain Sliding DFT 8N+16 6N+9 N
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Chapter 3

PERFORMANCE COMPARISONS

3.1 INTRODUCTION

While logistics preclude a comparison of the complete set of algorithms that have
been mentioned in chapter 2, it is possible to examine the performance of a subset
whose elements are representative of the three classes into which adaptive filters may
be divided. These three classes are: (i) stochastic gradient search algorithms such as
the LMS algorithm of subsection 2.5.1 and the BLMS algorithm of subsection 2.5.2,
(ii) quasi-orthogonalising or transform domain algorithms such as the sliding DFT
structure of subsection 2.6.1, and (iii) least squares techniques such as the simple RLS
algorithm of subsection 2.4.1. The convergence performance of one or two algorithms

from each class will be studied by computer simulation.

In the literature on adaptive filters, the LMS is taken as the benchmark against
which all other algorithms are compared. This is appropriate because of the relative
simplicity and hence popularity of this algorithm. Conventional analysis of the LMS
[21,26] indicates that the time to converge is a function of the eigenvalues of the
autocorrelation matrix @,.. The greater the spread of the eigenvalues, the more
coloured or ill-conditioned the input signal is and the longer the algorithm takes to
converge. The best performance that can be achieved with an LMS algorithm occurs
when all the eigenvalues of the autocorrelation matrix are equal and hence the signal is
white. The analysis of the RLS algorithm is more complex than that of the LMS
[24,70, 58]. However it is apparent that the convergence rate of the RLS is insensitive
to eigenvalue spread and hence the RLS will in general converge faster than the LMS
algorithm. In fact it will outperform the LMS even under white input conditions [71].
There are thus three performance goals at which an adaptive FIR filter algorithm may

be aimed. These are: (i) LMS performance, (ii) LMS performance under white input
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conditions, and (jii) least squares performance. The goals (i), (ii), and (iii) coincide

with the three classes of algorithm already enumerated.

In comparing the performance of the various algorithms two specific applications
are considered. In section 3.2, system identification, the adaptive filter is used to
estimate the impulse response of an unknown system. In section 3.3, channel
equalisation, the adaptive filter is used to reduce the effects of intersymbol interference
on a digital communications channel. Although these two examples do not cover the
complete spectrum of adaptive filter applications, they represent the two major modes
of operation ie. direct and inverse system modelling. Also considered are the effects of
adding a white noise term first to the training input and second to the signal input of

the adaptive filter.

3.2 SYSTEM IDENTIFICATION

The architecture that was employed for the simulation of a system identification
problem is illustrated in Figure 3.1. A coloured input sequence { x(n) }, formed by
passing a zero mean white Gaussian sequence { z(n) } through a 3-tap FIR channel
with impulse response { ¢, }, was applied both to the input of the unknown system and
to the input of the adaptive filter. The system output, corrupted by an additive white
Gaussian noise term, m(n), was subtracted from the adaptive filter output, y(n), to
form the error term, e(n). The number of coefficients in the adaptive filter was 16,
corresponding exactly with the number of coefficients in the fixed FIR filter which was
used to simulate the unknown system. A selection of three channel impulse responses
was used in order to vary the degree of ill-conditioning on the sequence { x(n) }. The
impulse responses are given in Table 3.1 along with the associated condition number or

eigenvalue ratio [29] of the (16 X 16) autocorrelation matrix ®,,. All three channels

and the unknown system were chosen to have unit gain eg. 3¢ = 1. Thus with the
n



variance of the white sequence { z(n) } at unity, both the input and output sequences
of the unknown system had unit variance. This gave a convenient reference for the

variance of the additive noise and for calculating the step size of the stochastic gradient

algorithms.

The scenario illustrated in Figure 3.1 is essentially the same as that of subsecﬁon
2.2.2 with the exception that the input additive noise term has been removed. If a
unique solution to (2.2.8) exists, ie. if &, has a unique inverse, then the optimum
solution 4,, is equal to the impulse response of the unknown system. Multiple
solutions may exist when the power spectral density of the input sequence { x(n) } has
nulls. For all the examples considered here the input power spectral density is
broadband and hence a unique solution will always exist. In a more general system
identification scenario, as discussed in section 2.2.2, where another white noise term is
added to the input of the adaptive filter alone, the Wiener solution will not equal the
impulse response of the unknown system and hence the estimate formed by the

adaptive filter will at best be biased.

The performance measure which is most appropriate to the system identification

problem considered here is the norm

p(k) = E[ (B(k) = hop) (B (k) = kop) 1,

where h (k) is the impulse response of the adaptive filter at iteration k, and A,, is the
impulse response of the unknown system. This was estimated in all the simulations by
averaging over an ensemble of 25 runs of the adaptive filter. In all cases the adaptive
filter was initialised with an impulse response vector of all zero elements. The variance

of the noise sequence { n(n) } was set at -70dB with respect to unity.

The performance of five adaptive filter algorithms in the system identification
scenario of Figure 3.1 is illustrated in the graphs of Figure 3.2. The traces labelled "1"
and ™" are for the LMS algorithm defined in subsection 2.5.1 and the BLMS

algorithm defined in subsection 2.5.2 respectively. The trace labelled "3" is for the SM
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approach of section 2.3 using a autocorrelation estimate defined by (2.3.5). Only one
example of the SM algorithm is provided because of the poor performance of the
algorithm [31] and because no recursive form exists. The trace labelled "4" is for the
RLS algorithm defined in subsection 2.4.1. Finally the trace labelled "S" is for the

sliding DFT adaptive filter of subsection 2.6.1.

In a broad comparison of this nature, the selection of the step size or convergence
factor p for the stochastic gradient algorithms is not straightforward. The results of
[26] indicate that bounds on p necessary to ensure convergence in the mean of A (k) of
the LMS algorithm are not restrictive enough to ensure convergence in a MSE sense.
Recently [72] and [27] suggest an even more restrictive bound on p with similar results
being presented in [28] for the BLMS algorithm. Selection of the optimum value of p
that will produce the fastest convergence is more difficult still as it depends on having
an exact knowledge of the eigenvalues of the autocorrelation matrix @, [27]. In order
to make the analysis tractable, the results presented in [21, 26, 72,27], and [28] makes
assumptions that are more valid for a narrowband adaptive array applications than for
transversal filter applications. Hence these theoretical results cannot be expected to
predict the behaviour of a stochastic gradient adaptive filter exactly but they do explain

general trends and are aids in the selection of ..
For the purposes of this comparison a pragmatic approach was adopted. The

region of convergence [72,27]

1
3N E[x*(n)]

O<ps=

was chosen because of its practical advantages and because it is the most conservative
available in the literature. The value of p for the LMS algorithm was then chosen
arbitrarily to be at the midpoint of this region.

1
6NE [ x*(n) ]

‘L:
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1
= 3.2.1
6N (3-2.1)

The step size for the BLMS algorithm, p, , was set to N times this value ie.

1
Mb=Nﬂ-=g'

in an attempt to achieve the same convergence rate of the tap vector mean as the LMS
algorithm [14]. However in the light of the bounds on p,, [28], that ensure MSE
convergence of the BLMS algorithm ie.

< 1
0<v= WDEZT

divergence of the adaptive filter might be expected under some input conditions. For

the sliding DFT adaptive filter, the use of the adaptive step size, b_(—k_c-i--—l_)_’ is
equivalent to normalising the variance of each of the DFT bins to unity [Narayan et al

83]. Thus the variance at each input to the linear combiner is unity which implies that

a consistent choice of p_ for this algorithm is also Blﬁ

Under white input conditions the system identification problem of Figure 3.1 is
similar to data driven echo canceller problem discussed in [71] and the results obtained
for the ILMS and RLS algorithms, Figure 3.2(a), are consistent with those obtained in
[71]. The performance of the LMS algorithm under these conditions is predicted well
by the theoretical results of [26] and [73]. These results indicate that the LMS
algorithm will converge at a constant rate in dBf/iteration until the noise floor is
reached, in this case -70.0 dB. The rate is determined by the value of p which is
chosen and the number of taps N. The final value which is achieved is a function of
and the noise variance E[m%*(n)]. The fastest rate of convergence that can be

obtained under white input conditions is,

10 logw[ ﬁA—i-l— ] dB /iteration (3.2.2)
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1
2N E[x*n) ]

and is obtained when p is This gives a final value for p of

E[m*(n) ). The value of p used here, (3.2.1), is smaller than this and hence the rate
of convergence would be expected to be slower than (3.2.2) and the final value
expected to be smaller than E[n*(n)]. As noted in [71] , the RLS algorithm
outperforms the LMS algorithm even under white input conditions. An important
point to note about the performance of the RLS algorithm is the sudden decrease in
convergence rate once the noise floor has been reached, Figure 3.2(a). Thus in
choosing between the LMS and the RLS for a particular application, consideration
must be given as to where the required performance level is with respect to the noise
floor. If the performance goal was -50dB then clearly the RLS is the best choice.
However if the performance goal was -90dB then the LMS might be expected to reach
this level in a similar time to the RLS if the value of p was set initially for fastest
convergence and then decreased by a factor of 5 once the noise floor was reached [26].
The LMS is then the best choice since it is the simplest algorithm. In general, when
the noise level is high and the eigenvalue ratio is small, the convergence rates of the
LMS and RLS algorithms are almost the same [44]. Turning to the BLMS algorithm,
it is evident that under white input conditions its performance is very similar to the
LMS algorithm, Figure 3.2(a). The staircase nature of trace ’2’ emphasises the block

nature of the algorithm ie. the tap vector is only updated every N data points.

As the ill-conditioning of the input sequence is increased, Figure 3.2(b), the
performance of the LMS algorithm degrades and it takes longer to converge than
under white input conditions. The performance of the RLS, on the other hand, is
only slightly affected by the increase in eigenvalue ratio. The only noticeable
difference being below the noise floor. The BLMS algorithm is inferior to the LMS
under these coloured input conditions. Turning to the sliding DFT algorithm, the
performance illustrated in Figure 3.2(b) for a mildly ill-conditioned input sequence is
very close to the performance of the LMS under white input conditions, Figure 3.2(a).

This result emphasises an important point, namely that the performance goal for the



transform domain or quasi-orthogonalising algorithms such as the sliding DFT is LMS
performance under white input conditions and not RLS performance. An ideal
orthogonalising transform is of coarse the Karhunen-Loeve transform or a lattice filter
structure whose PARCOR coefficients where calculated from prior knowledge of the
autocorrelation matrix ®,,. This is in sharp contrast to the least squares lattice
structure [52], whose PARCOR coefficients are calculated from r_, (k) and are hence

time varying.

Finally if the input sequence is highly ill-conditioned, Figure 3.2(c), the LMS and
BLMS algorithms do not converge even as far as the noise floor within a time window
of 1000 iterations. In fact for this example the BLMS algorithm appears to be on the

verge of instability. Even the performance of the RLS algorithm is degraded under

these severe conditions. This result is to be expected in the light of (2.4.19) which is

restated here.

ELCL() ~ by ) (B(K) = by ) ] = 2 @0

An expression for the norm can be obtained by taking the trace of the above error

covariance matrix and applying the eigenvalue decomposition of (2.5.12).
Eopr o _
p(k) = m( == 237)

é’kﬂ-tr( VATV

1
P 2 N (3.2.3)

When the input sequence, { x(n) }, is white all the eigenvalues are equal and the

expression for the norm reduces to,

p(k) = gz,, N. (3.2.4)
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Thus the effect of the coloured input sequence is to increase the norm from the the

baseline of (3.2.4) by a factor

131
10 log, N .'go -):— dB
The sliding DFT adaptive filter has degraded noticeably from the performance of the
LMS under white input conditions. Such a loss in performance is to be expected as the
sliding DFT is only a quasi-orthonalising structure. Thus the algorithms in order of

increasing sensitivity to eigenvalue spread are: RLS, sliding DFT, LMS, and BLMS.
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Table 3.1

CHANNEL IMPULSE RESPONSES

Channel No.

Impulse Response

Eigenvalue Ratio '

1 1.0000 + 0.0000 ! + 0.0000 z 2 1.0
2 0.2602 + 0.9298 : -1 + 0.2602 z 2 11.8
3 0.3842 + 0.8704 2" + 0.3482 72 68.6

1 the eigenvalue ratio is for a 16-tap filter.
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Figure 3.2(a) SIMULATION RESULTS ( System Identification )
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Figure 3.2(b) SIMULATION RESULTS ( System Identification )
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Figure 3.2(c)

SIMULATION RESULTS ( System Identification )
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3.3 CHANNEL EQUALISATION

The structure that was used for the simulation of a channel equalisation problem
is illustrated in Figure 3.3. For this example the block marked 'channel’ is used to
model the intersymbol interference on a digital communications channel [9]. The zero
mean white binary. sequence, {y(n) }, represents the digital message which is first
convolved with the channel impulse response sequence, { ¢, }, and then corrupted by
adding a zero mean white Gaussian noise term, {v(n) }, to form the input to the
adaptive filter in the receiver, {x(n)}. The adaptive filter then forms a linear
estimate, y (n), of the each symbol, y(n). As in section 3.2, the number of coefficients
in the adaptive filter was 16 and a selection of three channel impulse responses, Table
3.1, was used in order to vary the degree of ill-conditioning on the input sequence to
the adaptive filter. The variance of the message sequence, { y(n) }, was set to unity,
again to provide a convenient reference point for the variance of the additive noise and

for calculating the step size p.

The purpose of the adaptive filter in the receiver is to minimise the MSE,

E[(y(n—d) —3(n))*] (3.3.1)

The positive integer d, where 0 = d < N, is to allow for the possibility of fixed lag
smoothing, which is often necessary to achieve a particular performance level. For the
purposes of these simulations a value of 8 was used for d. The impulse response, h,, .
which minimises the MSE is again provided by the solution of the Wiener equation
(2.2.9). However in this scenario, because the additive noise term contributes to the
input sequence { x(n) } and hence to the autocorrelation matrix @, , it will effect

both the optimum solution k,,, and the MMSE that is achievable.

The performance measure which was used for this adaptive equalisation problem
was the MSE of (3.3.1). This is perhaps not as appropriate as the probability of error

for this scenario, but it is more straightforward to calculate and illustrates the transient
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behaviour of the adaptive filter algorithms well. The MSE was estimated in all
simulations by averaging over an ensemble of 25 runs. In all cases the adaptive filter
was initialised with an impulse response vector of zero elements. The variance of the
noise sequence, { v(n) }, was set to -35 dB with respect to unit variance. The results
of the simulations are illustrated in the graphs of Figure 3.4. The labelling of the

traces and the choice of . is consistent with what was used for the system identification

problem.

The channel equalisation problem is not as useful as the system identification
problem for comparing the performance of a range of adaptive filter algorithms. This
is because in changing the channel in order to increase the ill-conditioning of the input
sequence, the optimum solution, 4,, , and hence the MMSE is also altered. However
channel equalisation is an important practical problem and is a classic example of
inverse system modelling or deconvolution. Also, unlike system identification, the
training signal to the adaptive filter is noise free. This is reflected particularly in the
performance of the RLS algorithm, where the time to converge to the minimum MSE
is independent of eigenvalue spread of the input sequence { x(n) }, Figure 3.4. Most
of what was stated about the other algorithms in section 3.1 is also evident in the
channel equalisation problem. The LMS degrades rapidly as the degree of ill-
conditioning increases. The performance of the sliding DFT algorithm under mildly
coloured input conditions, Figure 3.4(b), is close to LMS performance under white
input conditions, Figure 3.4(a). Under severely coloured input conditions, Figure
3.4(c), the performance of sliding DFT algorithm degrades slightly. One notable
difference between the channel equalisation examples and the system identification
examples is in the performance of the BLMS algorithm. eq. in Figure 3.4(c) the
convergence rates of the BLMS and LMS algorithms are almost identical whereas in
Figure 3.2(c) they differ significantly. This may seem suprising at first as the
autocorrelation matrices for the examples of Figure 3.2(c) and Figure 3.4(c) were

almost identical. However the higher order statistics of the input sequence in the two
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scenarios were different. Therefore since most of the standard analysis of the LMS
and BLMS algorithms only take account of first and second order statistics [26, 14], or
assume that all random variables are Gaussian [27,28], it is to be expected that some
changes in performance will occur when the distnbution of the input and training
signals change in such a way as to leave their first and second order moments
unaltered. Thus, for the channel equalisation problem, the algorithms, in order of

increasing sensitivity to eigenvalue spread, are: RLS, sliding DFT, and LMS/BLMS.
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Figure 3.4(a)

SIMULATION RESULTS ( Channel Equalisation )
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Figure 3.4(b) SIMULATION RESULTS ( Channel Equalisation )
eigenvalue ratio = 11.8 ( channel no. 2)
additive noise = -35.0 dB
no. of taps = 16
ensemble = 25
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Figure 3.4(c) SIMULATION RESULTS ( Channel Equalisation )
eigenvalue ratio = 68.6  ( channel no. 3)
additive noise = -35.0 dB
no. of taps = 16
ensemble = 25
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3.4 SUMMARY AND CONCLUSIONS

Because of the difficulty in obtaining rigorous analytic results for the convergence
properties of a broad selection of adaptive FIR filter algorithms, an experimental
comparison was made using computer simulation. The results of these experiments
confirm many of the key properties suggested by approximate analysis. In particular,
the performance degradation of the SG algorithms when the input sequence is highly
ill-conditioned, the fast consistent convergence of the LS algorithms, and the role of
the quasi-orthogonalising algorithms as a compromise in performance between the
IMS and the RLS algorithms. It is not belicved that a broad comparison of this

nature appears anywhere else in the literature.
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Chapter 4

A SELF ORTHOGONALISED BLOCK ADAPTIVE FILTER

4.1 INTRODUCTION

In the area of adaptive filtering the RLS [24] and the LMS [21] are the two
major alternatives in a trade off of convergence performance against computational
complexity. The conventional RLS algorithm requires a number of computations per
new data point that is a function of the square of the number of coefficients (N) in the
finite impulse response (FIR) filter ie. order N2 (O(N?)). By exploiting the shift
invariance properties [25] this has been reduced to O(N ). This and subsequent
developments [52,55,47,48] make available the consistent rapid MSE convergence
properties of the RLS algorithms at a computational cost, which is of the same order as
the more commonly used LMS algorithm, whose convergence properties are generally
poor [26]. However the RLS algorithm still represents a computational load which is
significantly higher than the LMS algorithm. Typical figures being 10N multiplications
per new data point for the RLS algorithm compared with 2N for the LMS algorithm.
The original aim of work that is presented in this chapter and in [74] was to find an
algorithm that lay between the RLS and the LMS in both computational complexity
and performance and whose rate of convergence was independent of the input signal
conditioning. In fact the algorithm that has been developed goes beyond this initial
goal in that it represents a significant reduction in computational load compared to an

LMS algorithm for moderate to large values of N.

The first question to pose is what algorithms already exist which might provide a
combination of computational complexity and performance which is between that of
the LMS and RLS algorithms? A survey of the literature rapidly yields the term self
orthogonalising. The concept originated in [75,76,77] and was a result of the

convergence analysis of the LMS algorithm and the recognition of the associated
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dependence of the rate of convergence of the LMS algorithm on the eigenvalues of the
input autocorrelation matrix [21]. A self orthogonalised algorithm involves
constructing a linear operator ( transform or preprocessor ) which maps the input N-
vector x to an N-vector g such that the elements of g are mutually orthogonal. Given
this the matrix Ef uu™ ] is a diagonal whose eigenvalue spread can be normalised to
unity by dividing each element of g by the square root of the appropriate eigenvalue.
The resultant N-vector z is white with unit variance ie. E[zz]isan (N X N) identity
matrix. If the vector z forms the input to an LMS algorithm it is straightforward to
predict using the convergence analyses of [26] and [27] that the complete structure (
linear operator + eigenvalue normalisation + LMS ) will converge ( in a MSE sense )
under any input conditions at the same rate as an LMS algorithm would under white
input conditions. This technique is equivalent to multiplying the gradient term in an

LMS algorithm by the inverse of the input autocorrelation matrix E[ xx7 ] [77, 29].

Only in a limited number of applications such as [78] is the input autocorrelation
matrix, or equivalently an orthogonalising operator, known a priori and hence for
general purpose applications two suboptimum techniques have been suggested. In the
first a fixed linear operator such as a DFT or DCT is chosen that performs an
approximate orthogonalisation of the input vector [29, 67]. The subsequent processing
proceeds as if the orthogonalisation was exact. In the second the autocorrelation
matrix is estimated directly from the data, inverted and used to multiply the gradient
estimate [77]. These two techniques might be classified as explicit and implicit
orthogonalisation respectively. However it should be noted that the form of estimate
for the input autocorrelation matrix identified in [77] as the ideal self orthogonalising
algorithm gives rise to the RLS algorithm. It is clear from [71] that even under white
input conditions the RLS algorithm may outperform the LMS algorithm.
Consequently it must be concluded that an RLS algorithm does more than merely
orthogonalise the input signal and therefore it should not be classified as an self

orthogonalising algorithm.
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Explicit orthogonalisation techniques have been applied to FFT [79] based block
adaptive filters [ 80,81]. The FFT is used in the BLMS algorithms of [ 14] and [82] to
provide fast convolution and fast estimation of the gradient. As a by-product of this
implementation the FFT of an augmented input vector is available ie. a fixed transform
that performs approximate orthogonalisation. Bartlett spectral estimation has also been
considered in an attempt to improve the quality of this approximation [81]. If however
other fast convolution algorithms such as the Fermat number transform (FNT) [83] or
the rectangular transform (RT) [62] are to be applied to a self orthogonalised block
adaptive filter as they have been applied to the BLMS algorithm [84, 85] then since
they cannot be assumed to exhibit even approximate orthogonalising properties an

implicit approach must be considered.

The self orthogonalising block adaptive filter (SOBAF) [74] that is described in
this chapter is a unique alternative to the RLS and LMS algorithms. It provides a
combination of computational load, which is significantly less than the LMS algorithm,
and consistent convergence performance, which lies between that of the LMS and RLS
algorithms, but unlike the LMS is virtually independent of the input statistics.
Therefore it is well suited to applications where neither the LMS nor the RLS
algorithm can provide the correct trade off of computational load against convergence
performance. The computational efficiency is achieved by using a block filtering
structure which is similar to the BLMS algorithm [14] and hence may exploit either
FFT ([79] or RT [62] efficient circular convolution algorithms. The convergence
performance is achieved by using an implicit self orthogonalising technique, which
ensures that the algorithm will converge under any input conditions at the same rate as

an LMS algorithm would under white input conditions.

The chapter is subdivided in the following manner. In section 4.2 the theoretical
development of the algorithm is presented and the results verified, in section 4.3, by
computer simulation. Section 4.4 contains the arguments that lead to a practical

SOBAF algorithm along with details of how it can be implemented efficiently. In
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section 4.5 the computational load of the proposed filter is assessed. Finally, in section
4.6, results from computer simulations are presented which confirm that the practical

SOBAF achieves the convergence performance that was promised in the theoretical

considerations of section 4.2.

4.2 THEORY

Consider a stationary sequence of N-vectors {x(i)}, which is zero mean
uncorrelated in time and jointly Gaussian. The sequence is completely described by

the (N X N) autocorrelation matrix ¢_ where,

P, =E[x(@)x"@)].

Although the matrix is positive semi-definite, in many applications it can be assumed

to be positive definite in which case there exists an (N X N) matrix Q such that

QTQxe =IN

where Iy, is an (N X N) identity matrix. The matrix Q is not unique [39]. A second
sequence of N-vectors, { z(i) }, which is uncorrelated in time and zero mean may be

generated from { x (i) } using the matrix Q7.

z(i) = Q7 x(i) (4.2.1)

Therefore Q7 may be considered to be a whitening filter since,

@, =E[z())2"@) ] =1y

Because of the special structure of @, ie. it is diagonal with equal eigenvalues, a
stochastic gradient search adaptive filter with input {z(i)} will achieve rapid
consistent convergence rates. Further, since { z(i) } is also uncorrelated in time zero
mean and jointly Gaussian [24], the theoretical results of [27,28] may be applied

directly to give: (i) bounds on the step size p, that ensure convergence in a MSE

83



sense, and (ii) a single optimum value p,, for fastest convergence.

To the sequence of N-vectors {z(i) } apply a BLMS algorithm [14] of block

length L to form an estimate { y(i) } of the stationary scalar sequence { y(i) }. The

aim is to minimise the MSE
E[(y(i) —y@) )]
The estimate y (i) is linear and is formed using the weight N-vector w ie.

YE)=2zT@i)w (4.2.2)

The optimum solution which minimises the MSE is given by,

Worr = R E[2(i) (i) ]

=E[z(@i)y(@i)].

The BLMS algorithm is defined by the following three equations [14].

5G) = 1) G -1) (4.2.3
e(i) = () - 30 (42,4
w(i) = w(-1) + 2 0G) () (42,5

where
yG)=[yGL)yGL-1) --- yGL-L+1)J
$G) = [SGL)FGL-1) -+ FGL-L+1) I

and
F0) = [2GL) 2GL-1) - 2(L-L+1)]

The index j is known as the block number, where a block contains L data vectors.
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The weight vector w is only updated once per block.

Using the theoretical results of [28], a recursive relationship for the block MSE

o2 is obtained.

opt

2/ :\ 4“‘b2 2 . 4“.3
o2(j)=|1-4p, + i (L+N+1) | o2(j-1) + | 4p, — L—(L+1) o’

(4.2.6)

where
02() = TE[7() e(i) ]

and ofp, is the minimum MSE that is obtained when the weight vector w,,, is used.
oo = E[(y(i) — s, 2(i) )*]

Equation (4.2.6) yields bounds that ensure MSE convergence,

L
0= p, < TINTD) (4.2.7)

and a value p,, which gives fastest convergence [28].

_ L
Hopt = (L+N+1)

Equations (4.2.1), (4.2.3), (4.2.4), and (4.2.5) thus define a self orthogonalising block
adaptive filter whose MSE convergence is ensured provided p, is chosen within the
limits of (4.2.7) and whose rate of convergence is independent of the eigenvalues of

the autocorrelation matrix @, (4.2.6).

This self orthogonalising block adaptive filter may be reformulated in terms of an

overall weight vector 4 where

y@)=x"(i)h (4.2.9)
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such that explicit knowledge of the matrix Q is unnecessary. Combining (4.2.9) and

(4.2.1),
y@)=x"()Q w

from which a relationship between 4 and w is obtained.
h=Q0w

Application of (4.2.1) and (4.2.10) to (4.2.3) and (4.2.5) yields

YG) =x(U)aG-1)

and

218,
BG) = BG-1) + 222 ¥ () e ()

where

x"(U)=1x(L)x(GL-1) --- x(JL-L+1)].

4.2.1 Comparison of Theory with Simulation

(4.2.10)

(4.2.11)

(4.2.12)

The theoretical results presented above rely on the assumption that the sequence

{ x (i)} is uncorrelated in time and jointly Gaussian. For an adaptive transversal filter

application the sequence { x(i) } is never uncorrelated in time since

x()=[x@)x@-1) --- x(—N+1 ]

and

(-1 =[x(@-Dx(i-2) --- x(—-N) T

and is rarely exactly Gaussian. The aim of this section is to test the validity of the

theoretical convergence results, summarised in (4.2.6), for the particular case of an
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adaptive transversal communications channel equaliser where neither assumption is

true.

A typical equaliser scenario is illustrated in Figure 3.3. The digital message is a
zero mean binary distributed white random sequence {y(n)}. The channel is
modelled by a FIR filter whose output is corrupted by a zero mean white Gaussian
sequence { v(n) }. The role of the adaptive filter is to form a fixed lag estimate of the
channel input. The training signal for the adaptive filter is thus { y(n —d) }, where d
is a positive integer. For the purposes of the simulations presented here, a 3-tap
channel was used ( channel no.3, Table 3.1 ). The signal-noise ratio, defined as
E[ y? VE[v?], was set at 35dB. The self orthogonalising adaptive algorithm, defined
by (4.2.4), (4.2.7), (4.2.11), and (4.2.12), was used to update a 16-tap transversal
equaliser. The block length, L, was set at 16. Under these conditions the

autocorrelation matrix, @, , has a maximum/minimum eigenvalue ratio of 68.8. To be

consistent with chapter 3 the step size, p,, was set at -é— The convergence

performance of the algorithm is illustrated in Figure 4.1 on which is shown both a
measured MSE calculated from an ensemble of 25 runs and a theoretical MSE
calculated from (4.2.6). This clearly emphasises the close agreement between theory

and practice.
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Figure 4.1 COMPARISON OF THEORY WITH SIMULATION
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4.3 A PRACTICAL ALGORITHM

In this section a new block adaptive filter algorithm is described. This algorithm
is a unique combination of three concepts. The first involves the performance goal,
which is chosen to be the MSE convergence of a self orthogonalised stochastic gradient
search algorithm, summarised in (4.2.6). In words, the adaptive filter should
converge, in a MSE sense, under any input conditions, at the same rate as it would if
the input sequence was white. Thus the self orthogonalised algorithm will not, by
definition, exhibit a sensitivity to the eigenvalue spread of the autocorrelation matrix
P, that is a characteristic of both LMS [26,27] and BLMS [28] algorithms. However
it should also be noted that this performance goal is not equivalent to the performance
of a RLS algorithm, since even under white input conditions the RLS algorithm will

outperform a stochastic gradient search algorithm [71].

The second concept involves the choice of an estimator for the autocorrelation
matrix. In a general adaptive filter application, the autocorrelation matrix is unknown

and hence the tap weight update, (4.2.12), must be replaced by,

2 $210) x70) £ () (43.)

B(j)=h(-1) +

where ®_ (j) is an estimate of @, at block j. Several possible estimates of ®_ exist in

the literature. The most notable is.

b, () = 71[24:(:') £ (i) (4.3.2)

However the use of this estimate would produce a RLS block adaptive filter structure
[85]. Hence it is considered inappropriate here as its convergence performance would
not be that of a self orthogonalised stochastic gradient filter. Further, computationally
efficient RLS block adaptive filter algorithms already exist [38]. In the estimation
technique that is considered here the matrix ®_(j) is assumed to be symmetric

Toeplitz. Thus each element may be generated from knowledge of the first column
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p (j) where

BG) = [PoUL) BLUL) - - PvaUL) T

and

AUL) = 2 S x(i)x(i—k) O=k<N.
L =3

The vector p (j) may thus be updated on a block by block basis.

B'0) = 8'G-1) + +8p()) (43.3)

p() = i—é'm (4.3.4)
where

() = x"(U) & () (4.3.5)
and

5 =[x(GLYx(GL-1) -~ x(GL-L+1) T .

The Toeplitz assumption also allows the application of computationally efficient

techniques such as the Levinson recursion [22] and more recently [86] for the solution

of

$.()8h(G) = c(j) (4.3.6)
where

c(j)=x"0)el). (4.3.7)

It is well known in equaliser [31], and spectral estimation [11] applications that the
Toeplitz assumption produces poorer performance than the estimate of (4.2.2). Hence
the choice of a Toeplitz assumption here may be interpreted as reflecting a desire to

degrade the performance of the algorithm from that of an RLS structure to that of a
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self orthogonalised structure.

The third concept involves the application of computationally efficient circular
convolution algorithms, of which the fast Fourier transform (FFT) [79] and the
rectangular transform (RT) [62] are but two examples, to produce an adaptive filter
algorithm which is itself computationally efficient. This technique has been the
motivation behind the development of the BLMS algorithm, which is computationally
superior to the LMS algorithm. To utilise this technique, the linear convoluﬁon
operations are first identified. In this case they are (4.2.11), (4.3.5), and (4.3.7). Of
these three, (4.2.11) and (4.3.7) are common to both the BLMS and the self
orthogonalised structures. The existence of (4.3.5) is a direct result of the Toeplitz
assumption on P, , and is a significant factor in making that assumption. Each of
these linear convolution operations is then performed using a combination of either
overlap-add or overlap-save data sectioning [7] and a circular convolution algorithm.
To simplify the notation, only overlap-save and a block length L = N will be
considered here as these are known to produce the most efficient adaptive filter

structures [61] This does not however detract from the generality of the results.

The linear convolution of (4.2.11), (4.3.5), and (4.3.7) are obtained in the

following way. Taking (4.2.11) as an example,

y(U) = x0G) (-1

I TvaG-1 | |1
=[Oy Ty ] J* h(j-1)

l Ty x(J) Oy

=[On Tv ] Coy {XU)X H(j—l)}

where
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Ty £(j—1)

Y = B
X(J) o Ty I(])
and
In
H(-1)=Aw o, h(j-1) .

The two (M X 2N) matrices A,y and B,y and the (2N X M) matrix, C,y, define a
circular convolution machine which operates on 2N-vectors, M = 2N. The matrix /
is an (N X N) identity matrix, the matrix O, is (N X N) with all zero elements, and
the (N X N) time reversal matrix, Ty, has 1’s on the secondary diagonal and zeros

elsewhere. The complete algorithm is summarised in Table 4.1.
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Table 4.1 A SELF ORTHOGONALISED BLOCK ADAPTIVE FILTER

XG) = B Ty x(j-1)
)= B Ty x(J)
Iy
H({-1) = Ay o, h(j-1)

YU) =[O0y Ty ] Cay {X(j) X H({G-1) }
(i) = y() - 30)
Iy
EG) = Aw l ]ﬁ(.l)
Oy
c()=[0x Ty ] Cw {X(j)xEO)}

Iy
X'() =Axw [ x(j)
On

8p(j) =[Oy Ty ] Con [X(j) X X'() }

'U) =

(AS N
(AN

G-+ 380

lr—-'

()= <2'0G)

",
S

3a(j) = 23'() c(h)

BG) = hG-1) + 228 ())
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4.4 COMPUTATIONAL COMPLEXITY

Computationally efficient implementations of the SOBAF are obtained when the
Ay, Byy and C,y matrices are replaced with the appropriate matrices which define
the RT, FFT, or NTT. An FFT based implementation is considered here for the
evaluation of the computational load of the algorithm. The particular FFT algorithm
is based on the radix-2 formulation [1] and efficiently exploits the fact that real data
rather than complex data processing is required [87]. It is also assumed that a complex
multiplication is implemented through four real multiplications and two real additions.
The Toeplitz system of equations, (4.3.6), is solved using the Levinson recursion [22].

Given these assumptions, the average computational load involved in processing each

new data point is as given below.

A =2N + 21log, N + 41 + N | (4.4.1)
= 28
M =2N + 14log, N + 11 + N (4.4.2)
D=1-+ (4.4.3)
N

The symbols A, M and D denote numbers of additions and/or subtractions,

multiplications and divisions respectively [74].

In computing the number of operations in the filter structure, the well known
Levinson recursion [22] has been used to solve the Toeplitz system of equations,
(4.3.6). Significant further computational savings can be achieved by exploiting
recently reported fast algorithms for solving the Toeplitz system of equations
[88,89,86]. The technique dealt with in [86] is of particular interest since the FFT
algorithm is employed to perform block convolution. The entire algorithm of [86]

requires
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2.5N log, N log; N + 11.5N log;N + 6N multiplications

and the same number of additions to solve a Toeplitz system of N equations. Applying
this technique to the FFT based SOBAF and computing the number of operations, the

average number of operations per single output sample of the filter is found to be

A= logzN[Z.S log, N + 25.5 ] + 18 + %1- (4.4.4)

M = 1og21v[2.5 logy, N + 32.5 ] + 47 + }—3- (4.4.5)

p=1-2L (4.4.6)
S 4.

The computational load of an LMS algorithm is O( N ), ie. the number of
operations increases linearly with the number of taps in the transversal filter. An FFT
based BLMS algorithm on the other hand is O ( logN ). Thus an FFT based BLMS
algorithm has a significant advantage in computational efficiency over an LMS
algorithm for moderate to large N. As mentioned already, the SOBAF requires the
solution of a Toeplitz set of equations. Using the Levinson recursion this requires
O ( N?) operations, which reduces to O ( N ) since the equations are only solved once
per block. Although the remaining operations in (4.4.1) and (4.4.2) are at most
O ( logN ), the linear term will dominate and hence the overall computational load is
O(N ), which is the same as an LMS algorithm. If however the fast inversion
technique of [86] is applied to the solution of the Toeplitz equations, then the

computational load of the SOBAF is O ( logN ), (4.4.4) and (4.4.5).

In Figure 4.2 and Figure 4.3 the computational requirements of two FFT based

SOBAF implementations are compared with an LMS algorithm and an FFT based

BLMS algorithm. Both an implementation using the Levinson recursion and one using

the fast algorithm of [86] are considered. These graphs clearly illustrate the dramatic

reduction in computational load that can be achieved when the fast inversion technique
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is employed in the SOBAF. Thus, in common with the BLMS algorithm, the SOBAF
can exhibit a significant decrease in computational load with respect to the LMS

algorithm for moderate to large N.
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Figure 4.3
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4.5 SIMULATION RESULTS

The performance of the SOBAF, summarised in Table 4.1, was examined using
the equaliser scenario described in section 3.3 and illustrated in Figure 3.3. As in
chapter 3 the FIR channels of Table 3.1 where used in order to vary the
maximum/minimum eigenvalue ratio of the autocorrelation matrix, ¢ . For these

experiments a 16-tap transversal equaliser was used, the signal/noise ratio was set at

35dB, the step size u, was %— and the MSE was calculated from an ensemble of 25

runs. The BLMS algorithm of subsection 2.5.2 was used as a reference against which

to compare the performance of the SOBAF. The results are illustrated in Figure 4.4

and Figure 4.5.

As the eigenvalue ratio of the input autocorrelation matrix is increased from 11.8
to 68.6 the performance of the BLMS algorithm gets poorer. The performance of the
SOBAF, on the other hand, changes very little as the eigenvalue ratio is increased.
Comparison of Figures 4.5 and 4.1 indicates that the MSE convergence performance of
the SOBAF of Table 4.1 is well predicted by the theoretical result summarised in
(4.2.6) and is very similar to the exact algorithm of section 4.2 which uses a-priori
knowledge of the autocorrelation matrix. It is clear from Figures 4.4 and 4.5 that the
SOBAF is insensitive to the eigenvalue spread of the input autocorrelation matrix and
has a MSE convergence performance equivalent to a BLMS algorithm under white

input conditions.
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4.6 CONCLUSIONS

The SOBAF of Table 4.1 is a unique adaptive filter algorithm. In computational
load, an FFT based SOBAF is superior to an LMS algorithm for moderate to large N,
being of the same order as a BLMS algorithm ie. O ( logN ). The SOBAF is thus a
very efficient algorithm, computationally. The block nature of the SOBAF also
permits the use of other efficient circular convolution algorithms such as the RT and
the NTT. In performance, the SOBAF achieves the MSE convergence of a self
orthogonalised structure, ie. the adaptive filter converges under any input conditions
at the same rate as it would if the input was white. Further, the selection of the step
size ., is more straightforward than for LMS and BLMS algorithms. This is because
both the range of p, that ensures MSE convergence and the value of p, for fastest
convergence are independent of the input autocorrelation matrix. In fact, for a given

application, the approximate performance of the algorithm is easily predicted a-priori

from (4.2.6).
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Chapter 5

THE INFINITE IMPULSE RESPONSE LINEAR EQUALISER

5.1 INTRODUCTION

In many adaptive filtering problems, solutions that use purely FIR filters can
provide acceptable performance [73,8,90]. Indeed FIR filters are generally to be
preferred as they are unconditionally stable and because of the wide selection of well
understood adaptive FIR filter algorithms that are available, cf. chapter 2. However
these FIR realisations suffer from problems of indeterminate order when it is necessary
to model transfer function poles. In particular, when the poles of transfer function are
close to the unit circle in the z-plane, a FIR filter of high order may be required to
meet a particular performance goal [91]. The obvious alternative has been the

adoption of adaptive IIR filters.

Adaptive IIR filtering is a less mature, less well-understood subject than adaptive
FIR filtering, witness recent textbooks such as [15,16,92] that are devoted almost
exclusively to adaptive FIR filtering in comparison with a review article such as [93]
that chronicles the current state of knowledge and major open issues to be resolved in
adaptive TIR filtering. In the light of this situation only one specific application of
adaptive TIR filtering is considered in this chapter rather than a broad comparison such
as that which was presented in chapters 2 and 3 for adaptive FIR filters. The
particular application is an adaptive IIR linear equaliser whose function is to mitigate

the effects of intersymbol interference on a digital communications channel.

The IIR equaliser has received little attention in recent years due to the
development of the decision feedback equaliser (DFE) [94]. However, although the
DFE has superior MSE performance compared to the IIR equaliser, the latter has an

inherent advantage in that it does not utilise previous decisions in forming an estimate
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of the transmitted symbol and hence, unlike the DFE [95], will not propagate decisions

€ITOors.

This chapter is organised in the following manner. In section 5.2, the linear
equaliser is defined, a closed form solution to the optimum IIR equaliser is derived
and the structure of the IIR equaliser is investigated. In section 5.3, the MSE
performance of IIR and FIR linear equalisers is compared. Finally in section 5.4, the
adaptive IIR equaliser is investigated and reformulated as a system identification

problem. Several candidate adaptive IIR solutions are described.

5.2 THE LINEAR EQUALISER

A digital communications channel with intersymbol interference may be modelled
by an equivalent discrete time transversal filter with additive white noise [9]. Thus the
channel output x(k) may be written in terms of the channel input s(k) and the noise

n(k) as,

x(k) = h" s(k) + n(k) (5.2.1)

where 4 is the M point impulse response vector

B" = [hohy - -~ hy - |
and the vector g (k) contains the last M inputs to the channel.
sTk)=[sk)stk-1) --- stk—M+1)]

One possible equaliser structure is illustrated in Figure 5.1. This equaliser consists of a
linear filter section followed by a non-linear slicer or decision circuit. The linear filter
is designed to minimise the error between the filter output and the input to the

channel. A MSE cost function, L, is usually used.

L =E[(u(k)—dk))]
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where

u(k) = s(k—d)

and

G(k) = §(k—d) .

Since the filter is linear, §(k —d) is a linear estimate of s(k-d). The delay term d,
d = 0, allows for the possibility of fixed lag smoothing. The non-linear slicer makes
decisions on a symbol by symbol basis. Thus for binary pulse code modulation where

s(k) may be either +1 or -1 the slicer output, m(k), is defined by:

m(k) = +1 if§(k) = 0

m(k) = —1 if§(k) <0

From the above it is clear that the major design effort for this form of equaliser is
concentrated on the linear filter section, where linear estimation theory is applied with
a view to minimising the mean-square error L at the input to the decision circuit.

Hence this structure is described as a linear equaliser.

Usually the linear filter takes the form of a finite impulse response (FIR)

transversal filter of order N-1 [9].

d(k) = ¢’ x(k)

where
" =[coecr "+ eval

and
xT(k)=[x(k)x(k-1) --- x(k-N+1)]
d=N -1
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Under these conditions and provided the processes s(k) and x(k) are jointly stationary
then the tap vector ¢,, which minimises the mean-square error L is given by the

solution of the Wiener equation.

Lo Copr = Rus (5.2.2)

where

£9
i

E[x(k)x"(k)]

and

D, =E[x(k)u(k)]

The MMSE, L;, that can be achieved using a FIR filter of order N-1 is

Lr = E[s*k)] — ¢k, L0 - (5.2.3)

The FIR filter is extensively used in practical linear equalisers because it is
unconditionally stable and because of the existence of many adaptive filter algorithms

for the calculation of ¢,,, when the channel impulse response vector 4 is unknown.

In deriving the optimum transversal equaliser the MSE, L, is minimised subject to
the constraint that the impulse response is finite, causal and stable. If this condition is
replaced with a less stringent one, i.e. the filter should be causal and stable, the
solution to the minimisation problem is provided by the infinite impulse response (IIR)
Wiener filter. The optimum IIR filter is defined in terms of the z transform of its

impulse response sequence { g (k) } [96].

G(z) =Z{g(k)}

k:i"g(k)z-*

1 Ru(z)
Rz(z) [R,;(z) ]+ (5.2.4)
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where
Ra(z) = Z{ 0 (1)}
®, (1) = E[x(k+1)x(k)]
Ru(z) = Z{®. ()}

P, ()=E[uk+!)x(k)]
The power spectrum R, (z) is factorised as follows:

R.(z) = R3(z) R:(z)

RI(z) has all poles and zeros inside the unit circle in the z-plane. R ;(z) has all

poles and zeros outside the unit circle. The notation [.], represents the causal part of

[.]ie.
[Ru(z) ] _ [Ru(z)] . lR..,(z)}
R (2) Re(2) |. | Ra() |-

All the poles of [.]. are inside the unit circle and all the poles of [.]_ are outside the

unit circle. The optimum IR Wiener equalising filter, assuming a white input signal

s(k), can be written down from (5.2.4).

G(Z)"—' 1 [ z™ H(Z_I)O'sz ]'
(HG) HG ) ol + o2 | l (HOHGD o7+ al} |
(5.2.5)
where
H(z) = Z{h } = ghk 7 (5.2.6)
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and
E[n(k)nk+1)]=0a28()

E[s(k)sk+1)]=0c2d()

(/) is the Dirac delta function. The MMSE L, that can be achieved by use of the IIR

Wiener filter is obtained by use of the orthogonality principle [96].

L,

E[(u(k) —i(k) )]

E[ (u(k) —d(k))u(k)]

=E[u®(k)] - E[d(k)u(k)]

o2 [1 — S e(i) h(d—i) (5.2.7)
i=0

The summation is the convolution of the channel impulse response and the equaliser

impulse response evaluated at sample d.
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THE LINEAR EQUALISER

Figure 5.1
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5.2.1 Structure of an IIR Equaliser

The power spectral density, R, (z), of the channel output sequence, { x(n) }. is

R.(z)=H(z)H(zY)o?+ o}

which is a polynomial of degree 2M —1. Since the autocorrelation function, ®_ (), is

symmetric about the origin ie. ®_(I) = & (~1), the zeros of R_ (z) have symmetry.
In particular if R_(z) is zero at z = z; then it will also be zero at z = z;-'. Thus

R, (z) may be factorised in terms of a polynomial P(z) which is of degree M-1 and has

all its zeros inside the unit circle ie.

R.(z) = P(z) P(z7)

where

M-1
P(z)= S pez7*.
k=0

P(z71) is a polynomial of degree M-1 which has all its zeros outside the unit circle.

The Wiener IIR equaliser of (5.2.5) may be rewritten

G(z)=W(@E)[B(2) ]+

where

and

Since the transfer function P(z) is a minimum phase FIR filter, of order M-1, W(z) is
a stable autoregressive filter of order M-1 . The effect of the filter, W(z), is to whiten

the output sequence, { x(n) } [96].

110



The nature of [ B(z) ]. is now examined. By definition :

]

B(z) k:i b(k)z™*

+§ b(k) z7* + § b(k)z*
k=0 k=—x

[B(z)]. +[B(2) ]-

B(z) has d poles at the origin and M-1 poles outside the unit circle. In order to ensure
the convergence of both the causal part , [ B(z) ]., and the anticausal part , [ B(z) ]-

, of the series the region of convergence must be [7].

0=]z|<x1

Therefore the causal part of b(k), £ = 0, is given by

b (k) = Z[ residues of B (z)z*™! at the poles at the origin ]

This is abbreviated to

b(k) = Z[res. B(z)z*1ar 0]

where O is the origin in the z-plane. The z-transform of the causal part can thus be

written,
[B(z)]. = S E[res. B(z)z*at O ]z *
k=0
B (z)z* 1 has poles at the origin provided £ < d. Therefore
d
[B(z)]. = X2[res. B(z)z* 1 ar0 ]z 7*
k=0

The transfer function [ B(z) ], represents a FIR filter of order d. The Wiener IIR
equaliser is thus the cascade of an autoregressive whitening filter of order M-1, W(z).

and a FIR filter of order d. This arrangement is illustrated in Figure 5.2.
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In order to highlight the effect of the channel phase characteristics on the
structure of the Wiener IIR equaliser, consider an example where the signal/noise ratio
is high ie. a2 >> o2, and the signal power, o2, is normalised to unity. When all the
zeros of H (z) are inside the unit circle the channel is minimum phase and the Wiener
[IR equaliser is given approximately by,

G(z) = sz) z™

In which case the estimate with lag d, §(k —d), is merely the estimate with lag zero,
§(k), delayed by d samples and there is no advantage in using a fixed lag estimate of
the channel input when an estimate of the current input can be obtained without loss
of quality. If however the channel is non-minimum phase the Wiener filter in the
absence of noise is still the cascade of an autoregressive whitening filter of order M-1

and a FIR filter of order d and hence the MSE performance will improve with

increasing lag d [97].
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THE WIENER IIR EQUALISER

Figure 5.2
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5.3 COMPARISON OF FIR AND IIR EQUALISER PERFORMANCE

The IIR Wiener filter is the best linear unbiased estimator of the channel input
s(k-d) in a MSE sense under steady state conditions [5]. The FIR Wiener filter must
then be regarded as an approximation to the IIR filter and be expected to perform less
well than an IIR filter of the same order. It should be noted however that while it is
possible to construct a FIR filter of any order, the minimum order of the IIR filter is
constrained by the order of the autoregressive whitening filter, W(z), and hence by
the order of the channel to M-1. If the channel impulse response vector 4 is known,
the MMSE, L., that can be obtained by a FIR filter is calculated by constructing ®,,
and @, and then using (5.2.2) and (5.2.3). If the order of the FIR filter is fixed at
(N-1), the MMSE L, varies with lag /, 0 < | = N —1. The value of the lag | which
produces the minimum value of L, for a given order of FIR filter is known as the
optimum lag [98]. The IR Wiener filter for a known channel may be constructed

using (5.2.5) and the MMSE, L,, calculated from (5.2.7).

A comparison of the MSE performance of the FIR and IIR filters as a function
of the filter order is illustrated in Figures 5.3 to 5.5. For the sake of this comparison
the FIR filter with optimum lag for a given order was chosen. Thus the MSE for the
FIR filter is a lower bound on the performance that would be expected in a practical
situation. The three channels that were used are summarised in Table 5.1. For
channel 3, which is minimum phase, the MSE ( Figure 5.3 ) does not vary with the
order of the IIR filter and is only limited by the noise floor. This is consistent with the
remarks made in subsection 5.2.1 on the performance of an IIR filter in the absence of
noise when the channel is minimum phase i.e. the quality of the estimate is not a
function of the lag. The order of the FIR filter increases linearly with decrease in
MSE. The lowest MSE that is achievable is the same as that for the IIR filter. For
channel number 1, which is non-minimum phase, the MSE ( Figure 5.4 ) decreases

linearly with the order of the IIR filter until it reaches a level just above the noise

114



floor. Again this is consistent with the remarks made in subsection 5.2.1 on the
performance of an IIR filter in the absence of noise when the channel is non-minimum
phase i.e. the MSE is a function of lag. The FIR filter exhibits the same general
trends for this channel as the IIR filter in that the MSE decreases linearly with an
increase in filter order until a level just above the noise floor is reached. However it
should be noted that for a particular MSE value the order of the IIR filter is always
less than the order of the FIR filter. The results for channel number 2, which is also
non-minimum phase, are similar to those obtained for channel number 1 ( Figure 5.5
).

In conclusion, these results indicate that an IIR filter outperforms a FIR filter of
the same order in a MSE sense. Two particular cases can be identified. When the
channel is minimum phase, an IIR filter of the same order as the channel produces the
lowest MSE that is achievable with a linear filter. A FIR filter of order greater than
the channel order is required to obtain the same result. When the channel is non-
minimum phase, the performance of an IIR filter continues to improve when the order
is increased beyond the order of the channel until a level just above the noise floor is
obtained. The FIR filter exhibits similar characteristics but the initial rate of

improvement in performance with increasing order is significantly smaller than that for

the IIR filter.
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Table 5.1 CHANNEL IMPULSE RESPONSES
Channel No. | Impulse Response Classification
1 0.2602 + non-minimum phase
0.9298:-! +
0.2602z 2
2 0.3482 + non-minimum phase
0.8704z°1 +
0.3482: 2
3 0.6082 + minimum phase
0.7603z "1 +
0.2280z 2
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Figure 5.3 FIR/IIR EQUALISER PERFORMANCE COMPARISON
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Figure 5.4 FIR/TIR EQUALISER PERFORMANCE COMPARISON
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Figure 5.5 FIR/IIR EQUALISER PERFORMANCE COMPARISON
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5.4 SYSTEM IDENTIFICATION

Given the considerations of subsection 5.2.1, the optimum IR equaliser defined
in (5.2.5) is an ARMA filter whose output s,, (k —d) may be expressed in terms of

M-1 previous outputs and d inputs, ie.

-1
Sopt (kK —d) = Mz Q; Spp(k—d —i) + 5 B, x(k—j) (5.4.1)
i=1 =0 '

J

where the coefficients o; and B ; are chosen to minimise the MSE,

E[(s(k—=d) —s,(k—d) )],

and are defined by (5.2.5). Thus the minimum variance error sequence { e,, (k) } is

given by

eopt(k) = S(k —d) - Sopt(k -d)

which when combined with (5.4.1) provides an expression for the observable sequence
{s(k—d)} in terms of the observable sequence { x(k) } and an unobservable noise

sequence { v (k) }.

7

s(tk—d) = Mg-: a; s(k—d—i) + io B, x(k—j) + v(k) (5.4.2)

The additive noise term v(k) is a filtered version of e,,, (k).

vik) = Mz_l o; e (k—i) + e,,(k) (5.4.3)
i=1

Together (5.4.2) and (5.4.3) define a autoregressive moving average with exogeneous
input (ARMAX) model. Thus the adaptive IIR equaliser problem may be re-
interpreted as an ARMAX system identification problem, where a recursive estimate
of the coefficients a; and B; is required from an observable input sequence { x(i) }

and an observable output sequence { s (i —d) }.
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5.4.1 Adaptive IIR Solutions

Adaptive solution to this system identification problem are obtained by rewriting

(5.4.3) as a vector inner product of the aggregate vectors x(k) and 9,,,

s(k—d) = 8, x(k) + v(k), (5.4.4)

where

x(k)=[stk—d—=i) --- s(k—-d-M+1)x(k) -+ x(k—ad) ]’

and

Qopz=[°ll oy Bo ot Ba T

Since (5.4.4) is similar in form to the FIR system of (3.3), it is tempting initially to
apply an adaptive FIR filter algorithm such as those described in chapter 2 in order to
estimate §,,. The first choice adaptive FIR filter algorithm is the RLS of subsection
2.4, since, from chapter 3, it is clear that it exhibits the best convergence properties.
The resultant ARMA system identification algorithm is summarised in the following 4

equations which are identical in form to (2.4.12) - (2.4.15).

8(k) = 8(k-1) + k(k) e (k) (5.4.5)
e(k) = s(k—d) — 87 (k—1) x(k) (5.4.6)
k(k) = rs'(k) x(k) (5.4.7)

(k) = £k -1) — e (k=1) x(k) x7 (k) £5'(k -1) (5.4.8)

(1 + 2T (k) £k —1) £ (k) }

The vector @(k) is the current estimate of 8,,. However unlike the system
identification problem of subsection 3.2, the additive noise term in (5.4.4) is not white

even if it could be assumed that e,, (k) was white. Under these non-white noise
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conditions the RLS algorithm will produce an asymmtotically biased estimate of the
coefficients of the optimum IR equaliser, 8,, [24]. For the equaliser scenario this

biased estimate is recognisable as the decision feedback equaliser (DFE) [9] with

output

M -1

sdfe (k -d) = 2

i=1

Y s(k—d—i) + éo 8; x(k—j)

where the coefficients v; and 3; are chosen to minimise the MSE

E[ (s(k-d) —sq(k—d))*].

In order to find the linear IIR equaliser the additive noise term v (k) must be

whitened. This can be done approximately by replacing e,, (k) in the summation of

(5.4.3) with the instantaneous error e(k) [99] where

e(k) = S(k —d) - §opl(k —d)
Sope (k —d) is the current estimate of s,,, (k —d). Equation (5.4.2) then becomes
M -1 . i d )
S(k—d)= 2 Q; Sop,(k—d—l)'*' 2 Bj X(k—j)+ eopt(k)
i=1 j=0

l"'..:

= Tp, i(k) + e, (k) , (5.4.9)
where

E(k) =[$,p(k—d-1) - - - S, (k—d-M+1)x(k) - - x(k—=d) ] .

If the RLS algorithm is applied to (5.4.9) to form an estimate of §,,,, the result is an
extended least squares (ELS) [99] adaptive equaliser algorithm which is summarised by

the following 4 equations.
8(k) = 8(k—1) + k(k) e(k) (5.4.10)

e(k) = s(k—d) — 08" (k-1) £(k) (5.4.11)
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k(k) = r3'(k) £(k) (5.4.12)

10 1) ¢ T -1(p
Lk) = £k -1) — Ltk —=1) Z(k) &' (k) £ (k-1) (5.4.13)

(1+ & @) k-1 200) )

Convergence of the ELS algorithm is not guaranteed [99].

An alternative approach that can remove the asymtotic bias of the RLS algorithm
under coloured noise conditions is the recursive intrumental variable (RIV) algorithm,

which again can be summarised by 4 equations.

8(k) = 8(k -1) + k(k) e(k) (5.4.14)
e(k) = s(k—d) — 87 (k—1) x(k) (5.4.15)
k(k) = rs'(k) z(k) (5.4.16)

ﬁ::l(k) = I.a—l(k ___1) _ Lr.:l(k —1) Z(k) Ir(k) Lt;l(k —1) (5417)

(1+ 70 kD) 2(4) )

The vector,

zk)=[z(k)z(k=-1) --- z(k—-M+1)x(k) --- x(k=d) "

contains the instrumental variables { z(n) }. If the instrumental variables are chosen to
meet conditions which are described in [100], the RIV algorithm will produce
consistent estimates of the optimum JIR equaliser. Common choices for the

instrumental variables are:

z(k) = s(k—d —t)

where ¢+ > M [101] or

z(k) = 87 (k) x(k)
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5.5 CONCLUSIONS

A closed form expression for the optimum IIR equalising filter was derived using
Wiener filtering theory. The optimum IIR filter was shown to be the cascade of an
AR whitening filter of order N-1, the order of the FIR channel, and a FIR filter of
order d, where d is the estimation lag. A comparison of the MSE performance of FIR
and IIR equalisers illustrated the inherent order advantage in using é IIR structure,
particularly for minimum phase channels, and higlighted the effect non-minimum
phase distortion has on the performance of linear equaliser structures. The adaptive
IR equaliser problem was shown to be equivalent to the identification of an ARMA
plant which is embedded in an ARMAX process. Although the bias associated with
RLS estimates can be avoided through resort to algorithms such as RIV, the MSE

convergence of these algorithms is poorly understood and hence they cannot be

considered to be robust solutions.
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Chapter 6

AN ADAPTIVE IIR EQUALISER

6.1 INTRODUCTION

While the IR Wiener filter exhibits a distinct performance advantage over a FIR
filter of the same order when used to equalise a known channel, significant problems
are encountered with the former when the channel is unknown or time-varying and an
adaptive filter structure is required. An initial approach to the problem might be to
postulate an adaptive algorithm such as those suggested in [91] that would recursively
estimate the coefficients of the IIR Wiener filter in the same manner as the LMS
algorithm [21] is used to estimate the coefficients of the FIR Wiener filter. However,
in the process of adaptation, there is a finite probability that the poles of the filter will
move outside the unit circle in the z-plane. This can lead to instability if the poles
remain outside the unit circle for an extended period [91]. As discussed in chapter 5,
adaptive IIR filter algorithms do exist whose convergence in a mean sense is assured
but few theoretical results are available with which to predict the MSE convergence

properties ot these algorithms.

Central to this chapter is the recognition that the optimum Wiener IIR equaliser
may be realised using state space concepts ie. the Kalman equaliser of [18]. This
formulation simultaneously circumvents the minimum phase spectral factorisation
which is integral to the Wiener solution and reduces the number of coefficients which
define the equaliser and hence which must be estimated in any adaptive scheme from
M+d+1 to M. To make the Kalman equaliser adaptive a system identification
algorithm is used in parallel with it to estimate the M coefficients of the channel
impulse response. This contrasts with the adaptive Kalman equaliser suggested in [18]
where the state of the Kalman filter is augmented to include the coefficients of the

unknown channel, which results in a non-linear estimation problem to which the
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extended Kalman filter (EKF) is applied. However the convergence of the EKF is not
guarenteed [102]. Further advantage acrues because the input to the system
identification algorithm is the channel input which is usually a white process. Thus the
LMS algorithm will provide consistent predictable convergence performance under
these conditions. Contrast this with the adaptive FIR equaliser of section 3.3 where

the channel output, an unknown non-white process, forms the input to the adaptive

FIR filter algorithm.

The discrete time Kalman filter of [3] is defined in section 6.2 and subsequently
applied to the channel equalisation problem in section 6.3 to derive the non adaptive
smoothing filter of [103], which for a fixed channel and under steady-state conditions
is equivalent to the optimum IIR equaliser of section 5.2. In Section 6.4 an adaptive
Kalman equaliser structure is presented. This adaptive structure is fundamentally
different from those considered in [18,104] and [105]. In essence it is the combination
of the adaptive Kalman equaliser of [106, 107] with the non-adaptive smoothing filter
of {103}, but unlike [106, 107], the full form of the Kalman gain equations [3] are used
in order to exploit the capacity of the Kalman filter to handle nonstationary
environments. This combination produces an adaptive structure which is capable of
equalising both minimum and non-minimum phase channels. A new technique is
presented for both the on-line estimation of the channel noise variance and the
compensation of the Kalman filter for the modelling uncertainty inherent in the
imperfect knowledge of the channel impulse response. The complete adaptive Kalman
equaliser is compared with a RLS FIR equaliser in both performance and
computational complexity. Finally in section 6.5 the LMS system identification
algorithm is replaced with an RLS algorithm to improve the convergence performance

of the adaptive Kalman equaliser.
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6.2 THE KALMAN FILTER

With the publication of [3] and [4], Kalman and Bucy defined a powerful
recursive estimation technique which has come to be known as the Kalman filter.
Application of the Kalman filter assumes that the studied system may be described by a
pair of state space equations. These are the state transition equation,

s(k+1) = A(k+1) g(k) + w(k+1)

and the observation equation.

z(k) = H(k) s(k) + u(k)

The M-vector (k) contains the values of the M parameters which define the state of
the system at time k and is thus the state vector. The (M X M) matrix A (k) is the
state transistion matrix and the (L X M) matrix H (k) is the observation matrix. The
M-vector w and the L-vector g are uncorrelated zero mean and white with covariances

W and U respectively. Thus
E[w(k) w" (k)] = W(k)

Elu(k) u™(k) ] = U(k) .

The system matrices 4, W, H and U may be time varying but are assumed to be
known a priori. Optimal estimates of the state vector s(k) are generated recursively
from the sequence of noisy observations { z(k) } by use of the following equations.

The notation £(k/j) reads "the estimate of s (k) given data from sample 0 to sample j".

The estimation equation.

S(k/k) = §(k/k—-1) + K(k) [z(k) —H (k) $(k/k—1) ] (6.2.1)

The prediction equation.

S$(k/k—1) = A(k) £(k -1k -1) (6.2.2)
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The Kalman gain equation.

K(k)=Ykk-1)HT(k) [H (k) Y (k/k-1)HT (k) + U (k)] (6.2.3)

The error covariance equations

V(k/k—=1) = A(k) Y(k~1/k—-1) AT(k) + W (k) (6.2.4)
and

Vk-Vk-1)=V(k-1k-2) —K(k~-1) H(k-1) ¥ (k —1/k -2) (6.2.5)
where

V(k/k) = E[ (s(k) — $(k/k) ) (s(k) ~ $(k/k))T ]
and

Y(k/k~1) = E[ (s(k) — £(k/k=1) ) (s(k) — S(k/k~1) )" ] .

In [3] Kalman showed that this filter was the solution to two different linear systems
problems. First, the filter is the optimal estimator against a wide class of cost functions
given that the noise processes are Gaussian and second, the filter is also the linear

minimum variance estimator without the assumption of Gaussian noise.
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6.3 THE KALMAN FILTER AS AN IIR EQUALISER

The major difficulty with the IIR Wiener equalising filter is the minimum phase
spectral factorisation of the power spectrum R_(z). One possible solution to the
problem involves the use of a Kalman filter. If all processes are stationary and the
observation noise is white, the steady-state Kalman filter and the IIR Wiener filter are
identical [S]. Thus by use of a Kalman filter the spectral factorisation problem is
solved indirectly. However this does not imply that the IR Wiener filter formulation
of section 5.2 is of no value. On the contrary it can provide insight into the

relationship between the channel characteristics and the structure and performance of

the Kalman equalising filter.

Although a FIR channel model lends itself readily to state-space representation
and hence to a Kalman filter formulation of the equalising filter, care must be taken in
the choice of states to form the state vector. A FIR filter with M tap coefficients has
order M-1 and could be completely described by M-1 states. A state vector with M-1
states leads to a formulation where the plant noise and the observation noise are
correlated. While it is still possible to derive a Kalman filter to handle this situation,
such a filter is only conditionally stable. Its stability is dependent upon the impulse
response of the channel [S]. In [18] and [108] the channel is represented by M states,
which leads to a formulation where the plant noise and the observation noise are

uncorrelated, and the Kalman filter is unconditionally stable.

Following [18], the state of the FIR channel model is represented by M-vector

s(k), where

sk)y=[stk)stk=1) --- s(k-M+1) ] .

The state transition equation is therefore,

g(k) =a s(k=1) + b s(k) (6.3.1)
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where g is an (M X M) shift matrix whose elements g (i ,j) are equal to unity if i-j=1

and are zero otherwise, b is a column vector with M elements.

b1‘=[100...()]

The observation equation is then obtained directly from (5.2.1).

x(k) = hT s(k) + n(k)

As in section 5.2, s(k) and n(k) are assumed to be zero mean uncorrelated white

noise sequences with variances o 2(k) and o 2(k) respectively.

The above state-space description is adequate if all that is required is an estimate
of the current state of the channel s(k). However, to handle non-minimum phase
channels, a fixed lag smoothing form of the Kalman filter is used [5]. A fixed lag

smoother with lag d is usually derived by augmenting the state vector to

[s7(k)sT(k-1) --- §T(k—d) ] .

However because the state transition matrix g is a shift matrix, this degree of

complexity is not necessary. The state vector is merely augmented to contain d+1

elements [103].

sTk)Y=[s(k)sk-1) --- s(tk—M+1) --- s(k—d)]

The resultant state transition equation and observation equation are identical in form
to (6.3.1) and (5.2.1) respectively with g¢ and b redefined as follows: g is a

(d +1 X d +1) shift matrix, 5 is a vector with d+1 elements

BT =[100 --- 0],

and the (1 X d+1) observation matrix, H, constructed by augmenting the channel

impulse response with zeros.

H""[hohl hM—IOO 0]
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The Kalman IIR equaliser equations can be written down directly from the above

definitions.
S(krk) = §(k/k—1) + K(k) [ x(k) — H £(k/k-1) ] (6.3.2)
f(k/k—1) = g §(k~1/k~1) (6.3.3)
K(k) =V (k/k-1)H" [H YV (k/k-1)HT + o} ] (6.3.4)
V(ktk=1) = g Y(k=1/k=1) g7 + b bT o? (6.3.5)
V(ksk) =11 —K(k)H ]V (k/k-1) (6.3.6)

The structure of the Kalman equalising filter is illustrated in Figure 6.1. In the steady

state the elements of the Kalman gain vector

KT=[K0K1 ...Kd]

will be constant. In which case the Kalman filter structure illustrated in Figure 6.1 is a
canonical form of the Wiener filter structure illustrated in Figure 5.2. Unlike the
optimum FIR equaliser and the Wiener IIR equaliser the Kalman equaliser provides

estimates of the channel input at a range of lags ie. from lag 0 to lag d.
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Figure 6.1 KALMAN EQUALISER STRUCTURE

S(k-d)
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6.4 AN ADAPTIVE KALMAN EQUALISER

In order to make the Kalman equaliser of section 6.3 adaptive, a system
identification algorithm is used in parallel with it to estimate the impulse response of
the unknown channel. This adaptive equaliser, ( Figure 6.2 ), operates in the
following manner. During an initial training period a predetermined sequence is
transmitted and the system identification algorithm forms an estimate k of the channel
impulse response vector 4. The estimate is passed to the Kalman filter which is then
initialised and transmission of data begins. Because a training sequence is employed,
initialisation of the Kalman filter is exact. The state vector at time zero, §(0/0),
consists of the last d samples of the training sequence. The error covariance matrix
Y (0/0), is the zero matrix since §(0/0) is known with probability one. In addition to
estimating the signal at all lags up to lag d, the Kalman filter provides the error
variance of these estimates on the leading diagonal of the error covariance matrix,
Y (k/k). Thus once the Kalman filter has reached a steady state, the element of the
state vector §(k/k) which achieves a predetermined performance bound is used as the
input to the decision circuit or slicer. During data transmission it is possible to operate
the adaptive equaliser in decision directed mode. In this mode, the output of the
slicer, m, is used as an input to the system identification algorithm. Thus, provided
the slicer makes correct decisions, the system identification algorithm and hence the
adaptive equaliser will be capable of tracking time varying channels. when the channel
is non-minimum phase adequate performance may only be achieved by using a fixed
lag d. Under these conditions the output of the slicer will represent the channel input
d samples ‘ago. In order that the system identification algorithm produce correct results
a delay d must be introduced between the channel output and the training input to the

system identification algorithm.
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6.4.1 System Identification

Since the channel input sequence { s(k) } is white, the autocorrelation matrix
E[s(k)sT(k)] is diagonal with equal eigenvalues. Under these conditions a
stochastic gradient LMS algorithm achieves its best performance [21] and hence it is
well suited to perform the system identification task. Of course, a RLS adaptive
transversal filter converges faster than the LMS algorithm even under white input
conditions [71]. However this performance gain is achieved at the expense of
increased complexity and since a Kalman algorithm has already been postulated to

perform the equalisation task, it is natural to choose the simpler LMS algorithm for

initial study.

The stochastic gradient LMS algorithm is summarised by the following two

equations:
hlk+1) = A(k) + 2pn s(k+1) e(k+1) (6.4.1)
e(k+1) = x(k+1) — AT (k) g(k+1) (6.4.2)

The constant u is the convergence factor and the M-vector 4 is an estimate of the
channel impulse response vector 4. For system identification, the performance
measure which is of most use is the norm p of the estimated tap weight error vector

where
p(k) = E[ AT (k) B (k)]

B(k)=h(k) —h (6.4.3)

In geometrical terms, the norm is the average length of the error vector h and hence is

a measure of how close the estimate % is to the vector 4.

Standard theoretical analysis of the LMS algorithm [73, 26], yields the following

equations which summarise the convergence properties when the input signal is white.
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E[ e*(k+1)] = (1 —4po? + 4plo M ] E[ e*(k)] + 4polo?

(6.4.4)
E[eX(k+1)] = c?p(k) + o2 (6.4.5)
0=< = M10'2

Although the analysis relies on assumptions that are often invalid, it produces figures
which agree well with experimental results and hence is useful in the understanding
and operation of the adaptive Kalman equaliser. Combining (6.4.4) and (6.4.5) a

recursive equation for the norm p(k) is obtained.

p(k) = (1 — 4po? + 4ploiM ] p(k —1) + 4p2c2oM (6.4.6)
In order to achieve fast convergence, let

1
2Mco?

""——-

If the signal power is normalised to unity ie.

equation (6.4.6) becomes

2

o(k) = [1 - ;14- ] p(k —1) + L . (6.4.7)

Equation (6.4.7) provides two important results: (i) the fastest convergence rate that

can be obtained using the LMS algorithm is

10 log;o [ I—W_MTI— ] dB /iteration
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and (ii) the final value of the norm under these conditions is determined by the

variance of the noise i.e.

lkim p(k) = o2 .

6.4.2 Model Uncertainty

The two parameters in the channel model, (5.2.1), of which there is uncertainty
or imperfect knowledge are the channel impulse response vector £ and the additive
noise variance o2. In [109] it is shown that if the noise variance used in the Kalman
filter is greater than the actual noise variance, then the diagonal elements of the error
covariance matrix YV (k/k) are an upper bound on the MSE performance of the filter.
The effect is illustrated in Figure 6.3, which also indicates that the MSE is not
significantly degraded by using a noise variance parameter in the Kalman filter that is
10 dB greater than the actual noise variance. The theoretical result presented in [109]
and experimental results such as Figure 6.3 combine to suggest a simple solution to the
problem of uncertainty in the observation noise i.e. the noise variance in the Kalman
filter should be set to a maximum or worst case value that is expected in a particular
application. There are however two disadvantages with this strategy: (i) the
performance of the Kalman filter will be degraded if only slightly, and (ii) the diagonal
elements of the error covariance matrix will be greater than the actual MSE and hence
will not be useful as indicators of the equaliser performance. An alternative solution is
to estimate the noise variance directly from the channel [108]. Before considering this
solution, the effect of uncertainty in the channel tap vector 4 on the performance of

the Kalman filter will be considered briefly.

In subsection 6.4.1 it was shown that the lower bound on the norm p is o2,
when the convergence factor . is set for fastest convergence. Experiment indicates

that this is the point at which the uncertainty in the tap vector 4 starts to degrade the
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performance of the Kalman filter ( Figure 6.4 ). For this experiment the estimated tap
vector 4 used in the Kalman filter was formed by adding a suitably scaled random
noise term to each coefficient of the channel tap vector 4. Recent developments [110]
provide the means for incorporating some of the effects of model uncertainty into the
Kalman filter formulation. However these rely on spectral factorisation. The
technique that is now presented provides a method for both estimating the noise
variance and compensating the Kalman filter for the uncertainty in the channel impulse

response vector.

Combining (5.2.1) with (6.4.2) and (6.4.3) yields.

x(k+1)

hT s(k+1) + n(k+1)

(G - k) ]T s(k+1) + n(k+1)

AT(k) s(k+1) + e(k+1) (6.4.8)

If, to a first order approximation, { e (k +1) } is considered to be a white noise process,
then (6.4.8) provides an alternative interpretation of how the observation sequence
{x(k+1)} was formed. If it is assummed that A (k) and s(k+1) are uncorrelated

then a simple expression for the variance o2 of the error e can be obtained from

(6.4.5).

o2(k) = o2 p(k) + o2 (6.4.9)

In words, x(k+ 1) is formed by adding the output of a time varying FIR filter with tap
vector A(k) to a time varying white noise sequence with variance o2(k+1). This
variance combines both the effects of model uncertainty, represented by the norm
p(k), and the variance of the additive noise o2. Using the alternative model of (6.4.8)
the observation noise variance, U(k) used in the Kalman equaliser is replaced by

o2(k). Although o2(k) will not be known a priori in a particular application the

138



parameter e(k+1) is directly available as it is an output of the LMS system

identification algorithm (6.4.2) and thus o2(k +1) may be readily estimated on-line.

Since o is the output of a process with a time constant determined by [ 1 - ;1{— ] a

suitable recursive estimate 62 is.

62(k+1) = [1 _ Xli ] 62(k) + i("ﬁ*—l)- (6.4.10)
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Figure 6.4 MODELLING ERRORS ( Channel Impulse Response )
non - minimum phase ( channel no. 1)
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6.4.3 Verification of Compensation Technique

While the compensation technique postulated in subsection 6.4.1 has an intuitive
appeal, it is not an exact result and hence it was necessary to examine its validity by
experiment. For this and subsequent simulations, the channel was modelled by
(5.2.1), a zero mean binary white sequence of unit variance was used as the channel
input, and a zero mean white Gaussian sequence was used for the additive noise. The
results are summarised in Figure 6.5. For this particular experiment the observation
noise variance in the Kalman filter, U(k), was calculated from (6.4.4) using exact
knowledge of the channel noise variance, 62 ( = —70dB ). The estimated impulse
response, 4 (k), from the LMS algorithm was used to form the (1 x d+1) observation

matrix, H(k) ie.
H(k) = [’;O(k)’;l(k) ’;M-IOO - 0]

A 3-tap FIR filter was used in both the channel simulation and the LMS algorithm.
The Kalman filter was initialised after 20 iterations of the LMS algorithm with an error
covariance matrix, ¥ (0/0), of all zero elements. Hence the initial divergence of the
filter state 5 to a MSE value that is above the level of the observation noise variance,
o2, is to be expected. It then reconverges due to the subsequent reduction in the
observation noise, as the LMS algorithm converges, until a final MSE value of -53dB is
achieved. Because the channel is non-minimum phase ( channel no. 1, Table 5.1 ),
the MSE of the states decreases with increasing state number and increasing estimation
lag. Thus the significant difference in performance between states 0 and 5 is to be
expected. For clarity the performance of the intermediate states has not been included.
The close agreement between the measured MSE of states of the Kalman equaliser and

the theoretical performance predicted by the error covariance equations indicates that

the compenation technique is a valid one.
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COMPENSATION FOR MODEL UNCERTAINTY
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6.4.4 Comparison with an RLS FIR Equaliser.

In this section, the results of a simulation study of the adaptive Kalman equaliser
are presented. In contrast to subsection 6.4.3 the observation noise variance, ¢ 2(k),
was estimated directly from the LMS error sequence { e (n) }, using (6.4.10). Thus the
equaliser is fully adaptive in that a priori knowledge of the channel noise variance, o?
or the tap vector norm, p(k), is not required. The measured values of the tap norm,
p(k), are included as a check on the theoretical result summarised in (6.4.7). A RLS

adaptive transversal equaliser [40] was chosen as a benchmark against which to

compare the adaptive Kalman equaliser.

The results for channel no.1 are illustrated in Figure 6.6(a). The norm, p(k),
converges to the noise floor of -70dB at a rate that is consistent with (6.4.7). Like the
channel the LMS algorithm has 3 taps. Thus the rate of convergence should be
logo( 1.5 ) dBliteration or -70dB in 40 iterations. While the elements of the error
covariance matrix V (k/k) track the measured MSE values of states 0 and 5 of the
Kalman equaliser closely there is a noticable seperation during the transient periods
when the observation noise variance is changing. This is due to the inherent lag in the
estimator of (6.4.10). However comparison of Figures 6.5 and 6.6(a) indicates that
the measured MSE of state 5 of the Kalman equaliser is not altered by this seperation.
A measured MSE of -50dB is achieved by state 5 of this Sth order adaptive Kalman
equaliser within 38 iterations. To obtain the same MSE with a FIR equaliser, a filter
of order 9 is required. The optimum lag under these conditions is 5. Using a RLS
algorithm to train the FIR filter, it converges in approximately 30 iterations, Figure
6.6(b).

The results for a minimum phase channel are illustrated in Figure 6.7. The three
states of the Kalman filter ( states 0, 1 and 2 ) exhibit similar MSE performance
because the channel is minimum phase. Again the elements of the error covariance

matrix, V (k/k), track the measured MSE values closely. In order to achieve a MSE
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value of -50dB under exactly the same conditions a FIR equaliser of order 22 and
estimation lag 0 is required ( Figure 6.7(a) ). Using a RLS algorithm to train the
filter, it converges in approximately SO iterations ( Figure 6.7(b) ). The second order

adaptive Kalman equaliser converges to -50dB in about 40 iterations.

Finally the results for a second non-minimum phase channel are illustrated in
Figure 6.8. An 8th order Kalman equaliser is required to obtain a MSE of -48dB.
The equaliser converges in 45 iterations. Figure 6.8(b) illustrates the MSE

performance of 17-tap RLS transversal equaliser with an estimation lag of 9. The RLS

equaliser converges within 35 iterations.
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Figure 6.6
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Figure 6.7 COMPARISON WITH RLS FIR EQUALISER
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Figure 6.8 COMPARISON WITH RLS FIR EQUALISER
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6.4.5 Computational Complexity

A breakdown of the computation required to process one data point using the
adaptive Kalman equaliser of Figure 6.2 is presented in Table 6.1. The complete
algorithm includes the Kalman equaliser, (6.3.2) - (6.3.5), LMS system identification,

(6.4.1) and (6.4.2), and estimation of the error variance o2(k), (6.4.10). In total

2
4~ 4 3d | am o+ am + 6
2 2
multiplications,
d? d
e - =+ +
> > dM + 4AM

additions and/or subtractions and 1 division are required to process one sample. The
major computational burden of the algorithm lies in the the Kalman equaliser itself, in
particular the computation of the error covariance matrix, V (k/k). Some saving can
be made with respect to the general Kalman filter, (6.2.1) - (6.2.5), since the state
transition matrix, A(k), is a shift matrix, g, and hence (6.3.5) requires no

computation. Further the observation matrix, [ (k ), contains many zero elements.

‘The total number of multiplications required to implement the algorithm is
illustrated in Figure 6.9 for various values of the number of channel taps, M, and the
estimation lag, d. For minimuﬁl phase channels the estimation lag does not affect the
performance of the adaptive Kalman equaliser and the computational complexity of the
algorithm is obtained by settingd = M — 1. This is the minimum phase boundary of
Figure 6.9. For a non-minimum phase channel a value of d > M —1 may be
required to obtain adequate performance. For a given number of channel taps,

increasing the estimation lag increases the computational burden.

To extend the comparison with a RLS FIR equaliser from one of performance to
one of computational complexity is not straightforward since the order of both

structures to achieve a particular performance goal depends on the characteristics of
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the channel. Because of this dependency the comparison presented here is a limited
one which is derived from the performance comparison of IIR and FIR equalisers
which was presented in section 5.3. Using Figures 5.3 - 5.5, values for the order of
the IIR equaliser ( and hence d ) and the order of the FIR equaliser ( and hence N )
were chosen which would give the same MSE performance for a given channel and
noise conditions. As in section 5.3 the FIR equaliser of optimum lag was used. Given
these values for d and N, the number of computations required to process one data
sample was calculated. It was assumed that the RLS FIR was implemented using the
fast Kalman algorithm of Appendix A. The number of computations is given in Table
2.2. The results presented in Table 6.2 indicate the savings in computation that can be
achieved using the adaptive Kalman equaliser structure. These savings range from 11-
18% for the minimum phase channel ( no. 3 ) and 50-70% for the non-minimum

phase channels.
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Table 6.1 ADAPTIVE KALMAN IIR EQUALISER
( Complexity )
no. of states = d+1
no. of channel taps = M

operation mult. add/sub.
V(kik—1) H(k) dM-1)+1 | dM~-2)
HT (k) V(kik—-1) H(k) + o> M M
x(k) = HY (k) k/k—1) M-1 M-1
V(k/k=1) H(k) [ HT (k) V(kik=1) H(k) + o217} d+1
Wk/k=1) + K(k) [ x(k) = HY (k) Xk/k—=1) ] d+1 d

T a? 4
K(k) HY (k) V(k/k—-1) .9
== 2 2
2

T FLEN
V(k/k—=1) - K(k) BT (k) V(k/k—1) =
y(k) = T (k=1) x(k) M M
2 x(k) (y(k) = KT (k=1) x(k) ) M+1
B(k=1) + 2w x(k) (y(k) = AT (k—1) x(k) ) M

2
(1- —)&2a-1 + =8 3 1
M

_ d? 3d
total mult. = > >

_ d? d
total add/sub. = > >
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Table 6.2 COMLEXITY COMPARISON
channel Kalman/LMS FIR/RLS
no. | noise | d | mult. | add/sub. | N | mult. | add/sub.
3 -40.0 2 29 19 16 | 161 145
3 -70.0 2 29 19 27 | 271 244
1 -40.0 2 29 19 4 41 37
1 -40.0 3 36 24 6 61 55
1 -70.0 4 44 30 8 81 73
1 -70.0 5 53 37 10 | 101 91
2 -70.0 8 86 64 17 | 171 154
2 -70.0 | 11 128 100 21 | 211 190
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6.5 RLS SYSTEM IDENTIFICATION

From the results presented in section 3.2 and in [71], it is clear that the RLS
algorithm provides faster converging system identification than the LMS algorithm.
Thus, if the LMS system identification block of Figure 6.2 is replaced with a RLS
system identification block, the complete adaptive Kalman equaliser will converge
faster than the structure considered in section 6.4. The only issue to be resolved is
how then to compensate the Kalman equaliser for the uncertainty in the channel
impulse response estimate provided by the RLS algorithm and how to remove the need

for a priori knowledge of the variance of the channel noise, o2 .

The approximate analysis, summarised by (2.4.17) - (2.4.19) [58], indicates that,
in common with the LMS algorithm, the variance of the error sequence, { e (k) },
associated with the RLS algorithm is a simple function of the channel noise variance
and the norm, p(k). Using (2.4.18) an expression for the norm can be derived when

the channel input sequence, { x (k) }, is white.

p(k) = r (E[(h(k) -k ) (h(k) =B )" ])

2

= o (=-23)

_ %y
Tk

An expression for o2(k) is then obtained from (2.4.19).

I

Q
[ 5]

+

ol(k) = o} or

1

ol + p(k)

This is identical to (6.4.9). Unfortunately the fast converging property of the RLS

algorithm implies that the sequence { ¢ (k) } is highly nonstationary and hence it would
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be inappropriate to estimate o2(k) directly from the data using a time average
technique such as (6.4.10). The solution that is now proposed is to exploit some of the

properties of the RLS algorithm itself in forming a recursive estimate of o2(k).

A satisfactory estimate could be obtained if the impulse response estimate
provided by the system identification algorithm was held constant for a finite number

of data points. Such an estimate would have the form,

62(k) = @—1;1-)-5,, (k) (6.5.1)

where

E, (k) = go(yoz) — BTk =1) x(n) )? .

To find a time recursion for E, (k), first isolate the term due to the latest data point at

n=k.

E,(k) =S (y(n) - h7(k-1) x(n) }* + €2(k)
n=0

= E, (k-1) + e%(k) (6.5.2)

The summation, E, (k—1), is recognisable as the LS cost function evaluated using k
data points, and h(k —1) is the impulse response that minimises that cost function.
The minimum value of the least squares cost function, E, (k), is obtained by setting

the impulse response to its optimum value ie.

h(k) = r'(k) ro (k) .

Thus,

E, (k) = 20 (y(n) — b7 (k) 5(k) )
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= S y¥n) - &7 (k) £y (k) (6.53)

To develope a time recursion for E,, (k), time recursions for each term on the right

hand side of (6.5.3) are first derived.

S yin) = 3 ) + yik) (6.5.4
h(k) = h(k=1) + r'(k) x(k) e (k) (6.5.5)
Lo (k) = £, (k1) + x(k) x" (k) (6.5.6)
Loy(k) = £, (k-1) + x(k) y(k) (6.5.7)

Substitution of (6.5.4) - (6.5.7) in (6.5.3) yields

e*(k)
(1+ X"k el k-1 x(k))

E, (k) = E, (k-1) + (6.5.8)

The denominator is of course directly available in the RLS algorithm. Together

(6.5.1), (6.5.2) and (6.5.8) form a recursive estimate of the time varying variance

o2(k).

To assess the potential improvement in performance some of the simulations of
subsection 6.4.4 were repeated with the LMS system identification replaced with RLS
system identification and with the observation noise variance in the Kalman equaliser
calculated using (6.5.1), (6.5.2) and (6.5.8). The results are illustrated in Figures 6.10
and 6.11 for a non-minimum phase and a minimum phase channel respectively. The
most noticeable difference between these results and those of Figures 6.6(a) and 6.7(a)
is the speed advantage of the RLS solution. For the minimum phase channel, the
adaptive Kalman equaliser now converges to -53dB in 12 iterations compared with 50
iterations and for the non-minimum phase channel, it now converges to -53dB in 10

iteration compared with 40 iterations. Note also the close agreement between the
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measured MSE of the states of the Kalman equaliser and the values predicted by the

€ITOr covariance equations.
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Figure 6.10

PERFORMANCE WITH RLS TRAINING
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Figure 6.11

PERFORMANCE WITH RLS TRAINING
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6.6 CONCLUSIONS

A new adaptive IIR linear equaliser {111] has been presented which is based on
the Kalman filter structure of [18]. In the steady state this structure is a canonical
form of the optimum IIR Wiener equaliser. The Kalman equaliser structure has been
made adaptive by combining it with a LMS system identification algorithm and a novel
technique, which both estimates the channel noise variance and compensates the
Kalman filter for uncertainty in the channel impulse response. Simulation results have
been presented showing the operation of this equaliser in the specific context of a

communications channel suffering from minimum and non-minimum phase distortion.

Comparisons show that the convergence performance is roughly equivalent to a
FIR equaliser which is trained with an RLS algorithm. However the order of the new
filter is always lower than the FIR filter. This is particularly evident in the case of
minimum phase channels. Unlike the FIR equaliser, the new filter produces estimates
of the channel input at a range of lags up to the filter order. Hence the timing problem
inherent in FIR based systems does not occur with this new filter structure. A
comparison of the computational load of the proposed structure with an RLS FIR filter
indicates that the former offers an advantage of 11-18% for a mimimum phase channel
and 50-70% for non-minimum phase channels. Finally a method for improving the
convergence performance of the adaptive Kalman equaliser has been described which

involves replacing the LMS system identification algorithm with a RLS counterpart.
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Chapter 7

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

7.1 GENERAL REMARKS

The subject of this thesis has been the design of algorithms for adaptive filtering.
To this end both FIR and IIR filter structures have been considered. However, while
it has been possible to look at FIR filters in a general application - independent
manner in Chapters 2,3 and 4, IIR filters have only been examined in the specific
application of linear equalisation in Chapters 5 and 6. This difference in approach
reflects the maturity of adaptive FIR filtering, witnessed by the publication of
textbooks on the subject, compared to adaptive IIR filtering. If a theme other than the
title of adaptive filters unites Chapters 2,3 and 4 with Chapters 5 and 6 it is the
concept of white input performance. In a FIR adaptive filter white input performance
is obtained by contructing a whitening network ( either explicitly or implicitly ) at the
input to the filter. In the adaptive IIR equaliser of section 6.3, white input
performance is obtained by reconfiguring the equaliser so that the input to the adaptive
filter is the transmitted signal which is usually white. The subsequent paragraphs
summarise the conclusions which have been drawn in this thesis and highlight specific

achievements.

7.2 SPECIFIC ACHIEVEMENTS

A broad selection of adaptive finite impulse response (FIR) filter algorithms was
examined to assess their theoretical convergence performance and computational
requirements. From this examination a classification system evolved in which the

available algorithms were grouped into three classes according to convergence
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performance and computational complexity. These three classes are: (1) stochastic
gradient algorithms, (ii) self-orthogonalising algorithms and (iii) recursive least squares
algorithms. Formerly classes (ii) and (iii) had been grouped together. Movement
from class (i) through (ii) to (iii) improves convergence performance at the expense of

increasing computational complexity.

The stochastic gradient algorithms are the least demanding computationally of all
the adaptive FIR filter algorithms. Unfortunately they exhibit the poorest convergence
performance since the convergence rate is dependent on the eigenvalues of the
autocorrelation matrix associated with the input signal. The RLS algorithms, on the
other hand, exhibit consistent fast convergence properties but are the most expensive
computationally. Finally the transform domain or quasi-orthogonalising algorithms are
less sensitive to the eigenvalue spread of the input autocorrelation matrix than the
stochastic gradient algorithms. Thus they offer convergence performance that lies
between the RLS and SG algorithms. However the sliding DFT algorithm is closer to

the RLS algorithms than the SG algorithms in computational load.

Because of the difficulty in obtaining rigorous analytic results for the convergence
properties of a broad selection of adaptive FIR filter algorithms, an experimental
comparison was made using computer simulation. The results of these experiments
confirm many of the key properties suggested by approximate analysis. In particular,
the performance degradation of the SG algorithms when the input sequence is highly
ill-conditioned, the fast consistent convergence of the LS algorithms, and the role of
the quasi-orthogonalising algorithms as a compromise in performance between the

LMS and the RLS algorithms.

Developments have been made in the area of block adaptive filtering. A unified
approach to the BLMS algorithm has been presented which simplifies the application
of efficient convolution algorithms other than the FFT ( eg. the rectangular transform
) to the construction of computationally efficient block adaptive filters. A significant

contribution to the field has been the development of the self-orthogonalised block
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adaptive filter which exhibits convergence performance characteristic of class (ii) in

combination with computational complexity characteristic of class (i).

A closed form expression for the optimum IR equalising filter was derived using
Wiener filtering theory. This formulation highlighted the structure of the optimum IIR
equaliser. A comparison of the MSE performance of FIR and IIR equalisers
illustrated the inherent order advantage in using an IIR filter in this application. The
adaptive IIR equaliser problem was shown to be equivalent to the identification of an
ARMA plant which is embedded in an ARMAX process. Although the bias
associated with RLS estimates can be avoided through resort to algorithms such as
RIV, the MSE convergence of these algorithms is poorly understood and hence they

cannot be considered to be robust solutions.

A new adaptive IIR linear equaliser [111] has been presented which is based on
'the Kalman filter structure of [18]. In the steady state this structure is a canonical
form of the optimum IIR Wiener equaliser. The Kalman equaliser has been made
adaptive by combining it with a LMS system identification algorithm and a novel
technique, which both estimates the channel noise variance and compensates the
Kalman filter for uncertainty in the channel impulse response. Comparisons show that
the convergence performance is roughly equivalent to a FIR equaliser which is trained
with an RLS algorithm. However the order of the new filter is always lower than the
FIR filter. A comparison of the computational load of the proposed structure with an
RLS FIR equaliser indicates that the former offers an advantage, which is dependent
on the channel characteristics. Further a method for improving the convergence
performance of the adaptive Kalman equaliser has been described which involves

replacing the LMS system identification algorithm with a RLS counterpart.
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7.3 LIMITATIONS AND FURTHER WORK

In Chapter 1, it was stated that adaptive filters find application in environments
which are both stationary and non-stationary in nature. It is evident from subsequent
chapters that the latter has not been considered in any detail. Performance in a non-
stationary environment is merely implied from the convergence performance in a
stationary environment. However other authors such as [112] present observations
which indicate that in a continuously changing non-stationary environment such as a
high frequency (HF) communications channel, this deduction is misleading and SG
algorithms such as the LMS may outperform the RLS algorithm. A clear direction for
future research is to study the performance of adaptive FIR filter algorithms in a
continuously varying non-stationary environment using both analytic and experimental

techniques.

The investigation of adaptive IIR filtering has been limited to the specific
application of adaptive equalisation. The solution presented in Chapter 6 is
application dependent and thus it is not believed that it could be applied to a general
adaptive IIR filtering problem. However in the adaptive equaliser scenario the
Kalman filter formulation makes it relatively straightforward to extend the algorithm of
Chapter 6 to include decision feedback and fractionally spaced IIR equalisers. The
question then arises as to how such equalisers compare in performance and complexity

with more conventional decision feedback and fractionally spaced equaliser structures.
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Appendix A

THE FAST KALMAN ALGORITHM

In [25] Ljung et al derived a recursion for the calculation of k(k), (2.4.14),
which is an order of magnitude more efficient than (2.4.15). This recursion, which
has since come to be known as the fast Kalman algorithm, depends fundamentaily
upon the shifting property of the vector x(k) and upon the use of forward and
backwards least squares prediction to exploit this property. Before proceeding to the
fast algorithm it is necessary to develop the forward and backward linear predictors

and some of the variables associated with them.

An Nth order linear prediction £/ of the process x is given by the output of an N

tap transversal filter.

£ (n)=a" x(n-1)

where

a’ =[aoal aN—l]

As with linear estimation, this linear prediction is considered to be least squares if the

filter coefficient vector g is chosen to minimise a sum of squared errors cost function.

k
S (x(n) =& (n))? (A.1)
n=0
The value of g which minimises this cost function is given by

r.(k=1) a(k) = ri(k) (A.2)

where

k) = S x(n—1) x(n) (A.3)
n=0
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The minimum value, o (k), of the cost function, (A.1), can then be calculated by

combining (A.1) and (A.2).

of (k) = rf(k) —a” (k) (k) (A.4)

where

k

ri(k) = 3 x*(n)

n=0

Again in common with last squares estimation, the tap vector g (k) may be generated

recursively.
a(k) = a(k—-1) + k(k—-1) e/ (k) (A.5)
e/ (k) = x(k) —a"(k-1) x(k-1) (A.6)

Note that the recursion for g (k) requires the same gain vector k (k) as the recursion

for h(k), (2.4.12).

The defining equations for backwards linear least squares prediction are
analogous to those for forward linear least squares prediction. They are as follows: a

backward prediction

£2(n—-N) = b7 x(n)

a sum of squared errors cost function

S (x(n=N) — £*(n =N) )? (A7)
a=0
with solution

L (k) B (k) = £2(k)

where
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k) = 3 £(n) x(n -N)

The minimum value, a® (k), of the cost function, (A.7), is
a® (k) = rj(k) — b7 (k) (k) (A.8)
where

rb(k) = é x¥(n—N)

n=0

a recursion for b (k)
b(k) = b(k—1) + k(k) e®(k) (A.9)

e?(k) = x(k—-N) — b"(k-1) x(k)

The method used by Ljung et al to exploit the shifting property of x (k) involves

first increasing the order of the system by 1 from order N to order (N + 1).

x(n)y=[x(n)x(n-1) ..x(n=N+1) x(n—-N) ]

The vector x(n) contains both the new data sample x(n) and the data sample x(n-N)
which is disregarded. To highlight the effect of these two data points, the vector x(n)

is partitioned in two ways.

(A.10)

x(n-1)

x(n)
x(n—N)

n) ]
f(n)={ {&()

This concept of increase in order and what might be called forward and backward

partitions respectively is then applied to the matrix r,, .

k)= S i) &)

a=0
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EONHO
(k) r.(k-1)

L

£ (k) (k)
et (k) ri(k)

L

This particular form assumes that the data is prewindowed. The matrix r, may then be
inverted by the use of two standard results from matrix algebra: the inversion rule for

partitioned matrices [113] and the Sherman-Morrison identity. [39]

1
of (k)

a’(k)
of (k)

Lo'(k) =

L

L

a(k)
of (k)

L'(k—1) +

b(k)b"(k)

a(k)a (k)

of (k)

b(k) |

Lc'(k) + 2 (0)

b (k)
o (k)

o’ (k)

1

a’ (k)

(A.11)

The next step is to calculate the increased order gain vector K (k +1) using the defining

equation.

k(k+1) = 271k +1) £k +1)

Application of the forward and backward forms of (A.10) and (A.11) in turn yields

two expressions for k(k+1)

- 0 1]

_ _ ef!k+l! 12
(D {m)] of (k+1) [a(m)] N
- _ [kG+D) e k+1) |RG+D) ]
k(k+1) = [ 0 ] T WD) { , } (A.13)

171



where

S(k+1) = x(k+1) —gT(k+1) x(k)

and

(k+1) = x(k=N+1) — bT(k+1) g(k+1)

The variables ¢ and € are known as the a posteriori forward and backward
prediction errors respectively to distinguish them from e/ and e®, the a priori errors
[43]. Equations (A.12) and (A.13) give the required recursion ie. an expression for

k(k+1) in terms of k (k). Using a backwards partition k (k + 1) may be rewritten.

F+1) = [d(k+1) ]
d(k+1)
where
s(k) = —e? (k+1)
ab(k+1)
and
dk+1) = k(k+1) + 3(k+1) b(k+1) (A.14)

Substitution for b (k +1) in (A.14) using (A.9) followed by some rearrangement gives

dk+1) —8(k+1) b(k)
1+ 3(k+1)eb(k+1)

k(k+1) =

All that remains to complete the recursion is an expression for of (k +1). By definition

af (k+1) = rf(k+1) —gT(k+1) rf(k+1) (A.15)

A recursion for rf is obtained from (A.3).

rf(k+1) = £/ (k) + x(k) x(k+1) (A.16)

Substitution for g (k +1) and r/(k +1) in (A.15) yields
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af (k+1) = of (k) + & (k+1) e/ (k+1) .

The complete algorithm is summarised in Table A.1.
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Table A.1 THE FAST KALMAN ALGORITHM ( PRE-WINDOWED )

ef(k+1) = x(k+1) — g (k) (k)

a(k+1) =gk) + k(k) e/ (k+1)

f(k+1) = x(k+1) —gT(k+1) x(k)

of (k+1) = af (k) + ¢/ (k+1) e/ (k+1) .

lc—(k+1)= [ 0 ]_ e (k+1) 1 ]
k(k) of (k+1) | g(k+1)
k(k+1) = {d(kﬂ)]
5(k +1)

e’ (k+1) = x(k—N+1) — b7 (k) x(k+1)

d(k+1) — 8(k+1) b(k)
1+ 8(k+1) eb(k+1)

k(k+1) =

b(k+1) = b(k) + k(k+1) eb(k+1)

e(k+1)=yk+1) + bT(k)x(k+1)

h(k+1) = (k) + k(k+1) e(k+1)
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Appendix B
CIRCULAR AND LINEAR CONVOLUTION

The circular convolution of the N point input vector

& =[x(0)x(1) -~ xN-1DF

and an N-point impulse response vector

h=[h0hl . . . hN—l]T

is the N-point output vector

ye =Ly @y (1) --- yWN-DJ
where

N -1
y(n)y=3 hijx((n—jymod N), n=20,1, --- N-1.
=0

J

The notation j mod N indicates j modulo N ie. the remainder when j is divided by N.

The circular convolution operation is indicated by the circular convolution operator, *.

y*=x *h (B.1)

Equation (B.1) is computed efficiently using the FFT [7], RT [62] or NTT [63]. In
general these three transform domain techniques may be defined in terms of two
(N x M) matrices Ay and By and a (M X N) matrix Cy, where M = N [85]. The
subscript N is used to indicate an N-point circular convolution operation. The input
vector x, and the impulse response vector i are multiplied by the By and Ay matrices

to form the M-point vectors X and 4 respectively.

X =By &
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H=Anh

Each element of the vector X is then multiplied by the corresponding element of the

vector H to form the vector Y.

This point by point multiplication is denoted by the operator, X.

Y=Xxd
Finally the ouput vector y° is formed by multiplying ¥ by the C matrix.
yy=CclX

Turning to the linear convolution operation, the output y(n) of a N-tap FIR filter

with impulse response vector I may be described by the vector inner product of two

N-vectors

y(n)=x"(n)h , (B.2)
where

xT(n)=[x(n)yx(n-1) --- x(n-N+1)].

The output sequence { y(n) } is the linear convolution of the finite sequence { 4, },
0 =i < N -1, with the infinite sequence { x(n)}. For notational convenience the
impulse response vector i is defined with its elements in time increasing order and the
input vector x(n) is defined with its elements in time decreasing order. Thus the data
ordering that is convenient for the representation of the filtering operation is not the
same ordering that is convenient for the representation of circular convolution. To
facilitate block processing it is also convenient to define an output N-vector y (k) which

is contructed from N outputs of the FIR filter defined in (B.2).
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Y)Y =[y(k)y(k=1) -+ y(k-N+D1) T

x(k) &

The (N X N) matrix x(k), where

x(k) = [x(k) x(k-1) - - x(k-N+1)],
is symmetric.

Circular convolution may be used to perform linear convolution if it is used in
conjunction with an overlap save or overlap add data sectioning technique [7]. Only
overlap save will be considered here as it leads to more computationally efficient
adaptive filter structures than overlap add [61]. To calculate the output vector y(k) a
2N-point circular convolution is required. First the impulse response vector of (B.2) is

combined with an N-point zero vector to form a 2N-point impulse response vector.

Iy
Ow

The matrix Iy is an (N X N) identity matrix and the matrix Oy is an (N X N ) matrix

h (B.3)

with all zero elements. Then a 2N-point input vector is formed from x(k) and

X(k—N).

Ty x(k—N)

(B.4)
Ty x(k)

The (N X N) time reversal matrix, Ty, has 1’s on the secondary diagonal and zeros
elsewhere. Finally the 2N-point circular convolution of the input vector of (B.4) and
the impulse response vector of (B.3) is calculated. The elements of the N-point vector
y(k) can be recovered from the resultant 2N-point output vector by multiplying the
latter by the window matrix, [ Oy Iy ]. The overlap save technique is summarised by

the following vector matrix equation,
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TN &(k—N) IN
Y (k) =[O0y Iy] [ T, xk) |* | o (B.5)
where
y (k) =[y(k-N+1) --- y(k-1)y(k)].

Since circular covolution is defined in terms of vectors in time increasing order both
overlap add and overlap save techniques produce an output vector ¥, (k) which is the

time reverse of the vector y (k).

The circular convolution operation indicated in (B.5) can be computed efficiently
using any of the 2N-point circular convolution algorithms which are defined in general
by two (2N X M) matrices A,y and B,y and a (M X 2N) matrix C,y, where
M = 2N. The output vector y (k) is obtained from y, (k) by multiplying the latter by

the (N X N) reversal matrix T, .
y(k) = Ty y, (k)

=[On Ty JCov {X(k) X H }

where
Ty J.(k —N)
X(k) = By T, £(k)
N
and
I
H=Ay {0"; b.
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