320 research outputs found

    Methods to Improve the Prediction Accuracy and Performance of Ensemble Models

    Get PDF
    The application of ensemble predictive models has been an important research area in predicting medical diagnostics, engineering diagnostics, and other related smart devices and related technologies. Most of the current predictive models are complex and not reliable despite numerous efforts in the past by the research community. The performance accuracy of the predictive models have not always been realised due to many factors such as complexity and class imbalance. Therefore there is a need to improve the predictive accuracy of current ensemble models and to enhance their applications and reliability and non-visual predictive tools. The research work presented in this thesis has adopted a pragmatic phased approach to propose and develop new ensemble models using multiple methods and validated the methods through rigorous testing and implementation in different phases. The first phase comprises of empirical investigations on standalone and ensemble algorithms that were carried out to ascertain their performance effects on complexity and simplicity of the classifiers. The second phase comprises of an improved ensemble model based on the integration of Extended Kalman Filter (EKF), Radial Basis Function Network (RBFN) and AdaBoost algorithms. The third phase comprises of an extended model based on early stop concepts, AdaBoost algorithm, and statistical performance of the training samples to minimize overfitting performance of the proposed model. The fourth phase comprises of an enhanced analytical multivariate logistic regression predictive model developed to minimize the complexity and improve prediction accuracy of logistic regression model. To facilitate the practical application of the proposed models; an ensemble non-invasive analytical tool is proposed and developed. The tool links the gap between theoretical concepts and practical application of theories to predict breast cancer survivability. The empirical findings suggested that: (1) increasing the complexity and topology of algorithms does not necessarily lead to a better algorithmic performance, (2) boosting by resampling performs slightly better than boosting by reweighting, (3) the prediction accuracy of the proposed ensemble EKF-RBFN-AdaBoost model performed better than several established ensemble models, (4) the proposed early stopped model converges faster and minimizes overfitting better compare with other models, (5) the proposed multivariate logistic regression concept minimizes the complexity models (6) the performance of the proposed analytical non-invasive tool performed comparatively better than many of the benchmark analytical tools used in predicting breast cancers and diabetics ailments. The research contributions to ensemble practice are: (1) the integration and development of EKF, RBFN and AdaBoost algorithms as an ensemble model, (2) the development and validation of ensemble model based on early stop concepts, AdaBoost, and statistical concepts of the training samples, (3) the development and validation of predictive logistic regression model based on breast cancer, and (4) the development and validation of a non-invasive breast cancer analytic tools based on the proposed and developed predictive models in this thesis. To validate prediction accuracy of ensemble models, in this thesis the proposed models were applied in modelling breast cancer survivability and diabetics’ diagnostic tasks. In comparison with other established models the simulation results of the models showed improved predictive accuracy. The research outlines the benefits of the proposed models, whilst proposes new directions for future work that could further extend and improve the proposed models discussed in this thesis

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Processing of missing data by neural networks

    Full text link
    We propose a general, theoretically justified mechanism for processing missing data by neural networks. Our idea is to replace typical neuron's response in the first hidden layer by its expected value. This approach can be applied for various types of networks at minimal cost in their modification. Moreover, in contrast to recent approaches, it does not require complete data for training. Experimental results performed on different types of architectures show that our method gives better results than typical imputation strategies and other methods dedicated for incomplete data

    Motion-capture-based hand gesture recognition for computing and control

    Get PDF
    This dissertation focuses on the study and development of algorithms that enable the analysis and recognition of hand gestures in a motion capture environment. Central to this work is the study of unlabeled point sets in a more abstract sense. Evaluations of proposed methods focus on examining their generalization to users not encountered during system training. In an initial exploratory study, we compare various classification algorithms based upon multiple interpretations and feature transformations of point sets, including those based upon aggregate features (e.g. mean) and a pseudo-rasterization of the capture space. We find aggregate feature classifiers to be balanced across multiple users but relatively limited in maximum achievable accuracy. Certain classifiers based upon the pseudo-rasterization performed best among tested classification algorithms. We follow this study with targeted examinations of certain subproblems. For the first subproblem, we introduce the a fortiori expectation-maximization (AFEM) algorithm for computing the parameters of a distribution from which unlabeled, correlated point sets are presumed to be generated. Each unlabeled point is assumed to correspond to a target with independent probability of appearance but correlated positions. We propose replacing the expectation phase of the algorithm with a Kalman filter modified within a Bayesian framework to account for the unknown point labels which manifest as uncertain measurement matrices. We also propose a mechanism to reorder the measurements in order to improve parameter estimates. In addition, we use a state-of-the-art Markov chain Monte Carlo sampler to efficiently sample measurement matrices. In the process, we indirectly propose a constrained k-means clustering algorithm. Simulations verify the utility of AFEM against a traditional expectation-maximization algorithm in a variety of scenarios. In the second subproblem, we consider the application of positive definite kernels and the earth mover\u27s distance (END) to our work. Positive definite kernels are an important tool in machine learning that enable efficient solutions to otherwise difficult or intractable problems by implicitly linearizing the problem geometry. We develop a set-theoretic interpretation of ENID and propose earth mover\u27s intersection (EMI). a positive definite analog to ENID. We offer proof of EMD\u27s negative definiteness and provide necessary and sufficient conditions for ENID to be conditionally negative definite, including approximations that guarantee negative definiteness. In particular, we show that ENID is related to various min-like kernels. We also present a positive definite preserving transformation that can be applied to any kernel and can be used to derive positive definite EMD-based kernels, and we show that the Jaccard index is simply the result of this transformation applied to set intersection. Finally, we evaluate kernels based on EMI and the proposed transformation versus ENID in various computer vision tasks and show that END is generally inferior even with indefinite kernel techniques. Finally, we apply deep learning to our problem. We propose neural network architectures for hand posture and gesture recognition from unlabeled marker sets in a coordinate system local to the hand. As a means of ensuring data integrity, we also propose an extended Kalman filter for tracking the rigid pattern of markers on which the local coordinate system is based. We consider fixed- and variable-size architectures including convolutional and recurrent neural networks that accept unlabeled marker input. We also consider a data-driven approach to labeling markers with a neural network and a collection of Kalman filters. Experimental evaluations with posture and gesture datasets show promising results for the proposed architectures with unlabeled markers, which outperform the alternative data-driven labeling method

    A Comprehensive Review of Digital Twin -- Part 1: Modeling and Twinning Enabling Technologies

    Full text link
    As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented attention because of its promise to further optimize process design, quality control, health monitoring, decision and policy making, and more, by comprehensively modeling the physical world as a group of interconnected digital models. In a two-part series of papers, we examine the fundamental role of different modeling techniques, twinning enabling technologies, and uncertainty quantification and optimization methods commonly used in digital twins. This first paper presents a thorough literature review of digital twin trends across many disciplines currently pursuing this area of research. Then, digital twin modeling and twinning enabling technologies are further analyzed by classifying them into two main categories: physical-to-virtual, and virtual-to-physical, based on the direction in which data flows. Finally, this paper provides perspectives on the trajectory of digital twin technology over the next decade, and introduces a few emerging areas of research which will likely be of great use in future digital twin research. In part two of this review, the role of uncertainty quantification and optimization are discussed, a battery digital twin is demonstrated, and more perspectives on the future of digital twin are shared

    Improving Prediction Accuracy of Breast Cancer Survivability and Diabetes Diagnosis via RBF Networks trained with EKF models

    Get PDF
    The continued reliance on machine learning algorithms and robotic devices in the medical and engineering practices has prompted the need for the accuracy prediction of such devices. It has attracted many researchers in recent years and has led to the development of various ensembles and standalone models to address prediction accuracy issues. This study was carried out to investigate the integration of EKF, RBF networks and AdaBoost as an ensemble model to improve prediction accuracy. In this study we proposed a model termed EKF-RBFN-ADABOOST

    Evolutionary Algorithms in Engineering Design Optimization

    Get PDF
    Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, have allowed us to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are the following: they do not require any requisite to the objective/fitness evaluation function (continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry. From the application point of view, in this Special Issue, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, civil, chemical and materials science, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc. Within the EA field, the integration of innovative and improvement aspects in the algorithms for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modelling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc

    Discovering user mobility and activity in smart lighting environments

    Full text link
    "Smart lighting" environments seek to improve energy efficiency, human productivity and health by combining sensors, controls, and Internet-enabled lights with emerging “Internet-of-Things” technology. Interesting and potentially impactful applications involve adaptive lighting that responds to individual occupants' location, mobility and activity. In this dissertation, we focus on the recognition of user mobility and activity using sensing modalities and analytical techniques. This dissertation encompasses prior work using body-worn inertial sensors in one study, followed by smart-lighting inspired infrastructure sensors deployed with lights. The first approach employs wearable inertial sensors and body area networks that monitor human activities with a user's smart devices. Real-time algorithms are developed to (1) estimate angles of excess forward lean to prevent risk of falls, (2) identify functional activities, including postures, locomotion, and transitions, and (3) capture gait parameters. Two human activity datasets are collected from 10 healthy young adults and 297 elder subjects, respectively, for laboratory validation and real-world evaluation. Results show that these algorithms can identify all functional activities accurately with a sensitivity of 98.96% on the 10-subject dataset, and can detect walking activities and gait parameters consistently with high test-retest reliability (p-value < 0.001) on the 297-subject dataset. The second approach leverages pervasive "smart lighting" infrastructure to track human location and predict activities. A use case oriented design methodology is considered to guide the design of sensor operation parameters for localization performance metrics from a system perspective. Integrating a network of low-resolution time-of-flight sensors in ceiling fixtures, a recursive 3D location estimation formulation is established that links a physical indoor space to an analytical simulation framework. Based on indoor location information, a label-free clustering-based method is developed to learn user behaviors and activity patterns. Location datasets are collected when users are performing unconstrained and uninstructed activities in the smart lighting testbed under different layout configurations. Results show that the activity recognition performance measured in terms of CCR ranges from approximately 90% to 100% throughout a wide range of spatio-temporal resolutions on these location datasets, insensitive to the reconfiguration of environment layout and the presence of multiple users.2017-02-17T00:00:00
    • 

    corecore