
Dynamic Machine Learning
with Least Square Objectives

Şan Gültekin

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

Columbia University

2019

c© 2019

Şan Gültekin

All Rights Reserved

ABSTRACT

Dynamic Machine Learning
with Least Square Objectives

Şan Gültekin

As of the writing of this thesis, machine learning has become one of the most

active research fields. The interest comes from a variety of disciplines which include

computer science, statistics, engineering, and medicine. The main idea behind learn-

ing from data is that, when an analytical model explaining the observations is hard to

find—often in contrast to the models in physics such as Newton’s laws—a statistical

approach can be taken where one or more candidate models are tuned using data.

Since the early 2000’s this challenge has grown in two ways: (i) The amount of

collected data has seen a massive growth due to the proliferation of digital media, and

(ii) the data has become more complex. One example for the latter is the high di-

mensional datasets, which can for example correspond to dyadic interactions between

two large groups (such as customer and product information a retailer collects), or to

high resolution image/video recordings.

Another important issue is the study of dynamic data, which exhibits dependence

on time. Virtually all datasets fall into this category as all data collection is performed

over time, however I use the term dynamic to hint at a system with an explicit

temporal dependence. A traditional example is target tracking from signal processing

literature. Here the position of a target is modeled using Newton’s laws of motion,

which relates it to time via the target’s velocity and acceleration.

Dynamic data, as I defined above, poses two important challenges. Firstly, the

learning setup is different from the standard theoretical learning setup, also known

as Probably Approximately Correct (PAC) learning. To derive PAC learning bounds

one assumes a collection of data points sampled independently and identically from a

distribution which generates the data. On the other hand, dynamic systems produce

correlated outputs. The learning systems we use should accordingly take this differ-

ence into consideration. Secondly, as the system is dynamic, it might be necessary to

perform the learning online. In this case the learning has to be done in a single pass.

Typical applications include target tracking and electricity usage forecasting.

In this thesis I investigate several important dynamic and online learning prob-

lems, where I develop novel tools to address the shortcomings of the previous solutions

in the literature. The work is divided into three parts for convenience. The first part

is about matrix factorization for time series analysis which is further divided into

two chapters. In the first chapter, matrix factorization is used within a Bayesian

framework to model time-varying dyadic interactions, with examples in predicting

user-movie ratings and stock prices. In the next chapter, a matrix factorization which

uses autoregressive models to forecast future values of multivariate time series is pro-

posed, with applications in predicting electricity usage and traffic conditions. Inspired

by the machinery we use in the first part, the second part is about nonlinear Kalman

filtering, where a hidden state is estimated over time given observations. The nonlin-

earity of the system generating the observations is the main challenge here, where a

divergence minimization approach is used to unify the seemingly unrelated methods

in the literature, and propose new ones. This has applications in target tracking and

options pricing. The third and last part is about cost sensitive learning, where a

novel method for maximizing area under receiver operating characteristics curve is

proposed. Our method has theoretical guarantees and favorable sample complexity.

The method is tested on a variety of benchmark datasets, and also has applications

in online advertising.

Table of Contents

List of Figures v

List of Tables x

1 Introduction 1

I Dynamic Matrix Factorization 6

2 Dynamic Matrix Factorization for Dyadic Time Series 7

2.1 Introduction . 7

2.2 Background . 10

2.2.1 Matrix Factorization . 10

2.2.2 Kalman filtering . 12

2.3 Collaborative Kalman Filter (CKF) 14

2.4 Variational Inference . 18

2.4.1 Variational Inference for CKF 21

2.4.2 Approximating and Inferring the Brownian Motion 25

2.5 Algorithms and Complexity . 29

2.5.1 CKF with Continuous Observations 29

2.5.2 CKF with Ordinal Observations 30

2.5.3 CKF with Continuous Observations and Fixed Drift 31

2.5.4 CKF with Ordinal Observations and Fixed Drift 32

i

2.5.5 Complexity Analysis . 33

2.6 Experiments . 34

2.6.1 Movie Rating Data . 34

2.6.2 Stock Price Data . 41

2.7 Conclusion . 44

3 Dynamic Matrix Factorization for Forecasting 46

3.1 Introduction . 46

3.2 Background and Motivation . 49

3.3 Online Matrix Factorization . 53

3.3.1 Fixed Penalty Constraint . 53

3.3.2 Fixed Tolerance Constraint 56

3.3.3 Zero Tolerance Constraint . 59

3.4 Optimum Sequence Prediction . 61

3.5 Algorithms and Complexity . 65

3.5.1 Fixed Penalty Online Forecasting 65

3.5.2 Fixed Tolerance Online Forecasting 66

3.5.3 Zero Tolerance Online Forecasting 67

3.5.4 Complexity Analysis . 68

3.6 Experiments . 69

3.6.1 Electricity Data . 71

3.6.2 Traffic Data . 76

3.6.3 Forecasts on Individual Time Series 79

3.7 Conclusion . 81

3.8 Appendix to Chapter 3 . 82

3.8.1 Fixed tolerance update: Ut 82

3.8.2 Fixed tolerance update: vt . 84

ii

II Nonlinear Kalman Filtering 87

4 Nonlinear Kalman Filtering with Divergence Minimization 88

4.1 Introduction . 88

4.2 Kalman Filtering . 91

4.2.1 Basic Linear Framework . 91

4.2.2 Nonlinear Framework . 92

4.2.3 Parametric Approach: Assumed Density Filtering 93

4.2.4 Nonparametric Approach: Particle Filtering 96

4.3 Three Filters based on Divergence Minimization 97

4.3.1 Filter 1: Forward KL Divergence Minimization 98

4.3.2 Filter 2: Reverse KL Divergence Minimization 104

4.3.3 Filter 3: Alpha Divergence Minimization 106

4.3.4 Adaptive Sampling . 109

4.4 Algorithms and Complexity . 112

4.4.1 Stochastic Search Kalman Filter 112

4.4.2 Moment Matching Kalman Filter 113

4.4.3 Moment Matching Kalman Filter with AdaSamp 114

4.4.4 Alpha Divergence Kalman Filter 115

4.4.5 Alpha Divergence Kalman Filter with AdaSamp 116

4.4.6 Complexity Analysis . 117

4.5 Experiments . 118

4.5.1 Target Tracking . 118

4.5.2 Options Pricing . 127

4.6 Conclusion . 130

4.7 Appendix to Chapter 4 . 131

4.7.1 Proof of Theorem 1 . 131

4.7.2 Proof of Corollary 2 . 132

iii

III AUC Maximization 134

5 Mini-Batch AUC Maximization 135

5.1 Introduction . 135

5.2 Background . 138

5.3 Mini-Batch AUC Maximization . 141

5.4 Theoretical Analysis . 144

5.5 Algorithms and Complexity . 151

5.5.1 Linear Mini-Batch AUC Maximization 151

5.5.2 Nonlinear Mini-Batch AUC Maximization 152

5.5.3 Complexity Analysis . 153

5.6 Experiments . 154

5.6.1 Simulation Study . 157

5.6.2 UCI and LIBSVM Benchmark Data 160

5.6.3 Nonlinear Features . 164

5.6.4 Large-scale Web Click Data 165

5.7 Conclusion . 168

5.8 Appendix to Chapter 5 . 168

5.8.1 AUC Maximization in Signal Detection 168

6 Conclusion 172

Bibliography 174

iv

List of Figures

2.1 Dynamic behavior of two users from the Netflix data set based on the

cumulative total of movies rated. Left panel: This user rates large

batches of movies in a few sittings. Though the dynamics won’t be

captured by the model, we still can perform sequential inference for

this user to make predictions. Right panel: A more incremental rating

pattern that has dynamic value. 35

2.2 Histograms of the total number of ratings within a month over the

course of each data set. 36

2.3 The RMSE as a function of number of ratings for a user and movie.

The (m,n) entry contains the RMSE calculated over user/movie pairs

where the user has rated at least 10(m− 1) movies and the movie has

been rated at least 10(n−1) times. The value shown in the lower-right

corner is 200+ ratings each, which we use in Table 2.1. 37

2.4 An example of a user drift over time as seen through predicted ratings

for several movies from the Netflix data set. The y-axis is the latent

variable space, which we partition according to star rating as indicated. 40

2.5 The number of actively traded stocks as a function of time. 41

2.6 A histogram of the tracking errors of the CKF for four stocks using the

mean of each q distribution (in log2 scale). The tracking performance

is very accurate using a 5 dimensional latent space (order 10−3). These

result are typical of all histograms. 42

v

2.7 (a) The historical stock price for two oil companies, BP and Chevron.

(b) The log drift Brownian motion (aui
[t]) indicating the volatility of

each stock. We see that though the stock prices are different, the

volatility of both oil companies share the same shape since they are

closely linked in the market. 43

2.8 (Top row) The historical stock prices for three steel companies, one

pharmaceutical and one beverage company. (Bottom row) The corre-

sponding log drift Brownian motions (aui
[t]) for the respective stocks

from the top row. We see that the three steel companies shared high

volatility during the period of the 2008 financial crisis, but companies

in other areas such as the pharmaceutical and beverage industry were

not similarly affected. 44

3.1 Comparison of online matrix factorization schemes. (a) a matrix X is

factorized in the batch setting, whereas in (b) at each time a subset of

the matrix is observed. For illustrative purposes the observed rank is

always greater than one. (c) shows online matrix factorization, where

without appropriate regularization (implied in what is shown) the rank

cannot exceed one. 51

3.2 Performance comparison of 10 predictors listed in the beginning of this

section, for the electricity dataset. (a) The sparsity pattern is unstruc-

tured, and 20 sets of experiments are performed for 10 different levels.

(b) The sparsity pattern is structured, and 20 sets of experiments are

performed for 5 different departure rates. 73

3.3 Time-varying comparison of all models on electricity data with unstruc-

tured sparsity and NNZ = 80%. While naive MF can forecast better

than PMF, it is worse than FP/FT/ZT. Overall, FP/FT/ZT consis-

tently outperform the other methods over time, which agrees with the

results of Figure 3.2. 75

vi

3.4 Plot of prediction performances as a function of (a) rank and (b) AR

order. Both plots obtained for electricity dataset with unstructured

sparsity and NNZ = 80%. 76

3.5 Performance comparison of 10 predictors listed in the beginning of this

section, for the traffic dataset. (a) The sparsity pattern is unstructured,

and 20 sets of experiments are performed for 10 different levels. (b) The

sparsity pattern is structured, and 20 sets of experiments are performed

for 5 different departure rates. 77

3.6 Plot of prediction performances as a function of (a) rank and (b) AR

order. Both plots obtained for traffic dataset with unstructured spar-

sity and NNZ = 50%. 78

3.7 (a) Plot of time series no. 142 of Electricity data (blue) vs. forecasts

(red) of AR, CKF, and FT for three sparsity levels, expressed in NNZ

percentage. (b) Plot of time series no. 309 of Electricity data (blue) vs.

forecasts (red) of AR, CKF, and FT for three sparsity levels, expressed

in NNZ percentage. 79

3.8 (a) Plot of time series no. 290 of Traffic data (blue) vs. forecasts

(red) of CKF, ORP, and LN for three sparsity levels, expressed in

NNZ percentage. (b) Plot of time series no. 704 of Traffic data (blue)

vs. forecasts (red) of CKF, ORP, and LN for three sparsity levels,

expressed in NNZ percentage. 80

4.1 Illustration of adaptive sampling. Due to unexpected changes in the

target trajectory, more samples may be needed at a given time point.

Also shown is the bounding circle for a confidence ellipse. 110

vii

4.2 Tracks estimated by various filtering schemes in sensor network set-

ting. Top row: Comparisons of EKF, UKF, and SKF. Middle row:

EKF, UKF, and MKF. Bottom row: EKF, UKF, and αKF . In the

background sensor scatterplots are given. Each plot corresponds to a

square field with 100 units of side length. 123

4.3 Left panel: MSE value of αKF as a function of α for the sensor network

tracking problem with σQ = 10−1. Right panel: NLL values as a

function of α. For both figures, when α = 1, αKF reduces to MKF.

The performance of PF and EKF are plotted as baselines. Also, for

PF and EKF the markers are only given for reference, otherwise they

do not depend on α. 124

4.4 Mean square error and minimum sample size as a function of confidence

radius rmax. 126

4.5 Mean square error as a function of process and measurement noise

parameters, where the exact parameters are known to the filter. The

legend given is shared by both figures. 127

4.6 Volatility estimation performance of various filtering schemes (based

on Option 1). The estimates are plotted along with the ground truth.

Best viewed in color. 128

5.1 The ROC curves obtained by the Neyman-Pearson detector and three

learning algorithms on the simulated data. The rows are in increasing

order of mixture components (K) and the columns are in increasing

order of sample ratio (SR). 159

5.2 AUC performance of six algorithms as a function of sample size for

a9a, german, and svmguide3 selected from LIBSVM. 162

5.3 AUC performance of four nonlinear feature generation methods, com-

pared to the linear case. All of the training is done via MBA-L2. . . . 165

viii

5.4 AUC achieved by all algorithms on the Avazu App, Avazu Site, and

Criteo datasets. Here the performance is plotted as a function of reg-

ularization parameters. The elastic net uses one half of `1-penalty for

both `1 and `2 regularization. 166

5.5 Runtime comparison of MBA with MB-PSL and MB-PHL. As the

latter two only require a gradient computation they are faster than

MBA, but with significantly reduced performance. On the other hand,

MBA can process tens of millions of samples under an hour, showing

the scalability of this approach. 167

5.6 A cartoon illustration of the signal detection (left) and statistical learn-

ing (right) frameworks for AUC maximization. 170

ix

List of Tables

2.1 RMSE results for the Netflix 100 million and MovieLens 10 million

data sets. Comparisons show an advantage to modeling the dynamic

information within the data. 38

4.1 Radar tracking problem: Mean Square Error (MSE) of various filtering

schemes as a function of process noise parameter σQ. The boldfaces

show the best performers for small/large particle sizes. 121

4.2 Sensor network tracking problem: Mean Square Error (MSE) of various

filtering schemes as a function of process noise parameter σQ. The

boldfaces show the best performers for small/large particle sizes. . . . 122

4.3 Mean Absolute Error (MAE) values of various filtering schemes for

three different call/put option pairs; calculated for σQ = 10−2. For

Option 3, EKF loses track so MAE is not reported. 129

5.1 Summary statistics of datasets used in experiments. For each dataset

we show the train/test sample size, feature size, and the ratio of neg-

ative samples to positive samples in the training set. 156

5.2 Comparisons of algorithms on simulated data The performance of MBA-

`2, ONLR, and AdaAUC are reported for k ∈ {1, 2, 3} and SR ∈

{1%, 10%, 100%}. The symbols filled/empty circle indicate that MBA

is (statistically) significantly better/worse. 160

x

5.3 Comparison of algorithms on 15 benchmark datasets from UCI and

LIBSVM repositories. The symbols filled/empty circle indicate one of

the MBA is (statistically) significantly better/worse. 163

xi

Acknowledgments

First of all I would like to express my gratitude to my advisor Prof. John Pais-

ley. Without his encouragement throughout my studies, this thesis would have not

been possible. I am also indebted to Professors David Blei, Daniel Hsu, John Wright,

and Xiaodong Wang for being part of my thesis committee and providing invaluable

advice.

The long Ph.D. marathon would also have not been possible without my friends—

quite a long list which I shall refrain from writing here, for the sole fear of forgetting

someone.

Last but by no means the least, I would like to express my gratitude to my family,

in particular my parents Akde Gültekin and Bilgin Gültekin, whom this thesis is

dedicated to.

xii

To my family

xiii

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

In many areas of science, one is concerned with finding a mathematical model which

explains observed phenomena. Perhaps one of the first models to come in mind is

Newton’s laws of motion. In this case, there is a formula which explains how a physical

systems works; for example Newton’s second law asserts the acceleration is directly

proportional to the applied force. Now consider a setup where one is concerned with

movies a person is interested in watching. Can we come up with a formula, similar

to F = ma which can tell us if a person will like a given movie? It is unlikely that we

can find a closed-form solution to this problem, or even formulate one, as we don’t

even have fundamental quantities (e.g. mass and acceleration in physics) to relate

one’s preference to.

The difficulty of finding the true model is not confined to applications in social

sciences. In telecommunication systems, for instance, a simple channel with thermal

noise can be modeled as Gaussian [51]; however, it is harder to do so for channels with

multipath and shadowing. Another example is the Ising model in physics [112] where

there are an exponential number of spin configurations. When it is difficult to identify

the true model, it is customary to take a statistical approach where a candidate model

is tuned based on the observations available. In the telecommunication example, one

may transmit symbols several times and based on the outputs, the parameters of a

CHAPTER 1. INTRODUCTION 2

Gaussian mixture distribution can be tuned, which then becomes a model for the

channel. This statistical tuning process is also referred to as statistical machine

learning, or machine learning, as it is a computationally intensive task and typically

done using computers.

The machine learning approach has proved useful in various fields such as com-

puter vision, robotics, medicine, recommender systems, and finance. The main aim is

to apply statistical techniques to extract useful information from the available data;

which further divides into several categories. Arguably the most common one is where

a set of inputs and outputs are given which are used to learn a mapping that can be

used to predict future outcomes. This is referred to as supervised learning, as out-

puts are provided (supervised by the data provider). Another widely occurring one

is unsupervised learning, where only the inputs are given and the aim is to discover

structure within it. The problem of density estimation can be seen as an example of

this. While there are a number of other important subfields such as reinforcement

learning, semi-supervised learning, and transfer learning, they are outside the scope

of this thesis so I will not further discuss their details here.

Regardless of the kind of data provided, it is safe to say that virtually all datasets

have a dependence on time. This is, first of all, because all the collection process

happens over time. This might be explicitly available in the dataset as time stamps,

or might be discovered during unsupervised learning. The main focus of this thesis is

on the former, where an explicit dependence on time is given; we call these dynamic

data. Analysis of data, or outputs that are generated dynamically manifests itself

in many different fields. In control theory, an important application is the design of

controllers that stabilize dynamic plants, in radar target tracking the position of a

moving target has to be estimated continually, and in recommender systems a user’s

changing interests should be taken into account.

In this thesis I develop novel methods which address the learning problems for

dynamic datasets and dynamic systems. As the decades have seen a massive growth

CHAPTER 1. INTRODUCTION 3

in data, one of my main focuses here is scalability. This brings us to the online

learning setting. Online learning is a subfield where the learning is applied to a

stream of data, in a single pass, without storing the data in its entirety. This is useful

for both scalability and real-time application purposes. In addition, it is a natural

choice for dynamic datasets. One example is radar target tracking, where the location

of the target has to be known in real time. I will refer to online learning and dynamic

learning interchangeably.

In Part I, I start with Dynamic Matrix Factorization. I show that matrix factor-

ization is a useful tool for analyzing high dimensional time series. In Chapter 1, I

consider dyadic time series, where at every time instant we have a matrix which shows

the interaction between two groups. Such matrices are typically high dimensional and

sparse, and a low rank matrix factorization approach typically works well. I show how

matrix factorization can be integrated with a stochastic process model for the factors,

which gives a generative model for the data. The resulting model can then be inferred

using variational inference, a tool for approximate posterior computation. In Chapter

2, my focus is on forecasting future values of high dimensional and sparse time series,

once again using matrix factorization. The main difference here is that, unlike Chap-

ter 1, the observations are a single column vector, so a different generative model is

necessary. The analysis here shows important connections between generative mod-

els, linear systems, and convexity. In Part II, based on the applications of generative

models in Part I, I investigate the more general problem of nonlinear Kalman filter-

ing, which Chapter 1 is an instance of. In Chapter 3, I present nonlinear Kalman

filtering with divergence minimization, which uses information theoretic divergence

measures to do posterior inference. This results in new filters, and also provides a

new perspective on many different existing filters in literature, developed since 1960’s.

Finally in Part III, I consider a different problem, maximizing the area under receiver

operating characteristics curve (AUC). Initially developed for radar detection prob-

lems, AUC maximization is widely adopted in cost sensitive learning problems, as it

CHAPTER 1. INTRODUCTION 4

directly measures the separation ability of a ranking function between two classes.

As the metric itself is NP-hard to optimize, I investigate a specific convex relaxation

approach which yields a learning-rate free and dynamic learning algorithm. The main

difference here is that the data we consider is not necessarily dynamic; however the

algorithm can still be applied in a dynamic fashion. Furthermore, using only mild

assumptions about the provided data I derive favorable sample complexity bounds

for the proposed algorithm.

While the models and applications in this thesis have their own specifics, they

can be unified in terms of the cost function they use. In particular, this is the least-

squares type cost1 upon which our algorithms are derived. For Chapter 1, the error

made in predictions is penalized as

εchap.1 =
∥∥xij[t]− ui[t]>vj[t]∥∥2

2
(1.1)

where xij is the (i, j)-th entry of the observation matrix at time t, and ui[t] and vj[t]

are the hidden variables generating it. Equivalently we assume that the observation

is distributed as Gaussian given the hidden variables. For Chapter 2 the error is

εchap.2 =
∥∥x[t]−U [t]>v[t]

∥∥2

2
(1.2)

where x[t] is the observed vector, U [t] is the reconstruction matrix, and v[t] is the

compressed time series vector at time t. Chapter 3 considers the nonlinear Kalman

filtering problem, where the observation likelihood is Gaussian with a nonlinear de-

pendency on the hidden variable.

εchap.3 = ‖y[t]− h(x[t])‖2
2 (1.3)

where y[t] is the observation and x[t] is the hidden variable. Finally in Chapter 4 we

1It is “least-squares type” as it is not necessarily least squares. For example when there is an

expectation over the unknown variable we will instead have mean square error; then again since the

mathematical structure is similar I simply refer to this family of errors as least squares error.

CHAPTER 1. INTRODUCTION 5

have

εchap.4 =
[
1−w>(x+

i − x−j)
]2

(1.4)

where w is the weight vector we want to learn, and x’s are the feature vectors. The

specific structure of the least squares error bring important benefits in every chapter:

In Chapter 1 it allows for closed form variational inference, in Chapter 2 it yields

a convex program with closed form solution, in Chapter 3 it is used to get efficient

posterior computation, and in Chapter 4 it gives a learning-rate free, distributed, and

asynchronous algorithm.

6

Part I

Dynamic Matrix Factorization

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 7

Chapter 2

Dynamic Matrix Factorization for

Dyadic Time Series

2.1 Introduction

Time series are abundant in real life. As I mentioned in the introduction, virtually

every data collected is a time series, as the collection happens over time. In this section

however, our focus shall be on a specific subset called dyadic time series. For this

let us review dyadic datasets first. Such datasets comprise interaction of two groups.

Some concrete examples are websites such as Netflix, Amazon, or Youtube where the

user is rating movies, items, or videos. In this case the interaction is between the set

of users and items. In sporting events the interactions may correspond to the matches

between teams (football) or individuals (tennis). In finance, on the other hand, the

foreign exchange rates are determined by two countries’ economies.

Given the wide availability of dyadic datasets it is important to develop techniques

that can leverage their pairwise interaction nature. One successful technique from

recommender systems literature is collaborative filtering [100]. Recommender systems

aim at finding the interests of the users, given the previous user-item interactions. For

example, in case of Netflix a recommender system tries to find movies a user would

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 8

be interested in watching. The collaborative filtering approach to this problem is to

determine a user’s interests based on the available information of all other users. This

way, the user histories collaborate to find a meaningful pattern in the data. Although

rooted in recommender systems literature, the idea of collaborative filtering is quite

general and can be applied to any dyadic dataset.

A particularly interesting collaborative filtering method is that of matrix factor-

ization [70], [98]. Given the key observation that the user-item interactions can be

represented by a matrix, we are concerned with finding a user and an item matrix,

which factorizes the observation matrix. The individual columns of the factor ma-

trices are then appropriately named user or item factors/embeddings. A key for

efficient computation and good prediction performance is the factorization rank. In

ideal cases, it can be shown that the sparsely sampled observation matrix can be

recovered exactly [20]. In practice, the matrix factorization proved to be useful as

well [70].

The dyadic datasets and matrix factorization method we described so far are all

static, meaning that there is only a single interaction between any given pair. While

this might be true for some cases, there are many datasets for which, this gives a rather

unnatural interpretation. For example a static model would assume a person’s taste

of movies does not change over time, or the outcome of a match between two teams

would be the same irrespective of the time it takes place. In practice such models

learn a single embedding using all data available, disregarding the time information

provided; however from these examples it is evident that a dynamic model could be

a better fit. With that said the vast majority of literature is confined to the static

setting [70], [98], [99], [79].

A particularly interesting set of models that bring matrix factorization and Bayesian

modeling together are probabilistic matrix factorization [98] and Bayesian probabilis-

tic matrix factorization [99]. Here the latent factors are assigned a Gaussian prior,

along with a Gaussian likelihood. Inference in the resulting model leads to coordinate

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 9

ascent updates for the factors, analogous to the alternating least squares technique

used in [70]. The Gaussian interpretation of the Bayesian setting is useful, however,

for our purposes.

In this chapter we develop a Bayesian dynamic matrix factorization method, which

we call Collaborative Kalman Filter (CKF) where the latent factors are evolving

with respect to a multidimensional Brownian motion [29]. This random process

model, in addition to the Gaussian likelihood for observations now define a state-

space model [113]. Similar to the Kalman filters and motivated by scalable inference,

we apply online learning to our model and find all the latent embeddings in a single

pass; this makes the algorithm suitable for very large datasets. Since the obser-

vations are the inner product of two time-evolving latent variables the likelihood

function contains a bilinear term and the resulting state-space model is nonlinear.

Unlike the linear-Gaussian case then, here we do not have a closed form solution for

the posterior distribution. We therefore leverage variational inference for approxi-

mate posterior computation; which is a principled method that maximizes a lower

bound on the marginal likelihood of observations [112]. All updates are in closed

form, which makes the algorithm structurally similar to the alternating minimization

schemes. The overall model is a nonlinear Kalman filter, where the factors are learned

collaboratively, hence the name CKF.

The method introduced so far provides a principled way of finding latent embed-

dings from dyadic time series data, however it does not take parameter estimation

into account. For datasets such as stock prices we would like to refine our estimate

of Brownian motion drift, to account for the changes in volatility. We also provide

a solution to this problem here, where the Brownian motion parameter is estimated

using the variational objective function. The resulting filter can then learn the drift

from the data, along with embeddings.

The rest of this chapter is organized as follows. In Section 2.2 we overview matrix

factorization and Kalman filtering. Section 2.3 introduces the CKF model and Section

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 10

2.4 derives variational inference for approximate posterior computation. Section 2.5

lists CKF algorithms and their computational complexity. We show experimental

results in Section 2.6 and conclude in Section 2.7.

2.2 Background

The collaborative Kalman filter is based on matrix factorization and Kalman filtering,

which we review here for completeness. Based on this we will derive our model in the

next section.

2.2.1 Matrix Factorization

Matrix factorization refers to representing a matrix as a product of several factor

matrices of certain structure. We shall focus on matrix factorization in the context

of collaborative filtering here. Extending the analogy from Section 2.1, let X be an

M × N matrix of observations. Here the rows of X correspond to users and the

columns correspond to items. We are interested in representing X as a product of

a d ×M matrix U and a d × N matrix V , i.e. X ≈ U>V . It is then clear that

the columns of U (i.e. ui) are representations of users in Rd, and the columns of

V (i.e. vj) are representations of items, in the same Rd. Any given observation is

approximated by the inner product xij ≈ u>i vj
While M and N are determined by the observation matrixX, d is a free parameter

introduced by factorization. While there is not a single choice for this parameter,

d � min {M,N} is desirable for two reasons: (i) it provides regularization which

prevents overfitting, and (ii) it makes the learning algorithm computationally efficient.

Typically the observation matrix has very large dimensions, for example a retailer

can have millions of customers and tens of thousands of items for sale, but a given

customer only interacts with a very small fraction of items. Then the matrix will

have a full rank partitioning [41] where there are at most d � min {M,N} linearly

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 11

independent rows and columns. Note my choice of notation here; in the ideal case we

would like to choose the free parameter d such that it matches the true rank of X.

The low rank factorization, when applied to collaborative filtering, can be re-

garded as classical (or frequentist) statistical inference. To see this suppose that the

observations are coming from a probability distribution: xij ∼ p(uTi vj). For example,

when x is binary, p(·) could be the logistic or probit likelihood, when m-ary it could

be the ordered probit, and when real-valued it could be a univariate Gaussian. Note

that here the factors are treated as unknown constants, as is the case with classical

inference. We next touch upon the connection between this model and alternating

least squares. Suppose that xij ∼ N(uTi vj, σ
2), where we imposed univariate Gaus-

sian as the likelihood function. Using maximum likelihood inference approach the

update of ui is obtained using the relevant vj and xij. If we let the set Ωui
to contain

the index values of objects that user i has rated, the update is

ui =
(∑

j∈Ωui
vjv

T
j

)−1 (∑
j∈Ωui

xijvj

)
vj =

(∑
i∈Ωvj

uiu
T
i

)−1 (∑
i∈Ωvj

xijui

)
(2.1)

and the update for vj is symmetric.

We see that Eq (2.1) is identical to the alternating least square updates [70]. In

the case of probabilistic matrix factorization [98], the latent factors are assigned a

Gaussian prior. Using spherical priors ∀i : ui ∼ N(0, λ−1
u I) and ∀j : vj ∼ N(0, λ−1

v I)

the updates are

ui =
(
λuI +

∑
j∈Ωui

vjv
T
j

)−1 (∑
j∈Ωui

xijvj

)
vj =

(
λvI +

∑
i∈Ωvj

uiu
T
i

)−1 (∑
i∈Ωvj

xijui

)
(2.2)

The updates are once again in closed form and structurally very similar to al-

ternating least squares. Introducing the parameters λu and λv are useful, as they

regularize the solutions, furthermore they are necessary when the outer product ma-

trices are poorly conditioned. In fact, this term is typically added when computing

least squares solutions, without explicit mention to the Bayesian interpretation.

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 12

2.2.2 Kalman filtering

Given the matrix factorization approach to collaborative filtering, the question is how

to make it a dynamic model. Given that the users and items are represented as vectors

in Rd it is natural to view them as realizations of a stochastic process. In particular we

will be using multidimensional Brownian motion to characterize the temporal dynam-

ics of latent factors, which along with the likelihood function of Eq. (2.2) constitutes

a state-space model [48]. This is in contrast to solely using Eq. (2.2), which would

disregard time information. Given the state-space model we naturally seek a solution

using variations of Kalman filter, which is optimal for the linear-Gaussian state-space

models [113]. (In fact, Kalman’s original formulation [66] is optimal for a more gen-

eral class of noise distributions; but from the Bayesian viewpoint [97] the emphasis

is on linear-Gaussian model since the Kalman filter computes the exact posterior in

this case.) In this section we review the Kalman filter based on a parametrization

that will be useful for the subsequent development of our CKF.

The Kalman filter models a sequence of observed vectors yt ∈ Rp as linear func-

tions of a sequence of latent state vectors xt ∈ Rd with additive noise. These state

vectors evolve according to a first-order Markov process, where the current state

equals the previous state plus additive noise. Assuming a Gaussian prior distribution

on x0, then for t = 1, . . . , T and zero-mean noise, this is written as follows,

xt |xt−1 ∼ N(xt−1, αI)

yt |xt ∼ N(Axt, σ
2I). (2.3)

Inference for the state dynamics of x proceeds according to the forward algorithm

1, which includes two steps: (i) marginalizing the previous state to obtain a prior

distribution on the current state, and (ii) calculating the posterior of the current

state given an observation.

1There is also the forward-backward algorithm, which is used for Kalman smoothing. However,

since the focus of this chapter is online learning, we do not discuss this extension any further.

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 13

Specifically, let the distribution of the previous state be xt−1 ∼ N(µt−1,Σt−1).

The distribution of the current state xt is calculated by marginalizing the previous

state,

p(xt) =

∫
Rd

p(xt|xt−1)p(xt−1)dxt−1

= N(xt|µt−1,Σt−1 + αI). (2.4)

The free parameter α is a measure of drift in one unit of time and can be in-

terpreted as the volatility of the state vectors. We will later present a method for

dynamically estimating this parameter on-the-fly.

After observing yt, the posterior of xt is

p(xt|yt) ∝ p(yt|xt)p(xt)

= N(xt|µt,Σt) (2.5)

where, after defining Bt = Σt−1 + αI,

Σt =
[
A>A/σ2 +B−1

t

]−1

µt = Σt

[
B−1
t µt−1 +A>yt/σ

2
]
. (2.6)

These posterior updates immediately follow from Bayes’ rule. An alternative

viewpoint is to find the linear minimum mean square error estimator (LMMSE) for

xt. Both formulations yield the same result, as for the Gaussian distribution the

mean of the posterior and LMMSE coincide. With that said, the formulae in Eq.

(2.6) look different from the Kalman gain-based state-space updates [113]. However

the two are in fact equivalent, and the classical formulae can be obtained from Eq.

(2.6) using matrix inversion lemma [41]. We will go into details of this when we

discuss the nonlinear Kalman filtering problem in Part II.

Following Eq. (2.4), we can use this posterior distribution of xt in Eq. (2.6) to

find the prior for the next state xt+1. Since the initial distribution is Gaussian, for

each value of t, the prior and posterior has Gaussian distribution that are given by

Eqs. (2.4) and (2.6) respectively.

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 14

Our derivation above is for discrete and homogeneous time indices, i.e. t ∈

{0, 1, . . . , T}. The extension to continuous time only requires a simple modification:

For continuous-time Kalman filters, the variance of the drift from xt−1 to xt depends

on the time between these two events. Calling this time difference ∆t, we can make

the continuous-time extension by replacing αI with ∆tαI, in which case xt becomes

a Brownian motion [29].

2.3 Collaborative Kalman Filter (CKF)

In this section we develop the generative model for the dynamic dyadic time se-

ries, which constitute the CKF. The motivation is to extend the matrix factorization

model in described in Section 2.2.1 to the dynamic setting, using the continuous-

time Kalman filtering framework discussed in Section 2.2.2. The state-space model

provides a natural means to do so; we model each latent location using a Brownian

motion in Rd.

The set of latent factors are denoted by {ui[t]}Mi=1 and {vj[t]}Nj=1, where the time

subscript is now added to show time dependence. For instance the variables ui[t]

and vj[t] represent the user i and item j at time t, in that order. We use the like-

lihood model of Section 2.2.1 to relate the observation to the factors, in particular,

a given observation xij[t] is now a random variable parametrized by the inner prod-

uct 〈ui[t],vj[t]〉. The exact form of the likelihood depends on the observation type,

for continuous observations such as stock prices the likelihood is a simple Gaussian,

whereas for ordinal observations such as movie ratings, an ordered probit likelihood

model [44] is used. For the derivations we shall focus on a single observation (rating,

price, etc.) for brevity; which will then be generalized to multiple observations. The

extension is quite straightforward.

Likelihood model (continuous): For continuous observations xij[t] ∈ R is modeled

as a draw from a Gaussian distribution with the mean 〈ui[t],vj[t]〉 and some preset

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 15

variance σ2. The conditional probability is written as

P (xij[t] | ui,vj) = N
(
xij[t] | 〈ui[t],vj[t]〉, σ2

)
. (2.7)

The likelihood in Eq. (2.7), along with spherical Gaussian priors on ui and vj is

identical to the joint likelihood of probabilistic matrix factorization when the time

indices are dropped.

Likelihood model (ordinal): For m-class ordinal ordinal observations, the observa-

tion xij[t] ∈ {1, . . . ,m}, obtained by first drawing from a Gaussian distribution with

the mean 〈ui[t],vj[t]〉 and variance σ2, and then funneling the outcome through a

continuous-to-discrete map. To obtain the map, the real line R is partitioned into m

regions with each region denoting a class such as, for example, star ratings for movies.

Let Ik = (lk, rk] be the partition for class k where lk < rk, rk = lk+1, lk = rk−1 and

k = 1, . . . ,m. Therefore, the model assumes an order relation between the m classes,

for example that a 4-star rating is closer to a 5-star rating than a 1-star rating. (In

the binary special case, this order relation no longer matters.) Then, the probability

that xij[t] = k is

P (xij[t] = k | ui[t],vj[t]) =

∫
Ik
N
(
yij[t] | 〈ui[t],vj[t]〉, σ2

)
dy. (2.8)

Unlike the continuous model, the inference will not be in closed form if the obser-

vation xij[t] depends directly on the factors. This is solved by introducing auxiliary

variables, similar to the Expectation Maximization algorithm [13]. The auxiliary vari-

able yij[t] is a continuous variable parametrized by the mean 〈ui[t],vj[t]〉, which in a

sense equivalent to the continuous observation we described before. Given this latent

variable, the actual observation is obtained through the continuous to discrete map.

This yields the following hierarchy

xij[t] | yij[t] =
∑

k k I(yij[t] ∈ Ik),

yij[t] | ui[t],vj[t] ∼ N(〈ui[t],vj[t]〉, σ2). (2.9)

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 16

It can be seen that, given the latent variable the observation is deterministic, so all

randomness is absorbed into yij[t]. Compared to the static case, dynamic modeling

allows a pair to interact more than once, as for every value of t, there can be a different

xij[t]. In the static case, each pair would only be allowed a fixed outcome, however

as we mentioned this is rather unnatural for many types of data. Therefore, when we

have dyadic time series data, CKF can model it effectively.

Prior model: We now describe the priors for the latent factors {ui[t]}Mi=1 and

{vj[t]}Nj=1. For the PMF model these were spherical Gaussians with fixed variance,

which makes sense for a static model. For the dynamic case we will be using multi-

dimensional Brownian motion. Let the duration of time since the last event be ∆
[t]
ui

for ui and ∆
[t]
vj for vj. Also, as with the Kalman filter, assume that the posterior

distributions at previous time are multivariate Gaussian: In other words, we consider

ui[t − ∆
[t]
ui] and vj[t − ∆

[t]
vj], with t − ∆

[t]
ui and t − ∆

[t]
vj being the time of the last

observation for ui and vj respectively. Then their distribution can be written as

ui[t−∆[t]
ui

] ∼ N(µ′ui
[t−∆[t]

ui
] , Σ′ui

[t−∆[t]
ui

])

vj[t−∆[t]
vj

] ∼ N(µ′vj [t−∆[t]
vj

] , Σ′vj [t−∆[t]
vj

]). (2.10)

Since the latent factors are time varying, their mean and covariance parameters are

also indexed by time. At any given time t, a factor will have two sets of parameters,

the prior (µ•[t],Σ•[t]) and the posterior (µ′•[t],Σ
′
•[t]), where we use the prime sign to

distinguish the posterior, and • represents an arbitrary factor. We can now apply Eq.

(2.4) to marginalize ui[t−∆
[t]
ui] and vj[t−∆

[t]
vj] in their respective interval [t−∆

[t]
• , t]

and obtain the prior distributions of ui[t] and vj[t]

ui[t] ∼N(µui
[t] , Σui

[t])

vj[t] ∼N(µvj [t] , Σvj [t]) (2.11)

where

µ•[t] = µ′•[t−∆[t]
•] , Σ•[t] = Σ′•[t−∆[t]

•] + ∆[t]
•αI (2.12)

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 17

for the respective ui[t] or vj[t].

With this formulation, CKF is a Kalman filter with multiple state vectors that

interact at the observation, therefore it is different from the traditional setup of Eq.

(2.3) where the entire state can be described by a single variable. We also recall from

Section 2.2.2 that αI is the drift covariance in one unit of time, and so the transition

from posterior to prior involves the addition of a small value to the diagonal of the

posterior covariance matrix. The positive value of this parameter is what allows for

dynamic modeling, and when α = 0, CKF reduces to online inference for a static

model, as the latent factors become fixed.

Hyperprior model: The drift parameter α controls how much the state vectors

can move in one unit of time. When α becomes bigger, the state vectors can move

greater distances to better fit the observation x; this allows better modeling for fast

changing observations but it also makes the learned vectors more forgetful of previous

information. On the other extreme, as α→ 0 the model does not forget any previous

information and the state vectors simply converge to a point, as in this case we are

simply doing online inference for a static model.

We develop the CKF model by allowing α to dynamically change in time as well,

which we can learn on-the-fly. This leads to interesting analyses, particularly for

stock price data, where the model can learn volatility in an unsupervised manner.

We present this in Section 2.6. For notational convenience, we define the hyperprior

for a shared α, but the extensions to a ui or vj specific α is straightforward, which

we will discuss in more detail in Section 2.4.

We model α as a geometric Brownian motion by defining α[t] = ea[t] and letting

a[t] be a Brownian motion. Therefore, as with the state vectors, if t−∆
[t]
a is the last

observed time for a[t], the distribution of a[t] is

a[t] ∼ N(a[t−∆[t]
a] , c ∆[t]

a). (2.13)

Again there is a drift parameter c that plays an important role and requires a good

setting, but we observe that defining α to be an exponentiated Brownian motion has

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 18

an important modeling purpose by allowing for time-varying volatility. In Section

2.4.2 we show how c can be inferred conveniently from the variational approximation.

Finally, since α[t] is modified to be a geometric Brownian motion, the transition

from previous posterior to current prior for the states needs to be adjusted accordingly.

In Equation (2.11) the constant value of α allowed for Σ•[t] to be calculated in closed

form, particularly by adding a time-scaled αI to the previous posterior. In this case,

the update is modified for any given factor by performing the integration implied in

Equation (2.11),

Σ•[t] = Σ′•[t−∆[t]
•] + I

∫ t

t−∆
[t]
•

ea[s]ds. (2.14)

We will also derive a simple approximation to this stochastic integral in Section 2.4.

Overall for a single pair the generative model of CKF is

p(yij[t],ui[t],vj[t]) = p(yij[t]|ui[t],vj[t]) p(ui[t]) p(vj[t])

= N(yij[t] | ui[t]>vj[t], σ2) ×

N(ui[t] | µui
[t],Σui

[t]) N(vj[t] | µvj [t],Σvj [t]) (2.15)

for continuous observations and

p(xij[t], yij[t],ui[t],vj[t]) = p(zij[t] | yij[t]) p(yij[t]|ui[t],vj[t]) p(ui[t]) p(vj[t])

= 1(yij[t] ∈ Ixij [t]) N(yij[t] | ui[t]>vj[t], σ2) ×

N(ui[t] | µui
[t],Σui

[t]) N(vj[t] | µvj [t],Σvj [t]) (2.16)

for ordinal observations.

2.4 Variational Inference

Unlike the Kalman Filter of Eq. (2.3) the posterior of CKF is not in closed form,

and is difficult to compute. For this reason approximation schemes are required. For

Bayesian inference, the standard technique is the Markov Chain Monte Carlo [96],

which simulates a Markov Chain that converges to the desired posterior. However,

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 19

scalability is an issue with this method, since we usually want to run our algorithms

on massive datasets. To this end, compromising the speed advantages of the forward

Kalman filter with sampling methods is undesirable.

For this reason we use variational inference, which finds an approximating poste-

rior distribution using optimization. Before we delve into the variational inference for

CKF, I first briefly review this technique. In a similar spirit to the previous section

let X denote the observations and Z denote the latent variables. For CKF, X would

be the observation matrix, and Z would comprise the relevant u, v, and y. The task

is to compute the posterior p(Z|X) which for many models of interest is intractable.

For example, the likelihood terms of CKF contain a bilinear term, which cannot be

integrated in closed form. The aim is then to approximate the true posterior with

another distribution which we call q(Z). One way of measuring the approximating

quality is the forward Kullback-Leibler (KL) divergence 2

KL[q(Z)||p(Z|X)] = −
∫
q(Z) log

p(Z|X)

q(Z)
dZ . (2.17)

However, minimizing this metric directly is not possible as it requires knowledge

of p(Z|X). To resolve this, the following identity is used

log p(X) = L[q(Z)] +KL[q(Z)||p(Z|X)] (2.18)

called the marginal likelihood of observations. Note that this quantity is a constant,

as the data is fixed, and since KL[q(Z)||p(Z|X)] > 0, L[q] is a lower bound on the

marginal likelihood under any q-distribution; this is called the variational lower bound

(VLB). Then, as the marginal likelihood is constant, maximizing the lower bound is

equivalent to minimizing the KL divergence. A simple algebraic manipulation reveals

2Which is called “forward”, as swapping the terms give a different metric, called the “reverse”.

We discuss this difference in more detail when we cover nonlinear Kalman filtering in Part II.

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 20

that the lower bound has the following form

L[q(Z)] =

∫
q(Z) log

p(X,Z)

q(Z)
dZ

= Eq[log p(X,Z)]− Eq[log q(Z)] (2.19)

where the first term is the expectation of the joint likelihood, and the second term

is the entropy of the q-distribution. For many models of interest –including CKF–

both terms can be obtained analytically, which resolves the intractability issue (note:

Eq[·] is expectation taken w.r.t q). While L[q] can be calculated in closed form, the

optimal solution would still be q(Z) = p(Z|X), which is once again unavailable. So

we need to make a simplifying assumption for the posterior. A widely used one is the

mean-field approximation [13], where the q-distribution factorizes per component as

q(Z) =
∏
i

q(Zi). (2.20)

Under mean-field assumption can further write

L[q(Z)] =

∫
q(Z) {log p(X,Z)− log q(Z)} dZ

=

∫ ∏
i

q(Zi)

{
log p(X,Z)−

∑
i

log q(Zi)

}
dZ

(2.21)

where for a fixed q(Zj) we get

L[q(Z)] =

∫
q(Zj) log p̃(X,Zj)dZj −

∫
q(Zj) log q(Zj)dZj. (2.22)

We have also defined the probability distribution

log p̃(X,Zj) = Ei 6=j[log p(X,Z)] + const. (2.23)

where the constant term is included for normalization. If we maximize the VLB in

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 21

Eq. (2.22) with respect to q(Zj), keeping the remaining q-distributions fixed, we get

q?(Zj) = arg min
q(Zj)

∫
q(Zj) log p̃(X,Zj)dZj −

∫
q(Zj) log q(Zj)dZj

= arg min
q(Zj)

∫
q(Zj) log

p̃(X,Zj)

q(Zj)
dZj

= arg min
q(Zj)

KL [p̃(X,Zj) || q(Zj)]

= p̃(X,Zj) (2.24)

which can be conveniently obtained via

q?(Zj) =
exp {Ei 6=j log p(X,Z)}∫
exp {Ei 6=j log p(X,Z)}

. (2.25)

In practice, conjugate exponential family models are typically used, where the prior

and the posterior of a variable comes from the same exponential family distribution.

In this case we can easily obtain the posterior distribution’s parameters by taking

the expectation Ei 6=j log p(X,Z) and matching the values. This is in fact how we

derive the variational inference for CKF, which we tackle next. We break down the

derivation into two parts: In the first part we find approximate posteriors for the

latent variables yij[t], ui[t], and vj[t] given the observation xij[t], using variational

inference. In the second part we utilize the obtained VLB to infer the drift of the

Brownian motion a[t] using Type II maximum likelihood.

2.4.1 Variational Inference for CKF

Based on the key formula of Eq. (2.25) we now derive variational inference for CKF

from first principles, focusing on a single observation case. We shall focus on the

ordered probit model, as the continuous observation model is just a special case of it.

In Section 2.5 we provide full algorithms with update equations for all different cases.

For the ordered probit model we have an ordinal observation xij[t] ∈ {1, . . . ,m}, a

latent variable yij[t], and the latent factors ui[t] and vj[t]. In what follows we drop

all time indices to keep the formulae uncluttered, so unless otherwise noted, the time

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 22

index is t. The priors on ui and vj are Gaussian with mean-covariance (µui
,Σui

),

and (µvj ,Σvj). The exact dependence of current prior on previous posterior will be

clear when we discuss the Brownian motion approximation and parameter estimation

in Section 2.4.2.

The posterior of interest is p(yij,ui,vj|xij) which is proportional to the joint

likelihood, which in turn factorizes as

p(yij,ui,vj|xij) ∝ p(xij, yij,ui,vj)

∝ p(xij|yij) p(yij|ui,vj) p(ui) p(vj) . (2.26)

For the posterior distribution we use a mean-field approximation

q(yij,ui,vj) = q(yij) q(ui) q(vj) (2.27)

The mean-field variational inference is based on treating these three latent vari-

ables as independent in the posterior, which gives tractable posteriors. The updates

for the variables of course still depend on each other, as they are coupled in the joint

likelihood. The corresponding VLB is obtained by

L[q(yij,ui,vj)] = Eq[log p(xij, yij,ui,vj)]− Eq[log q(yij,ui,vj)] (2.28)

The variational update for yij is obtained by

q?(yij) ∝ Ei 6=j [log p(xij|yij) + log p(yij|ui,vj)]

∝ Eq−i
[log p(xij|yij) + log p(yij|ui,vj)]

∝ Eq−i

[
1(yij ∈ Ixij [t])

]
− Eq−i

[
1

2σ2
(yij − u>i vj)2

]
∝ 1(yij ∈ Ixij [t])−

1

2σ2
(yij − µ′>ui

µ′vj)
2 . (2.29)

Several things to note here: Since we only consider proportionality, we can ignore

the constant terms as they do not have any effect. The expectations are with respect

to every variable in the posterior distribution except yij. Then the first summand is

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 23

not affected by this operation. For the second summand the expectation acts in the

inner product u>i vj. Since the expectation is with respect to the approximating pos-

terior we simply get µ′>ui
µ′vj as the two factors are independent in the q-distribution.

From this functional form we immediately observe the posterior of yij is a truncated

normal

q?(yij) = T N (µ′>ui
µ′vj , σ

2, Ixij). (2.30)

where the last term gives the boundaries. In this model the observations affect the

updates by adjusting these boundaries. In order to update ui and vj we will need

the expectation of yij. Defining the mean parameter to be

m′ij = µ′>ui
µ′vj (2.31)

the expectation of yij depends on the interval in which it falls to, which in turn is

given by xij. For Ixij let lxij and rxij be the left and right boundaries of this interval.

Then defining

αij =
lxij −m′ij

σ
, βij =

rxij −m′ij
σ

we have that

Eq[yij] = m′ij + σ
φ(αij)− φ(βij)

Φ(βij)− Φ(αij)
, (2.32)

where φ(·) is the PDF and Φ(·) the CDF of a standard normal.

The next derivation is for the posterior of ui. We have

q?(ui) ∝ Eq−i
[log p(yij|ui,vj) + log p(ui)]

∝ Eq−i

[
−(yij − u>i vj)2 − (ui − µui

)>Σ−1
ui

(ui − µui
)
]

∝ Eq−i
[2yiju

>
i vj]− Eq−i

[
u>i [vjv

>
j]ui

]
− Eq−i

[
u>i Σ−1

ui
ui
]

∝ 2Eq[yij]u>i µ′vj − u
>
i [µ′vjµ

′>
vj

+ Σ′vj]ui − u
>
i Σ−1

ui
ui . (2.33)

Here once again the expectations are with respect to all variables except ui. The

observations affect the update for ui via Eq[yij]. Completing the expression in the

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 24

last line to perfect square we find that the posterior distribution for ui is Gaussian

with mean and covariance

q?(ui) = N(µ′ui
,Σ′ui

)

Σ′ui
=
(
Σ−1
ui

+ (µ′vjµ
′>
vj

+ Σ′vj)/σ
2
)−1

µ′ui
= Σ′ui

(
Σ−1
ui
µui

+ Eq[yij]µ′vj/σ
2
)
. (2.34)

Due to symmetry the derivation for vj mirror ui and the posterior is simply found

by swapping variables

q?(vj) = N(µ′vj ,Σ
′
vj

)

Σ′vj =
(
Σ−1
vj

+ (µ′ui
µ′>ui

+ Σ′ui
)/σ2

)−1

µ′vj = Σ′vj

(
Σ−1
vj
µvj + Eq[yij]µ′ui

/σ2
)
. (2.35)

While the updates shown here are derived by exponentiating the expectation of

the joint distribution, they are also equivalent to optimizing the VLB in alternating

fashion. For the ordinal observation model the VLB is given by

L(q(ui), q(vj), q(yij))

= Eq [p(xij, yij,ui,vj)]− Eq[q(ui)]− Eq[q(vj)]− Eq[q(yij)]

=
E[yij]

σ2
µ′>ui
µ′vj −

1

2σ2
tr
{

(Σ′ui
+ µ′ui

µ′>ui
)(Σ′vj + µ′vjµ

′>
vj

)
}

− 1

2
µ′>ui

Σ−1
ui
µ′ui

+ µ′>ui
Σ−1
ui
µui

+ tr
{
Σ−1
ui

Σ′ui

}
+

1

2
log |Σ′ui

|

− 1

2
µ′>vjΣ

−1
vj
µ′vj + µ′>vjΣ

−1
vj
µvj + tr

{
Σ−1
vj

Σ′vj

}
+

1

2
log |Σ′vj |

+ log
[√

2πeσ(Φ(βij)− Φ(αij))
]

+
αφ(αij)− βφ(β)

2(Φ(αij)− Φ(βij))
. (2.36)

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 25

For the continous observation model we have the simpler form

L(q(ui), q(vj))

= Eq [p(xij,ui,vj)]− Eq[q(ui)]− Eq[q(vj)]

=
xij
σ2
µ′>ui
µ′vj −

1

2σ2
tr
{

(Σ′ui
+ µ′ui

µ′>ui
)(Σ′vj + µ′vjµ

′>
vj

)
}

− 1

2
µ′>ui

Σ−1
ui
µ′ui

+ µ′>ui
Σ−1
ui
µui

+ tr
{
Σ−1
ui

Σ′ui

}
+

1

2
log |Σ′ui

|

− 1

2
µ′>vjΣ

−1
vj
µ′vj + µ′>vjΣ

−1
vj
µvj + tr

{
Σ−1
vj

Σ′vj

}
+

1

2
log |Σ′vj | . (2.37)

The updates in closed form so they do not require tuning a learning rate. As

I mentioned in the introduction, this is a common theme in Kalman filtering that

we do not require a learning rate; learning rate-free inference algorithms will be an

important theme throughout this thesis.

2.4.2 Approximating and Inferring the Brownian Motion

The variational inference updates for the latent variables ui[t], vj[t] depend on the

knowledge of prior at time t, which is parametrized by (µ•[t],Σ•[t]). For the subse-

quent derivations we will focus on ui for concreteness; then the vector-specific drift is

aui
[t]. We have mentioned that the stochastic integration in Eq. (2.14) is intractable,

for which we introduce a Riemann approximation∫ t

t−∆
[t]
ui

eaui [s]ds ≈ eaui [t]∆[t]
ui
. (2.38)

Therefore the integrated drift is approximated constant by its end point. Applying

this gives the following generative model

ui[t] ∼ N(µ′ui
[t−∆[t]

ui
] , Σ′ui

[t−∆[t]
ui

] + eaui [t]∆[t]
ui
I)

aui
[t] ∼ N(aui

[t−∆[t]
ui

] , c ∆[t]
ui

) . (2.39)

That is, with this approximation we first draw the log drift value at time t, aui
[t],

according to its underlying Brownian motion. We then use this constant value to

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 26

marginalize ui in the interval (t − ∆
[t]
ui , t). Clearly, as the intervals between obser-

vations become smaller, this approximation becomes better. However, if we add Eq.

(2.39) to the joint likelihood model of CKF in Eq. (2.15) or Eq. (2.16) the solutions

are no longer in closed form.

To circumvent this issue we will learn a point estimate of aui
[t]. We do so by

plugging the prior model of Eq. (2.39) into the VLB, and optimize it with respect

to aui
[t]. Since the VLB is a lower bound on the marginal likelihood, the estimate

obtained this way can be regarded as Type II maximum likelihood. We first write

the relevant portion of VLB

L(aui
[t]) = Eq [log p(ui[t] | aui

[t]) + log p(aui
[t])]

= −1

2
log |Σui

[t]| − 1

2
Eq
[

(ui[t]− µui
[t])>Σ−1

ui
(ui[t]− µui

[t])
]

− 1

2c∆
[t]
ui

(aui
[t]− aui

[t−∆[t]
ui

])2 . (2.40)

Next, we take the expectations and write the dependence of Σui
[t] on aui

[t] ex-

plicitly, but before doing that we introduce additional notation. Since Σui
[t − ∆

[t]
ui]

is positive semidefinite, it admits an eigendecomposition, which can be written as

Σui
[t − ∆

[t]
ui] = QΛQT where Q is an orthonormal matrix and Λ is the diagonal

matrix of eigenvalues. We also define ω = Q>(µ′ui
[t] − µui

[t]) and Ω = Q>Σui
Q.

We can re-write the VLB

L(aui
[t]) = −1

2
log |QΛQ> + eaui [t]∆[t]

ui
|

− 1

2
Eq
[
(ui[t]− µui

[t])>(QΛQ> + eaui [t]∆[t]
ui

)−1(ui[t]− µui
[t])
]

− 1

2c∆
[t]
ui

(aui
[t]− aui

[t−∆[t]
ui

])2 (2.41)

which simplifies as

L(aui
[t]) = −1

2

d∑
d′=1

log(λd′ + eaui [t]∆[t]
ui

)− 1

2

d∑
d′=1

ω2
d′

λd′ + eaui [t]∆
[t]
ui

− 1

2

d∑
d′=1

Ωd′,d′

λd′ + eaui [t]∆
[t]
ui

. (2.42)

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 27

Defining ηd′,1 =
eaui [t]∆

[t]
ui

λd′+e
aui [t]∆

[t]
ui

and ηd′,2 =
ω2

d′+Ωd′,d′

λd′+e
aui [t]∆

[t]
ui

the first and second order deriva-

tive of VLB with respect to aui
[t] is

L′(aui
[t]) = −aui

[t]− aui
[t−∆

[t]
ui]

c∆
[t]
ui

− 1

2

d∑
d′=1

ηd′,1(1− ηd′,2)

L′′(aui
[t]) = − 1

c∆
[t]
ui

− 1

2

d∑
d′=1

ηd′,1(1− ηd′,1) +
1

2

d∑
d′=1

ηd′,1(1− 2ηd′,1)ηd′,2 . (2.43)

Now consider the Taylor expansion of VLB around around au[t−∆
[t]
ui], up to and

including the second order term. We have

L(aui
[t]) ≈ L(aui

[t−∆[t]
ui

]) + L′(aui
[t−∆[t]

ui
])(aui

[t]− aui
[t−∆[t]

ui
])

+
1

2
L′′(aui

[t−∆[t]
ui

])(aui
[t]− aui

[t−∆[t]
ui

])2 (2.44)

which is simply a quadratic function. Its optimum is given by

a?ui
[t] = aui

[t−∆[t]
ui

]− L′′(aui
[t−∆[t]

ui
])−1L′(aui

[t−∆[t]
ui

]) . (2.45)

At every iteration we use Eq. (2.45) to update our estimate of the Brownian

motion drift. This derivation is for a single variable ui but when multiple u’s share

the same drift the modification is straightforward. For vj the update is symmetric

which is obtained by swapping symbols. Also note that, since the update in Eq.

(2.45) depends on the current posterior, its calculation has to be iterated along with

the latent variables.

This completes the inference algorithm for the CKF. In order to predict the value

of an unseen pair (i, j) we can use the generative model to get

p(xij[t] = k) =

∫
Rd

∫
Rd

∫
Ik
N(yij[t] | ui[t]>vj[t], σ2) N(ui[t] | µ′ui

[t],Σ′uj
[t])×

N(vj[t] | µ′vj [t],Σ
′
vj

[t]) dyij[t] dui[t] dvj[t] (2.46)

for ordinal observations and

p(xij[t] = k) =

∫
Rd

∫
Rd

N(k | ui[t]>vj[t], σ2) N(ui[t] | µ′ui
[t],Σ′uj

[t])×

N(vj[t] | µ′vj [t],Σ
′
vj

[t]) dui[t] dvj[t] (2.47)

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 28

for continuous observations. However, since both factors need to be integrated, there

is no closed form solution. One possible solution is to sample from the posteriors

q(ui[t]) and q(vj[t]) and carry out Monte-Carlo integration. However, an even simpler

solution is to use µ′ui
[t] and µ′vj [t] as point estimates. Plugging these posterior means

to the likelihood models in Section 2.3 we obtain

p(xij[t] = k) =

∫
Ik
N(yij[t] | µ′ui

[t]>µ′vj [t] , σ
2) (2.48)

for ordinal observations and

p(xij[t] = k) = N(k | µ′ui
[t]>µ′vj [t] , σ

2) (2.49)

for continuous observations. We can now predict the unseen pairs using these simple

formulae. In the next section I give full algorithm recipes for CKF and computational

complexity analysis.

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 29

2.5 Algorithms and Complexity

2.5.1 CKF with Continuous Observations

Algorithm 2.1 CKF with Continuous Observations

1: Input: n = 1, . . . , N : {X[tn]} (data), {Ω[tn]} (pairs)

2: d (rank parameter), σ (noise parameter), c (drift parameter)

3: I (number of iterations)

4: Output: n = 1, . . . , N , i = 1, . . . ,M , j = 1, . . . , N : ui[tn], vj[tn], aij[tn]

5: Initialize: i = 1, . . . ,M : µui
[t0]← randn(d) , Σui

[t0]← I

6: j = 1, . . . , N : µvj [t0]← randn(d) , Σvj [t0]← I

7: for n = 1, . . . , N do

8: ∀i ∈ Ωu : µui
[tn]← µui

[tn −∆
[tn]
ui] , Σui

[tn]← Σui
[tn −∆

[tn]
ui] + eaui [tn]∆

[tn]
ui I

9: ∀i ∈ Ωv : µvj [tn]← µvj [tn −∆
[tn]
vj] , Σvj [tn]← Σvj [tn −∆

[tn]
vj] + eavj [tn]∆

[tn]
vj I

10: for iteration ∈ {1, . . . , I} do

11: ∀i ∈ Ωu : Σ′ui
[tn]←

(
Σ−1
ui

[tn] +
∑

j∈Ωui [tn](µ
′
vj

[tn]µ′>vj [tn] + Σ′vj [tn])/σ2
)−1

12: µ′ui
[tn]← Σ′ui

[tn]
(
Σ−1
ui

[tn]µui
[tn] +

∑
j∈Ωui [tn] Eq[yij[tn]]µ′vj [tn]/σ2

)
13: ∀j ∈ Ωv : Σ′vj [tn]←

(
Σ−1
vj

[tn] +
∑

i∈Ωvj [tn](µ
′
ui

[tn]µ′>ui
[tn] + Σ′ui

[tn])/σ2
)−1

14: µ′vj [tn]← Σ′vj [tn]
(
Σ−1
vj

[tn]µvj [tn] +
∑

i∈Ωvj [tn] Eq[yij[tn]]µ′ui
[tn]/σ2

)
15: ∀i ∈ Ωu : aui

[tn]← aui
[tn −∆

[tn]
ui]−L′′(aui

[tn −∆
[tn]
ui])−1L′(aui

[tn −∆
[tn]
ui])

16: Σui
[tn]← Σui

[tn −∆
[tn]
ui] + eaui [tn]∆

[tn]
ui I

17: ∀j ∈ Ωv : avj [tn]← avj [tn −∆
[tn]
vj]−L′′(avj [tn −∆

[tn]
vj])−1L′(avj [tn −∆

[tn]
vj])

18: Σvj [tn]← Σvj [tn −∆
[tn]
vj] + eavj [tn]∆

[tn]
vj I

19: end for

20: end for

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 30

2.5.2 CKF with Ordinal Observations

Algorithm 2.2 CKF with Ordinal Observations

1: Input: n = 1, . . . , N : {X[tn]} (data), {Ω[tn]} (pairs)

2: d (rank parameter), σ (noise parameter), c (drift parameter)

3: I (number of iterations)

4: Output: n = 1, . . . , N , i = 1, . . . ,M , j = 1, . . . , N : ui[tn], vj[tn], aij[tn]

5: Initialize: i = 1, . . . ,M :: µui
[t0]← randn(d) , Σui

[t0]← I

6: i = 1, . . . , N : µvj [t0]← randn(d) , Σvj [t0]← I

7: for n = 1, . . . , N do

8: ∀i ∈ Ωu : µui
[tn]← µui

[tn −∆
[tn]
ui] , Σui

[tn]← Σui
[tn −∆

[tn]
ui] + eaui [tn]∆

[tn]
ui I

9: ∀i ∈ Ωv : µvj [tn]← µvj [tn −∆
[tn]
vj] , Σvj [tn]← Σvj [tn −∆

[tn]
vj] + eavj [tn]∆

[tn]
vj I

10: for iteration ∈ {1, . . . , I} do

11: ∀(i, j) ∈ Ω : E[yij[tn]] = m′ij + σ
φ(αij)−φ(βij)

Φ(βij)−Φ(αij)

12: ∀i ∈ Ωu : Σ′ui
[tn]←

(
Σ−1
ui

[tn] +
∑

j∈Ωui [tn](µ
′
vj

[tn]µ′>vj [tn] + Σ′vj [tn])/σ2
)−1

13: µ′ui
[tn]← Σ′ui

[tn]
(
Σ−1
ui

[tn]µui
[tn] +

∑
j∈Ωui [tn] Eq[yij[tn]]µ′vj [tn]/σ2

)
14: ∀j ∈ Ωv : Σ′vj [tn]←

(
Σ−1
vj

[tn] +
∑

i∈Ωvj [tn](µ
′
ui

[tn]µ′>ui
[tn] + Σ′ui

[tn])/σ2
)−1

15: µ′vj [tn]← Σ′vj [tn]
(
Σ−1
vj

[tn]µvj [tn] +
∑

i∈Ωvj [tn] Eq[yij[tn]]µ′ui
[tn]/σ2

)
16: ∀i ∈ Ωu : aui

[tn]← aui
[tn −∆

[tn]
ui]−L′′(aui

[tn −∆
[tn]
ui])−1L′(aui

[tn −∆
[tn]
ui])

17: Σui
[tn]← Σui

[tn −∆
[tn]
ui] + eaui [tn]∆

[tn]
ui I

18: ∀j ∈ Ωv : avj [tn]← avj [tn −∆
[tn]
vj]−L′′(avj [tn −∆

[tn]
vj])−1L′(avj [tn −∆

[tn]
vj])

19: Σvj [tn]← Σvj [tn −∆
[tn]
vj] + eavj [tn]∆

[tn]
vj I

20: end for

21: end for

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 31

2.5.3 CKF with Continuous Observations and Fixed Drift

Algorithm 2.3 CKF with Continuous Observations and Fixed Drift

1: Input: n = 1, . . . , N : {X[tn]} (data), {Ω[tn]} (pairs)

2: d (rank parameter), σ (noise parameter)

3: I (number of iterations)

4: i = 1, . . . ,M : aui
(fixed drift for ui’s)

5: j = 1, . . . , N : avj (fixed drift for vj’s)

6: Output: n = 1, . . . , N , i = 1, . . . ,M , j = 1, . . . , N : ui[tn], vj[tn]

7: Initialize: i = 1, . . . ,M : µui
[t0]← randn(d) , Σui

[t0]← I

8: j = 1, . . . , N : µvj [t0]← randn(d) , Σvj [t0]← I

9: for n = 1, . . . , N do

10: ∀i ∈ Ωu : µui
[tn]← µui

[tn −∆
[tn]
ui] , Σui

[tn]← Σui
[tn −∆

[tn]
ui] + eaui [tn]∆

[tn]
ui I

11: ∀i ∈ Ωv : µvj [tn]← µvj [tn −∆
[tn]
vj] , Σvj [tn]← Σvj [tn −∆

[tn]
vj] + eavj [tn]∆

[tn]
vj I

12: for iteration ∈ {1, . . . , I} do

13: ∀i ∈ Ωu : Σ′ui
[tn]←

(
Σ−1
ui

[tn] +
∑

j∈Ωui [tn](µ
′
vj

[tn]µ′>vj [tn] + Σ′vj [tn])/σ2
)−1

14: µ′ui
[tn]← Σ′ui

[tn]
(
Σ−1
ui

[tn]µui
[tn] +

∑
j∈Ωui [tn] Eq[yij[tn]]µ′vj [tn]/σ2

)
15: ∀j ∈ Ωv : Σ′vj [tn]←

(
Σ−1
vj

[tn] +
∑

i∈Ωvj [tn](µ
′
ui

[tn]µ′>ui
[tn] + Σ′ui

[tn])/σ2
)−1

16: µ′vj [tn]← Σ′vj [tn]
(
Σ−1
vj

[tn]µvj [tn] +
∑

i∈Ωvj [tn] Eq[yij[tn]]µ′ui
[tn]/σ2

)
17: end for

18: end for

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 32

2.5.4 CKF with Ordinal Observations and Fixed Drift

Algorithm 2.4 CKF with Ordinal Observations and Fixed Drift

1: Input: n = 1, . . . , N : {X[tn]} (data), {Ω[tn]} (pairs)

2: d (rank parameter), σ (noise parameter)

3: I (number of iterations)

4: i = 1, . . . ,M : aui
(fixed drift for ui’s)

5: j = 1, . . . , N : avj (fixed drift for vj’s)

6: Output: n = 1, . . . , N , i = 1, . . . ,M , j = 1, . . . , N : ui[tn], vj[tn]

7: Initialize: i = 1, . . . ,M : µui
[t0]← randn(d) , Σui

[t0]← I

8: j = 1, . . . , N : µvj [t0]← randn(d) , Σvj [t0]← I

9: for n = 1, . . . , N do

10: ∀i ∈ Ωu : µui
[tn]← µui

[tn −∆
[tn]
ui] , Σui

[tn]← Σui
[tn −∆

[tn]
ui] + eaui [tn]∆

[tn]
ui I

11: ∀i ∈ Ωv : µvj [tn]← µvj [tn −∆
[tn]
vj] , Σvj [tn]← Σvj [tn −∆

[tn]
vj] + eavj [tn]∆

[tn]
vj I

12: for iteration ∈ {1, . . . , I} do

13: ∀(i, j) ∈ Ω : E[yij[tn]] = m′ij + σ
φ(αij)−φ(βij)

Φ(βij)−Φ(αij)

14: ∀i ∈ Ωu : Σ′ui
[tn]←

(
Σ−1
ui

[tn] +
∑

j∈Ωui [tn](µ
′
vj

[tn]µ′>vj [tn] + Σ′vj [tn])/σ2
)−1

15: µ′ui
[tn]← Σ′ui

[tn]
(
Σ−1
ui

[tn]µui
[tn] +

∑
j∈Ωui [tn] Eq[yij[tn]]µ′vj [tn]/σ2

)
16: ∀j ∈ Ωv : Σ′vj [tn]←

(
Σ−1
vj

[tn] +
∑

i∈Ωvj [tn](µ
′
ui

[tn]µ′>ui
[tn] + Σ′ui

[tn])/σ2
)−1

17: µ′vj [tn]← Σ′vj [tn]
(
Σ−1
vj

[tn]µvj [tn] +
∑

i∈Ωvj [tn] Eq[yij[tn]]µ′ui
[tn]/σ2

)
18: end for

19: end for

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 33

2.5.5 Complexity Analysis

Above I have shown four different versions of CKF; two per ordinal and continuous

observations, and two per adjustable and fixed Brownian motion drifts. First we re-

view the additional variables introduced to obtain the full algorithms. X[t] represents

the observation matrix at time t; note that we have a different matrix at each time

step, permitting the value of a pair (i, j) to change over time. Ω[t] is the set of all

(i, j) for which there is a corresponding observation at X[t]. The sets Ωu[t] and Ωv[t]

are the sets of all i and j for which (i, j) ∈ Ω[t]. Ωui
[t] is the set of all j for which

(i, j) ∈ Ω[t] and Ωvj [t] is defined similarly. We also use randn to denote standard

normal draws. This is used for initializing ui’s and vj’s.

The overall computational cost in asymptotic notation is the same for all algo-

rithms as the bottleneck is the variational inference loop. The computation cost at

any given step is at most O(d3). This happens in the eigendecomposition of the prior

covariances for u′is and v′js in the adjustable drift algorithms, and the inversion for

finding the posterior covariances for ui’s and vj’s in all algorithms. Since the eigen-

decomposition is done only once, the inversions in the loop is the dominating term.

Then at any given time the complexity is O(I(Ωui
[t] + Ωvj [t])d

3). We can obtain a

uniform bound based on the sparsity of the matrix. In particular, if the number of

entries at any given time is bounded as (Ωui
[t] + Ωvj [t]) < Ψ , the cost over the entire

time horizon will be O(NIΨd3). We can also see the benefit of using a low rank

factorization as the higher order polynomial term depends only on d.

The variational inference updates give a monotonically nondecreasing sequence of

VLB values, therefore monitoring this bound for overfitting prevention is not nec-

essary. This is one advantage of Bayesian graphical models over neural networks.

With that said we can still compute the appropriate VLB in Eqs. (2.36) or (2.37).

The computation cost of doing so is O(Ψd3) per iteration, therefore the asymptotic

complexity does not change.

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 34

2.6 Experiments

In this section we demonstrate the performance of CKF on two types of datasets.

Firstly we consider two large-scale movie rating datasets:

• The Netflix dataset containing 100 million movie ratings from 1999 to 2006.

The movies ratings are from 1 to 5 stars and distributed across roughly 17K

movies and 480K users.

• The MovieLens dataset containing 10 million movie ratings from 1995 to 2009.

The ratings are given on a half star scale from 0.5 to 5 and distributed across

10K movies and 71K users.

For the movie ratings we see that the observations are ordinal. As we will show later

an adjustable drift is not necessary for this problem so we will use Algorithm 2.4.

The second dataset we consider is a financial time series:

• Stock prices recorded at daily close for 433 companies from the AMEX exchange,

2,774 companies from NASDAQ and 3,273 companies from the NYSE for a total

of 6,480 stocks and 39.1 million total measurements from 1962–2014. This data

is downloaded from Yahoo Finance.

The stock prices are continuous so we use Algorithm 2.1. The adjustable drifts let us

extract stock-specific volatility information from data. Below we discuss the setting

of CKF parameters and the results in detail.

2.6.1 Movie Rating Data

We first present results on dynamic modeling of the Netflix and MovieLens datasets.

These datasets contain user ratings of movies, which are time stamped. We divide

the data into matrices where the rows are users and the columns are movies, using a

daily resolution. The ability of our model to exploit dynamic information depends on

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 35

Time (days)

N
u
m

b
e
r

o
f

ra
ti

n
g
s

User 15701

Time (days)

N
u
m

b
e
r

o
f

ra
ti

n
g
s

User 101

Figure 2.1: Dynamic behavior of two users from the Netflix data set based on the

cumulative total of movies rated. Left panel: This user rates large batches of movies

in a few sittings. Though the dynamics won’t be captured by the model, we still can

perform sequential inference for this user to make predictions. Right panel: A more

incremental rating pattern that has dynamic value.

how dynamic the data is. For example, in Figure 2.1 we show the cumulative number

of ratings for two users as a function of time. With the first user, we do not expect

to have a dynamic benefit as they seem to rate movies at a single time, but we do

for the second user. However, as an online algorithm we note that the CKF still can

make useful predictions in both cases. Also, in the limiting case that all users rate all

movies in a given instant, the CKF will simply reduce to the online zero-drift model.

In Figure 2.2 we show the monthly ratings histogram for both data sets, which gives

a sense of the dynamic information from the movie perspective.

For comparisons we use the following:

1. CKF: Collaborative Kalman Filter in Algorithm 2.4.

2. Online VB-EM: The non-drift special case of the CKF with ea[t] = 0.

3. Batch VB-EM: A variational inference algorithm that uses the ordered probit

and prior model of CKF and learns posterior distributions of ui’s, vj’s, and yij’s

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 36

Months

N
u
m

b
e
r

o
f
ra

ti
n
g
s

(x
1
0

6
)

(a) Netflix

Months

N
u
m

b
e
r

o
f
ra

ti
n
g
s

(x
1
0

5
)

(b) MovieLens

Figure 2.2: Histograms of the total number of ratings within a month over the course

of each data set.

in a batch setting.

4. Batch MAP-EM: A version of probabilistic matrix factorization (PMF) [98] that

uses the ordered probit model as above. Point estimates of ui’s and vj’s and the

auxiliary variable yij’s are learned using Expectation Maximization in a batch

setting.

5. BPMF: Bayesian PMF [99] without a probit model.

6. M3F: Mixed-membership matrix factorization [79].

Online VB-EM is an online sequential method for Bayesian inference that is similar

to other “big data” extensions of the variational inference approaches [19], [55]. The

difference between this and the batch model is that we only process each rating

once with the online algorithm, while with batch inference we iterate over users and

movies several times processing all data in a single iteration, as is more typically

done. For batch inference we compare with variational inference (Batch VB-EM)

and Expectation Maximization (Batch MAP-EM), both of which use the CKF joint

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 37

0.86

0.87

0.88

0.89

0.90

(a) Netflix

0.78

0.79

0.80

0.81

0.82

0.83

0.84

(b) MovieLens

Figure 2.3: The RMSE as a function of number of ratings for a user and movie. The

(m,n) entry contains the RMSE calculated over user/movie pairs where the user has

rated at least 10(m−1) movies and the movie has been rated at least 10(n−1) times.

The value shown in the lower-right corner is 200+ ratings each, which we use in Table

2.1.

likelihood model. Similar to CKF, Batch VB-EM learns a full posterior distribution,

whereas Batch MAP-EM finds point estimates according to the MAP rule. BPMF

and M3F are also batch inference algorithms, based on Monte Carlo methods.

For parameter selection, we tried several different dimension settings (d = 10, 20, 30).

We used a fixed drift of a = 10−3, which corresponds to setting c = 0 since we do

not assume there to be fundamental shifts in the overall user or movie landscape.

We set σ to be the value that minimizes the KL divergence between the probit and

logistic link functions, which we found to be approximately σ = 1.76. We randomly

initialized the mean of the priors on each ui and vj at time zero from a standard

normal, and set the covariance equal to the identity matrix. For the partition widths,

we set rk − lk = σ for Netflix and rk − lk = σ/2 for MovieLens, which accounts for

the half vs. whole star rating system.

We use Root Mean Square Error (RMSE) as the main performance metric, which

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 38

Table 2.1: RMSE results for the Netflix 100 million and MovieLens 10 million data

sets. Comparisons show an advantage to modeling the dynamic information within

the data.

Model Size Netflix MovieLens

CKF d = 10 0.8540 0.7726

d = 20 0.8534 0.7654

d = 30 0.8540 0.7635

Online VB-EM d = 10 0.8682 0.7855

d = 20 0.8707 0.7805

d = 30 0.8668 0.7786

Batch VB-EM d = 10 0.8825 0.7996

d = 20 0.8688 0.7896

d = 30 0.8638 0.7865

Batch MAP-EM d = 10 0.9277 0.9133

d = 20 0.9182 0.9113

d = 30 0.9143 0.9133

BPMF d = 30 0.9047 0.8472

M3F d = 30 0.9015 0.8447

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 39

is shown for all algorithms in Table 2.1. For the batch algorithms, we randomly held

out 5% of the data for testing to calculate this value. We ran multiple trials and

found that the standard deviation for these algorithms was small enough to omit.

We observe that our algorithm outperforms the other baseline algorithms, and so

dynamic modeling of user preference does indeed given an improvement in rating

prediction. This is especially evident when comparing the CKF with Online VB-EM,

the only difference between these algorithms being the introduction of a drift in the

state-space vectors.

We also observe the improvement of the variational inference framework in general.

For example, by comparing Batch VB-EM with Batch MAP-EM, we see that vari-

ational inference provides an improvement over a MAP-EM implementation, which

models a point estimate of ui[t] and vj[t]. Both methods use a latent variable yij[t]

in a probit function for the observed rating, but the variational approach models the

uncertainty in these state-space vectors, and so we see that a fully Bayesian approach

is helpful. We also found in our experiments that treating the rating xij[t] as being

generated from a probit model and learning a latent yij[t] is important as well, which

we observed by comparing PMF-EM with the original PMF algorithm [98]. We omit

these PMF results in the table, which we note gave RMSE results over one as can be

seen in the original paper. We also note that the PMF algorithm is the non-dynamic

version of [104].

Calculating the RMSE requires a different approach between the online and static

models. To calculate the RMSE for the two dynamic models—CKF and the online

model—we do not use the test set for the batch models, but instead make predictions

of every rating in the data set before using the observed rating to update the model.

This gives a more realistic setting for measuring performance of the online models,

especially for the CKF where we are interested in predicting the user’s rating at that

time. Therefore, we must choose which predictions to calculate the RMSE over, since

clearly it will be bad for the first several ratings for a particular user or movie. By

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 40

58 60 62 64 66 68 70 72 74 76 78
−3

−2

−1

0

1

2

3

Ace Ventura

Anchorman

Groundhog Day

Pulp Fiction

Finding Nemo
Batman Begins

Lizzie McGuire

The Matrix

Fight Club

Month

3
 s

ta
r

4
 s

ta
r

2
 s

ta
r

5
 s

ta
r

Figure 2.4: An example of a user drift over time as seen through predicted ratings

for several movies from the Netflix data set. The y-axis is the latent variable space,

which we partition according to star rating as indicated.

looking at the users and movies that appear in the testing sets of the batch models

we found that for Netflix each user in the test set had an average of 613 ratings in

the training set and each movie in the test set had 53,395 ratings in the training set.

For MovieLens this was 447 per user and 7,157 per movie, meaning that in both cases

a substantial amount of data was used to learn locations in training before making

predictions in testing. Therefore, to calculate our RMSE of the online models we

disregard the prediction if either the user or movie has under 200 previous ratings.

This arguably still puts the RMSE for our model at a disadvantage, but we noticed

that the value did not change much with values larger than 200. We show the RMSE

as a function of this number in Figure 2.3.

In Figure 2.4 we show the dynamics of an individual user by plotting the predicted

rating for a set of movies as a function of time. We can see an evolving preference in

this plot; for example a strong interest in Batman Begins that then slightly decreases

with time, while interest in The Matrix begins to increase toward the end. Also, while

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 41

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
0

1000

2000

3000

4000

5000

6000

year

n
u

m
b

e
r

o
f

st
o
ck

s

Figure 2.5: The number of actively traded stocks as a function of time.

there is some interest in Anchorman at the beginning, the user then quickly becomes

disinterested. In most cases, we observed no clear change in movie preference for a

user over time. We consider this to be intuitively reasonable since we argue that few

people fundamentally change their taste. However, being able to find those individual

users or movies that do undergo a significant change can have an impact on learning

the latent vectors for all users and movies since the model is collaborative, and so we

argue that modeling time evolution can be valuable even when the actual percentage

of dynamically changing behaviors is small.

2.6.2 Stock Price Data

We next present a qualitative evaluation of our model on a stock price dataset. Stock

prices are a good example for high dimensional time series where each value gets

updated regularly. For our case we use daily closing prices. We also plot the number

of active stocks by year in Figure 2.5 where we see that as time goes by, the number

of stocks actively being traded increases significantly.

For this problem xij[t] corresponds to stock prices which is a continuous variable.

We can then link it directly fo ui[t] and vj[t] using the Gaussian likelihood model

of Section 2.3 without using any yij[t]. Also we can learn stock specific volatility

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 42

Walmart Pfizer Coca-Cola Microsoft

Figure 2.6: A histogram of the tracking errors of the CKF for four stocks using

the mean of each q distribution (in log2 scale). The tracking performance is very

accurate using a 5 dimensional latent space (order 10−3). These result are typical of

all histograms.

from data using adjustable drifts. Therefore we use Algorithm 2.1. We set the latent

dimension d = 5, but observed similar results for higher values. We learned stock-

specific drift Brownian motions aui
[t] and set c = 5 × 10−2, which we found to be a

good setting through parameter tuning since the learned aui
[t] were not too smooth,

but still stable. We also observe that, for this problem, there is only one state vector

corresponding to v, which we refer to as a “state-of-the-world” (SOW) vector. For

the SOW vector, we use a fixed drift value of av[t] = −11.7 once again corresponds

to setting c = 0. For the noise standard deviation we set σ = 0.01, which enforces

that the state-space vectors track xij[t] closely.

We first assess the tracking ability of our model. The ability to accurately track

the stock prices indicates that the latent structure being learned is capturing mean-

ingful information about the data set. We show these results as error histograms on

log2 scale in Figure 2.6 for four companies (tracking was very accurate and could not

be distinguished visually from the true signal) and mention that these results are rep-

resentative of all tracking performances. We see from these plots that the prediction

errors of the stock prices are small, on the order of 10−3, and so we can conclude that

our five dimensional state-space representation for ui’s and v (SOW) is sufficient to

capture all degrees of freedom in time across the 6,480 stocks.

We next look more closely at the Brownian motions aui
[t] learned by the model

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 43

1980 1985 1990 1995 2000 2005 2010

40

60

80

100

120

140 Chevron
BP

(a) Stock price

1982 1987 1992 1997 2002 2007 2012
−6

−5

−4

−3

−2

(b) Brownian motion drift.

Figure 2.7: (a) The historical stock price for two oil companies, BP and Chevron. (b)

The log drift Brownian motion (aui
[t]) indicating the volatility of each stock. We see

that though the stock prices are different, the volatility of both oil companies share

the same shape since they are closely linked in the market.

to capture the volatility of the stock prices. In Figure 2.7(a) we show the historical

stock price for two oil companies, BP and Chevron. Below this in Figure 2.7(b) we

show the respective functions aui
[t] learned for these stocks. We see that the volatility

of both of these oil companies share similar shapes since they are closely linked in

the market. For example in the early 80’s, late 90’s and late 2000’s, oil prices were

particularly volatile. This is modeled by the increase of eaui [t], which captures the

fact that the state vectors are moving around significantly in the latent space during

this time to rapidly adjust to stock prices.

We also consider the stock volatility across different market sectors. In Figure

2.8 we show the historical stock prices for five companies along the top row and their

respective aui
[t] below them on the second row. Three of the companies are in the steel

market, while the other two are from different markets (pharmaceutics and beverage).

We again see that the learned Brownian motion captures a similar volatility for the

steel companies. In each case, there is significant volatility associated with the 2008

financial crisis due to the decrease in new construction. This volatility is not found

with the pharmaceutics or beverage companies. However, we do see a major spike in

volatility for Coca-Cola around 1985, which was a result of their unsuccessful “New

Coke” experiment. These observations are confirmed by the respective stock prices.

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 44

1999 2004 2009

20

40

60

80

100

120

140

160

180

200

Posco (steel)

1998 2003 2008 2013

10

20

30

40

50

60

70

80

90

100

110

Schnitzer (steel)

1991 1996 2001 2006 2011
0

20

40

60

80

100

120

140

160

180

200
US Steel

1982 1987 1992 1997 2002 2007 2012
0

20

40

60

80

100

120

140

160
Pfizer

1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012

40

60

80

100

120

140

Coca-Cola

1997 2002 2007 2012
−6

−5

−4

−3

−2

−1

Posco (steel)

1997 2002 2007 2012

−6

−5

−4

−3

−2

Schnitzer (steel)

−1

−2

−3

−4

−5

−6

−7

1992 1997 2002 2007 2012

US Steel

1982 1987 1992 1997 2002 2007 2012

−7

−6

−5

−4

−3

−2

−1

Pfizer

1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012

−7

−6

−5

−4

−3

−2

−1

Coca-Cola

Figure 2.8: (Top row) The historical stock prices for three steel companies, one phar-

maceutical and one beverage company. (Bottom row) The corresponding log drift

Brownian motions (aui
[t]) for the respective stocks from the top row. We see that the

three steel companies shared high volatility during the period of the 2008 financial

crisis, but companies in other areas such as the pharmaceutical and beverage industry

were not similarly affected.

However, we note that the level of volatility is not only associated with large changes

in stock value. In the Pfizer example, we see that the volatility is consistently high

for the first half of its stock life, and then decreases significantly for the second half,

which is due to the significantly different levels of volatility before and after the year

2000.

2.7 Conclusion

In this chapter we have considered prediction of dyadic time series, which can be

represented as a sequence of sparse matrices. The sparse and low-rank structure of

the matrices motivate a matrix factorization model for the data generating process.

We have focused on extending the matrix factorization to dynamic setting, where

the factors are assigned a multidimensional Brownian motion prior. Learning the

posterior distributions for the latent factors leads to a nonlinear Kalman filtering

CHAPTER 2. DYNAMIC MATRIX FACTORIZATION FOR DYADIC TIME
SERIES 45

problem which can be efficiently solved with variational inference. The drift parame-

ter of the Brownian motion can also be inferred using the variational lower bound. We

showed two kinds of experiments: Firstly we evaluated the model on two movie rating

datasets, where the CKF outperforms its competitors. Secondly we have shown qual-

itative results on stock price data, where stock specific volatility is learned through

the Brownian motion drift. The analysis reveals important structure about stocks,

such as volatility behavior shared across the stocks in the same sector.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 46

Chapter 3

Dynamic Matrix Factorization for

Forecasting

3.1 Introduction

I have introduced Collaborative Kalman Filter (CKF) in Chapter 2. This method re-

lies on matrix factorization and Kalman filtering to model dyadic time series. Dyadic

time series are matrix-valued time series where at every time, the interaction of two

groups are observed. Using Brownian motion priors I have shown how matrix factor-

ization can naturally be extended to model dyadic time series. Another important

property is that, CKF is an online method. So it can process the data in a single

stream without storing it in its entirety. This makes CKF suitable for large scale

learning problems.

In Chapter 2, we have also focused on analyzing stock prices, for which the ob-

served values are treated as the interaction of individual companies and a state-of-

the-world vector. This is a somewhat degenerate case of the CKF model where the

observations are not matrix-valued but actually vector-valued. For the stock price

dataset, for example, we observe a vector of stock closing prices everyday. The CKF

then extracts useful volatility information from this data. While this kind of analysis

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 47

is useful, another very important problem in time series analysis is forecasting; here

the aim is to predict the future values of the times series from the past. In this chap-

ter we focus on the forecasting problem for vector-valued time series, using matrix

factorization.

In the previous chapter I introduced matrix factorization within the context of

collaborative filtering and recommender systems [98], [99], [70]. In fact the applica-

tions of matrix factorization are more broad and encompass natural language process-

ing [35], [90], image processing [80], finance [6], and power systems analysis [83]. The

special subject of non-negative matrix factorization has also received significant atten-

tion [71], [72], [119]. However, the application of matrix factorization to forecasting

vector-valued time series has been relatively less developed.

To establish the connection, note that a multivariate time series is a sequence of

vectors, and when there are missing values the entire collection can be represented by

a sparse matrix, for which low-rank representations can be useful. To this end, [116]

proposed a temporal regularized matrix factorization based on this observation. A

key property of their solution is that the columns of one of the factor matrices is

regularized by an AR process. The coefficients of this process are learned from the

data, and can be used to forecast future values. With that said, the emphasis in [116]

was on batch learning, which for many practical applications might be impractical.

For this reason, the focus of this chapter is on online dynamic matrix factorization

for forecasting, in a similar spirit to CKF.

Online forecasting is an active area of research [2], [78], [69]. In particular, the

recent work [3] considers online predictions with missing values. However, online

forecasting of time series has not been considered from a matrix factorization per-

spective, which we develop here. A key observation in previous works of [2], [3] is that

the textbook methods for time series analysis typically assume stationarity and/or

Gaussianity of noise, which is often unrealistic; so in this chapter we make fewer

assumptions about the data generating process.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 48

To apply dynamic matrix factorization for online forecasting, we will once again

use stochastic process priors on the factors. In particular we will use a vector au-

toregressive (VAR) process on the factor representing a low dimensional time series

which is inspired by [116]. The overall model is once again a state-space model.

Several other works have also considered dynamic state-space models, but in the

batch setting [103] [86], [7], [114]. It is also worthwhile to note that many well estab-

lished algorithms such as Probabilistic Matrix Factorization [98], Grassmanian Robust

Adaptive Subspace Tracking [52], Recursive Projected Compressive Sensing [47], and

Online Stochastic Robust PCA [36] can also be used for the online forecasting prob-

lem. All these aforementioned techniques leverage the sparse structure of the time

series, however the lack of the VAR process in their formulation significantly limits

their forecasting ability. This is a gap we aim at filling in this chapter.

Before moving into the details, we also note that there is a significant body of

work that considers the missing value and forecasting problems in other settings: [49]

proposes a convex optimization framework for transition matrix estimation in vector-

valued time series; [33] employs a time-series model to represent missing observa-

tions; [101] handles them with an EM algorithm; [28] uses an AR process to impute

missing values, and [102] considers the Kalman filtering problem with intermittent

observations. The main benefit of using matrix factorization is that, the low rank can

be a good choice for the time series considered. And as shown here, non-trivial low

rank factorizations can also be learned efficiently in the online setting.

We organize this chapter as follows: Section 3.2 establishes the background for

VAR processes and the matrix factorization approach to time series analysis. Section

3.3 is concerned with introducing matrix factorization methods, which finds low-rank

factorizations suitable for forecasting. Building on such factorization, Section 3.4

shows how the coefficients of the AR process can be estimated in an optimal manner.

Section 3.5 lists algorithms and complexity. Section 3.6 contains experiments with

two real datasets with tens of millions of measurements; our experiments show that

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 49

the proposed techniques are effective in practical situations. We conclude in Section

3.7.

3.2 Background and Motivation

This section provides background on time series and matrix factorization, and intro-

duces a generative model which we subsequently develop. In this chapter, we are

interested in forecasting the future values of a high dimensional time series {xt}Tt=1,

where each xt is an M × 1 vector. At each time step t the value of xt must be

predicted before it is observed, denoted by x̂t, and after observation the model is up-

dated according to a loss function. In this chapter we let the time indices be discrete

and equally spaced in time. Total number of samples is T and [T] = {1, 2, . . . , T}.

In the well-known Box-Jenkins approach [18], given samples one constructs a signal

model by finding (i) a trend, (ii) a seasonal component, and (iii) a noise component,

where the latter is typically modeled by an autoregressive moving average (ARMA)

model, which is a combination of the AR and MA models. The learned model can

then be evaluated using appropriate statistical tests. One drawback of this approach is

that finding a trend and seasonal component requires storing and processing the entire

data, which might be unsuitable due to storage or computation time requirements.

In addition, this methodology is also unsuitable for streaming data.

For these reasons, we start from a generic vector AR process model, VAR(P), of

form

xt = θ1xt−1 + . . .+ θPxt−P + ηx,t , (3.1)

where ηx,t is zero mean white noise and P denotes the model order. The choice of

P has a major impact on the accuracy of the model, as it captures the maximal lag

for correlation. Let the parameters of this model be denoted by θ = [θ1, . . . , θP]>. It

is clear that, with scalar coefficients VAR(P) corresponds to M copies of an AR(P)

model. In addition, when the polynomial ψP − θ1ψ
P−1− . . .− θP has roots inside the

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 50

unit circle, the model is stationary [48]. For a given finite number of measurements,

the parameters of the AR(P) model can be estimated by minimizing the mean square

error

θ̂ = arg min
θ′

Eθ ‖θ − θ′‖2
2 , (3.2)

where expectation is taken with respect to the prior p(θ). An advantage of this is,

that the optimum linear minimum mean squared error estimator (LMMSE) does not

make any distribution assumptions on p(θ) or p(η), and can be calculated in closed

form given the first and second order statistics. Also, unlike least squares or the best

linear unbiased estimator, LMMSE is guaranteed to exist.

Returning to matrix factorization, we first observe that a time series can be repre-

sented by an M×T matrix X. If d denotes the rank of this matrix, then it is possible

to find a d ×M matrix U and a d × T matrix V such that X = U>V [41]. Note

that such a factorization is not-unique and there are multiple ways to find it such as

singular value decomposition (SVD). Furthermore, when X represents a time series,

such a factorization can be interpreted as follows: Since the matrix V is d × T , it

corresponds to a compression of the original M × T matrix X. Therefore the matrix

V is itself a time series, while the matrix U provides the combination coefficients to

reconstruct X from V . Based on this observation, [116] proposed a temporal regu-

larized matrix factorization where the regularizer on the columns of V is in the form

of an AR process. They showed that such a regularization has notable impact on

performance.

Motivated by this, our goal is to learn the factorizations U and V , along with the

AR model of Eq. (3.2) in the online setting, where at each time instance we observe

a single column of the data matrix, xt. While this is similar to previous work on

online/dynamic matrix factorization [45], [103], one main issue sets it apart. In the

previous work, at each time an M ×N matrix is observed with N � 1, while in our

case the observation is simply M × 1. This is illustrated in Figure 3.1; in (a) we show

the batch factorization of an M ×T matrix X and (b) is the case where at each time

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 51

(a)

(b)

(c)

= = = =

t=4t=2t=1 t=3

= = = =

t=4t=2t=1 t=3
X

=

U
V

T

Figure 3.1: Comparison of online matrix factorization schemes. (a) a matrix X is

factorized in the batch setting, whereas in (b) at each time a subset of the matrix is

observed. For illustrative purposes the observed rank is always greater than one. (c)

shows online matrix factorization, where without appropriate regularization (implied

in what is shown) the rank cannot exceed one.

a subset of the matrix entries are observed. CKF of Chapter 2 is an example of this.

However, when X is a time series matrix, at each time we observe a single column

as shown in (c).

A problem with sequentially observing and dynamically factorizing vectors is that

the latent rank is at most 1, whereas the batch problem in Figure 3.1(a) will have a

solution of rank d. Since the end goal here is to factorize the entire data with two time-

varying matrices, it is desirable to start from a rank-d representation and gradually

update it. However, finding such factors naively gives poor performance (Figure 4),

therefore our task is to devise an effective way of achieving this. This can be done

using specific penalties on the matrix U , which yields feasible optimization problems,

as discussed in the next section. One way to motivate our approach is to consider

a probabilistic generative state-space representation for the data, as frequently used

in Bayesian methods [13]. The model of CKF is also an example of this. Previous

research [7], [5] shows that generative model approach is indeed effective at capturing

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 52

temporal dynamics. Our model is

Ut = Ut−1 + ηU ,t

vt = θ1vt−1 + . . .+ θPvt−P + ηv,t

xt = U>t vt + ηx,t , (3.3)

where [ηU ,T], [ηv,T], and [ηx,T] are white noise sequences, independent of each other.

For many time series forecasting purposes an AR model is sufficient, as the past

values may be the only inputs available. However, if additional predictors are given

at any point in time, they can also be incorporated to the generative model. For

instance, if an additional set of predictor vectors {wt,1, . . . ,wt,R} are provided we can

set

vt =
P∑
p=1

θpvt−p +
R∑
r=1

θ′rwt,r + ηv,t.

In this chapter we assume access only to the time series.

To compare the state-space model in Eq. (3.3) to the related work: If we set

vt = vt−1 + ηv,t, we recover the setting of matrix factorization. Using the previous

value of U as regularizer, we have a feasible optimization problem and the factors

can be estimated by either alternating least squares [70] or projected gradients for

non-negative factorization [71]. Alternatively, the factors can also be estimated using

subspace tracking or robust PCA; these methods bring an additional noise term to the

model, which provides outlier robustness. In terms of model complexity and number

of parameters, the main difference is that, in the above method we use an AR model

for time series embeddings. While this introduces an additional AR order parameter

to be set, as we show in the experiments it can lead to significant improvement in

forecast accuracy, as multiple past values can be used to predict the future. Without

this, the model would predict based only on the current factors. Therefore, when

we have a time series where the cross sections are correlated at multiple lags, our

generative model can capture the dependencies and provide better forecasts.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 53

3.3 Online Matrix Factorization

We present algorithms that fit an online VAR(P) model to the sequence [vT] =

{v1, . . . ,vT}. To get a good fit, it is necessary to generate the vectors [vT] is a proper

manner. To illustrate this, for a given measurement vector if we find a factorization

xt = U>t vt, for any orthogonal matrix Q and positive scaling constant a we get

xt = (aQUt)
>(a−1Qvt). This scaling and rotation could have a significant effect

on forecasting accuracy (Figure 3.3). On the other hand, the matrix Ut is a slowly

time-varying quantity which means we can constrain its variation. Accurate selection

of the penalty on Ut has a dramatic effect on the generated [vT], which then dictates

the forecasting accuracy.

Another assumption we make is that the absolute value of observations are upper

bounded by a finite number. Therefore, by scaling we can assume supx∈[xT] ‖x‖∞ = 1.

For the power data we will consider, this is dictated by the physical constraints of

the network; for the traffic data, the measurements are already in percentages.

3.3.1 Fixed Penalty Constraint

The first algorithm we present is based on a simple fixed penalty function on the

norms of the factors. The batch version for this algorithm was previously considered

in [98]. There, the cost function is

f(U ,v) =
∑
m,n

(xm,n − u>mvn)2 + ρu
∑
m

‖um‖2
2 +

∑
n

ρv‖vn‖2
2 (3.4)

which is equivalent to adding spherical Gaussian priors to each column of U and v.

In [98] this is referred to as probabilistic matrix factorization (PMF). This non-convex,

unconstrained objective function can be optimized by coordinate descent

u(i)
m ←

(
ρuI +

∑
n

v(i)
n v

(i)>
n

)−1(∑
n

xm,nv
(i)
n

)
v(i+1)
n ←

(
ρvI +

∑
m

u(i)
m u

(i)>
m

)−1(∑
m

xm,nu
(i)
m

)
. (3.5)

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 54

Turning to the online case, at each time a single column of X is observed. Using

the model of Eq. (3.3), at time t we would like to minimize the following cost function

f(Ut,vt) = ‖xt −U>t vt‖2
2 + ρu‖Ut −U‖2

F + ρv‖vt − v‖2
2 . (3.6)

From the generative model of Eq. (3.3) we see that the predicted values are set as

U = Ut−1 and v =
∑P

p=1 θpvt−p. In Section 3.4 we discuss how to estimate the

parameters in the equation of v.

Here, Ut is the submatrix of U corresponding to the columns with observation

in xt. When there are missing observations, only a subset U gets updated. At a

given time t, the number of observations is Mt, and vt has d parameters. Typically

Mt > d and the update for vt can be feasible even if ρv = 0; therefore ρv is a

small set-and-forget constant that we include for numerical stability.1 On the other

hand, Ut contains Mtd > Mt unknowns and the Gram matrix UtU
>
t is not invertible.

Therefore, ρu > 0 is necessary to make the problem feasible. Since both ρu and

ρv are fixed at the beginning, we refer to Eq. (3.6) as Fixed Penalty (FP) matrix

factorization.

The objective of Eq. (3.6) finds the maximum a posteriori (MAP) solution. Here,

we center the priors on the previous value of U and v =
∑P

p=1 θpvt−p. Moreover,

the `2-norm terms in Eq. (3.6) suggests that η·,t has a density inversely proportional

to the distance from the mean. Indeed, this is the only assumption we make about

the noise p.d.f. While the most common choice satisfying this requirement would

be the Gaussian density; note that its support is the entire Rn which conflicts with

the bounded data assumption. Secondly, from the perspective of Eq. (3.3), the

regularization coefficients can be regarded as the inverse noise variance; higher values

mean higher trust to the prior and stronger regularization. We note that we will set

ρu � ρv, which means FP will find a solution for which Ut is close to Ut−1, i.e., Ut is

slowly time-varying. This agrees with the interpretation that, in the batch case U is

1Indeed, ρv = 10−4 for all experiments in this chapter.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 55

Algorithm 3.1 Fixed Penalty Matrix Factorization (FP)

1: Input: xt, It, ρu, ρv, U , v, max ite

2: Output: Ut, vt

3: Re-assign U ← U(:, It)

4: for i = 1, . . . , max ite do

5: v(i) ← (ρvI +U (i−1)U (i−1)>)−1(ρvv +U (i−1)xt)

6: U (i) ← (ρuI + v(i)v(i)>)−1(ρuU + v(i)x>t)

7: end for

8: Update Ut(:, It)← U and overwrite Ut(:, Ict)← Ut−1(:, Ict).

9: Update vt ← v.

10: Note 1: Ut(:, It) are those columns for which there is a corresponding observation

at time t, indexed by It. The remaining columns are Ut(:, Ict)..

11: Note 2: At time t, only the observed entries get updated.

a fixed set of coefficients and V contains the compressed time series. Another caution

here is that, setting ρv too high would over-constrain the problem as both Ut and vt

would be forced to stay close to U and v while trying to minimize the approximation

error to xt.

The update equations for FP are

U
(i)
t ←

(
ρuI + v

(i)
t v

(i)>
t

)−1(
ρuU + v

(i)
t x

>
t

)
v

(i)
t ←

(
ρvI +U

(i)
t U

(i)>
t

)−1(
ρvv +U

(i)
t xt

)
. (3.7)

A key argument in Eq. (3.6) is that, the state equations of Eq. (3.3) addresses scaling

and rotation issues through U and v. A naive approach, which does not impose any

temporal structure on the latent variables, constructs the alternative objective

f(Ut,vt) = ‖xt −U>t vt‖2
2 + ρu‖Ut‖2

F + ρv‖vt‖2
2 . (3.8)

We also consider this alternative “naive” model in the experiments, to show that,

in the absence of temporal regularization in Eq. (3.3), scaling and rotation can-

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 56

not be prevented,2 hindering the prediction quality. The FP matrix factorization is

summarized in Algorithm 3.1.

3.3.2 Fixed Tolerance Constraint

The fixed penalty approach to matrix factorization suffers from several potential

issues. While ρv can be set to a small number, setting ρu properly has a major

impact on performance. It is usually not clear a priori which values would yield good

results, and oftentimes this may require a large number of cross validations. Another

drawback is that ρu is fixed for the entire data stream. This may not be desirable as

changing the regularization level at different time points may improve performance.

For these reasons it can be useful to allow for time varying, self-tunable regularization.

To address this we consider the following problem

min
Ut,vt
‖Ut −U‖2

F + ‖vt − v‖2
2

s.t. ‖xt −U>t vt‖2
2 ≤ ε (3.9)

Instead of having ρu and ρv, we introduced ε. This new parameter forces the approx-

imation error to remain below ε. Since this error bound is fixed at the beginning, we

call this fixed tolerance (FT) matrix factorization. Here U and v are defined as in

FP. Based on the model in Eq. (3.3), we can interpret the optimization problem of

Eq. (3.16) as follows: FT aims finding the point estimates closest to the previous val-

ues while keeping the deviation from the likelihood (ML) term at most ε. Therefore,

while FP is a MAP estimator, FT is a constrained ML estimator.

2One alternative way to address this problem would utilize post-processing. In particular, the

optimum rotation between two sets of points can be found by solving the Procrustes problem [57];

however this would incur additional computation.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 57

For fixed vt the problem we would like to solve is

min
Ut

‖Ut −U‖2
F

s.t. ‖xt −U>t vt‖2
2 ≤ ε . (3.10)

The Lagrangian for this problem is

L(Ut, λ) = ‖Ut −U‖2
F + λ‖xt −U>t vt‖2

2 − λε , (3.11)

which yields the following update for Ut.

Ut ← (λ−1I + vtv
>
t)−1(λ−1U + vtx

>
t) . (3.12)

This is equivalent to (3.7) where λ = ρ−1
u . But since the Lagrange multiplier changes

value with every update of vt we now have a variable regularizer. The main issue

with this FT approach is the structure of the constraint set and its enforcement via

the Lagrange multiplier λ. This is a quadratically constrained quadratic program

(QCQP), for which there is no closed-form solution in general [16]. The optimization

for Ut given vt can be shown to be convex (Appendix 3.8.1), so off-the-shelf solvers

could be employed to find the global optimum. However, using a convex solver at

every time step is inefficient and defeats the purpose of scalable online learning.

In fact, a closed form solution to Ut can be found. Defining

c1 = ‖xt −U
>
vt‖2

2, c2 = ‖vt‖2
2, (3.13)

and setting the Lagrange multiplier to

λ? =

√
c1

c2

√
ε
− 1

c2

(3.14)

the optimal update for Ut is

Ut ← (I + λ?vtv
>
t)−1(U + λ?vtx

>
t). (3.15)

We provide a full derivation of this in Appendix 3.8.1.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 58

Algorithm 3.2 Fixed Tolerance Matrix Factorization (FT)

1: Input: xt, It, ε, ρv, U , v, max ite

2: Output: Ut, vt

3: Re-assign U ← U(:, It)

4: for i = 1, . . . , max ite do

5: v(i) ← (ρvI +U (i−1)U (i−1)>)−1(ρvv +U (i−1)xt)

6: Compute c1, c2, as in (3.13).

7: λ? ←
√
c1√
εc2
− 1

c2

8: U (i) ← (I + λ?v(i)v(i)>)−1(U + λ?v(i)x>t)

9: end for

10: Update Ut(:, It)← U and Ut(:, Ict)← Ut−1(:, Ict).

11: Update vt ← v.

Secondly, for a fixed Ut we would like to solve

min
vt
‖vt − v‖2

2

s.t. ‖xt −U>t vt‖2
2 ≤ ε (3.16)

A more challenging issue arises here: For a given threshold ε it is not clear if we

can find a vt such that the constraint is satisfied. As an example, when the system

of equations is over-determined, the smallest error we can achieve is the least squares

error. When the system is underdetermined and the least squares error is greater than

ε, the value of vt from the previous iteration will still be the best (Appendix 3.8.2).

Unfortunately, the feasible set contains many such isolated points. Therefore if we

seek the minimum norm solution for vt in Eq. (3.16) it is likely that the optimization

will terminate early, resulting in poor performance.

To fix this we propose the following modification. First note that for a fixed Ut

the Lagrangian for vt is

L(vt, λ) = ‖vt − v‖2
2 + λ‖xt −U>t vt‖2

2 − λε , (3.17)

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 59

and the update is

vt ← (λ−1I +UtU
>
t)−1(λ−1v +Utxt). (3.18)

Then instead of finding the minimum-norm solution, we can update vt using the

Lagrangian in Eq. (3.17) for a fixed λ. This gives the same update equation as FP,

which is given in Eq. (3.7). From the optimization perspective, what we are doing

is replacing the least norm update with the ridge regression update (FT vs. FP).

The two problems have the same solution when the Lagrange multiplier is the same.

Therefore, while the two updates are not equivalent, structurally they are similar to

each other. The case when the two updates are the same is established in Appendix

3.8.2. FT is summarized in Algorithm 3.2. The key difference between FT and FP is

the computation of λ when updating Ut.

3.3.3 Zero Tolerance Constraint

We have discussed two different approaches to online matrix factorization, fixed

penalty (FP) and fixed tolerance (FT). From the user perspective, the difference

is in replacing one tunable parameter with another. We next discuss a parameter free

option in which ε = 0, which we refer to as zero tolerance (ZT) matrix factorization.

Interpreting from the perspective of the model in Eq. (3.3), ZT estimates the latent

factors Ut and vt that are as close to the prior as possible, while allowing no approx-

imation error on xt; and since no error is allowed, ZT finds a maximum likelihood

solution.

The optimization problem now becomes

min
Ut,vt
‖Ut −U‖2

F + ‖vt − v‖2
2

s.t. U>t vt = xt . (3.19)

This is related to nuclear norm minimization problems [20], [21]. In this scenario, we

consider the factored form of the nuclear norm [95] and perform online optimization.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 60

Considering optimizing Ut while vt is fixed, as before the linear system Utvt =

xt is underdetermined for a variable Ut. Eq. (3.19) suggests finding the solution

with the least Frobenius norm. This generalizes the least norm problem that is

considered for linear underdetermined systems to the matrix case. Since the system

is underdetermined, the feasible set will contain infinitely many points. (This follows

the same reasoning discussed in Appendix 3.8.1.) The optimization can be done with

Lagrange multipliers. Following a rescaling, the Lagrangian is given by

L(Ut,λ) =
1

2
‖Ut −Ut−1‖2

F + λ>(xt −Utvt). (3.20)

The stationarity conditions are

∇UtL(Ut,λ) = 0 = Ut −Ut−1 + vtλ
> ,

∇λL(Ut,λ) = 0 = U>t−1vt − xt. (3.21)

The solution is then

λ =
U>t−1vt − xt
v>t vt

, Ut = Ut−1 − vtλ>. (3.22)

Here, though λ is changing over time, it can no longer be seen as the inverse regu-

larizer of the FP term because ε is no longer a tunable parameter, but hard-coded to

zero. This is advantageous in that the user does not have to find a good value for it.

On the other hand, as we will show in the experiments, the zero tolerance require-

ment can become too restrictive in some cases, which will then require a higher rank

factorization.

The update for vt suffers from the same problem discussed in Section 3.3.2. For

the ZT constraint, consider when U>t vt = xt is overdetermined for variable vt. Then

the smallest error achievable will be given by the least squares solution, which satisfies

εls > 0, so the feasible set is empty. However, since the the optimization is done in

an alternating manner, this worst case does not occur in practice. In particular, at

iteration i−1 we have found (U
(i−1)
t−1 ,v

(i−1)
t−1) such thatU

(i−1)>
t−1 v

(i−1)
t−1 = xt. This means,

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 61

Algorithm 3.3 Zero Tolerance Matrix Factorization (ZT)

1: Input: xt, It, ρv, U , v, max ite

2: Output: Ut, vt

3: Re-assign U ← U(:, It)

4: for i = 1, . . . , max ite do

5: v(i) ← (ρvI +U (i−1)U (i−1)>)−1(ρvv +U (i−1)xt)

6: λ← (Uv(i) − xt)/(v(i)>v(i))

7: U (i) ← U − v(i)λ>

8: end for

9: Update Ut(:, It)← U and Ut(:, Ict)← Ut−1(:, Ict).

10: Update vt ← v.

when we update for v
(i)
t for a fixed U

(i−1)
t , the feasible set will contain at least v

(i−1)
t .

The problem is, if this is the only point contained in the feasible set, the optimization

will terminate early. We again address this by replacing the least norm solution with

the `2-regularized one, for which we reintroduce ρv as a small parameter. The update

is then

vt ← (ρvI +UtU
>
t)−1(ρvv +Utxt). (3.23)

In summary, ZT is simply the special case of FT where we set ε = 0. As ρv is a

small constant, ZT is effectively a parameter-free matrix factorization method. ZT is

summarized in Algorithm 3.3.

3.4 Optimum Sequence Prediction

In Section 3.3 we presented three online matrix factorization approaches with smooth-

ness penalties to constrain the dynamically changing U . As discussed in Section 3.2,

each column vt in the product xt ≈ Utvt is also generated sequentially. When the

columns of the original time series matrix X are correlated, it is natural to model a

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 62

correlation structure in V . For this reason, we use a VAR(P) model for the columns

of V

vt = θ1vt−1 + . . .+ θPvt−P︸ ︷︷ ︸
v

+ηv,t. (3.24)

The formulae for v in Section 3.3 are also based on this.

Therefore, a further task is to find the coefficient vector θ for this model. While

there is no single answer, it is useful to have a flexible estimation method with a

small number of assumptions. Thus we adopt the LMMSE estimator since (i) it only

needs first and second order statistics, and (ii) optimization is numerically stable, in

contrast to, e.g., the best linear unbiased estimator.

We introduce the following notation: First note that (3.24) corresponds to vt =

Ptθ where Pt = [vt−1 · · · vt−P] is a d× P patch matrix of the previous P columns.

The collection of such matrices is obtained by vertical stacking, P> = [P>1 · · · P>T],

which is a Td × P matrix. Stacking the observation vectors vertically, we obtain

p> = [v>1 · · · v>T], a vector with Td elements. The vector η is defined similarly.3

Using this notation, for the set [vT], we have the relation

Pθ + η = p , (3.25)

which means each vector observation contains information about a latent vector θ.

This is different from Kalman Filter [66], where the vector θ itself is a time-varying

latent variable. A good estimator should provide accurate values for θ, with minimal

assumptions about the distributions of the random variables involved. To that aim,

we let the noise distribution have the first- and second-order statistics

E[ηt] = 0, E[ηt1η
>
t2

] = Σηδ(t1, t2) , (3.26)

3We observe that at the beginning of Section 3.2 we assumed that the observations start at T = 1.

To obtain a patch matrix which does not contain any zero-column, we should start constructing

matrices P and p from the index t = P + 1. We omit this detail to simplify the equations. The final

algorithm we present, however, addresses this corner case.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 63

where δ(t1, t2) is the Kronecker delta function; this is a white noise process. For the

parameter θ there are two options: (i) it can be treated as an unknown determin-

istic parameter (classical inference) or (ii) it can be modeled as a random variable

(Bayesian inference). LMMSE estimator is based on (ii) so assume that θ satisfies

the following

E[θ] = 0 , E[θθ>] = Σθ . (3.27)

We also note that θ and η are assumed independent. Based on the above, we restrict

ourselves to the linear estimators of form θ̂ = Wp with W a dT × P weight matrix.

We want to minimize the mean square error

MSE = Eθ min
θ̂
‖θ − θ̂‖2

2 ≡ Eθ min
W
‖θ −Wp‖2

2, (3.28)

for which we can write the expected MSE as

MSE(W) = Eθ [(θ −Wp)>(θ −Wp)]

= Eθ tr [(θ −Wp)(θ −Wp)>]

= tr Eθ [(θ −Wp)(θ −Wp)>]

= tr {Σθ +WPΣθP
>W> +WΣηW

> −ΣθP
>W> −WPΣθ}

(3.29)

which shows the optimum estimator can be found by matrix differentiation to be

W = ΣθP
>(Ση + PΣθP

>)−1. (3.30)

The matrix inversion lemma asserts, for conformable matrices M1, M2, M3, M4

[M1 +M2M3M4]−1 = M−1
1 −M−1

1 M2[M−1
3 +M4M

−1
1 M2]−1M4M

−1
1 (3.31)

given the inverses exist. Then (3.30) can be re-written as

W = ΣθP
> [Σ−1

η −Σ−1
η P [Σ−1

θ + P>Σ−1
η P]−1P>Σ−1

η

]
= [P>Σ−1

η P + Σ−1
θ]−1P>Σ−1

η . (3.32)

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 64

This last line results from algebraic manipulation. The LMMSE estimator is then

given by

θ̂ = [P>Σ−1
η P + Σ−1

θ]−1P>Σ−1
η p . (3.33)

It follows from this functional form that the LMMSE estimator reduces to BLUE

estimator when a non-informative prior is chosen. This can effectively be written

as Σθ = ∞I. Furthermore when Ση = I, BLUE estimator coincides with the LS

estimator, yielding the Gauss-Markov theorem [50]. For this paper we consider the

case Ση = I and Σθ = r0I for a tunable parameter r0.

The transition from (3.30) to (3.32) with Ση = I allows us to use matrix parti-

tioning [41] and write (3.33) as

θ̂ =

[
T∑
t=1

P>t Pt + Σ−1
θ

]−1 [T∑
t=1

P>t vt

]
. (3.34)

This shows we can compute terms recursively. Specifically, define rl,0 = Σ−1
θ and

rr,0 = 0 and the recursions

rl,t = rl,t−1 + P>t Pt, rr,t = rr,t−1 + P>t vt. (3.35)

Then, at any given time t have θ̂t = r−1
l,t rr,t. We now have a fully online algorithm for

both factorizing the incoming data matrix and estimating the AR coefficients for the

compressed time series. In the next section we show the full algorithms and analyze

its complexity.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 65

3.5 Algorithms and Complexity

3.5.1 Fixed Penalty Online Forecasting

Algorithm 3.4 Fixed Penalty Online Forecasting

1: Input: X (values), {It}Tt=1 (observations)

2: d (dimension), r0, ρu, ρv (regularization), max ite

3: Output: t = 1, . . . , T : x̂t

4: Initialize: U (0) ← rand(M,d), v(0) ← rand(d).

5: rl,0 ← r0I, rr,0 ← 0.

6: for t = 1, . . . , T do

7: // Forecast Step

8: U ← Ut−1, v ←
∑P

l=1 θlvt−l
†

9: Forecast: x̂t = U
>
v

10: // Fixed Penalty Matrix Factorization

11: Ut,vt ← FP(Xt, It, ρu, ρv, U , v, max ite)

12: // VAR Parameter Update

13: if t > P then

14: Pt ← [vt−1, . . . ,vt−P]

15: rl,t ← rl,t−1 + P>t Pt

16: rr,t ← rr,t−1 + P>t vt

17: θt ← r−1
l,t rr,t

18: end if

19: end for

20: †If t = 1 set U = 0 and v = 0. If 1 < t < P set v = vt−1. Otherwise use the

update in Line 7.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 66

3.5.2 Fixed Tolerance Online Forecasting

Algorithm 3.5 Fixed Tolerance Online Forecasting

1: Input: X (values), {It}Tt=1 (observations)

2: d (dimension), r0, ε, ρv (regularization), max ite

3: Output: t = 1, . . . , T : x̂t

4: Initialize: U (0) ← rand(M,d), v(0) ← rand(d).

5: rl,0 ← r0I, rr,0 ← 0.

6: for t = 1, . . . , T do

7: // Forecast Step

8: U ← Ut−1, v ←
∑P

l=1 θlvt−l
†

9: Forecast: x̂t = U
>
v

10: // Fixed Tolerance Matrix Factorization

11: Ut,vt ← FT(Xt, It, ε, ρv, U , v, max ite)

12: // VAR Parameter Update

13: if t > P then

14: Pt ← [vt−1, . . . ,vt−P]

15: rl,t ← rl,t−1 + P>t Pt

16: rr,t ← rr,t−1 + P>t vt

17: θt ← r−1
l,t rr,t

18: end if

19: end for

20: †If t = 1 set U = 0 and v = 0. If 1 < t < P set v = vt−1. Otherwise use the

update in Line 7.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 67

3.5.3 Zero Tolerance Online Forecasting

Algorithm 3.6 Zero Tolerance Online Forecasting

1: Input: X (values), {It}Tt=1 (observations)

2: d (dimension), r0, ρv (regularization), max ite

3: Output: t = 1, . . . , T : x̂t

4: Initialize: U (0) ← rand(M,d), v(0) ← rand(d).

5: rl,0 ← r0I, rr,0 ← 0.

6: for t = 1, . . . , T do

7: // Forecast Step

8: U ← Ut−1, v ←
∑P

l=1 θlvt−l
†

9: Forecast: x̂t = U
>
v

10: // Zero Tolerance Matrix Factorization

11: Ut,vt ← ZT(Xt, It, ρv, U , v, max ite)

12: // VAR Parameter Update

13: if t > P then

14: Pt ← [vt−1, . . . ,vt−P]

15: rl,t ← rl,t−1 + P>t Pt

16: rr,t ← rr,t−1 + P>t vt

17: θt ← r−1
l,t rr,t

18: end if

19: end for

20: †If t = 1 set U = 0 and v = 0. If 1 < t < P set v = vt−1. Otherwise use the

update in Line 7.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 68

3.5.4 Complexity Analysis

We first describe the new notation introduced. X is the entire time series matrix,

from which we observe a column xt at time t. It is the set of observed indices at time

t. rand is a random draw from the uniform distribution.

The asymptotic complexity of all three algorithms are the same, as they share the

same bottlenecks. These are in the matrix factorization and VAR parameter update

steps which are iterated for each time step. Since the time series are sparse, suppose

that at any given time the highest number of non-zero entries is s = sup
t
|It|.

For FP/FT/ZT part of the algorithm the highest computation occurs at matrix

multiplications and inversions which are O(d3) and O(d2s). Since s > d typically

the cost at this step is O(d2s). Since there are max ite iterations—which we will

name I1 for convenience—the overall cost is O(I1d
2s). We can also see the benefit of

obtaining closed form solutions for the FT and ZT algorithms. For the FT algorithm,

the specific structure of the objective function leads to a QCQP formulation which

has a closed form solution. This only requires computing two additional constants,

which does not alter the complexity. Similarly, for the ZT algorithm the updates

based on Lagrange multipliers do not increase the asymptotic complexity.

For the VAR parameter estimation step, the dominant costs are computing and

inverting rl,t which are O(P 2d) and O(P 3) respectively. Since P > d typically, we

can write the cost per time step as O(P 3). The total cost per time step is then

O(I1d
2s+ P 3) and the cost of running for the entire time series is O((I1d

2s+ P 3)T).

An important benefit of the low rank approach is that, the complexity is polynomial

in d, s, and P , which are typically small constants. So the complexity does not depend

on the original time series dimension M , which can be a large number. This is similar

to the CKF of Chapter 2, where the complexity is polynomial in the factorization

rank and does not depend on the dimensions of the observation matrix.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 69

3.6 Experiments

We test our proposed methodology using two time-series datasets downloaded from

the UCI machine learning repository:

• Electricity:4 Hourly power consumption (megawatts) of 370 customers between

Jan. 1, 2012 to Jan. 1, 2015 in Portugal. This gives a matrix of 370 rows and

26,304 columns, with 9,732,480 entries.

• Traffic:5 Hourly occupancy rates of 963 roads in Bay Area, California, recorded

between Jan. 1, 2008 and Mar. 30, 2009. This matrix has 963 rows and 10,560

columns, giving 10,169,280 entries.

For both datasets there are no missing values. We generate missing data in two

ways: (i) unstructured sparsity where at each time step the corresponding column

of X is uniformly subsampled; (ii) structured sparsity where the sparsity of a row

follows a geometric process with certain arrival/departure rates. The forecasting task

is to predict the entries at given time step in the future.

We compare with several approaches:

1. Base: This is a base estimator, which estimates the current value as the last

observation. If the observation at previous time is missing, then it predicts the

average of the last observed vector.

2. AR(P): This is simply the AR model of Eq. (3.1), implemented on the vec-

tor observations. We learn the model in an online manner using the LMMSE

estimator derived in Section 3.4.

3. PMF: Probabilistic matrix factorization algorithm [98]. To extend PMF to the

online setting, the FP cost function in Eq. (3.6) is used, but of course no AR

structure is imposed.

4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

5https://archive.ics.uci.edu/ml/datasets/PEMS- SF

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 70

4. CKF: Collaborative Kalman Filter [45]. This is an online approach to matrix

factorization problem, where the latent states follow a Brownian motion.

5. ORP: Online robust PCA. The low dimensional time series vt is estimated by

the unconstrained principal component pursuit (PCP) method described in [36].

6. GRA: Grassmannian robust adaptive subspace tracking. This time vt is esti-

mated by the alternating direction multiplied method (ADMM) approach pro-

posed in [52].

7. NMF: Online non-negative matrix factorization. The implementation is similar

to PMF, except that projection steps are added for the updates of Ut and vt to

ensure the factors are nonnegative.

8. Naive MF: This is not a competitive algorithm; it corresponds to the model in

(3.8).

9. FP-MF: Fixed penalty matrix factorization (Algorithm 3.4).

10. FT-MF: Fixed tolerance matrix factorization (Algorithm 3.5).

11. ZT-MF: Zero tolerance matrix factorization (Algorithm 3.6).

Among these, the Base and AR(P) are not designed to handle missing or low rank

data. Imputation based on the entire data is not possible in an online setting. We

found the best-performing approach to be to impute the missing values at time t with

the average of observed entries at that time, and use this value as the forecasts for

time t + 1. While low rank methods are better at handling missing values, as our

experiments show, there are also cases where this imputation strategy can be effective

(see Figure 3.5(b)).

In terms of the computational complexity, recall that all three of our proposed

approaches have O(I1d
2s+P 3) cost per time step. For the others we have: AR(P) is

O(P 2M); PMF, CKF, and NMF are O(I1d
2s); ORP and GRA are O(I1I2d

2s). Here,

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 71

I1 is the number of iterations run to update Ut and vt. In addition, for ORP and GRA

there is an inner loop for optimizing v, using PCP and ADMM respectively, and I2

denotes the number of times this inner loop is done. Compared to other algorithms,

the AR update step we introduced incurs a cost of P 3. Practically, I1 ≈ P and

d2 ≥ P , therefore the two terms I1d
2s and P 3 are comparable. Consequently, the

computational complexity of the three proposed approaches is similar to competing

methods. This is a desirable property as we can obtain better forecasts without

increasing the complexity. Since both ORP and GRA require an inner loop, when

I2 is comparable to I1, the I2
1 term can make these algorithms run slower than the

rest. For the AR algorithm, the per time step cost always has the term M � s as

this scheme is based on filling in the missing values; therefore it will have higher cost

than the other algorithms. We use Matlab for implementation on a CPU, and note

that the runtime for each algorithm considered is several minutes to process the entire

data, for both datasets.

For performance evaluation we use the mean absolute error (MAE) of forecasts

one time-step ahead. For a time series with missing observations this is defined as:

εMAE =
1

T

T∑
t=1

1

`(xt)
‖x̂t − xt‖1 , (3.36)

where xt is the observation at time t, x̂t is its forecast, and `(xt) is the number of

observations.

3.6.1 Electricity Data

For this set of experiments, the tunable parameters of each algorithm is set to:

• AR: P = 24, r0 = 1

• PMF: d = 5, ρu = 1, ρv = 10−4

• CKF:6 d = 5, νd = 10−4, νx = 10−4

6νd and νx are the drift and measurement noise variance respectively [45].

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 72

• Naive MF: d = 5, ρu = 1, ρv = 10−4

• FP-MF: d = 5, ρu = 1, ρv = 10−4, P = 24, r0 = 1

• FT-MF: d = 5, ε = 0.05, ρv = 10−4, P = 24, r0 = 1

• LN-MF: d = 5, ρv = 10−4, P = 24, r0 = 1

• max ite = 15 for all algorithms.

These values were found by cross-validation. We observe that the parameters shared

by different algorithms ended up with the same values, which indicates any difference

in performance is due to the model structure, rather than parameter settings.

We first show results for one-step ahead prediction when the missingness pattern

is unstructured (i.e., totally random). Unstructured sparsity is important in that it

makes the learning environment adversarial and algorithms that are unfit for miss-

ing values are strongly affected. For our experiments we use 10 different sparsity

levels, letting the percentage of observed entries vary from 10% to 100% in 10% in-

crements. We abbreviate this as number of non-zeros (NNZ) as a percentage. For

each NNZ level we assess the performance using mean absolute error (MAE) which

is in megawatts (MW). We do this for all methods, averaging over 20 sets to ensure

statistical significance.

In Figure 3.2(a) we show the one-step ahead prediction performance of all algo-

rithms. When there are no missing observations (NNZ = 100%) the AR model has the

best performance, but as NNZ decreases, the performance of AR quickly deteriorates

and the three proposed algorithms give the best prediction. This transition already

has taken place when NNZ ≤ 90%. As the sparsity increases, the base predictor and

AR suffer the most. On the other hand, PMF and CKF perform better because they

utilize the low-rank representation to impute. Finally, FP/FT/ZT utilize both low-

rank and temporal regularization, yielding the best results. Their prediction suffers

significantly less than other models as a function of increasing sparsity. FT and ZT

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 73

10 20 30 40 50 60 70 80 90 100

NNZ %

100

200

300

400

500

600

700

800

900

M
A

E
 (

M
W

)

5%

10%

15%

20%

N
or

m
al

iz
ed

 E
rr

or

Electricity - Unstructured Noise

Base
AR
PMF
CKF
GRA
ORP
NMF
FP
FT
ZT

(a)

5 10-3 1 10-2 5 10-2 1 10-1 5 10-1

Departure Rate (hr -1)

170

180

190

200

210

220

230

240

250

260

270

280

290

M
A

E
 (

M
W

)

6%

7%

8%

N
or

m
al

iz
ed

 E
rr

or

Electricity - Structured Noise

(b)

Figure 3.2: Performance comparison of 10 predictors listed in the beginning of this

section, for the electricity dataset. (a) The sparsity pattern is unstructured, and 20

sets of experiments are performed for 10 different levels. (b) The sparsity pattern is

structured, and 20 sets of experiments are performed for 5 different departure rates.

perform better than FP, showing that adaptive regularization is indeed useful. We

also note that, in general, while most of the online algorithms are concerned with

finding factors sequentially, we incorporate an AR process to the generative model

in Equation (3.3). This way, while the other online approaches can also find good

embeddings sequentially, their predictive power is still limited as these models do not

consider dependencies at multiple time lags.

We next experiment with structured sparsity patterns, which is not as adversarial

as the previous case. Here, the missing values corresponds to the arrivals of a random

process. We use a geometric distribution to generate arrival/departure points for

missingness. This sparsity pattern could represent sensor failures or down times. A

higher arrival rate indicates increased susceptibility to failure. For the electricity data

we set the arrival rate to 0.05 and departure takes values in {0.005, 0.01, 0.05, 0.1, 0.5}.

A higher departure rate means lower sparsity. In Figure 3.2(b) the prediction MAE is

shown as a function of departure rates. An immediate observation is that, even if the

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 74

sparsity is high (92% when departure rate is 0.005) none of the algorithms deteriorate

as much as they do in Figure 3.2(a). Once again, FT has the best performance, and

the margin between FT, ZT and FP is more noticeable. On the other hand, the

impute-predict scheme of the baseline predictor and the AR predictor also produce

acceptable results.

In Section 3.3 we mentioned that rotation and scaling of factor matrices have an

important impact on performance. The main reason is, using U in regularization

encourages smooth variation. The alternative regularization in Eq. (3.8) does not

have this feature, as the penalty term on Ut is centered around zero matrix. Since

this constraint does not encourage smoothness, it is expected to do worse. We pro-

vide evidence for this in Figure 3.3. Here, while the AR model still lets the naive

factorization to forecast better than PMF, it is clearly inferior to our methods. This

plot also shows that, FP/FT/ZT not only outperform their competitors; but they do

so consistently over time. Here once again, mean absolute error (MAE) is computed

and plotted over time; in particular, each point in the plot corresponds to a one-week

block, which is given by εweek
MAE = 1

Tweek

∑Tweek

t=1
1

`(xt)
‖x̂t − xt‖1. This plot also gives

more information about the electricity data itself. In particular, we observe that all

algorithms have higher forecast error during summer times, which indicates electric

usage during this season is harder to predict in advance. 7

Dimensionality and AR order are the two most important parameters which de-

termine how the matrix factorization forecasting performs. We examine performance

as a function of these two parameters in Figure 3.4. In Figure 3.4(a) we plot the

performance as a function of latent dimensionality for unstructured noise with 80%

observed entries. Here we show results for PMF as well as FP, FT, and ZT. First

note that a dimension of one gives the worst results for all. This shows the optimum

rank is indeed greater than one, and matrix factorization is a suitable approach. The

choice d = 10 produces best results, although we have used d = 5 for our other

7This data is collected in Portugal.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 75

Jan 2012 Jul 2012 Jan 2013 Jul 2013 Jan 2014 Jul 2014 Jan 2015
100

150

200

250

300

350

400

450

500

550

600

M
AE

 (M
W

)
300

350

400

450

500

550

600

M
AE

 (M
W

)

Base
AR
PMF
CKF
GRA
ORP
NMF
FP
FT
ZT
Naive

300

350

400

450

M
AE

 (M
W

)

GRA
ORP
NMF
FP
FT
ZT
Naive

Figure 3.3: Time-varying comparison of all models on electricity data with unstruc-

tured sparsity and NNZ = 80%. While naive MF can forecast better than PMF,

it is worse than FP/FT/ZT. Overall, FP/FT/ZT consistently outperform the other

methods over time, which agrees with the results of Figure 3.2.

experiments, which still produce reliable results with the added benefit of higher

compression. When the dimensionality is set low, both FT and ZT perform worse

because, as dimension decreases, the fixed or zero tolerance constraint becomes more

restrictive, which compromises performance. The degradation for ZT is greater than

FT, which is expected since it is a zero error constraint. Therefore, when d needs

to be low, we can use FT instead of ZT with ε > 0 to provide better factorization

as it provides slackness. In Figure 3.4(b) we show results as a function of AR order

where P ∈ {1, 2, 3, 4,5, 6, 7, 8,9, 12, 24, 36, 48}. We note a jump in performance as P

moves from 12 to 24. This makes sense because P = 24 (a 24-hour period) indicates a

daily periodicity for power consumption. Another observation is, in the case of miss-

ing data, the AR model gives unreliable estimates for lower orders, which suggests a

correct choice of model order is important when imputing missing values.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 76

0 2 4 6 8 10 12 14 16 18 20
d

200

250

300

350

400

450

500

M
AE

 (M
W

)

Base
PMF
FP
FT
ZT

(a) Performance vs. rank

0 5 10 15 20 25 30 35 40 45 50
AR Order: P

150

200

250

300

350

400

450

500

M
AE

 (M
W

)

Base
AR
FP
FT
ZT

(b) Performance vs. AR order

Figure 3.4: Plot of prediction performances as a function of (a) rank and (b) AR

order. Both plots obtained for electricity dataset with unstructured sparsity and

NNZ = 80%.

3.6.2 Traffic Data

For the traffic dataset, the parameter settings are:

• AR: P = 24, r0 = 1

• PMF: d = 20, ρu = 10−1, ρv = 10−4

• CKF: d = 20, νd = 10−6, νx = 10−6

• Naive MF: d = 20, ρu = 10−1, ρv = 10−4

• FP-MF: d = 20, ρu = 10−1, ρv = 10−4, P = 24, r0 = 1

• FT-MF: d = 20, ε = 0.05, ρv = 10−4, P = 24, r0 = 1

• LN-MF: d = 20, ρv = 10−4, P = 24, r0 = 1

• max ite = 15 for all algorithms.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 77

10 20 30 40 50 60 70 80 90 100
NNZ %

2.5

3

3.5

4

)egatnecre
P(

E
A

M

7%

8%

9%

10%

N
or

m
al

iz
ed

 E
rr

or

Traffic - Unstructured Noise

Base
AR
PMF
CKF
GRA
ORP
NMF
FP
FT
ZT

5 10-3 1 10-2 5 10-2 1 10-1 5 10-1

Departure Rate (hr -1)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

)
%(

E
A

M

2%

3%

N
or

m
al

iz
ed

 E
rr

or

Traffic - Structured Noise

(a)

5 10-3 1 10-2 5 10-2 1 10-1 5 10-1

Departure Rate (hr -1)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

M
A

E
 (

%
)

2%

3%

N
or

m
al

iz
ed

 E
rr

or

Traffic - Structured Noise

(b)

Figure 3.5: Performance comparison of 10 predictors listed in the beginning of this

section, for the traffic dataset. (a) The sparsity pattern is unstructured, and 20

sets of experiments are performed for 10 different levels. (b) The sparsity pattern is

structured, and 20 sets of experiments are performed for 5 different departure rates.

In particular, we increase d to 20 to account for the increased dimensionality of the

input data.

Once again, we consider structured and unstructured sparsity. The sparsity levels,

arrival/departure rates, and the number of test sets are identical to what was used

previously. In Figure 3.5(a) the results for unstructured sparsity is shown. In this

case, once again the best results are given by the proposed methods. On the other

hand, Base and AR do not deteriorate as severely as fo the electricity data in Figure

3.2(a). Also, PMF and CKF are no longer competitive on this data. In Figure

3.5(b) we consider structured sparsity. This case is more unique from those previously

considered. First, even for highly sparse inputs the performance of the base estimator

does not deteriorate. Since Figure 3.5(a) already shows that the sparsity does not

have a very strong effect in adversarial case, the results for structured noise are

not surprising. Since this is true for the base predictor, the AR predictor remains

competitive as well. In fact, here the fill step is good enough to alleviate the missing

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 78

5 10 15 20 25 30 35 40
d

1.7

1.8

1.9

2

2.1

2.2

2.3

)egatnecre
P(

E
A

M

Base
FP
FT
ZT

5 10-3 1 10-2 5 10-2 1 10-1 5 10-1

Departure Rate (hr -1)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

)
%(

E
A

M

2%

3%

N
or

m
al

iz
ed

 E
rr

or

Traffic - Structured Noise

(a) Performance vs. rank

0 5 10 15 20 25 30 35 40 45 50
AR Order: P

0.0175

0.018

0.0185

0.019

0.0195

0.02

0.0205

0.021

0.0215

)
W

M(
E

A
M

Base
AR
FP
FT
ZT

5 10-3 1 10-2 5 10-2 1 10-1 5 10-1

Departure Rate (hr -1)

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

)
%(

E
A

M

2%

3%

N
or

m
al

iz
ed

 E
rr

or

Traffic - Structured Noise

(b) Performance vs. AR order

Figure 3.6: Plot of prediction performances as a function of (a) rank and (b) AR

order. Both plots obtained for traffic dataset with unstructured sparsity and NNZ =

50%.

data problem, so even if the data is sparse, the AR predictor can provide accurate

forecasts. If we instead filled missing entries with zeros, this apparent advantage of

AR disappears. Nevertheless, the difference between AR and FP/FT/ZT is small.

Similar to electricity data, we analyze the prediction performance as a function

of rank and AR order in Figure 3.6. In Figure 3.6(a) we consider the effect of latent

dimensionality. Unlike the electricity data, choosing d = 1, 2 resulted in unstable

performance for FT and ZT because for this data choosing such a low rank is inap-

propriate. We therefore sweep d ∈ {5, 10, 15, 20, 30, 40} and observe once d ≥ 10 all

factorizations produce consistent results. Once again we note that ZT is more suscep-

tible to error compared to FT when dimension is low, as the zero tolerance constraint

is more restrictive. In Figure 3.6(b) we show the effect of AR order. Here the results

are similar to the electricity data; setting P = 24 yields good results for FP, FT, and

ZT. Once again, a one-day periodicity is reasonable, since traffic intensity has a daily

pattern, e.g. rush hours in the morning and evening.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 79

0 50 100
0

0.5

1

N
N

Z
=

10
0

%

AR

0 50 100
0

0.5

1
CKF

0 50 100
0

0.5

1
FT

0 50 100
0

0.5

1

N
N

Z
=

60
 %

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

N
N

Z
=

20
 %

0 50 100
0

0.5

1

Electricity Data | Series 142

0 50 100
0

0.5

1

(a)

0 50 100
0

0.5

1

N
N

Z
=

10
0

%

AR

0 50 100
0

0.5

1
CKF

0 50 100
0

0.5

1
FT

0 50 100
0

0.5

1

N
N

Z
=

60
 %

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

N
N

Z
=

20
 %

0 50 100
0

0.5

1

Electricity Data | Series 309

0 50 100
0

0.5

1

(b)

Figure 3.7: (a) Plot of time series no. 142 of Electricity data (blue) vs. forecasts

(red) of AR, CKF, and FT for three sparsity levels, expressed in NNZ percentage.

(b) Plot of time series no. 309 of Electricity data (blue) vs. forecasts (red) of AR,

CKF, and FT for three sparsity levels, expressed in NNZ percentage.

3.6.3 Forecasts on Individual Time Series

In this section we provide supplemental plots where we show the forecast values

compared against the actual time series. Since the original series contains ∼ 104

samples we use a sampling rate of 200 for electricity and 100 for traffic.

In Figure 3.7(a) and 3.7(b) we show the prediction accuracy on two individual

time series of the electricity data. These correspond to customers 142 and 309. Each

plot is a 3 × 3 grid. The columns correspond to three filters AR(P), CKF, and FT;

and the rows are in increasing (decreasing) sparsity (NNZ percentage). We show

normalized plots to make comparisons across different series easier. The results do

not change for the unnormalized case; everything is simply multiplied by a constant

number. We use unstructured noise as there are bigger differences between filters as

a function of NNZ for this case. For series number 142 we see that AR has the worse

deterioration, losing track for NNZ = 20%. CKF, being a low-rank method, has good

performance for low sparsity as well, but we can see overshooting at peaks for NNZ

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 80

0 50 100
0

0.5

1

N
N

Z
=

10
0

%

CKF

0 50 100
0

0.5

1
ORP

0 50 100
0

0.5

1
LN

0 50 100
0

0.5

1

N
N

Z
=

60
 %

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

N
N

Z
=

20
 %

0 50 100
0

0.5

1

Traffic Data | Series 290

0 50 100
0

0.5

1
00

0.
51

NNZ = 100 %

00

0.
51

NNZ = 60 %

1

NNZ = 20 %

0 50 100
0

0.5

1

N
N

Z
=

10
0

%

AR

0 50 100
0

0.5

1
CKF

0 50 100
0

0.5

1
FT

0 50 100
0

0.5

1

N
N

Z
=

60
 %

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

N
N

Z
=

20
 %

0 50 100
0

0.5

1

Electricity Data | Series 142

0 50 100
0

0.5

1

(a)

0 50 100
0

0.5

1

N
N

Z
=

10
0

%

CKF

0 50 100
0

0.5

1
ORP

0 50 100
0

0.5

1
LN

0 50 100
0

0.5

1

N
N

Z
=

60
 %

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

N
N

Z
=

20
 %

0 50 100
0

0.5

1

Traffic Data | Series 704

0 50 100
0

0.5

1

00

0.
51

NNZ = 100 %

00

0.
51

NNZ = 60 %

1

NNZ = 20 %

0 50 100
0

0.5

1

N
N

Z
=

10
0

%

AR

0 50 100
0

0.5

1
CKF

0 50 100
0

0.5

1
FT

0 50 100
0

0.5

1

N
N

Z
=

60
 %

0 50 100
0

0.5

1

0 50 100
0

0.5

1

0 50 100
0

0.5

1

N
N

Z
=

20
 %

0 50 100
0

0.5

1

Electricity Data | Series 142

0 50 100
0

0.5

1

(b)

Figure 3.8: (a) Plot of time series no. 290 of Traffic data (blue) vs. forecasts (red) of

CKF, ORP, and LN for three sparsity levels, expressed in NNZ percentage. (b) Plot

of time series no. 704 of Traffic data (blue) vs. forecasts (red) of CKF, ORP, and LN

for three sparsity levels, expressed in NNZ percentage.

= 60% and NNZ = 20%. Finally, FT has good predictions for all sparsity levels,

without such overshooting. For series number 309, once again AR deteriorates the

most. CKF does better although the deterioration is particularly visible for NNZ =

60% and NNZ = 20%. Again FT has the best performance.

In Figures 3.8(a) and 3.8(b) we show the prediction accuracy on two individual

time series of the traffic data. Here individual series correspond to occupancy rate of

different roads. Once again unstructured noise is used and we compare CKF, ORP,

and ZT. For both plots we see that where CKF and ORP have overshoots or larger

errors, ZT performs better. However, compared to electricity data the differences

between the three methods are less pronounced, and deterioration as a function of

NNZ is also less severe.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 81

3.7 Conclusion

We have considered the problem of forecasting future values of high dimensional time

series. A high dimensional time series can be treated as a matrix, where each column

denotes realization at a particular time, and when missing values are present, a low

rank matrix factorization can be used as a building block for a forecasting that also

imputes missing values. Based on this idea, we proposed three methods which can

perform matrix factorization in the online setting. These approaches differ by the type

of regularization imposed, and a key conclusion is that time-varying regularization

can be achieved through a constrained optimization problem.

The matrix factorization component provides a low dimensional representation,

which are then used to learn an AR model on next values in this low dimensional

space. This in turn forms the basis of forecasting. We derived the optimum LMMSE

estimator to find these AR coefficients that only requires the first and second order

statistics of the noise terms. Finally we considered two real datasets—electricity and

traffic—and showed that when missing values are present in the data, our methods

can provide more reliable forecasts. With this we conclude the applications of matrix

factorization to time series analysis. In the next chapter I will focus on the more

general problem of nonlinear Kalman filtering.

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 82

3.8 Appendix to Chapter 3

3.8.1 Fixed tolerance update: Ut

At any given iteration-i of the E-step in Algorithm 3.2, for a fixed v
(i)
t , we want to

find

U
(i)
t = arg min

U
‖U −U‖2

F s.t. ‖xt −U>v(i)
t ‖2

2 ≤ ε . (3.37)

Note the indexing, as U
(i)
t is computed after v

(i)
t , as the latter appears before the

former in the loop in Algorithm 3.2. To avoid clutter we will drop the time and

iteration indices. We will also use U = Ut−1 to distinguish the time indexing. From

Eq. (3.37) it is seen that the problem is convex. To show this, let It denote the index

of observed xt entries, then

min
{ui}i∈It

∑
i∈It

‖ui − ui‖2
2 s.t.

∑
i∈It

(xi − u>i v)2 ≤ ε

≡ min
{ui}i∈It

∑
i∈It

u>i Iui − 2u>i ui + u>i ui

s.t.
∑
i∈It

u>i vv
>ui − 2xiu

>
i v + x2

i (3.38)

and note that both I and vtv
>
t are positive semidefinite. Moreover the feasible set

is always nonempty. In fact, for any given v
(i)
t , the feasible set will have infinitely

many elements. To see this, let ε = 0 and note that this gives Mt linear equations

in dMt unknowns. Since all of these solutions lie within the feasible set, the result

follows. As a consequence, Slater’s condition is satisfied and strong duality holds for

this problem and we can characterize the solution via Karush Kuhn Tucker (KKT)

conditions [16]. For this problem these conditions read as

1. ∇U?L = 0

2. ‖xt −U ?>vt‖2
2 ≤ ε

3. λ? ≥ 0

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 83

4. λ?
[
‖xt −U ?>vt‖2

2 − ε
]

= 0

Using the first condition, which needs to hold for primal feasibility, it is easily

shown that the solution satisfies

U = [λ−1I + vtv
>
t]−1(λ−1U + vtx

>
t) ,

which can be re-written, using Sherman-Morrison identity, as

U = U + λvtx
>
t −

λ

1 + λv>t vt
(vtv

>
t)U − λ2

1 + λv>t vt
(vtv

>
t)(vtx

>
t) (3.39)

This alternative expression is useful, as the inverse term containing λ disappears.

Now, the third and fourth KKT conditions imply

‖xt −U>vt‖2
2 = ε . (3.40)

This also satisfy condition number two. This means, the solution of the optimization

problem has an approximation error that is equal to the maximum tolerance ε. As

U is always updated after vt this means the training error of our algorithm at each

time step will be
√
ε. This also suggests, we can find the value of Lagrange multiplier

by plugging Eq. (3.39) into Eq. (3.40). Now define the constants c1-c4 as

c1 = v>t Uxt , c2 = ‖vt‖2
2 , c3 = ‖xt‖2

2 , c4 = ‖U>vt‖2
2 . (3.41)

We need to calculate the equation

v>t UU
>vt − 2x>t U

>vt − (ε− c3) = 0 .

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 84

The first two terms evaluate as

v>t UU
>vt = c4 + λc1c2 −

λ

1 + λc2

c2c4 −
λ2

1 + λc2

c1c
2
2

+ λc1c2 + λ2c2
2c3 −

λ2

1 + λc2

c1c
2
2 −

λ3

1 + λc2

c3
2c3

− λ

1 + λc2

c2c4 −
λ2

1 + λc2

c1c
2
2 +

λ2

(1 + λc2)2
c2

2c4

+
λ3

(1 + λc2)2
c1c

3
2 −

λ2

1 + λc2

c1c
2
2 −

λ3

1 + λc2

c3
2c3

+
λ3

(1 + λc2)2
c1c

3
2 +

λ4

(1 + λc2)2
c4

2c3 (3.42)

− 2x>t U
>vt = − 2c1

1 + λc2

− 2λc2c3

1 + λc2

(3.43)

Multiplying with the denominator term (1 +λc2)2 and expanding the terms, the final

expression is simply a second order polynomial

−εc2
2λ

2 − 2εc2λ+ (c3 + c4 − 2c1 − ε) . (3.44)

The roots are then given by the formula

− 1

c2

± 1√
εc2

√
c3 + c4 − 2c1 (3.45)

Since c2 = ‖vt‖2
2 > 0 the first term is negative. Then the third KKT condition implies,

the second term above must be greater than the first term, and thus the polynomial

always has one positive and one negative root. The update for the Lagrange multiplier

in Eq. (3.14) now follows; note that in that equation we only used two variables

defined in Eq. (3.13) for conciseness.

3.8.2 Fixed tolerance update: vt

Similar to Appendix 3.8.1 we study iteration-i of the E-step in Algorithm 3.2; but

this time for a fixed U
(i)
t and we want to find

v
(i+1)
t = arg min

v
‖v − vt−1‖2

2 s.t. ‖xt −U (i)
t v‖2

2 ≤ ε . (3.46)

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 85

Unlike the case for Ut, it is not clear if the solution set is nonempty. In particular,

note that in Appendix 3.8.1, we showed that no matter how vt is chosen the solution

set always has infinitely many elements. For vt this is not true in general. To

see this, consider the case where U>t v = x is an over constrained system of linear

equations. The minimum error achievable in this case is given by the least squares

solution as εls = x>t [I − U>t (U>t Ut)
−1Ut]xt. When εls > ε there are no solutions.

However, if Ut is updated before v, then it is guaranteed that the there is at least a

single solution; because for the alternating optimization in Eq. (3.46), we are given

that ‖xt − U (i)>
t v

(i−1)
t ‖2

2 < ε. As a result, v
(i−1)
t is guaranteed to be in the feasible

set. Therefore the solution set is nonempty and since the problem is strongly convex,

strong duality holds once again due to Slater’s condition. The KKT conditions mirror

the previous one:

1. ∇v?L = 0

2. ‖xt −U>t v?‖2
2 ≤ ε

3. λ? ≥ 0

4. λ?
[
‖xt −U>t v?‖2

2 − ε
]

= 0

Letting v = vt−1 the first condition yields

v = [λ−1I +UtU
>
t]−1[λ−1v +Utxt] . (3.47)

This time, we cannot apply Sherman-Morrison identity, as Ut is typically not rank-1.

Instead, note that UtU
>
t is positive semidefinite and admits an eigendecomposition

with nonnegative eigenvalues. Let’s denote this by UtU
>
t = QΨQ> , and define the

constant vectors c1 = Q>Utxt and c2 = Q>v. Then it is straightforward to verify

that

v = Q[ρI + Ψ]−1c1 +Qρ[ρI + Ψ]−1c2 (3.48)

CHAPTER 3. DYNAMIC MATRIX FACTORIZATION FOR FORECASTING 86

where we defined ρ = 1/λ; note the choice of notation here as ρ is the regularizer,

analogous to the one in FP matrix factorization. Once again, from the fourth KKT

condition we want to solve the equation

v>UtU
>
t v − 2x>t U

>
t v − (ε− ‖xt‖2

2) = 0

where the first two terms are evaluated as

v>UtU
>
t v =

d∑
i=1

ψi
(ρ+ ψi)2

c2
1,i +

d∑
i=1

ρ2ψi
(ρ+ ψi)2

c2
2,i

+ 2
ρψi

(ρ+ ψi)2
c1,ic2,i

−2x>t U
>
t v = −2

d∑
i=1

1

ρ+ ψi
c2

1,i − 2
d∑
i=1

ρ

ρ+ ψi
c1,ic2,i . (3.49)

Substituting these into the equation and multiplying with the denominator term∏d
j=1(ρ+ ψi)

2 we get the following result.

Remark: The FT update for v and the ridge regression update in Eq. (3.18) are

the same when λ is selected as the root of the following polynomial yielding smallest

‖v‖2
2

p(λ) =
d∑
i=1

(−2ρ− ψi)c2
1,i

∏
j 6=i

(ρ+ ψj)
2 +

d∑
i=1

ρ2ψic
2
2,i

∏
j 6=i

(ρ+ ψj)
2

− 2ρ2

d∑
i=1

c1,ic2,i

∏
j 6=i

(ρ+ ψj)
2 − (ε− ‖xt‖2

2)
d∏
j=1

(ρ+ ψj)
2 . (3.50)

87

Part II

Nonlinear Kalman Filtering

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 88

Chapter 4

Nonlinear Kalman Filtering with

Divergence Minimization

4.1 Introduction

In Part I, I have considered the problem of dynamic matrix factorization with appli-

cations time series analysis. In particular I have introduced the Collaborative Kalman

Filter in Chapter 2, which is an instance of the more general Kalman filtering prob-

lem [66]. Modeling and analysis of time-varying signals is an important subfield of

signal processing and the problem arises in many different forms, such as telecommu-

nication systems, robot motion control, and target tracking. Kalman filter is widely

adopted for such problems as it is optimal for a large class of nonstationary state-space

models and it can also be used in the online setting. Furthermore, given the growth

in sequential data, Kalman filters have also become attractive for machine learning

problems, such as natural language processing [12], collaborative filtering [45], and

topic modeling [14].

For the model in Chapter 2, the likelihood of observations depend on the latent

factors in a nonlinear way; this is but one scenario under the nonlinear Kalman filter-

ing framework. There are a wide range of applications where we deal with nonlinear

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 89

systems; the collaborative filtering model contains a bilinear term [70] and in radar

tracking distance and bearing measurements require a Cartesian-to-polar transforma-

tion [73]. In these cases there is no longer an optimal solution, and approximation

schemes are necessary. The nonlinear problem has been studied extensively in the

literature, resulting in well-known filtering algorithms such as the Extended Kalman

Filter (EKF) [113] and Unscented Kalman Filter (UKF) [65]. On the other hand,

Particle Filters (PF) have also been developed [8], which are nonparametric and can

represent any probability distribution using a discrete set of points (particles). Also,

for filters such as EKF and UKF, the emphasis is on approximating the nonlinear

functions, whereas for particle filters it is on approximating the posterior.

While particle filters can approximate arbitrary densities, it may still be important

to find the best parametric distribution according to a particular objective function.

(For example, the complexity of a particle filter can be too high, or when the system

parameters are known with some uncertainty, particle filters can be less robust to

errors.) This has been a major goal in Bayesian inference, where the exact posterior

distribution is usually intractable and approximated by a known, simpler distribu-

tion. Two established ways to handle this problem are Variational Inference [64]

and Expectation Propagation [84], in which the Kullback-Leibler (KL) divergence

between the true posterior and the approximating distribution is minimized. Ideas

from approximate inference have also been used in Kalman filtering [11], [111], [106].

In fact, Chapter 2 is an instance of this, where the approximate posteriors can be

obtained in analytical form. However, a thorough analysis of posterior optimization

for nonlinear Kalman filters, based on divergence measures as objective function, has

not been considered before.

In this chapter we fill this gap by presenting three algorithms for nonlinear Kalman

filtering based on three respective divergence measures for posterior approximation,

each based on a parametric form (in our case, a multivariate Gaussian). These al-

gorithms are approximation-free in that, they directly optimize the given divergence

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 90

measure. We consider the following: (i) the forward KL divergence as used in vari-

ational inference, (ii) the reverse KL divergence as used in expectation-propagation,

and (iii) the alpha divergence, which is a generalized family that contains the former

two as special cases. We also show that well-known algorithms such as the EKF and

UKF are actually solving approximations to KL divergence minimization problems

which further motivates our study.1

The main machinery we use for obtaining these unbiased divergence minimization

algorithms is importance sampling. However, the resulting algorithms are all com-

putationally lighter than particle filtering since (i) no resampling is necessary, and

(ii) the number of unnecessary samples can be reduced by our proposed adaptive

sampling procedure. We show advantages of our algorithms for target tracking and

options pricing problems compared with the EKF, UKF and PF.

We organize this chapter as follows: In Section 4.2 we define our filtering frame-

work by reviewing the Kalman filter and discussing its non-linear variants. In par-

ticular, we discuss parametric approaches, also called assumed density filters, and

nonparametric approaches, also called particle filters. In Section 4.3 we present three

divergence minimization filters based on the forward and reverse KL divergences and

the alpha divergence. We list the resulting algorithms and their computational cost

in Section 4.4. Section 4.5 contains a number of experiments to show how our fil-

ters compete with each other and with standard approaches. Finally we conclude in

Section 4.6.

1Note that even if our proposed algorithms directly optimize divergence measures, the Gaussian

posteriors obtained are still inexact.

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 91

4.2 Kalman Filtering

4.2.1 Basic Linear Framework

The Kalman filter [66] has been developed and motivated as an optimal filter for

linear systems. A key property is that this optimality is assured for general state-

space models which are not necessarily stationary. This has made Kalman filtering

widely applicable to a range of applications where a linear system model is adequate.

In Section 2.2.2 the state space model has been presented in a way that is convenient

for the development of CKF. Here we consider the more general form which is given

as

xt = Ftxt−1 +wt

yt = Htxt + vt (4.1)

where wt and vt are independent zero-mean Gaussian random vectors with covari-

ances Qt and Rt respectively. The latent variable xt ∈ Rd is the unobserved state of

the system. The vector yt ∈ Rd′ constitutes the measurements made by the system.

The two main tasks of Kalman filtering are prediction and posterior calculation

[113],

p(xt|y1:t−1) =

∫
p(xt|xt−1) p(xt−1|y1:t−1) dxt−1,

p(xt|y1:t) =
p(yt|xt) p(xt|y1:t−1)∫
p(yt|xt) p(xt|y1:t−1) dxt

. (4.2)

When the initial distribution p(x0) is Gaussian these calculations are all in closed

form and Gaussian, which is an attractive feature of the linear Kalman filter. The

exact equations are

Predict: xt|t−1 = Ftxt−1|t−1

Pt|t−1 = FtPt−1|t−1F
>
t +Qt (4.3)

Update: xt|t = xt|t−1 +Kt(yt − yt|t−1)

Pt|t = Pt|t−1 −KtStK
>
t (4.4)

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 92

where the auxiliary variables are

yt|t−1 = Htxt|t−1

St = HtPtH
>
t +Rt

Kt = Pt|t−1H
>
t S

−1
t . (4.5)

Here, yt|t−1 is called the measurement prediction, St is the measurement covariance,

andKt is the Kalman gain. The prediction step follows from the linear transformation

of a Gaussian random variable, while the update step from Bayes’ rule. Further, the

update step is obtained by refining the prediction with the innovation term (yt −

yt|t−1). Also worthwhile to note that, applying Bayes’ rule directly gives the update

in Section 2.2.2, and to obtain the version in Eq. (4.4) an application of Matrix

Inversion Lemma is necessary.

As we will see in the upcoming sections, when we consider the nonlinear variant

of this problem, applying Bayes’ rule will no longer give a closed-form update, as the

denominator in Eq. (4.2)—also known as the partition function—will be difficult to

compute.

4.2.2 Nonlinear Framework

For many problems the measurements yt involve nonlinear functions of xt. In this

case the Kalman filter becomes nonlinear and the closed-form posterior calculation

discussed above no longer applies. The nonlinear state-space model is

xt = Ftxt−1 +wt

yt = h(xt) + vt (4.6)

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 93

where the noise process is the same as in Eq. (4.1), but h(·) is a nonlinear function

of xt.
2 While formally Bayes’ rule lets us write

p(xt|y1:t) =
p(yt|xt) p(xt|y1:t−1)∫
p(yt|xt) p(xt|y1:t−1) dxt

(4.7)

the normalizing constant computation is now intractable and the distribution p(xt|y1:t)

is not known. Although the nonlinearity in h(·) may be required by the problem,

a drawback is the loss of fast and exact analytical calculations. In Section 4.3 we

introduce three related techniques to approximating p(xt|y1:t), but first we review

two standard approaches to the problem.

4.2.3 Parametric Approach: Assumed Density Filtering

To address the computational problem posed by Eq. (4.7) Assumed Density Filters

(ADF) project the nonlinear update equation to a tractable distribution. Building

on the linear Gaussian state-space model, Gaussian assumed density filtering has

found wide applicability [81], [113], [65], [61], [46]. The main ingredient here is an

assumption of joint Gaussianity of the latent and observed variables. This takes the

form,

p(xt,yt) ∼ N

 µx
µy

 ,
 Σxx Σxy

Σyx Σyy

 . (4.8)

where we have suppressed some time indices and conditioning terms. Under this joint

Gaussian assumption, by standard computations the conditional distribution p(xt|yt)

is

p(xt|yt) = N
(
µx|y,Σx|y

)
µx|y = µx + ΣxyΣ

−1
yy (yt − µy)

Σx|y = Σxx −ΣxyΣ
−1
yy Σyx. (4.9)

2We focus on measurement nonlinearity in this chapter, assuming the same state space model.

The techniques described here can be extended to nonlinearity in the state space as well.

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 94

In this case, the conditional distribution is also the posterior distribution of interest.

Comparing (4.9) with (4.4) we see that Gaussian ADF corresponds to approximating

the three auxiliary variables. We summarize this below:

Predict: xt|t−1 = Ftxt−1|t−1

Pt|t−1 = FtPt−1|t−1F
>
t +Qt (4.10)

Update: xt|t = xt|t−1 +Kt(yt − yt|t−1)

Pt|t = Pt|t−1 −KtStK
>
t (4.11)

Auxiliary: yt|t−1 = µy = h(xt|t−1)

Ht = ΣyxΣ
−1
xx

St = Σyy = ΣyxΣ
−1
xxΣxy +Rt

Kt = ΣxyΣ
−1
yy . (4.12)

Note that the filter structure in Eqs. (4.3)-(4.4) is unchanged, as expected. Moreover,

it is straightforward to show that the relation between the auxiliary variables in Eq.

(4.5) and Eq. (4.12) is preserved.

There are several methods for making this approximation. We briefly review

the two most common here: the Extended Kalman Filter (EKF) and the Unscented

Kalman Filter (UKF). The EKF approximates h using the linearization

h(xt) ≈ h(x0) +H(x0)(xt − x0), (4.13)

where H(x0) is the Jacobian matrix evaluated at the point x0. For example, x0

could be the mean of the prior p(xt|y1:t−1). Plugging this approximation directly into

the likelihood of yt, the form of a linear Kalman filter is recovered and a closed form

Gaussian posterior can be calculated.

As discussed in [65], the first-order approximation made by the EKF is often

poor and performance can suffer as a result. Instead, they propose to estimate the

quantities in (4.8) with the “unscented transform”—a numerical quadrature method.

The result is the UKF, which has similar computational cost as the EKF and higher

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 95

accuracy. Based on the calculated Gaussian prior p(xt|y1:t−1) = N(xt|µx,Σxx), the

UKF selects a discrete set of sigma points at which to approximate µy, Σyy and Σxy.

Let dx = dim(xt) and Ns = 2× dx + 1. These sigma points x1, . . . ,xNs are

xs =

µx for s = 0

µx + [
√

(dx + λ)Σxx]s for s = 1, . . . , dx

µx − [
√

(dx + λ)Σxx]s−dx for s = dx + 1, . . . , 2dx

Ns∑
s=1

wsmx
s = µxx ,

Ns∑
i=1

wsc(x
s − µxx)(xs − µxx)> = Σxx . (4.14)

The vector [
√

(dx + λ)Σ]s corresponds to the s-th column of the Cholesky decomposi-

tion of the matrix
√

(dx + λ)Σ. Positive weights ws• are also defined for each xs. The

constant λ controls these sigma point locations, as well as the weights (along with

additional fixed parameters). These Ns locations are used to empirically approximate

all means and covariances in Eq. (4.8). Once yt is measured, the approximation of

p(xt|yt) can then be calculated using Eq. (4.9). Next, the quantities in the approxi-

mation of (4.8) are given by

µy =
Ns∑
s=1

wsmh(xs) ,

Σyy =
Ns∑
s=1

wsc(h(xs)− µy)(h(xs)− µy)> +Rt ,

Σxy =
Ns∑
s=1

wsm(xs − µx)(h(xs)− µy)> . (4.15)

Finally these values can be used in (4.10)-(4.12) to carry out the filtering.

There are many extensions to the UKF framework such as Cubature Kalman

Filtering [63] and Quadrature Kalman Filtering [46], which use different numerical

quadratures to carry out the approximation, but still correspond to the joint Gaus-

sian assumption of Eq. (4.8). With that said, however, not all Gaussian ADFs make

a joint Gaussianity assumption. For example, methods based on Expectation Propa-

gation use moment matching to obtain a Gaussian posterior approximation without

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 96

modifying the joint likelihood distribution [84], [54]. We focus on an a similar method

in Section 4.3.2.

4.2.4 Nonparametric Approach: Particle Filtering

We have seen that the main theme of ADF is approximating the posterior with

a pre-specified joint probability density; when this joint density is Gaussian then

p(xt|y1:t) ≈ N(µt,Σt). Since the approximating distribution is pre-specified we call

this the parametric approach. On the other hand, the nonparametric approach ap-

proximates the posterior using a discrete set of points

p(xt|y1:t) ≈
S∑
s=1

wst δ(xt;x
s
t). (4.16)

The positive weights wst sum to one, and δ(xt;x
s
t)’s are point masses at locations xst ’s.

The weights are calculated at every time using importance sampling. When applied

to the Kalman filtering problem the resulting filters are called Particle Filters [43].

Unlike the ADFs, such Monte Carlo based methods guarantee convergence to the true

posterior as the number samples Ns grows [8], [4].

Let us first review the importance sampling procedure. Assume that p(x) is a

PDF which is difficult to sample from. Then we can approximate this distribution

using samples from another PDF π(x)—which is called the importance density—and

weighing them accordingly:

p(x) =
S∑
s=1

ws δ(x;xs) s.t. xs
iid∼ π(x) and ws ∝

p(xs)

π(xs)
. (4.17)

Convergence of (4.17) is a standard result in MCMC literature [4].

It is possible to implement a particle filter solely based on Eq. (4.17), which is

called sequential importance sampling (SIS) particle filter. However in practice it

suffers from particle degeneracy [8]; i.e. after several iterations we are left with a

single particle with nonzero weight. To overcome this, we can resample from the

posterior distribution Ns times according to the current weights and assign uniform

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 97

weights to the new samples. This version is called sequential importance resampling

(SIR) particle filter.

We next describe SIR in detail. At time t we have the posterior p(xt|yt) =∑S
s=1 w̄

s
t δx̄s

t
. We can then sample S particles from this discrete distribution, which

yields

p(xt|yt) =
S∑
s=1

(1/S) δ(xt;x
s
t) s.t. xst

iid∼
S∑
s=1

w̃st δx̄s
t
. (4.18)

This is the resampling step where w̄st are replaced by (1/S) in order to prevent weight

decay to zero. The prior for the next time is obtained by propagating the particles

through the state equation in Eq. (4.6).

p(xt+1|yt) =
S∑
s=1

(1/S) δ(xt+1;Ftx
s
t + qst) s.t. qst

iid∼ N(0,Qt) . (4.19)

Using the discrete prior distribution in Eq. (4.19) and applying Bayes’ rule gives

p(xt+1|yt+1) =
S∑
s=1

w̄st δ(xt+1;Ftx
s
t + qst) s.t. w̄st ∝ p(yt+1|Ftxst + qst) . (4.20)

This way the estimate of posterior is obtained. A particular benefit of using the

prior as proposal distribution in Eq. (4.20) is that, the importance weights are solely

determined by the likelihood term p(yt+1|Ftx•t + q•t). This observation will play an

important role when we present the divergence minimization-based filters, upcoming

next.

4.3 Three Filters based on Divergence Minimiza-

tion

In this section we discuss the three proposed divergence minimization approaches

to the nonlinear Kalman filtering problem. These include the two directions of the

Kullback-Leibler (KL) divergence as well as the related alpha divergence that contains

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 98

both KL divergences as limiting cases. In all cases, our goal is to approximate the

intractable posterior distribution p(xt|yt) with a multivariate Gaussian distribution

q(xt) = N(xt|t,Pt|t), using these three divergences as potential quality measures. In

the following three subsections, we first present one divergence objective and review

its tractability issues, followed by our approach to resolving this issue.

4.3.1 Filter 1: Forward KL Divergence Minimization

Given two distributions p(x|y) and q(x), the forward KL divergence (KL[q‖p] in

short) is defined as

KL[q(x)‖p(x)] =

∫
q(x) log

q(x)

p(x|y)
dx . (4.21)

The KL divergence is always nonnegative, becomes smaller the more q(x) and p(x)

overlap, and equals zero if and only if q(x) = p(x). These properties of the KL

divergence make it a useful tool for measuring how similar two distributions are. It

is not a distance measure however, as KL[q‖p] 6= KL[p‖q]; we discuss the latter in

Section 4.3.2. In Bayesian machine learning, minimizing an objective of this form over

q(x) is know as Variational Inference (VI) [112]. In this case, p(x|y) corresponds to

an unknown posterior distribution of the model parameters, and q(x) is its simpler

approximation.

For the nonlinear Kalman filtering problem, the posterior we want to find is

p(xt|yt); which is intractable due to the denominator term. Therefore, KL[q‖p] is

not calculable either. As we reviewed in detail in Section 2.4, VI instead uses the

identity

ln p(yt) = L[q(xt)] + KL[q(xt)‖p(xt|yt)], (4.22)

where

L[q(xt)] =

∫
q(xt) log

p(yt,xt)

q(xt)
dxt. (4.23)

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 99

The integration can now be carried out as we have access to p(yt,xt); which is defined

by the state-space model. Since the marginal log p(yt) is constant and KL[q‖p] ≥ 0,

maximizing L[q(xt)] is equivalent to minimizing the KL divergence. The term L[·] is

referred to as variational lower bound (VLB).

While nonlinear Kalman filters have a simply defined joint likelihood p(yt,xt|y1:t−1)

at time t, a significant problem still arises in calculating the VLB due to the nonlin-

ear function h(·). That is, if we define q(xt) = N(xt|t,Pt|t), then for the Gaussian

generative process of Eq. (4.6) we optimize xt|t and Pt|t over the function

L[q(xt)] = Eq[log p(yt,xt|y1:t−1)]− Eq[log q(xt)]

= Eq[log p(yt|xt,y1:t−1)]− Eq[log p(xt|y1:t−1)]− Eq[log q(xt)]

= Eq[log p(yt|xt)]− Eq[log p(xt|y1:t−1)]− Eq[log q(xt)] . (4.24)

From the last line above we get

L[q(xt)] = −1

2
Eq[(yt − h(xt))

>R−1
t (yt − h(xt))]

+ Eq[log p(xt|y1:t−1)]− Eq[log q(xt)] + const. (4.25)

The terms in the second line are tractable, but in the first line the nonlinear term

h(xt) will often result in an integral without closed form solution. In the variational

inference literature, common approaches to fixing this issue typically involve making

tractable approximations to h(xt). For example, one such approximation would be

to pick a point x0 and make the first-order Taylor approximation h(xt) ≈ h(x0) +

H(x0)(xt − x0). One then replaces h(xt) in Eq. (4.25) with this approximation

and optimizes q(xt). In fact, in this case the resulting update of q(xt) is identical

to the EKF. This observation implies a correspondence between variational inference

and commonly used approximations to nonlinear Kalman filters such as the EKF. We

make this formal in the following theorem.

Theorem 1: Let the joint Gaussian ADF correspond to the class of filters which

make the joint distribution assumption in Eq. (4.8). Then, all filters in this class

optimize an approximate form of the VLB in Eq. (4.25).

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 100

We present a complete proof in Appendix 4.7.1. Theorem 1 is general in that,

established ADF methods such as UKF and QKF can be viewed as an approximate

minimization of the forward KL divergence. This result applies to EKF as well, and

we can specialize a bit further.

Corollary 2: The EKF corresponds to optimizing the objective of Eq. (4.25)

using a first order Taylor approximation of h(·).

The proof is in Appendix 4.7.2. Consequently, the existing algorithms modify

L[q(xt)] and so the resulting optimization of this approximation is no longer guaran-

teed to minimize KL[q‖p]. In this section we fix this issue and propose a method to

directly optimize the objective function of Eq. (4.25).

Returning to KL[q‖p] minimization problem, we first write the VLB in a more

compact form

L[q(xt)] = Eq[f(xt)] + Eq[log p(xt)]− Eq[log q(xt)] (4.26)

where f(xt) = −(1/2)(yt−h(xt))
>R−1

t (yt−h(xt)), prior distribution p(xt|y1:t−1) is

compactly written as p(xt) and the expectations are taken over q(xt) = N(xt|xt|t,Pt|t).

However, since Eq[f(xt)] does not have a closed form solution, ∇L[·] cannot be eval-

uated analytically. Here the prior distribution of xt is Gaussian; but due to the term

f(xt) the posterior is not. This is an example of non-conjugate variational inference

where the prior and posterior have different parametric distributions. This is in con-

trast to the CKF in Chapter 2 where conjugate variational inference was applied and

updates were obtained in closed form. To resolve this, [89] proposed a stochastic

search method for sampling unbiased gradients of the VLB, which can be applied to

non-conjugate models. This also allows for approximation-free minimization of the

forward KL divergence using stochastic gradient descent. We derive this technique

for our problem, which will result in smaller values of KL[q‖p] than the EKF and

UKF.

The proposed solution in [89] is to step in the direction of an unbiased stochastic

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 101

gradient. To this end, the observation is made that

∇L[q(xt)] = Eq[f(xt)∇ log q(xt)] +∇Eq[log p(xt)]− Eq[log q(xt)] (4.27)

where the identity ∇q(xt) = q(xt)∇ log q(xt) is used. While the second gradient can

be calculated analytically with respect to either xt|t or Pt|t, the first gradient can be

calculated using Monte Carlo integration,

Eq[f(xt)∇ log q(xt)] ≈
1

S

S∑
s=1

f(xst)∇ log q(xst) s.t. xst
iid∼ q(xt). (4.28)

A second observation made by [89] is that the variance of these samples may be too

high that S needs to be a large number to make this approximation computationally

feasible. For this reason employing variance reduction methods is crucial. One way is

to use a control variate g(xt) that is highly correlated with f(xt), but has an analytic

expectation Eq[g(xt)]. The gradient of L[q(xt)] with a control variate is equal to

∇L[q(xt)] = Eq[(f(xt)− g(xt))∇ log q(xt)]

+∇Eq[g(xt)] +∇Eq[log p(xt)]−∇Eq[log q(xt)] . (4.29)

Though this leaves the gradient unchanged, Monte-Carlo sampling of the first term

has much smaller variance when |corr(f, g)| is large (calculated using q(xt)). Intu-

itively, this can be seen by noting that if f(xst) ≈ g(xst) at the sampled values xst ,

then |f(xst)−g(xst)| � |f(xst)|. In this case, the analytic gradient λEq[g(xt)] gives an

initial approximation of Eq[f(xt)∇ log q(xt)], which is then corrected by the Monte

Carlo sampled Eq[(f(xt)− g(xt))∇ log q(xt)]. Since g(xt) is a good approximation of

f(xt) in the region of high probability defined by q(xt), the analytic approximation

captures most information, but is refined by the MC sampled gradient to make the

gradient approximation-free.

The requirements on g(xt) to be a good control variate for f(xt) are that: (i) it is

an approximation of f(xt), and (ii) the expectation Eq[g(xt)] is solvable. There are

many possible control variates for the function f(xt). However, building on the EKF

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 102

framework we propose setting

g(xt) = −1

2
(yt − h̃(xt;xt|t−1))>R−1

t (yt − h̃(xt;xt|t−1))

h̃(xt;xt|t−1) = h(xt|t−1) +H(xt|t−1)(xt − xt|t−1) . (4.30)

So we use a first order Taylor expansion around the prior mean xt|t−1 to approximate

h(·). If we define ỹt = yt−h(xt|t−1)+H(xt|t−1)xt|t−1, then equivalently we can write

g(xt) = −1

2

(
ỹt −H(xt|t−1)xt

)>
R−1
t

(
ỹt −H(xt|t−1)xt

)
. (4.31)

The expectation is now in closed form. While a better approximation may have

greater variance reduction for a fixed number of Monte Carlo samples, we emphasize

this is not necessary as the error is compensated by the stochastic term.

Putting everything together, the VLB can be written as follows. In order not to

clutter the equations, we will use H = H(xt|t−1), p(xt) = N(µt,Σt), and q(xt) =

(µ′t,Σ
′
t). Then

L[q(xt)] = Eq[f(xt)− g(xt)]

− 1

2
Eq
[
(ỹt −Hxt)>R−1

t (ỹt −Hxt)
]

− 1

2
Eq
[
(xt − µt)>Σ−1

t (xt − µt)
]
− Eq[q(xt)]

= Eq[f(xt)− g(xt)]

− 1

2
tr
{
H>R−1

t HΣ′t
}
− 1

2
µ′tH

>R−1
t Hµ

′
t + ỹ>t R

−1
t Hµ

′
t

− 1

2
tr
{
Σ−1
t Σ′t

}
− 1

2
µ′>t Σ−1

t µ
′
t + µ>t Σ−1

t µ
′
t +

1

2
log |Σ′t| (4.32)

The gradients of the VLB with respect to the posterior distribution’s parameters

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 103

µ′t and Σ′t are now given by

∇µ′tL[q(xt)] =
1

S

S∑
s=1

[
f(xst)− g(xst)

][
Σ′−1
t xs −Σ−1

t µ
′
t

]
+H>R−1

t (ỹt −Hµ′t) + Σ′−1
t (µt − µ′t) (4.33)

∇Σ′t
L[q(xt)] =

1

2S

S∑
s=1

[
f(xst)− g(xst)

][
Σ′−1
t (xs − µ′t)(xst − µ′t)>Σ′−1

t −Σ′−1
t

]
+

1

2
Σ′−1
t −

1

2
Σ−1
t −

1

2
H>R−1

t H (4.34)

such that xst
iid∼ q(xt). Once again note that if we omit the first lines in the gradients

of Eqs. (4.33) and (4.34) and solve for µt and Σt by setting them to zero, we get

the EKF equations. On the other hand, due to additional terms in Eqs. (4.33) and

(4.34) a closed form solution does not exist and we need to use gradient ascent.

Another caveat is, without proper scaling of the gradients we can easily have a

numerically unstable algorithm as the covariance matrix can lose its positive definite-

ness. To fix this we pre-condition the gradients with a symmetric positive definite

matrix C and perform the following updates

µ′t
(i+1)

= µ′t
(i)

+ ρ(i) [C(i) ∇µtL], (4.35)

Σ′t
(i+1)

= Σ′t
(i)

+ ρ(i) [C(i) ∇ΣtL C(i)] . (4.36)

We highlight the difference between indices t and i. The first is the time index,

while the second is the iteration number at time t since we are using gradient de-

scent. For the conditioning matrix we choose C(i) = [Σ′t
(i)]−1, which approximates

the natural gradient [1] for µ′t and Σ′t.
3 When the step size satisfies the Robbins-

Monro conditions,
∑∞

i=1 ρ
(i) = ∞ and

∑∞
i=1[ρ(i)]2 < ∞, the gradients in Eqs. (4.35)

and (4.36) converge to a stationary point of the exact variational lower bound. In

practice we can, for example, choose ρ(i) = (w + i)−η with η ∈ (0.5, 1] and w ≥ 0.

In simulations we observed that when the natural gradients are employed, a generic

3The exact natural gradient for Σ′t is slightly different, as discussed in [115].

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 104

schedule for step sizes can be used and no further hand-tuning is necessary. The iter-

ations are run I times, which gives the posterior distribution q(xt) = N(xt|t−1,Pt|t−1)

with xt|t−1 = µ′t
(I) and Pt|t−1 = Σ′t

(I). We refer to this algorithm as Stochastic Search

Kalman Filter (SKF) and summarize it in Algorithm 4.1 .

4.3.2 Filter 2: Reverse KL Divergence Minimization

As mentioned in Section 4.3.1, the KL divergence is not a distance measure because

it is not symmetric. The complement of the forward KL divergence defined in (4.21)

is the reverse KL divergence:

KL[p(x)‖q(x)] =

∫
p(x) log

p(x)

q(x)
dx . (4.37)

We can see that (4.37) offers an alternative measure of how similar two probability

distributions are; therefore we can use it to approximate an intractable posterior dis-

tribution. Note that for either objective function in Eqs. (4.21) or (4.37), the optimal

solution will be q(x) = p(x|y). However, since typically the approximating distribu-

tion family does not encompass the exact posterior distribution, the two optimization

problems will give different solutions in practice.

In fact the reverse KL divergence has shown to be a better fit for unimodal approx-

imations, while forward KL works better in the multimodal case [13]. Consequently,

we can expect that optimizing the reverse KL divergence will be a better choice for the

nonlinear Kalman filtering problem (this is supported by our experiments). In Sec-

tion 4.3.2, finding a stationary point of the forward KL required an iterative scheme

for maximizing the variational objective function. The stationary point of the reverse

KL has a more interpretable form, as we will show.

To this end, we first note that an exponential family distribution has the form

q(x) = h(x) exp{η>s(x)− logA(η)}

where η is the natural parameter and s(x) is the sufficient statistic. Therefore

inference in exponential families correspond to determining η. Substituting this

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 105

parametrized form in Eq. (4.37) and taking the derivative with respect to the natural

parameter one can show that

∇ηKL[p(x)‖q(x)]

= ∇η
∫

[p(x) log p(x)− p(x) log q(x)] dx

= ∇η
∫ [

p(x) log p(x)− p(x) log h(x)− p(x)η>s(x) + p(x) logA(η)
]
dx

=

∫
p(x)∇η logA(η)dx−

∫
p(x)s(x)dx

=

∫
q(x)s(x)dx

∫
p(x)dx−

∫
p(x)s(x)dx (4.38)

where the exponential family identity for the derivative of the partition function

is applied. Applying the stationarity condition ∇ηKL[p(x)‖q(x)] = 0 yields the

following

Eq[s(x)] = Ep[s(x)] . (4.39)

This is the well-known moment matching condition which is frequently used in statis-

tics and machine learning [13]—one prominent application being the Expectation

Propagation (EP) [84], [53]. A common choice for the approximating exponential

family distribution is again Gaussian because it is the maximum entropy distribution

for the given first and second order moments [112]. Since a Gaussian is completely

specified by its mean and covariance, when the approximating distribution q(x) is

selected to be Gaussian, the optimal solution is simply found by matching its mean

and covariance to that of p(x|y).

For the nonlinear Kalman filtering problem, when a Gaussian is used as the ap-

proximating posterior, we need to match the moments of q(xt) (which are xt|t and

Pt|t) to that of the true posterior p(xt|yt). However, there is still a difficulty as the

true posterior is unknown. Fortunately, MC methods prove useful here as well. Let

Ep(xt|yt)[f(xt)] be the expectation we wish to compute with respect to the true pos-

terior. For example, choosing f(xt) = x and f(xt) = xtx
>
t − E[xt]E[xt]

> gives the

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 106

mean and covariance respectively. This expectation can be approximated as

Ep[f(xt)] =

∫
f(xt)

p(xt|yt)
π(xt)

π(xt)dxt,

=

∫
f(xt)

[p(yt|xt)p(xt)]/π(xt)∫
p(yt|x′t)p(x′t)dx′t

π(xt)dxt,

≈
S∑
s=1

f(xst)
[p(yt|xst)p(xst)]/π(xst)∑S
j=1[p(yt|xjt)p(x

j
t)]/π(xjt)

s.t. xst
iid∼ π(xt) (4.40)

where we define the normalized weights to be

wst =
p(yt|xst)p(xst)

π(xst)
, Wt =

S∑
s=1

p(yt|xst)p(xst)
π(xst)

.

As a result we have an importance sampling procedure. We have reviewed this

methodology within the particle filtering context in Section 4.2.4 . In particular, if we

choose the proposal distribution to be the prior π(xt) = p(xt) we get ws ∝ p(yt|xst)

so that the weights are solely determined by the likelihood of the observation. As

we can see from Eq. (4.40) the importance sampling is biased as it is a ratio of

two approximations, yet it converges to the true expectation Eq[f(x)] almost surely

which yields an asymptotically unbiased divergence minimization procedure. We call

this the Moment Matching Kalman Filter (MKF) and summarize it in Algorithm 4.2.

We observe that a major difference between the MKF and SKF of Section 4.3.1 is

that, the former can obtain posterior approximations in a single step similar to the

EKF and UKF. This makes MKF considerably faster than SKF. Further, the MKF

requires half the computation of particle filtering as it does not require resampling.

4.3.3 Filter 3: Alpha Divergence Minimization

In Sections 4.3.1 and 4.3.2 we showed how nonlinear Kalman filtering can be per-

formed by minimizing the forward and reverse KL divergences. A further gener-

alization is possible by considering the alpha divergence, which contains both KL

divergences as special case. Following [53] we define the alpha divergence to be

Dα[p(x)‖q(x)] =
1

α(1− α)

(
1−

∫
p(x)αq(x)1−αdx

)
, (4.41)

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 107

where the parameter α can take any value in (−∞,∞). Some special cases are

lim
α→0

Dα[p‖q] = KL[q‖p] , lim
α→1

Dα[p‖q] = KL[p‖q] ,

D 1
2
[p‖q] = 2

∫
(
√
p(x)−

√
q(x))2dx = 4Hel2[p‖q] , (4.42)

where Hel[p‖q] is the Hellinger distance. We see that when α = 1/2 we get a valid dis-

tance metric. Similar to before, we seek a q-distribution which approximates p(x|y),

where approximation quality is now measured by the alpha divergence.

We again begin assuming that the approximating distribution is in the exponential

family, q(x) = h(x) exp{η>s(x)− logA(η)}. Substituting this and taking derivative

with respect to the natural parameter yields

−α(1− α)∇ηDα[p(x)‖q(x)] =

= ∇η
(∫

p(x)αq(x)1−αdx− 1

)
= ∇η

∫
p(x)αh(x)1−αe(1−α)(η>s(x)−logA(η))

=

∫
p(x)αh(x)1−αe(1−α)(η>s(x)−logA(η))(1− α)(s(x)− Eq[s(x)])

=

∫
p(x)αq(x)1−α(1− α)(s(x)− Eq[s(x)])

= (1− α)Zp̃

∫
p̃(x) [s(x)− Eq[s(x)]

= Ep̃[s(x)]− Eq[s(x)] (4.43)

where we have defined a new probability distribution p̃(x) = p(x)αq(x)1−α/Zp̃. The

stationary condition∇ηDα[p(x)‖q(x)] = 0 now leads to a generalized moment match-

ing condition

Eq[s(x)] = Ep̃[s(x)] . (4.44)

The moment matching condition of Eq. (4.39) was used within the EP algorithm; in

this context the new condition of Eq. (4.44) leads to a generalization called Power

EP [85]. More recently, [53] used a similar black-box optimization, where they showed

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 108

that by varying the value of α, the algorithm varies between variational inference and

expectation propagation.

It turns out that, for many practical problems, using a fractional value of α can

give better performance than the limiting cases α = 0 or α = 1. We next describe

how we can use α-divergence minimization for nonlinear Kalman filtering. The main

problem with the moment matching in Eq. (4.44) is that the q-distribution appears

on both sides of the equation, so the solutions cannot be obtained in a single step.

Unfortunately an iterative scheme is not guaranteed to converge—also observed by

[85]. With that said, if a solution satisfying Eq. (4.44) were to be found, it would be

a stationary point of the alpha divergence.

However, we can still proceed with our importance sampling method as follows.

Using similar notation, we can write

Ep̃[f(xt)] =

∫
f(xt)

p(xt|yt)αq(xt)1−α

π(xt)
π(xt)dxt

=

∫
f(xt)

[p(yt|xt)αp(xt)αq(xt)1−α]/π(xt)∫
p(yt|xt)αp(xt)αq(xt)1−αdxt

π(xt)dxt

≈
S∑
s=1

f(xst)
[p(yt|xst)p(xst)]αq(xst)1−α/π(xst)∑S
j=1[p(yt|xjt)αp(x

j
t)
αq(xjt)

1−α]/π(xjt)
s.t. xst

iid∼ π(xt)

(4.45)

where we define the normalized weights to be

wst =
[p(yt|xst)p(xst)]αq(xt)1−α

π(xst)
, Wt =

S∑
s=1

[p(yt|xst)p(xst)]αq(xt)1−α

π(xst)
.

The procedure of Eq. (4.40) is a special case of Eq. (4.45) with α = 1. However,

in the former the q(x) does not appear in the weights so that the solution can be

obtained in a single iteration. This is not possible in the latter. The latter case similar

to the EP and Power EP algorithms, where multiple iterations can be run to update

q(x). However for our purposes we will still use a single iteration and to match the

moments; this way the algorithm will have the same cost as MKF. Furthermore, it

also hedges computations against numerical instability. We call this algorithm Alpha

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 109

Divergence Kalman Filter (αKF) and summarize it in Algorithm 4.4. We note that

the only difference between αKF and MKF is in Step 4.

We can get a better understanding of the new importance sampling by analyzing

a special case of the weight coefficients. In particular, assume that we choose the

proposal distribution to be the prior, π(xt) = p(xt) and we also set the initial value

for the posterior as q(xt) = p(xt). Then the αKF weights are wst ∝ p(yt|xst)α so

once again they are solely determined by the likelihood term. Compare this to MKF

weights which are wst ∝ p(yt|xst). We see that all the weights are scaled by the α

term. In the limiting case α → 1 this behaves like MKF, and as α → 0 all weights

are equal. So the values of α in between acts like a dampening factor, which makes

the estimates robust when the likelihood term is highly noisy. We will show specific

examples of this in the experiments.

4.3.4 Adaptive Sampling

The main parameter in the implementation of sampling based filters —including par-

ticle filters and the three filters proposed here— is the number of samples/particles S.

Hence it is desirable to have a method for estimating the number of samples necessary

for a given degree of accuracy. This computed sample size can be used to adaptively

reduce the computation as much as possible, while still maintaining a desired accu-

racy. As we will see in the experiments, remarkable cost cutting is possible this way.

In Figure 4.1 we illustrate the adaptive sampling (AdaSamp) approach for tracking a

moving target. At time t, the target makes an abrupt maneuver that requires more

particles for accurate tracking; but the number can be reduced afterwards.

Since the approximate Gaussian posterior distribution has a parametric form, we

are able to use an adaptive sampling method for the MKF and αKF.4 To determine

the appropriate number of samples, we measure the uncertainty of our mean approxi-

4For the SKF the per-iteration sample size is much smaller, so there is less benefit in using this

technique.

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 110

t

t-1

t+1

λmin λmax

95% Confidence
 Region

Bounding
 Circle

At time t

Figure 4.1: Illustration of adaptive sampling. Due to unexpected changes in the

target trajectory, more samples may be needed at a given time point. Also shown is

the bounding circle for a confidence ellipse.

mation for q(xt) = N (µ′t,Σ
′
t), where µ′t =

∑S
s=1w

s
tx

s
t/W . For importance sampling,

the variance of this estimator is approximately

V(µ′t) ≈
S∑
s=1

[
wst
Wt

]2

(xst − µ′t)(xst − µ′t)>. (4.46)

Here, if S is large enough, the estimator can be approximated as normal by the

central limit theorem [4]. We use this fact to compute the radius of a 95% confidence

region. Assuming that the estimator is zero mean, which is justified by the asymptotic

unbiasedness of the unnormalized importance sampling procedure, we denote the

estimator by X̂ ∼ N(0,V(µ′t)). It follows that

P (X̂ >V(µ′t)
−1X̂ ≤ χ2

d(p)) = p, (4.47)

where χ2
d(p) is the quantile function of a chi-squared distribution with d degrees of

freedom (set to the state-space dimension), and p is the probability value (for 95%

confidence intervals this is set to p = 0.95). The region described by Eq. (4.47) is a

hyper-ellipsoid, so the maximum possible radius will correspond to

rmax =
√
λmax(V(µ′t))× χ2

d(0.95) . (4.48)

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 111

Note that this is a conservative estimate, as the hypersphere with radius rmax can

be much larger than the hyper-ellipsoid. As an illustration, the bounding circle of a

bivariate normal distribution is given in Figure 4.1.

Now assume that, based on a small sample set Sbase, we wish to estimate the mini-

mum number of samples Smin required to achieve a certain rmax. Since the eigenvalues

of the covariance matrix decay as O(1/S), we get the relation

r1

r2

∝
√
S2

S1

, Smin = Sbase ×
[
rbase

rmax

]2

. (4.49)

As expected, the smaller radius we desire, the larger sample size we need. Another

important point is that the V(µ′t) is our confidence in estimating the mean of the

posterior, and not the ground truth. The accuracy of estimating the latter is dictated

by the measurement noise, and cannot be made arbitrarily small by increasing the

sample size. The versions of MKF and αKF using AdaSamp are given in Algorithms

4.3 and 4.5 respectively.

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 112

4.4 Algorithms and Complexity

4.4.1 Stochastic Search Kalman Filter

Algorithm 4.1 Stochastic Search Kalman Filter (SKF)

1: Input: t = 1, . . . , T : yt (observations)

2: t = 1, . . . , T : Ft, ht(·), Qt, Rt (state-space parameters)

3: S (samples/inner loop), I (iterations), (µ0|0,P0|0) (initial guess)

4: i = 1, . . . , I : ρ(i) (step size)

5: Output: t = 1, . . . , T : p(xt|yt) = N(xt|t,Pt|t)

6: Initialize: p(x0) = N(x0|0,P0|0)

7: for t = 1, . . . , T do

8: xt|t−1 ← F>t xt−1|t−1, Pt|t−1 ← F>t Pt−1|t−1Ft +Qt

9: p(xt|xt−1)← N(xt|t−1,Pt|t−1)

10: µ
(0)
t ← xt|t−1, Σ

(0)
t ← Pt|t−1

11: q(0)(xt)← N(µ
(0)
t ,Σ

(0)
t)

12: for i = 1, . . . , I do

13: s = 1, . . . , S : xst
iid∼ q(i−1)(xt).

14: Compute ∇(i)
µtL[q(xt)] using Eq. (4.33).

15: Compute ∇(i)
Σt
L[q(xt)] using Eq. (4.34).

16: C(i) ← Σ
(i−1)
t

17: µ
(i)
t ← µ

(i−1)
t + ρ(i)

[
C(i)∇(i)

µtL[q(xt)]
]

18: Σ
(i)
t ← Σ

(i−1)
t + ρ(i)

[
C(i)∇(i)

Σt
L[q(xt)]C

(i)
]

19: q(i)(xt)← N(µ
(i)
t ,Σ

(i)
t)

20: end for

21: xt|t = µ
(I)
t , Pt|t = Σ

(I)
t

22: p(xt|yt)← N(xt|t,Σt|t)

23: end for

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 113

4.4.2 Moment Matching Kalman Filter

Algorithm 4.2 Moment Matching Kalman Filter (MKF)

1: Input: t = 1, . . . , T : yt (observations)

2: t = 1, . . . , T : Ft, ht(·), Qt, Rt (state-space parameters)

3: S (samples), (µ0|0,P0|0) (initial guess)

4: Output: t = 1, . . . , T : p(xt|yt) = N(xt|t,Pt|t)

5: Initialize: p(x0) = N(x0|0,P0|0)

6: for t = 1, . . . , T do

7: xt|t−1 ← F>t xt−1|t−1, Pt|t−1 ← F>t Pt−1|t−1Ft +Qt

8: p(xt|xt−1)← N(xt|t−1,Pt|t−1)

9: s = 1, . . . , S : xst
iid∼ p(xt|xt−1).

10: s = 1, . . . , S : wst ← p(yt|xst), Wt ←
∑S

s=1w
s
t

11: s = 1, . . . , S : wst ← wst/Wt

12: xt|t ←
∑S

s=1 w
s
tx

s
t

13: Pt|t ←
∑S

s=1 w
s
t (x

s
t − xt|t)(xst − xt|t)>

14: p(xt|yt)← N(xt|t,Σt|t)

15: end for

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 114

4.4.3 Moment Matching Kalman Filter with AdaSamp

Algorithm 4.3 Moment Matching Kalman Filter with AdaSamp (MKF)

1: Input: t = 1, . . . , T : yt (observations)

2: t = 1, . . . , T : Ft, ht(·), Qt, Rt (state-space parameters)

3: (µ0|0,P0|0) (initial guess)

4: Sbase (initial sample size), rmax (error tolerance)

5: Output: t = 1, . . . , T : p(xt|yt) = N(xt|t,Pt|t)

6: Initialize: p(x0) = N(x0|0,P0|0)

7: for t = 1, . . . , T do

8: xt|t−1 ← F>t xt−1|t−1, Pt|t−1 ← F>t Pt−1|t−1Ft +Qt

9: p(xt|xt−1)← N(xt|t−1,Pt|t−1)

10: // AdaSamp

11: s = 1, . . . , Sbase : xst
iid∼ p(xt|xt−1).

12: s = 1, . . . , Sbase : wst ← p(yt|xst), Wt ←
∑S

s=1w
s
t

13: s = 1, . . . , Sbase : wst ← wst/Wt

14: µ′t ←
∑S

s=1w
s
tx

s
t

15: V(µ′t)←
∑Sbase

s=1 [wst]
2(xst − µt)(xst − µt)>

16: rbase ←
√
λmax(V(µ′t)) χ

2
d(0.95)

17: S ← Sbase × [rbase/rmax]2

18: // Filtering

19: s = 1, . . . , S : xst
iid∼ p(xt|xt−1)

20: s = 1, . . . , S : wst ← p(yt|xst), Wt ←
∑S

s=1w
s
t

21: s = 1, . . . , S : wst ← wst/Wt

22: xt|t ←
∑S

s=1 w
s
tx

s
t

23: Pt|t ←
∑S

s=1 w
s
t (x

s
t − xt|t)(xst − xt|t)>

24: p(xt|yt)← N(xt|t,Σt|t)

25: end for

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 115

4.4.4 Alpha Divergence Kalman Filter

Algorithm 4.4 Alpha Divergence Kalman Filter (αKF)

1: Input: t = 1, . . . , T : yt (observations)

2: t = 1, . . . , T : Ft, ht(·), Qt, Rt (state-space parameters)

3: S (samples), (µ0|0,P0|0) (initial guess)

4: α (alpha divergence parameter)

5: Output: t = 1, . . . , T p(xt|yt) = N(xt|t,Pt|t)

6: Initialize: p(x0) = N(x0|0,P0|0)

7: for t = 1, . . . , T do

8: xt|t−1 ← F>t xt−1|t−1, Pt|t−1 ← F>t Pt−1|t−1Ft +Qt

9: p(xt|xt−1)← N(xt|t−1,Pt|t−1)

10: s = 1, . . . , S : xst
iid∼ p(xt|xt−1).

11: s = 1, . . . , S : wst ← p(yt|xst)α, Wt ←
∑S

s=1 w
s
t

12: s = 1, . . . , S : wst ← wst/Wt

13: xt|t ←
∑S

s=1 w
s
tx

s
t

14: Pt|t ←
∑S

s=1 w
s
t (x

s
t − xt|t)(xst − xt|t)>

15: p(xt|yt)← N(xt|t,Σt|t)

16: end for

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 116

4.4.5 Alpha Divergence Kalman Filter with AdaSamp

Algorithm 4.5 Alpha Divergence Kalman Filter with AdaSamp (αKF)

1: Input: t = 1, . . . , T : yt (observations)

2: t = 1, . . . , T : Ft, ht(·), Qt, Rt (state-space parameters)

3: (µ0|0,P0|0) (initial guess)

4: Sbase (initial sample size), rmax (error tolerance)

5: Output: t = 1, . . . , T : p(xt|yt) = N(xt|t,Pt|t)

6: Initialize: p(x0) = N(x0|0,P0|0)

7: for t = 1, . . . , T do

8: xt|t−1 ← F>t xt−1|t−1, Pt|t−1 ← F>t Pt−1|t−1Ft +Qt

9: p(xt|xt−1)← N(xt|t−1,Pt|t−1)

10: // AdaSamp

11: s = 1, . . . , Sbase : xst
iid∼ p(xt|xt−1).

12: s = 1, . . . , Sbase : wst ← p(yt|xst)α, Wt ←
∑S

s=1 w
s
t

13: s = 1, . . . , Sbase : wst ← wst/Wt

14: µ′t ←
∑S

s=1w
s
tx

s
t

15: V(µ′t)←
∑Sbase

s=1 [wst]
2(xst − µ′t)(xst − µ′t)>

16: rbase ←
√
λmax(V(µ′t)) χ

2
d(0.95)

17: S ← Sbase × [rbase/rmax]2

18: // Filtering

19: s = 1, . . . , S : xst
iid∼ p(xt|xt−1)

20: s = 1, . . . , S : wst ← p(yt|xst)α, Wt ←
∑S

s=1 w
s
t

21: s = 1, . . . , S : wst ← wst/Wt

22: xt|t ←
∑S

s=1 w
s
tx

s
t

23: Pt|t ←
∑S

s=1 w
s
t (x

s
t − xt|t)(xst − xt|t)>

24: p(xt|yt)← N(xt|t,Σt|t)

25: end for

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 117

4.4.6 Complexity Analysis

For the SKF, at every time step we start with computing the prior which is O(d3).

In the inner loop the computation cost is dominated by the gradient terms which are

O(Sd2). The total cost of the inner loop is then O(ISd2). Note that the gradient

computation for Σt can be done in O(d2) if we first do the matrix-vector multipli-

cations. The computation of natural gradients is bounded by O(d3) as we cannot

avoid the matrix-matrix multiplication this time. The total cost of natural gradient

computation is then O(Id3). However since S � d typically, the per time cost is

O(ISd2). The total cost of SKF is then O(TISd2).

For the MKF without AdaSamp, the prior computation is once again O(d3). Sam-

pling from the prior is O(Sd) as a single draw is O(1); and computing the weights

is O(Sd2) as we need to evaluate S quadratic terms. Also, computing the posterior

from samples is O(Sd2) as we have S outer products. The total cost of MKF is then

O(TSd2). Compared to SKF, the MKF is cheaper by a factor of I which is an impor-

tant difference. The cost of αKF without AdaSamp is the same, i.e. O(TSd2) since

the only difference is the dampening of the likelihood values.

For the MKF with AdaSamp, the adaptive sampling stage is O(Sbased
2) which is

once again determined solely by the covariance computation. The filtering stage

is then only O(S(t)d2) at time t which sums to O(
∑T

t=1 S
(t)d2). Since typically∑T

t=1 S
(t) � TS the AdaSamp version offers significant speed-up without notable

accuracy loss, as we will show in the experiments. αKF with AdaSamp is similar.

Finally, we compare with widely used filters: EKF is only O(Td3) as it only

involves a single set of matrix operations per time step. UKF also has the same cost of

O(Td3) which is important as it often gives better results than EKF without increasing

computation. The particle filter is once again O(TSd2) where the bottleneck is at

calculating the likelihood terms. Therefore, particle filter is comparable to MKF and

αKF without AdaSamp. When AdaSamp is activated, however, MKF and αKF can

be significantly faster.

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 118

4.5 Experiments

We experiment with our filters and compare their performance against a number of

competitors from the literature. The implemented filters are as follows:

1. EKF: Extended Kalman Filter

2. UKF: Unscented Kalman Filter

3. ENKF: Ensemble Kalman Filter [34].

4. SIR: Particle Filter with Sequential Importance Resampling.

5. SKF: Stochastic Search Kalman Filter of Algorithm 4.1.

6. MKF: Moment Matching Kalman Filter of Algorithm 4.2.

7. αKF: Alpha Divergence Kalman Filter of Algorithm 4.4.

For the applications we consider radar and sensor network target tracking prob-

lems, as well as an options pricing problem.

4.5.1 Target Tracking

The first problem we consider is target tracking. This problem arises in various

settings, but here we consider two established cases: radar and sensor networks. The

radar tracking problem has been a primary application area for nonlinear Kalman

filtering. Wireless sensor networks are another emerging area where nonlinear filtering

is useful. Driven by the advances in wireless networking, computation and micro-

electro-mechanical systems (MEMS), small inexpensive sensors can be deployed in a

variety of environments for many applications [27], [108].

For both problems the state-space has the form

xt = Fxt−1 +wt , wt ∼ N(0,Q),

yt = h(xt) + vt , vt ∼ N(0,R). (4.50)

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 119

Here, F and Q model the dynamics of target motion and are usually time-varying.

On the other hand, h(·) specifies the equipment that performs the measurements,

and the environment and equipment based inaccuracies are represented by R. In the

radar setting, when the target is far away and the angle measurement noise is strong,

the problem is highly nonlinear. For sensor networks, the nonlinearity is caused by the

small number of active sensors (due to energy constraints) with large measurement

noise (due to the attenuation in received signal) [15]. While the value of R can be

determined to some extent through calibration, it is more challenging to do this for

Q [75].

Our experiments are based on synthetic data using a constant velocity model

in R2 which corresponds to the state vector vector xt = [x1, ẋ1, x2, ẋ2]>; the

second and fourth entries correspond to the velocity of the target in each dimension.

Following [74], we set the parameters for the state variable equation to

F =

F2 0

0 F2

 , F2 =

1 ∆t

0 1

 , (4.51)

Q =

Q2 0

0 Q2

 , Q2 = σCV

∆t4/4 ∆t3/2

∆t3/2 ∆t2

 . (4.52)

The radar measures the distance and bearing of the target via the nonlinear func-

tion h(·) of the target location,

h(xt) =
[√

xt(1)2 + xt(3)2 , tan−1[xt(3)/xt(1)]
]>

i.e., the Cartesian-to-Polar transformation [73]. For the sensor networks problem, we

will consider a scenario which uses range-only measurements from multiple sensors.

This yields the model in (4.50) where h(·) is the measurement function such that the

i-th dimension (i.e., measurement of sensor si) is given by

[h(xt)]i =
√

[xt(1)− si(1)]2 + [xt(2)− si(2)]2

and the length of h(xt) will be the number of activated sensors at time t.

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 120

We consider two types of problems: tracking with uncertain parameters and track-

ing with known parameters. For the case of uncertain parameters, we set the radar

and sensor simulation settings as follows. First, we note that for both simulations

we assume a constant measurement rate, and so ∆t = 1. For radar we sweep the

process noise values in Eq. (4.51) as σCV ∈ {10−3, 2 × 10−3, . . . , 10−2}. We gen-

erate 20 data sets for each value of σCV , yielding a total of 200 experiments. For the

measurement noise we use a diagonal R with entries σ2
r = 10−1 and σ2

θ = 10−2 which

controls the noise of distance and bearing measurements, respectively. The initial

state is x0 = [1000, 10, 1000, 10]>; this distance from origin and angle noise variance

results in a severely nonlinear model, making filtering quite challenging.

For sensor network simulations, we use the same constant-velocity model of Eq.

(4.51) with σCV = 10−2. We deploy 200 sensors and at each time point there are

exactly 3 activated for range measurements. The sensors are scattered over a square

field of 100×100 units sampled from a uniform distribution. For reference all sensors

are shown as background in Figure 4.2. The measurement covariance matrix is R =

σ2
RI where we set σR = 20. We set the initial state x0 = [1000, 1, 1000, 1]>. With

this, once again, we obtain a highly nonlinear system, albeit less severe than the radar

case. We also consider the case where the generating parameters are known to the

filter. In this case, we assess the performance of the filter as a function of process and

measurement noise covariances. We sweep σCV ∈ {0.001, 0.005, 0.01, 0.05, 0.1} and

σr ∈ {10, 15, 20, 25, 30}.

The filter settings are as follows: For SKF we use 500 samples per iteration and

20 iterations, whereas the sample size is 104 for MKF and αKF . This way the total

sample size is 104 for all three filters. For SIR and ENKF we also use 104 particles.

For the αKF we set α = 0.5; but we also separately analyze its performance as a

function of α. Also, when there is parameter uncertainty, the exact value of Q is not

known to the filter, in which case we simply use a scaled isotropic covariance of form

σ2
QI.

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 121

Table 4.1: Radar tracking problem: Mean Square Error (MSE) of various filtering

schemes as a function of process noise parameter σQ. The boldfaces show the best

performers for small/large particle sizes.

σQ

10−2 5× 10−2 10−1 5× 10−1 1

SKF 41.4100 34.6611 29.9952 42.1360 38.0507

MKF 31.3088 27.6861 29.0376 35.2422 39.2536

αKF 30.8783 27.9475 27.4130 31.0271 34.9420

PF 28.5429 32.3768 35.1842 44.3704 48.9767

ENKF 33.8646 35.3385 37.1761 42.2874 45.7732

EKF 33.8611 35.8086 37.7808 42.6595 45.9788

UKF 31.7528 31.8616 33.7625 41.1282 45.4806

BASE 223.5281 223.5281 223.5281 223.5281 223.5281

In Table 4.1 we show mean square error (MSE) for radar tracking as a function

of the selected scale value (σQ). Here, the base error corresponds to the estimations

based on measurements only, and its order-of-magnitude difference from filter MSE

values shows the severity of nonlinearity. Comparing MSE values we see that MKF

and αKF outperforms EKF and UKF for all settings of σQ, which shows that the

Gaussian density obtained from these filters is indeed more accurate. SKF also has

better results, particularly for σQ = 10−1 but is less robust to the changes in scale

value. This is due to the iterative gradient scheme employed by SKF, which could

give worse results depending on parameter changes or covariance initializations. Since

MKF and αKF are based on importance sampling, they do not exhibit the same

sensitivity. As for PF, this algorithm also produces competitive results when σQ =

10−2; however its performance significantly deteriorates (even more than that of SKF)

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 122

Table 4.2: Sensor network tracking problem: Mean Square Error (MSE) of various

filtering schemes as a function of process noise parameter σQ. The boldfaces show

the best performers for small/large particle sizes.

σQ

10−2 5× 10−2 10−1 5× 10−1 1

SKF 10.4674 9.5812 9.5038 10.1664 10.5996

MKF 10.5572 9.2879 9.1684 9.8175 10.3307

αKF 9.9441 8.0913 8.0623 9.1002 9.7055

PF 9.5661 9.3464 9.4726 10.0422 10.3834

ENKF 10.6565 13.8709 11.5082 13.8403 15.2449

EKF 14.0034 13.9357 14.5161 15.5277 16.1438

UKF 11.5303 10.3639 10.2068 10.8830 11.5845

as σQ increases, which shows that nonparametric inference of particle filtering is more

sensitive to parameter uncertainty. Lastly, ENKF has significantly worse performance

than all other sampling based filters. This result is mainly because, ENKF lacks a

scheme to weight the samples, and so is more sensitive to parameter uncertainties.

We observe that αKF has the highest robustness to parameter changes, making it

a better choice when parameters are not known and measurements are very noisy;

in addition, αKF is more robust excess measurement noise, as discussed in Section

4.3.3.

Table 4.2 presents MSE results for sensor networks. Unlike the radar problem, all

particle-based filters are better than EKF and UKF for all values of σQ. This reduced

sensitivity is due to the reduced nonlinearity in the problem. The performance of SKF,

MKF, and PF are similar to each other, MKF being the favorable choice for most

cases. This time ENKF does a better job, since the nonlinearity is less challenging,

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 123

Target
Sensors
EKF
UKF
SKF

Target
Sensors
EKF
UKF
MKF

Target
Sensors
EKF
UKF
αKF

Figure 4.2: Tracks estimated by various filtering schemes in sensor network setting.

Top row: Comparisons of EKF, UKF, and SKF. Middle row: EKF, UKF, and MKF.

Bottom row: EKF, UKF, and αKF . In the background sensor scatterplots are given.

Each plot corresponds to a square field with 100 units of side length.

yet it is still inferior to UKF. Again αKF is the best performer, and as σQ increases

the improvement increases.

In Figure 4.2 we show qualitative tracking results with sensor networks. The top,

middle, and bottom rows correspond to SKF, MKF, and αKF respectively. For each

row we pick four different paths (shared across different rows) and for each plot we

show the true trajectory along with EKF, UKF, and one of our filters. By visual

inspection we can see that our algorithms provide more accurate tracking, which

gives visual meaning to the quantitative results.

For αKF we have only considered the case when α = 0.5. We next focus on

varying α. For this experiment we set σQ = 10−1, which corresponds to the middle

column of Table 4.2. We plot the mean squared error as a function of α in Figure

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 124

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

M
SE

PF
KF

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3800

3810

3820

3830

3840

3850

3860

3870

N
LL

EKF
PF

KF

Figure 4.3: Left panel: MSE value of αKF as a function of α for the sensor network

tracking problem with σQ = 10−1. Right panel: NLL values as a function of α.

For both figures, when α = 1, αKF reduces to MKF. The performance of PF and

EKF are plotted as baselines. Also, for PF and EKF the markers are only given for

reference, otherwise they do not depend on α.

4.3. We see that low-to-mid ranges of α (i.e. 0.3 − 0.5) give the best MSE results.

This improvement is a result of lower values of α mitigating the effects of strong

measurement noise. There is a trade-off, however, since choosing α too small will

discard to much of information from the measurement and give poor results. This

is seen for lower values of α, where decreasing the parameter degrades performance.

We note that ideal values of α may differ for different sensor characteristics. Since

ground truth is necessary to know the best value, simulations using known sensor

characteristics can allow for selecting this parameter using a grid search as shown in

Figure 4.3. Indeed, this is the main difficulty of tuning α on-the-fly; as we may not

have access to such training data.

One consideration for tuning the α parameter would be to maximize the likelihood.

However, this does not work in practice. In Figure 4.3 we show the negative log

likelihood (NLL) for the sensor network experiment using the same setup from the

left panel. We see that the lowest NLL is obtained by setting α = 1. This is not

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 125

surprising, as this value corresponds to no dampening of the likelihood term itself.

As we decrease α, NLL increases as well. In fact, while the best value of lowest

MSE is α = 0.3, its corresponding NLL is even worse than EKF. Indeed, the worse

performance of EKF is tied to its sensitivity to likelihood, which in the context of

machine learning is similar to overfitting. For this reason, a separate set of data would

be required to tune the α parameter.

As discussed in Section 4.3.4, one can use adaptive sampling to choose the min-

imum possible sample size to achieve a certain confidence region radius, rmax. We

implemented adaptive sampling for αKF using an initial batch size of Sbase = 500.

We picked four different values of rmax from {0.5, 1, 1.5, 2}. Figure 4.4 displays the

results for this experiment. Here we compare the MSE results as a function of rmax

for αKF and PF for the sensor tracking problem with σCV = 0.1. Note that for

SIR-PF, adaptive sampling is not a choice since all particles should be propagated,

resampled, and updated at every time step. So for that we simply set the sample

size as the average Smin for the αKF for each case. In Figure 4.4(a) we can see that

the MSE performances differ very little across different cases, showing that for larger

target values of rmax both methods can still produce accurate estimates of the true

state. This is also visible in our comparison to the αKF with sample size fixed to

S = 104, but performance clearly degrades for S = 103, showing the advantage of not

having to set this parameter. We also see that αKF outperforms PF in all cases.

On the other hand, Figure 4.4(b) shows the number of samples required to achieve a

certain confidence radius. From this figure we can see the O(1/r2) decaying rate of

Smin as implied by Eq. (4.49). Given the high accuracy in the left panel, we see that

samples on the order of hundreds can be sufficient for high-quality estimates, which

is an important computational gain.

We now investigate the case where the process noise parameter is known. In

Figure 4.5 we show MSE as a function of σCV and σR. For the measurement noise,

as σR increases, overall MSE also increases, while for process noise this trend is not

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 126

Particle Filter
αKF with Adaptive Sampling

αKF with 104 samples/round
αKF with 103 samples/round

0.5 1 1.5 2
rmax

2

4

6

8

M
SE

10

0

(a) MSE as a function of rmax.

rmax
0.5 1 1.5 2

0

2K

4K

6K

S
m
in

(b) Box plot of Smin required to achieve the given

rmax.

Figure 4.4: Mean square error and minimum sample size as a function of confidence

radius rmax.

present. For both cases we see that the particle filter gives the best result overall.

This is expected, since when the parameters are known perfectly particle filters can

approximate the posterior with more accuracy as they are nonparametric. However,

αKF is still competitive in this setting. In fact, for several cases, such as σCV = 0.001

and σr = 25, performance of αKF and PF are equal, while both filters perform much

better than SKF and MKF in all cases. This means αKF can be preferred over PF,

since it does not require resampling. As a second observation, note that SKF/MKF

perform much better than EKF/UKF, and αKF perform even better compared to

the rest. This means, by minimizing different forms of divergence one can indeed get

significantly better Gaussian approximations of the posterior. We also see a significant

improvement for ENKF when the parameter uncertainty is removed. However, it is

still not very consistent; while particle filter always produce good results, the same

is clearly not the case for ENKF. Once again, this is related to the lack of sample

weighting in ENKF, which causes all the samples contribute equally to the final

estimate.

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 127

0.001 0.005 0.01 0.05 0.1
CV

0

5

10

15
M

SE

(a) Mean square error as a function of process

noise standard deviation, σCV.

10 15 20 25 30
0

5

10

15

20

25

CV

M
SE EKF

UKF
ENKF

PF

SKF
MKF
αKF

(b) Mean square error as a function of measure-

ment noise standard deviation σr.

Figure 4.5: Mean square error as a function of process and measurement noise pa-

rameters, where the exact parameters are known to the filter. The legend given is

shared by both figures.

4.5.2 Options Pricing

We also consider a problem from options pricing. In finance, an option is a derivative

security which gives the holder a right to buy/sell (call/put option) the underlying

asset at a certain price on or before a specific date. The underlying asset can be,

for example, a stock. The price and date are called the strike price and expiry date

respectively. The value of the option, called the premium, depends on a number

of factors. Let C and P denote the call and put prices. We use σ and r to denote

volatility and risk-free interest rate, respectively. The values of these variables are not

directly observed and need to be estimated. Let S denote the price of the underlying

asset and X the strike price. Finally, let tm denote the time to maturity; this is the

time difference between the purchase and expiry dates which is written as a fraction

of a year. For example, an option which expires in two months will have tm = 1/6.

Accurate pricing of options is an important problem in mathematical finance. For

a European style option, the price as a function of these parameters can be modeled

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 128

160 165 170 175 180 185 190 195 200 205 210
0.1

0.12

0.14

0.16

0.18

0.2

0.22

time

V
ol

at
ili

ty

Ground Truth
EKF
UKF
MKF

Figure 4.6: Volatility estimation performance of various filtering schemes (based on

Option 1). The estimates are plotted along with the ground truth. Best viewed in

color.

using the well-known Black-Scholes equation [60]

d1 =
log(S/X) + (r + σ2/2)tm

σ
√
tm

, d2 = d1 − σ
√
tm

C = SΦ(d1)−Xe−rtmΦ(d2)

P = −SΦ(−d1) +Xe−rtmΦ(−d2). (4.53)

Following the approach of [88], let xt = [σt rt]
> be the state and yt = [Ct Pt]

> be the

measurement. We therefore have the following state space representation

xt = xt−1 +wt , wt ∼ N(0,Q),

yt = h(xt) + vt , vt ∼ N(0,R), (4.54)

where the nonlinear mapping h(·) is given by Eq. (4.53). In this case we model the

process and measurement noises with time-invariant covariance matrices Q and R.

We consider two tasks: 1) predicting the one-step ahead prices, and 2) estimating the

values of hidden state variables. This problem is also considered in [109] to assess the

performance of particle filtering algorithms.

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 129

Table 4.3: Mean Absolute Error (MAE) values of various filtering schemes for three

different call/put option pairs; calculated for σQ = 10−2. For Option 3, EKF loses

track so MAE is not reported.

EKF UKF PF SKF MKF

Option 1

MAE

Call 0.1352 0.0788 0.0663 0.0658 0.0654

Put 0.1528 0.0789 0.0668 0.0642 0.0654

Option 2

MAE

Call 0.0425 0.0354 0.0329 0.0312 0.0319

Put 0.0478 0.0355 0.0340 0.0368 0.0331

Option 3

MAE

Call - 0.2155 0.1584 0.1573 0.1586

Put - 0.2158 0.1579 0.1574 0.1586

We use the Black-Scholes model as the ground truth. In order to synthesize

the data, we use historical values of VIX (CBOEINDEX:VIX), which measures the

volatility of S&P 500 companies. From this list we pick Microsoft (NASDAQ:MSFT),

Apple (NASDAQ:AAPL), and IBM (NYSE:IBM) as underlying assets and use their

historical prices. The interest rate comes from a state-space model with a process

noise of zero mean and variance 10−4. We set σQ = σR = 10−2. In Table 4.3 we

show the next-day prediction performance of all algorithms. We can see that the

prediction performance improves as we move towards MKF. This again shows the

difference between Gaussian approximations of the methods we employ. For MKF

and PF we used 103 particles; however we once again note that MKF can achieve

this performance without resampling, and it can leverage adaptive sampling to reduce

sample size. On the other hand, for SKF we need to use a large number of particles per

iterations (around 1, 000). Even though this gives better results then EKF and UKF it

is much slower than MKF and PF, and its performance can vary significantly between

iterations. On the other hand, since the measurement noise is small, choosing α < 1

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 130

for αKF does not provide improvement over MKF in this case, which is consistent

with our previous discussion. Therefore α = 1 is the best choice in this case.

Figure 4.6 shows the volatility estimation for three filters. EKF tends to over/under-

shoot and UKF is significantly better in that respect. However, MKF improves on

these two, giving the most robust estimates. We report that the plot of SKF was

similar to MKF. Also, as with the target tracking experiments, MKF has better per-

formance than SKF, which agrees with the observation that Expectation Propagation

typically outperforms Variational Inference for unimodal posteriors.

4.6 Conclusion

We have considered nonlinear Kalman filtering problem from the lens of divergence

minimization. In particular we introduced three algorithms which directly mini-

mize the forward and reverse Kullback-Leibler divergences, as well as the alpha

divergence—the last divergence being a generalization of the previous two. While

our algorithms are based on sampling techniques, our end goal was finding an op-

timal parametric distribution. We also showed how joint Gaussian assumed density

filters such as the EKF and UKF optimize an approximation to the variational lower

bound, meaning they only give approximately optimal solutions for the forward KL

divergence.

We have conducted experiments to test the proposed methods on radar and sensor

network problems, as well as options pricing. In addition to promising performance,

we showed that we can obtain filters which are robust to strong measurement noise.

The work here can serve as a building block for designing a class of filters which

optimize a given divergence based on different choices of parametric densities. For

example, it is possible to consider heavy-tailed parametric densities or multimodal

densities and build dynamic filters on top of this.

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 131

4.7 Appendix to Chapter 4

4.7.1 Proof of Theorem 1

The joint Gaussian ADF corresponds to f(x) ≈ g(x); this approximation is con-

structed from p(yt|xt) in (4.8), which is Gaussian with µy|x = µy + ΣyxΣ
−1
xx (xt−µx)

and Σy|x = Σyy −ΣyxΣ
−1
xxΣxy. This yields

g(xt) = −1

2
(ỹt −ΣyxΣ

−1
xxxt)

>R−1
t (ỹt −ΣyxΣ

−1
xxxt) (4.55)

where ỹt = yt − µy + ΣyxΣ
−1
xxµx. Note that under Eq. (4.8) we have p(xt) ∼

N(µx,Σxx), and let q(xt) ∼ N(µt,Σt). Substituting g(xt) to Eq. (4.26) the expec-

tations are now evaluated as

−Eq[log q(xt)] =
1

2
log |Σt|

−Eq[log p(xt)] = −1

2
µ>t Σ−1

xxµt −
1

2
tr{Σ−1

xxΣt}+ µtΣ
−1
xxµx

−1

2
Eq[g(xt)] = −1

2
µ>t Σ−1

xxΣxyR
−1
t ΣyxΣ

−1
xxµt

− 1

2
tr{(Σ−1

xxΣxyR
−1
t ΣyxΣ

−1
xx)Σt}

+ µ>t Σ−1
xxΣxyR

−1
t ỹt . (4.56)

The posterior parameters are found by solving ∇µtL[q(xt)] = 0 and ∇ΣtL[q(xt)] = 0.

Differentiating the terms in Eq. (4.56) we get

Σt = [Σ−1
xx + Σ−1

xxΣxyR
−1
t ΣyxΣ

−1
xx]−1 (4.57)

µt = Σt(Σ
−1
xxµx + Σ−1

xxΣxyR
−1
t ỹt) . (4.58)

The Matrix Inversion Lemma asserts

[M1 +M2M3M4]−1 = M−1
1 −M−1

1 M2[M−1
3 +M4M

−1
1 M2]−1M4M

−1
1 .

Applying this to Eq. (4.57) we obtain

Σt = Σxx −ΣxxΣ
−1
xxΣxy(ΣyxΣ

−1
xxΣxxΣ

−1
xxΣxy +Rt)ΣyxΣ

−1
xxΣxx

= Σxx −ΣxyΣ
−1
yy ΣyyΣ

−1
yy Σyx . (4.59)

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 132

Substituting Eq. (4.59) into Eq. (4.58) and expanding we get

µt = µx −ΣxyΣ
−1
yy ΣyxΣ

−1
xxµx + ΣxyR

−1
t ỹt −ΣxyΣ

−1
yy ΣyxΣ

−1
xxΣxyR

−1
t ỹt

= µx −ΣxyΣ
−1
yy ΣyxΣ

−1
xxµx + (I −ΣxxΣ

−1
yy ΣyxΣ

−1
xx)ΣxyR

−1
t ỹt

= µx −ΣxyΣ
−1
yy ΣyxΣ

−1
xxµx + ΣxyΣ

−1
yy ỹt

= µx + ΣxyΣ
−1
yy (yt − µy) . (4.60)

Note the third line follows from the identity ΣxyΣ
−1
yy = (I−ΣxyΣ

−1
yy ΣyxΣ

−1
xx)ΣxyR

−1
t

which can be verified with straightforward manipulation. Matching the terms in Eq.

(4.12) with Eq. (4.60) and Eq. (4.59) we obtain the updates in Eq. (4.11). �

4.7.2 Proof of Corollary 2

The proof is similar to that of Theorem 1, therefore we highlight the key points. We

change the notation to p(xt) ∼ N(µ,Σ) and q(xt) ∼ N(µt,Σt). We employ a first-

order Taylor series expansion around prior mean: h(xt) ≈ h(µ) + Ht(µ)(xt − µ)

where Ht(µ) is the Jacobian. Define ỹt = yt − h(µ) +Ht(µ)µ. Plugging these into

the variational lower bound in Eq. (4.26) and differentiating we obtain

Σt = (Σ−1 +H>t R
−1
t Ht)

−1
, (4.61)

µt = Σt (Σ−1µ+H>t R
−1
t ỹt) . (4.62)

Once again, using the matrix inversion lemma we get

Σt = Σ−KtStK
>
t , (4.63)

where St = HtΣH
>
t +Rt and Kt = ΣH>t St

−1. Plugging Eq. (4.63) in Eq. (4.62)

and expanding the multiplication we get

µt = µ+ ΣH>t R
−1
t ỹt −KtH

>
t µ−KtHtΣH

>
t R

−1
t ỹt

= µ−KtH
>
t µ+ (I −KtHt)ΣH

>
t R

−1
t ỹ

= µ−KtH
>
t µ+Ktỹt

= µ+Kt(yt − ht(µ)) (4.64)

CHAPTER 4. NONLINEAR KALMAN FILTERING WITH DIVERGENCE
MINIMIZATION 133

where the first and third lines utilize the identities Σt = Σ − KtHtΣ and Kt =

(I−KtHt)ΣH
>
t R

−1
t respectively. We see that Eq. (4.64) and Eq. (4.63) correspond

to the EKF update equations. �

134

Part III

AUC Maximization

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 135

Chapter 5

Mini-Batch AUC Maximization

5.1 Introduction

The focus of the previous chapters have been on time series analysis: The Collab-

orative Kalman Filter of Chapter 2 is a method to predict the missing values of a

continuous or discrete valued dyadic process. Online Forecasting Matrix Factoriza-

tion in Chapter 3 is concerned with forecasting the future values of sparse and high

dimensional time series. On the other hand, the previous Chapter 4 is about the more

general nonlinear Kalman filtering problem. In this chapter we turn our attention to

a somewhat more traditional machine learning problem, which is within the binary

classification framework. In particular, given a set of positive and negative inputs,

we are concerned with building a scoring system, such that the positive samples are

ranked higher than the negative ones.

Historically the problem has been studied extensively in signal processing liter-

ature [92], in particular for radars, as missing the presence of a target (miss detec-

tion) could have dire consequences. In such a setting, a received signal is assigned

a score, which is then compared against a threshold to rule if a target is present.

The receiver operating characteristics (ROC) curve plots the ratio of true positives

(detection) to false positives (false alarm) as a function of this threshold, and pro-

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 136

vides information about the behavior of the system. The area under the ROC curve

(AUC) is a threshold-independent metric which measures the fraction of times a pos-

itive instance is ranked higher than a negative one. Therefore, this problem is also

known as the bipartite ranking or AUC maximization problem; the latter being the

title of this chapter. This has a wide variety of applications such as, for example,

imaging [77], dictionary learning [26], signal detection [62], and noise-enhanced de-

tection [24], [25], [10].

The AUC maximization problem is not limited to traditional applications. In

fact, is has an important place in modern machine learning. Important subfields

include cost-sensitive and imbalanced learning [56], [22], [76]. In the latter, one is

given a dataset where the number of negative samples is dominating. This means

a classifier which predicts all incoming instances to be negative will have very high

prediction accuracy. On the other hand, it will have an AUC of zero. This is worse

than random guessing, which would give 0.5, and so the AUC can be a better choice

for performance metric, and devising methods to achieve higher AUC is a meaningful

goal. For this reason, the AUC metric is heavily used for website ad click prediction

problems [82], where only a very small fraction of web history contains ads clicked by

visitors. In this case, a system with high AUC is the one which can distinguish the

ads that are relevant for a user, whereas a simple classifier that maximizes prediction

accuracy may simply predict all ads as uninteresting.

Given that AUC is the primary performance measure for many problems, it is

useful to devise algorithms that directly optimize it during the training phase. AUC

maximization has been studied within the context of well-known machine learning

methods, such as support vector machines [17], boosting [38], and decision trees [37].

However, most of these traditional approaches do not scale with data size. This is

because the AUC is defined over the positive/negative instance pairs which has a

growth rate of O(N+N−). Moreover, the AUC itself is a sum of indicator functions,

and its direct optimization is NP-hard.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 137

Recent research in this direction increasingly focuses on convex surrogate loss

functions to represent the AUC. This enables one to use stochastic gradient methods

to efficiently learn a ranking function [117]. The first work in this direction is [118],

where an online AUC maximization method based on proxy hinge loss is proposed.

Later, [39] uses the pairwise squared loss function, which eliminates the need for

buffering previous instances; [32] proposes adaptive subgradient methods which can

handle sparse inputs, while [58], [59] consider the nonlinear AUC maximization prob-

lem using kernel and multiple-kernel methods. Most recently, [31] focuses on scalable

kernel methods.

While these approaches can significantly increase scalability, for very large datasets

their sequential nature can still be problematic. One widely used technique—particularly

for training deep neural networks on large datasets [42]—is processing data in mini-

batches. This is different than the previous chapters in this thesis, where the focus

was on sequential processing as the data was arriving as a stream. Here we relax this

assumption and consider data available in batch. In this case, AUC maximization

using mini-batches of data is desirable.

In this chapter we propose a novel algorithm for fast AUC maximization. Our

approach, called Mini-Batch AUC Maximization (MBA) is based on a convex relax-

ation of the AUC function. However instead of using stochastic gradients, it uses

the first and second order U-statistics of pairwise differences. A distinctive feature of

our approach is it being learning-rate free, contrary to mini-batch gradient descent

methods. This is important, as tuning the step size a priori is a difficult task, and

generic approaches such as cross-validation are inefficient when the dataset is large.

One of the main challenges of AUC optimization is, even if a convex relaxation is

applied, the resulting problem is still defined over pairs of positive/negative samples,

whose optimization has a sample cost of O(N+N−). This is prohibitively large even

for moderate datasets. Since mini-batch optimization is based on sub-sampling, it

is important to understand the behavior of MBA as a function of sample size. Our

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 138

theoretical analysis reveals that, the solution returned by MBA concentrates around

the all-pairs solution exponentially fast. Unlike previous work, our proofs are based

on the more recent results on matrix concentration [107], and quite straightforward.

This shows how the U-processes —which were shown to be useful for ranking problems

[30]—can be utilized to obtain a scalable mini-batch algorithm.

This chapter is organized as follows. In Section 5.2 we start with an overview

of the bipartite ranking problem and our learning setup. In Section 5.3 we develop

the MBA algorithm and in Section 5.4 we present the theoretical analysis. Section

5.6 contains extensive experiments including a simulation study, fifteen datasets from

UCI/LIBSVM repositories, and three large-scale commercial web click data. We

conclude in Section 5.7.

5.2 Background

A widely studied problem in machine learning is binary classification, in which for

each given input x ∈ X there is a a corresponding label y ∈ Y = {+,−}. In the

learning setup, a set of labeled data is provided for training, and the aim is to make

accurate predictions on the unknown inputs. As usual in such settings, we assume

that the samples provided for training are iid with the following unknown distributions

1

[X | y = +] ∼ P+ , [X | y = −] ∼ P− (5.1)

Since the distributions are unknown, a model f(·) is fitted to the training data

using a specific loss function, such as cross-entropy loss for logistic regression and

hinge loss for support vector machine. Here, the loss function we focus on is the

Area Under Receiver Operating Characteristics (ROC) Curve, which is abbreviated

1Here we consider the case with no label noise, however the modification to that case is straight-

forward.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 139

as AUC. Its functional form is given by

AUC = Ex+∼P+

x−∼P−

[
1{f(x+)− f(x−) > 0}

]
(5.2)

which measures how well f(·) ranks a positive sample higher than a negative one. Eq.

(5.2) shows that the AUC is defined as the expectation of an indicator function. This

means the corresponding empirical risk function will be a sum of indicators, resulting

in an NP-hard optimization problem. For this reason we first discuss a relaxation of

the original problem using convex surrogate loss functions.

Replacing 1[f(x+)− f(x−) > 0] in Eq. (5.2) with the pairwise convex surrogate

loss φ(x+,x−) = φ(f(x+)−f(x−)), the aim now becomes to minimize the φ-risk [87]

Rφ(f) = Ex+∼P+

x−∼P−

[
φ(f(x+)− f(x−))

]
. (5.3)

This is the Bayes risk of the scoring function [9]. There are many possible choices

for surrogate function; some common choices are the pairwise squared loss (PSL),

pairwise hinge loss (PHL), pairwise exponential loss (PEL), and pairwise logistic loss

(PLL) [40]:

φPSL(t) = (1− t)2 , φPHL(t) = max (0, 1− t) , (5.4)

φPEL(t) = exp (−t) , φPLL(t) = log (1 + exp (−t)) ,

where t := f(x+) − f(x−) is the pairwise scoring difference. Among the recent

works on AUC optimization, [118] and [67] use PHL, whereas [39] and [32] focus

on PSL. On the other hand, all these studies are focused on deriving a stochastic

gradient-based algorithm. Our choice here is the PSL function for two reasons: (i) its

consistency with the original AUC loss is proven [40], and (ii) the structure of PSL

allows for a mini-batch algorithm, for which theoretical guarantees can be derived.

Unlike stochastic gradient methods, this formulation is learning rate-free, which quite

notably increases its practicality.

We now take one further step and assume that the scoring function is linear in

the original input space; however we will discuss nonlinear extensions in Section 5.3.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 140

In this case we have the further simplification f(x) = w>x and the φ-risk becomes

Rφ(f) = Ex+∼P+

x−∼P−

[(
1−w>(x+ − x−)

)2
]

= 1− 2w>E
[
(x+ − x−)

]
+w>E

[
(x+ − x−)(x+ − x−)>

]
w

= 1− 2w>µ+w>Σw, (5.5)

where we defined xdiff := (x+−x−), and µ = E[xdiff] and Σ = E[xdiff x
>
diff]. Note that

µ and Σ characterize the first and second moments of xdiff—the pairwise difference.

This is important because the quality of bipartite ranking does not directly depend on

the positive and negative inputs, but the differences between them. This observation

will form the basis of our mini-batch algorithm in Section 5.3. Finally, by definition,

Σ is positive semi-definite and when it is positive definite, there is a unique w? that

achieves the minimum Rφ(f).

At this point, optimizing either one of the objectives in Eq. (5.2) or Eq. (5.5)

would require knowledge of P+ and P−, which is unavailable. Instead we are given

iid samples from these distributions, as we mentioned in the beginning. The task is

to learn a score function which should yield high AUC on the test data. Here the

corresponding empirical AUC metric is

AUC =

N+∑
i=1

N−∑
j=1

1{f(x+
i)− f(x−j) > 0} (5.6)

which replaces the expectation in Eq. (5.2) with sample-base average. As mentioned

before, direct optimization of the empirical AUC is NP-hard as it is a sum of in-

dicators, furthermore the sum itself contains pairs that grow quadratically with the

training data. To sidestep this difficulty, a surrogate loss function φ(·) can be chosen

to replace the Eq. (5.6), as we did for (5.2). In particular, the empirical φ-risk (c.f.

Eq. (5.3)) has the following general form

R̂φ(f) =
1

2N+N−

N+∑
i=1

N−∑
j=1

φ(f(x+
i)− f(x−j)) . (5.7)

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 141

Based on this final equation we will derive the MBA algorithm in the next section.

5.3 Mini-Batch AUC Maximization

Using the pairwise squared loss function we obtained a convex optimization problem

in place of the original NP-hard problem; however, Eq. (5.3) still cannot be used as it

relies on the data generating distribution P . In practical settings, we are only given a

set of positive and negative instances sampled from P , written S+ = {x+
1 , . . . ,x

+
N+
},

S− = {x−1 , . . . ,x−N−}. We therefore substituted the empirical risk in Eq. (5.7) which

can be more easily optimized. The term N := N+N− corresponds to the total number

of pairs in the data. Similar to the φ-risk, optimizing the empirical risk yields a

convex problem; but the number of pairs grows quadratic in the number of data

points. Therefore, even for moderate datasets, minimizing the empirical risk in Eq.

(5.7) becomes intractable.

We now consider a linear scoring function of form f(x) = w>x which allows us

to write Eq. (5.7) as

R̂φ(w) = −w>
[

1

N+N−

N+∑
i=1

N−∑
j=1

(x+
i − x−j)

]

+
1

2
w>

[
1

N+N−

N+∑
i=1

N−∑
j=1

(x+
i − x−j)(x+

i − x−j)>

]
w (5.8)

where we can define

µN =
1

N+N−

N+∑
i=1

N−∑
j=1

(x+
i − x−j)

ΣN =
1

N+N−

N+∑
i=1

N−∑
j=1

(x+
i − x−j) (x+

i − x−j)>. (5.9)

The variables in Eq. (5.9) are sample-based approximations of the first and second

moments of xdiff, i.e. they are approximations of µ and Σ in Eq. (5.3). Overall, the

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 142

optimization problem to be solved is

wN = arg min
w

1

2
w>ΣNw −w>µN +REL(w), (5.10)

where REL(w) := λ1 ‖w‖1 + (1/2)λ2 ‖w‖2
2 is the elastic net regularizer [120], which

we add to prevent overfitting. Note that, unlike Eq. (5.3), there is always a unique

optimum since the elastic net penalty makes the objective strictly convex. In addition,

this regularizer encourages a solution which combines small `2 norm with sparsity.

By substituting appropriate values for λ1 and λ2 we also recover ridge and lasso

regression. In Section 5.6 we report experiment results for all three cases.

Since it is impractical to use all N samples, we propose to use mini-batches to

obtain estimates of the moments. This is a simple process which only requires the

computation of U-statistics. Note that, given a parameter θ and symmetric measur-

able function h which satisfies θ = h(X1, . . . , Xm), the corresponding U-statistic is

given by

Un =

(
n

m

)−1 ∑
Cn,m

h(X1, . . . , Xn), (5.11)

where Cn,m is the set of all length-m combinations with increasing indices. As the

name implies the U-statistics are unbiased, so θ = E[Un], and provide best unbiased

estimators [110]. On the other hand, a U-statistic of the second moment matrix ΣN

also provides a building block to get an exponential concentration bound [107].2 Our

theoretical analysis will use this property.

We now describe the MBA algorithm. Let T be the total number of rounds. At

round t we sample B positive and B negative samples from the entire population with

replacement. Let S+
t and S−t be the arrays of sample indices and let St be the array

of pairs stored as tuples of the form (S+
t (i),S−t (i))—note that we do not form the

Cartesian product. The expressions for U-statistics of the first and second moments

2Note that for a given training set with N pairs, the quantity ΣN is an unknown constant.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 143

simplify from Eq. (5.11) as

µt :=
1

B

∑
(i,j)∈St

(x+
i − x−j)

Σt :=
1

B

∑
(i,j)∈St

(x+
i − x−j) (x+

i − x−j)>. (5.12)

Finally let S = BT denote the total number of pairs sampled by our algorithm.

We also introduce the notation S1:T for the entire array of pairs sampled during all

rounds. The overall moment approximations are therefore

µS :=
1

BT

∑
(i,j)∈S1:T

(x+
i − x−j)

ΣS :=
1

BT

∑
(i,j)∈S1:T

(x+
i − x−j) (x+

i − x−j)>, (5.13)

and the optimization problem constructed by MBA is

wS = arg min
w

1

2
w>ΣSw −w>µS +REL(w). (5.14)

This is the function MBA aims to construct and solve, which itself is an approximation

of the global risk minimization problem in Eq. (5.3). On the other hand, stochastic

gradient-based approaches make local gradient approximations of the global function

and seek a solution that way. As we will show in the experiments, this is an important

difference and MBA can find better solutions since it constructs a global problem first.

MBA is summarized in Algorithm 5.1.

Mini-batch optimization is heavily employed in machine learning, including train-

ing of deep neural networks [42] and scalable Bayesian inference [55]. The main benefit

of using mini-batches is, it is significantly faster compared to the sequential approach.

Online methods for optimizing AUC, however, require sequential processing, as the

parameters are updated per input. This is the main reason MBA offers a significant

improvement in speed. In addition to this, MBA offers several other advantages.

Since sampling pairs and computing U-statistics is an isolated process, MBA can

easily be distributed across machines, which can work in an asynchronous manner.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 144

Therefore MBA is suitable for cluster computing. Secondly, streaming and/or non-

stationary data processing can be incorporated into the MBA framework, as it can

process streams as blocks and give larger weights to more recent ones.

Remark: From an algorithmic perspective, as far as the sample size is concerned

the only important parameter is S; we introduced B and T to further manage com-

putational resources. For instance when S samples are too large to fit into memory

we can instead use B samples in T rounds. Alternatively, S samples can be obtained

by T machines with B samples per machine in parallel. In any case, we will have S

uniform pairs sampled from the entire set.

5.4 Theoretical Analysis

Solving the regularized empirical risk minimization problem in Eq. (5.10) requires

processing N pairwise samples. As this number grows quadratically with the number

of positive and negative samples, it is often not possible to do this exactly. The

proposed MBA addresses this problem by approximating the N -pair problem with

an S-pair one, where S � N samples are collected in mini-batches. This results in

the problem in Eq. (5.14). Clearly the success of this approach depends on how well

the second problem can approximate the first, while keeping S � N . In this section

we provide a rigorous argument in favor of MBA.

Formally, given N samples we can solve the following regularized empirical risk

minimization problem

wN = arg min
w

1

2
w>ΣNw −w>µN +REL(w)

however as N can be very large we instead solve

wS = arg min
w

1

2
w>ΣSw −w>µS +REL(w)

where S uniform samples are used. We would like to show that the two solutions

are close to each other, while S � N . We next derive a bound for the closeness of

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 145

the solutions. A natural measure of this is the Euclidean distance d(wN − wS) =

‖wN −wS‖2
2 which is also used by recent work on matrix sketching [91]. Therefore,

Theorem 2 of this section gives a high probability bound in terms of the Euclidean

distance. This is done by bounding the difference between final costs |LN(wN) −

LN(wS)|, which is a measure regret [23].

We define the following two functions for convenience,

LN(w) =
1

2
w>ΣNw

> −w>µN + λ1 ‖w‖1 +
λ2

2
‖w‖2

2

LS(w) =
1

2
w>ΣSw

> −w>µS + λ1 ‖w‖1 +
λ2

2
‖w‖2

2 (5.15)

and let wN and wS denote the unique minimizers as in Eqs. (5.10) and (5.14). Since

LN(w) is strictly convex, for a fixed δ there exists an ε such that

|LN(wN)− LN(wS)| ≤ ε =⇒ ‖wN −wS‖2 ≤ δ. (5.16)

Clearly, ε is the infimum of LN(·) over the circle centered at wN with radius δ.

Consequently, one can focus on bounding the objective function, and this will yield

the desired bound on the solutions. We now introduce `2-norm bounds on the data

and weight vectors: For any given input we assume that ‖x‖2
2 ≤ Rx;

3 next, define

the upper bound on weights such that max{‖wN‖2
2 , ‖wS‖2

2} ≤ Rw. Note here that

Rw < ∞ is guaranteed by the `2 regularization of the elastic net. We define the

difference between the two objective functions in Eq. (5.15) to be

∆(w) := LS(w)− LN(w) =
1

2
w>(ΣS −ΣN)w +w>(µN − µS) . (5.17)

Two important quantities of interest are

∆Σ = ΣS −ΣN

∆σ = (w1 −w2)>(µN − µS) . (5.18)

3This is a mild assumption since training data is typically normalized.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 146

where ∆σ is defined for arbitrary w1,w2 such that ‖w1‖2
2, ‖w2‖2

2 ≤ Rw. Defining

∆w := w1−w2 we write ∆σ = ∆>w(µN −µS) Importantly, the difference |LN(wN)−

LN(wS)| can be bounded through ∆(w), which in turn can be bounded through ∆Σ

and ∆σ. The following lemma provides two concentration bounds for ∆Σ and ∆σ.

Lemma 1: Let ‖∆Σ‖2 and |∆σ| denote the spectral and `1 norms respectively. For

γ > 0 and sample size S,

(i) P (‖∆Σ‖2 > γ) ≤ 2d exp

{
−S γ2

4Rx ‖ΣN‖2 + (8/3)γRx

}
(ii) P (|∆σ| > γ) ≤ 2 exp

{
−S γ2

4Rw ‖ΣN‖2 + (8/3)γ
√
RxRw

}
Proof: We will use the shorthand ∆w = wN − wS, ∆µ = µN − µS, and ∆xs =

(x+
i − x−j) where S[s] = (i, j). We also recall the Bernstein inequality for a d × d

symmetric, random matrix Z =
∑

sEs and threshold γ

P [‖Z‖2 > γ] ≤ 2d exp

(
−γ2/2

V(Z) + Lγ/3

)
(5.19)

where ‖Es‖ ≤ L. The scalar version is recovered by setting d = 1.

(i) This part follows the argument for the sample covariance estimator in [107]. For

the matrix we can write ∆Σ = ΣS −ΣN =
∑

s∈S
1
S

[∆xs∆x
>
s −ΣN]. We denote each

summand by Es = 1
S

[∆xs∆x
>
s −ΣN]. It then follows from triangle inequality that

‖Es‖2 ≤
1

S

[∥∥∆xs∆x
>
s

∥∥
2

+ ‖ΣN‖2

]
=

4Rx

S
. (5.20)

As each summand is centered and iid, the variance of sum decomposes as V(∆Σ) =∥∥∑
s∈S E[E2

s]
∥∥. We note that the presence of ΣN in the summands does not hinder

independence, as this is just a constant quantity. For a single summand the second

moment can be bounded as

E[E2
s] =

1

S2
E
[
∆xs∆x

>
s −ΣN

]2
=

1

S2

[
E
[
‖∆xs‖2

2 ∆xs∆x
>
s

]
−Σ2

N

]
� 1

S2

[
2RxΣN −Σ2

N

]
� 2RxΣN

S2
, (5.21)

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 147

from which the variance inequality V(∆Σ) ≤ 2Rx‖ΣN‖2
S

follows. Substituting Eqs.

(5.20) and (5.21) into Eq. (5.19) yields the result.

(ii) For this part, the scalar version of Eq. (5.19) can be used. We have ∆σ =

∆>w(µN − µS) =
∑

s∈S
1
S

[
∆>w(µN − xs)

]
where we denote each scalar summand as

es = 1
S

[
∆>w(µN − xs)

]
. Once again it is straightforward to verify each summand is

centered and iid. An `1-norm bound can be obtained by Cauchy-Schwarz inequality

|es| =
∣∣∣∣ 1S∆>w(µN − xs)

∣∣∣∣
≤ 1

S
‖∆w‖2 ‖µN − xs‖2

=
4
√
RxRw

S
. (5.22)

where for the third line we used the upper bounds ‖∆w‖2 ≤ 2
√
Rw and ‖µN − xs‖2 ≤

2
√
Rx. For the variance we once again have the decomposition V(∆σ) =

∑
s∈S E[e2

s]

and for a single term we have

E[e2
s] = E

[[
1

S
∆>w(µN − xs)

]2
]

=
1

S2

[
E[∆>wxsx

>
s ∆w] +

1

S2
E[∆>wµNµ

>
N∆w]− 1

S2
E[2∆>wxsµ

>
N∆w]

]
=

1

S2
∆>wΣN∆w −

1

S2
∆>wµNµ

>
N∆w

≤ 2Rw ‖ΣN‖2

S2
(5.23)

where for the last line we dropped the negative term and used the upper bounds

‖∆w‖2
2 ≤ 2Rw and ∆>wΣN∆w ≤ ‖∆w‖2

2‖ΣN‖2
2. Note that the first upper bound

holds by triangle inequality, and the second one follows from the maximum eigenvalue

bound. Plugging Eqs. (5.22) and (5.23) into Eq. (5.19) we get the desired result. �

Both parts of Lemma 1 utilize the unbiased statistics of µN and ΣN and use

the scalar and matrix Bernstein inequalities. This is made possible by the unbiased

sampling procedure, which is the mean reason we use sampling with repetition. Using

Lemma 1 we can now state our main result.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 148

Theorem 2: Let wS be the solution returned by MBA using S samples. For ε > 0,

if

S ≥ max

{
log(4d/p)

[48R2
w ‖ΣN‖2 + 16εRw]Rx

3ε2
, log(4/p)

48Rw ‖ΣN‖2 + 16ε
√
RxRw

3ε2

}
(5.24)

then ‖wN −wS‖2 ≤ δ with probability at least 1− p.

Proof: The starting point of the proof is the equality

LS(wN)− LS(wS) = LN(wN) + ∆(wN)− LN(wS)−∆(wS) . (5.25)

Here by construction

LN(wS)− LN(wN) = LN(wS)− arg min
w
LN(w) ≥ 0 (5.26)

LS(wN)− LS(wS) = LS(wN)− arg min
w
LS(w) ≥ 0 (5.27)

and we obtain

0 ≤ LN(wS)− LN(wN) ≤ ∆(wN)−∆(wS) . (5.28)

The left hand size of the inequality is a direct consequence of Eq. (5.26). For the

right-hand side note that Eq. (5.25) can be manipulated as

LN(wS)− LN(wN) = ∆(wN)−∆(wS)− [LS(wN)− LS(wS)]

≤ ∆(wN)−∆(wS) (5.29)

where the second line follows from [LS(wN) − LS(wS)] ≥ 0 due to Eq. (5.27). It is

therefore sufficient to show that ∆(wN)−∆(wS) ≤ ε with high probability; the result

then follows from the strict convexity argument. Further expand this bounding term

as

∆(wN)−∆(wS) =
1

2
w>N(ΣS −ΣN)wN −wN(µN − µS)

− 1

2
w>N(ΣS −ΣN)wN +w>S (µN − µS)

=
1

2
wN

>∆ΣwN −
1

2
wS
>∆ΣwS + (wS −wN)>(µN − µS) (5.30)

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 149

where we used ∆Σ = ΣS −ΣN in the second line. Using triangle inequality we can

write

|∆(wN)−∆(wS)| ≤
∣∣∣∣12wN

>∆ΣwN −
1

2
wS
>∆ΣwS

∣∣∣∣+

∣∣∣∣(wS −wN)>(µN − µS)

∣∣∣∣
(5.31)

and uniformly bound the terms on the right-hand side as:

• Quadratic:
∣∣1

2
wN

>∆ΣwN − 1
2
wS
>∆ΣwS

∣∣ < ε
2

• Linear:
∣∣(wS −wN)>(µN − µS)

∣∣ < ε
2

For the quadratic term we have∣∣∣∣12wN
>∆ΣwN −

1

2
wS
>∆ΣwS

∣∣∣∣ ≤ 1

2

∣∣wN
>∆ΣwN

∣∣+
1

2

∣∣wS
>∆ΣwS

∣∣
≤ 1

2
Rw ‖∆Σ‖2 +

1

2
Rw ‖∆Σ‖2

= Rw ‖∆Σ‖2 . (5.32)

Here the first line is obtained via triangle inequality; for the second line we use

the maximum eigenvalue inequality w>∆Σw ≤ ‖w‖2
2 ‖∆Σ‖2. We now want to bound

‖∆Σ‖2 ≤ ε/(2Rw) with probability at least p/2. Applying Lemma 2(i) with threshold

γ = ε/(2Rw) and probability level p/2, we obtain the first term in Eq. (5.24).

Secondly, since ‖wS‖2
2 , ‖wN‖2

2 ≤ Rw the the bound for |∆σ| in Lemma 2(ii) is

directly applicable for the linear term, where we take w1 = wS and w2 = wN . This

means, we want to achieve |∆σ| ≤ ε/2 with probability at least p/2. Applying Lemma

2(ii) with threshold γ = ε/2 and probability level p/2, we obtain the second term in

Eq. (5.24). Since both terms are bounded with probability at least 1 − p/2, the

theorem now follows from the union bound. �

Theorem 2 shows that the number of samples S required to guarantee ‖wN −

wS‖2 ≤ δ with high probability does not depend on the total number of pairs N =

N+N− provided. Instead the sample size grows logarithmically with the feature size.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 150

This result is useful in that, even though the total number of pairs in the data is too

large, randomly sampling a small fraction guarantees a solution that is close to the

true solution.

Remark: It might at first seem unreasonable that S does not depend on N ;

but only on the input dimension d. The reason for this favorable result is that, the

given samples are fixed, from which uniform subsamples are obtained. So in this

context N is actually the support of the discrete distribution on samples. Since the

concentration inequalities do not depend on the support size, we do not have N in

Eq. (5.24).

While linear models are oftentimes quite competitive, in practice we can have

datasets that are not linearly separable; in such cases one is also concerned with de-

vising a nonlinear feature transform. In fact, for finite-dimensional transforms Theo-

rem 2 readily extends. Such transforms include, for example, polynomial features and

conjunctions, random Fourier features [93], and random shallow neural networks [94].

In more abstract terms, all these transformations are mappings from d dimensions to

F dimensions. Given such fixed transformation, the result of Theorem 2 still holds,

where we replace d by F . Therefore, when the input space is not good for a linear

ranking function, we can first apply a feature transform, and then the MBA can be

used without any modification. This nonlinear version of MBA is summarized in

Algorithm 5.2.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 151

5.5 Algorithms and Complexity

5.5.1 Linear Mini-Batch AUC Maximization

Algorithm 5.1 Linear Mini-Batch AUC Maximization

1: Input: X+, X− (positive and negative features)

2: B (mini-batch size), T (rounds), λ1, λ2 (regularization)

3: Output: w?

4: Initialize: µS ← 0 and ΣS ← 0.

5: // Accumulation

6: for t = 1, . . . , T do

7: Construct index set S+
t of size B sampling positive examples uniformly with

replacement.

8: Construct index set S−t of size B sampling negative examples uniformly with

replacement.

9: Construct St(i) = (S+
t (i),S−t (i)), i = 1, . . . , B.

10: µS ← µS + 1
BT

∑
(i,j)∈St [x

+
i − x−j]

11: ΣS ← ΣS + 1
BT

∑
(i,j)∈St [x

+
i − x−j] [x+

i − x−j]>

12: end for

13: // Global risk minimization

14: w? ← arg min
w

1
2
w>ΣSw

> −w>µS + λ1 ‖w‖1 + λ2
2
‖w‖2

2

15: Note: Here X+ and X− correspond to the d × N+ and d × N− dimensional

matrices of positive and negative instances. The indices in the sets S, S+ and S−

correspond to column numbers. Consequently, each vector x+
i or x−j is d× 1, µS

is d× 1, and ΣS is d× d.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 152

5.5.2 Nonlinear Mini-Batch AUC Maximization

Algorithm 5.2 Nonlinear Mini-Batch AUC Maximization

1: Input: X+, X− (positive and negative features)

2: B (mini-batch size), T (rounds), λ1, λ2 (regularization)

3: φ(·) (nonlinear feature transform)

4: Output: w?

5: Initialize: µS ← 0 and ΣS ← 0.

6: // Accumulation

7: for t = 1, . . . , T do

8: Construct index set S+
t of size B sampling positive examples uniformly with

replacement.

9: Construct index set S−t of size B sampling negative examples uniformly with

replacement.

10: Construct St(i) = (S+
t (i),S−t (i)), i = 1, . . . , B.

11: µS ← µS + 1
BT

∑
(i,j)∈St [φ(x+

i)− φ(x−j)]

12: ΣS ← ΣS + 1
BT

∑
(i,j)∈St [φ(x+

i)− φ(x−j)] [φ(x+
i)− φ(x−j)]>

13: end for

14: // Global risk minimization

15: w? ← arg min
w

1
2
w>ΣSw

> −w>µS + λ1 ‖w‖1 + λ2
2
‖w‖2

2

16: Note: Here X+ and X− correspond to the d × N+ and d × N− dimensional

matrices of positive and negative instances. The indices in the sets S, S+ and

S− correspond to column numbers. We apply the nonlinear feature transform

φ(·) : Rd → RF . Then, each vector φ(x+
i) or φ(x−j) is F × 1, µS is F × 1, and

ΣS is F × F .

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 153

5.5.3 Complexity Analysis

For the MBA algorithm there are two phases: The accumulation phase where the

samples are used to compute µS and ΣS and solution phase where we find the optimal

weight vector w? for the global risk minimization problem of Eq. (5.14). The latter

does not depend on the sample size S and it is polynomial in the feature dimensions

d. For instance when λ1 = 0 the solution can be found by matrix inversion which is

O(d3). Therefore the bottleneck is in the accumulation phase, where the covariance

matrix is computed. In particular when the features are dense the total cost of the

loop is O(Sd2) where S = BT is the total number of samples used. Therefore the

complexity of MBA is O(Sd2).

When the nonlinear version of MBA is used we instead get O(SF 2) as the only

difference is the feature dimensionality. This is the case when, for example, we use

random features approximating kernels, which give F dense features. Therefore the

complexity grows quadratically with feature dimension. With that said, the com-

plexity can also can be significantly lower if the input vectors are sparse; however

even there the resulting covariance matrix may have too many entries to store in the

memory.

Compared to this, the stochastic gradient descent (SGD) methods have an advan-

tage, as the complexity for S samples is O(Sd). Therefore SGD can be chosen when

the input dimension prohibitively high. On the other hand, if the input is sparse,

dimensionality reduction can first be applied to the inputs, which can then be fol-

lowed by MBA. An important advantage of MBA is that, there is no learning rate to

tune—unlike SGD. This can save significant tuning effort and cross-validation runs.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 154

5.6 Experiments

In this section we conduct four types of experiments to demonstrate the performance

benefits of MBA. In the first part we use simulation data from Gaussian mixtures

to investigate the performance of various methods; furthermore since we know the

data generating distribution, we can also compare with the theoretically optimum

Neyman-Pearson decision rule (reviewed in Appendix 5.8.1). Here we show that

MBA can achieve better performance with lower number of samples, corroborating

the theoretical analysis. For the second part, we experiment with 15 frequently used

benchmark datasets from the UCI4 and LIBSVM5 repositories; these datasets cover a

wide range of application domains and show MBA performs better than the competing

methods overall. We then use the same datasets in the third part to demonstrate how

the linear framework can be extended to account for nonlinear features. Finally we

consider large scale Click Through Rate (CTR) prediction problem with two publicly

available commercial datasets with tens of millions of samples. All datasets we use

are summarized in Table 5.1. For comparisons we use the following:

1. OLR: Online logistic regression based on SGD.

2. SOLR: Sparse online logistic regression [82].

3. OAM: Online AUC Maximization—the first proposed online AUC maximization

algorithm using stochastic gradients [118]. Uses PHL.

4. AdaAUC: Adaptive gradient AUC maximization algorithm in [32]. Proposed

as an improvement to the One Pass AUC optimization algorithm in [39]. Uses

PSL.

5. MB-PHL: Mini-batch gradient descent algorithm which uses PHL.

4https://archive.ics.uci.edu/ml

5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 155

6. MB-PSL: Mini-batch gradient descent algorithm which uses PSL.

7. MBA-`2: MBA with Tikhonov regularization.

8. MBA-`2: MBA with Lasso regularization.

9. MBA-EL: MBA with Elastic Net regularization.

MB-PHL and MB-PSL can be thought of a substitutions for OAM and AdaAUC for

larger datasets. which we use for the large datasets in this section.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 156

Table 5.1: Summary statistics of datasets used in experiments. For each dataset we

show the train/test sample size, feature size, and the ratio of negative samples to

positive samples in the training set.

Dataset # Samp. # Feat. T− / T+

a1a 1.6K / 30.9K 123 3.06

a9a 32.5K / 16.2K 123 3.15

amazon 750 / 750 10,000 2.33

bank 20.6K / 20.6K 100 7.88

codrna 29.8K / 29.8K 8 2.00

german 500 / 500 24 2.33

ijcnn 50K / 92K 22 9.30

madelon 2,000 / 600 500 1.00

mnist 60K / 10K 780 2.30

mushrooms 4K / 4K 112 0.93

phishing 5.5K / 5.5K 68 0.79

svmguide3 642 / 642 21 2.80

usps 7.2K / 2K 256 2.61

w1a 2.5K / 47.2K 300 33.40

w7a 25K / 25K 300 32.40

avazu app 12.6M / 2M 10,000 8.33

avazu site 23.6M / 2.6M 10,000 4.06

criteo 45.8M / 6M 10,000 2.92

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 157

5.6.1 Simulation Study

For the simulations we consider the binary hypothesis testing problem of Eq. (5.35),

which can represent, for example, a radar or telecommunication setting. In partic-

ular, we employ Gaussian mixtures as data generating distributions. Namely, for

hypothesis-i a K-component Gaussian mixture is given by

pi(x) =
K∑
k=1

cik (2π)−d/2 |Σik|−1/2×

exp

{
−1

2
(x− µik)>Σ−1

ik (x− µik)
}
, (5.33)

where the weights cik are coefficients on the probability simplex. This distribution is

completely characterized by the weights, means, and covariances. For hypothesis-i let

ci, µi and Σi denote the set of these parameters. For our experiments K ∈ {1, 2, 3}

and:

• k = 1: We set c0 = {1}, µ0 = {−0.1}, Σ0 = {I} and c1 = {1}, µ1 = {0.1},

Σ1 = {I}.

• k = 2: We set c0 = {0.9, 0.1}, µ0 = {−0.1,0.1}, Σ0 = {I, I} and c1 =

{0.1, 0.9}, µ1 = {−0.1,0.1}, Σ1 = {I, I}.

• k = 3: We set c0 = {0.8, 0.1, 0.1}, µ0 = {−0.1,0,0.1}, Σ0 = {I, I, I} and

c1 = {0.1, 0.1, 0.8}, µ1 = {−0.1,0,0.1}, Σ1 = {I, I, I}

As it can be seen the distributions we choose for the two hypotheses are symmetric

across the origin. As the number of components increase the distributions get less

interspersed and the problem becomes more challenging. All covariances are set to

identity; we finally note that the bold numbers for the mean sets correspond to a

vector of the bold entry replicated. For our experiments, for each value of K we form

50 training sets, where for each dataset we sample 20,000 points from the generative

distribution. Furthermore we create an imbalanced dataset, where roughly 90% of

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 158

the data has label 0 (i.e. sampled from hypothesis 0). We also create a separate test

set, with 100,000 samples and the same imbalance.

Since the generative distributions are assumed known in this setting, we can an-

alytically derive the Neyman-Pearson (NP) decision rule which maximizes the AUC.

For any given K, the NP rule computes the scores through p1(x)/p0(x). Note that,

this does not require any training data as the generating distributions are already

known. A particularly interesting case is K = 1. Here the log likelihood is 6

log
p1(x)

p0(x)
= x>(µ1 − µ0) +

1

2
(µ>0 µ0 − µ>1 µ1) (5.34)

Since the constant term does not affect AUC, we see that the optimum ranking rule

is a linear function of x. So for this specific case, the class of linear discriminants (i.e.

f(x) = w>x) is consistent [87].

For the comparisons in this section we use MBA-`2, ONLR, and AdaAUC, as the

latter two typically have the best competitive performance against the former. We run

the experiments for three different sample ratio (SR), namely SR ∈ {1%, 10%, 100%};

this represents the percentage of available data points used for training. As mentioned

above we average the generalization performance over 50 training samples, and report

the average values and standard deviations. Table 5.2 shows the resulting AUC values

and Figure 5.1 displays the corresponding ROC curves.

Firstly note that, as K increases, the AUC value achieved by the optimal NP

rule decreases; this shows that adding more mixture components progressively makes

the problem harder. As we increase the SR, all three learning algorithms improve,

as expected. However, we can see that the starting point for MBA is significantly

higher than the other two. In particular, AdaAUC is worse for small sample sizes.

This shows the difficulty of optimizing a bivariate loss function as opposed to the

univariate logistic loss of ONLR. The particular difficulty comes from selecting the

step size, and for smaller number of samples the stochastic gradient is inefficient.

6In fact the linearity holds for arbitrary Σ as long as it is shared by both hypotheses.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 159

Figure 5.1: The ROC curves obtained by the Neyman-Pearson detector and three

learning algorithms on the simulated data. The rows are in increasing order of mixture

components (K) and the columns are in increasing order of sample ratio (SR).

Being learning rate and gradient free, MBA does not suffer from these drawbacks and

always performs better than ONLR.

We also use pairwise t-test to assess the statistical significance of results, using

95% confidence level, as proposed and used by [39] initially for this problem. For all

cases considered we see that MBA achieves better results than its competitors with

significance. This is true even when SR = 100% and the average values are close, as

the standard deviations are low and a high number of experiments are performed.

Interestingly, comparing the performance of NP and MBA we see that in all three

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 160

Table 5.2: Comparisons of algorithms on simulated data The performance of MBA-

`2, ONLR, and AdaAUC are reported for k ∈ {1, 2, 3} and SR ∈ {1%, 10%, 100%}.

The symbols filled/empty circle indicate that MBA is (statistically) significantly bet-

ter/worse.

Distribution SR Neyman-Pearson MBA-`2 ONLR AdaAUC

1-Component 1 % 87.43 ± 0.69 86.79 ± 0.99 80.94 ± 2.77

Gaussian 10 % 92.13 91.44 ± 0.10 90.54 ± 0.29 90.25 ± 0.31

Mixture 100 % 91.88 ± 0.04 90.69 ± 0.24 91.70 ± 0.07

2-Component 1 % 80.15 ± 0.68 77.64 ± 1.41 69.75 ± 3.24

Gaussian 10 % 83.71 83.15 ± 0.10 80.19 ± 0.69 80.12 ± 0.69

Mixture 100 % 83.47 ± 0.04 80.19 ± 0.69 83.01 ± 0.11

3-Component 1 % 76.39 ± 0.47 73.07 ± 1.06 66.38 ± 1.95

Gaussian 10 % 80.22 79.52 ± 0.11 75.94 ± 0.64 76.72 ± 0.33

Mixture 100 % 79.93 ± 0.11 75.91 ± 0.83 79.61 ± 0.06

cases the achieved AUC is quite close. This is the case even when K > 1; therefore

even if the optimal scores are a nonlinear function of x for these cases, the linear

approximation is still reasonable. With that said, if the data was highly nonlinear, a

linear ranking function would not be effective.

5.6.2 UCI and LIBSVM Benchmark Data

In this section we experiment with 15 benchmark datasets from the UCI and LIBSVM

repositories which we summarize in Table 5.1. It can be seen that the chosen datasets

cover a wide range of sample/feature sizes. The distribution of samples vary from

being linearly separable to highly nonlinear. The datasets also exhibit significant

differences in label imbalance. In terms of the features present, datasets fall into

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 161

three categories: numerical only, categorical only, and mixed. We use the train/test

splits provided in LIBSVM website; if splits are not available we use 50/50 splitting

with stratification. For multiclass datasets we map the classes to binary labels.

Table 5.3 shows the AUC values obtained by six competing algorithms on bench-

mark datasets. Here the results are reported along with standard deviations. In

addition, we once again conduct a pairwise t-test with 95% significance level. To per-

form this test, we compare each algorithm in the last four columns to the two MBA

algorithms in the first two columns. If MBA performs significantly better/worse we

represent this with a filled/empty circle. Table 5.3 shows that there is a clear benefit

in using the proposed MBA, whereas the recent AdaAUC is the second best competi-

tor. The mini-batch processing phase of MBA is learning-rate free and this brings an

important advantage. AdaAUC adapts the gradient steps, while we used the learning

rate O(1/
√
t) for all other stochastic gradient algorithms, which performed well with

this choice. However, though MBA does not need this parameter, it still performs

significantly better than AdaAUC in 9/15 cases. It is also worth noting that MBA-`1

obtains 100% AUC for the mushrooms data, and for the svmguide3 dataset MBA

is at least 9% better than the others. While logistic regression does not directly

optimize AUC, it is frequently used in practice, where AUC is the main metric, as

it typically has competitive performance. Here we see that logistic regression has a

decent performance as well, and in fact beats MBA on the a9a data.

Another important performance measure is the ability to rank as a function of

sample size. We show comparisons for this in Figure 5.2. We see that the stochastic

gradient-based methods keep improving as the sample size increases, whereas MBA

has a relatively steady performance, and it converges faster. This indicates that, for

these benchmark datasets MBA can already construct a good approximation of the

global problem at this point. This result is not surprising given Theorem 4, as good

performance is independent of the number of pairs or instances, and only related to

the dimensionality of the optimization problem to be solved. In the first panel of

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 162

20 40 60 80 100
Batch ratio (%)

88.8

89

89.2

89.4

89.6

89.8

90

90.2

AU
C

 (%
)

a9a

20 40 60 80 100
Batch ratio (%)

40

45

50

55

60

65

70

75

80

85

AU
C

 (%
)

svmguide3

OLR
SOLR
OAM
AdaAUC
MBA L2
MBA L1

20 40 60 80 100
Batch ratio (%)

66

68

70

72

74

76

78

80

82

AU
C

 (%
)

german

Figure 5.2: AUC performance of six algorithms as a function of sample size for a9a,

german, and svmguide3 selected from LIBSVM.

Figure 5.2 the best performer is logistic regression although the difference is rather

small. In the second plot, MBA-`2 gives the best result, although AdaAUC is good

as well. For the other two plots, both MBA methods have a clear advantage from

start to finish.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 163

T
ab

le
5.

3:
C

om
p
ar

is
on

of
al

go
ri

th
m

s
on

15
b

en
ch

m
ar

k
d
at

as
et

s
fr

om
U

C
I

an
d

L
IB

S
V

M
re

p
os

it
or

ie
s.

T
h
e

sy
m

b
ol

s

fi
ll
ed

/e
m

p
ty

ci
rc

le
in

d
ic

at
e

on
e

of
th

e
M

B
A

is
(s

ta
ti

st
ic

al
ly

)
si

gn
ifi

ca
n
tl

y
b

et
te

r/
w

or
se

.

D
at

as
et

M
B

A
-`

2
M

B
A

-`
1

O
L

R
S

O
L

R
O

A
M

A
d

aA
U

C

a1
a

8
8
.9

8
±

0.
14

88
.6

7
±

0.
15

88
.6

4
±

0.
27

88
.0

4
±

0.
14

87
.6

1
±

0.
45

88
.5

1
±

0.
34

a
9
a

8
9
.9

7
±

0.
01

89
.9

7
±

0.
02

90
.1

7
±

0.
03

89
.8

8
±

0.
03

89
.3

0
±

0.
22

89
.9

9
±

0.
04

a
m

az
o
n

7
7
.1

2
±

0.
44

71
.3

5
±

2.
50

69
.9

0
±

2.
21

71
.8

7
±

0.
74

60
.2

3
±

3.
90

74
.9

7
±

0.
89

b
an

k
9
3
.2

2
±

0.
06

93
.2

2
±

0.
03

82
.8

9
±

0.
21

80
.2

3
±

0.
33

81
.5

1
±

0.
49

89
.4

6
±

0.
12

co
d

rn
a

9
7
.6

8
±

0.
00

97
.6

3
±

0.
01

95
.6

9
±

0.
19

92
.3

6
±

0.
85

97
.3

1
±

0.
12

94
.3

4
±

0.
40

ge
rm

a
n

8
0
.3

4
±

0.
80

80
.4

1
±

0.
64

76
.3

9
±

1.
69

75
.0

7
±

1.
22

74
.5

9
±

1.
79

77
.8

3
±

1.
29

ij
cn

n
9
0
.5

3
±

0.
05

90
.4

0
±

0.
07

89
.5

0
±

0.
53

88
.9

3
±

0.
48

88
.5

2
±

1.
76

90
.5

9
±

0.
28

m
ad

el
o
n

6
2
.3

9
±

0.
44

62
.3

4
±

0.
51

61
.9

7
±

0.
69

61
.8

1
±

0.
48

60
.6

4
±

0.
44

61
.8

2
±

1.
58

m
n

is
t

9
5
.8

1
±

0.
02

95
.7

7
±

0.
02

95
.6

3
±

0.
27

95
.4

9
±

0.
12

94
.8

2
±

0.
23

95
.4

7
±

0.
09

m
u

sh
ro

om
s

10
0
.0

0
±

0
.0

0
1
00

.0
0
±

0.
00

99
.8

8
±

0.
03

99
.7

3
±

0.
07

99
.6

2
±

0.
28

99
.9

8
±

0.
00

p
h

is
h

in
g

9
8
.3

2
±

0.
01

98
.3

2
±

0.
05

98
.4

9
±

0.
01

98
.3

8
±

0.
03

98
.0

8
±

0.
27

98
.3

6
±

0.
02

sv
m

gu
id

e3
8
1
.1

6
±

0.
80

82
.0

5
±

0.
66

63
.8

0
±

0.
81

57
.6

5
±

2.
98

66
.9

7
±

3.
45

69
.1

4
±

1.
95

u
sp

s
9
5
.8

9
±

0.
04

95
.8

3
±

0.
06

95
.8

2
±

0.
15

95
.7

1
±

0.
07

94
.6

5
±

0.
53

95
.7

4
±

0.
13

w
1a

9
2
.2

8
±

0.
23

91
.2

1
±

0.
36

84
.8

1
±

1.
34

79
.8

4
±

1.
15

87
.8

3
±

1.
59

90
.7

0
±

0.
67

w
7a

9
6
.2

7
±

0.
07

96
.1

7
±

0.
08

93
.0

5
±

0.
29

89
.2

7
±

0.
82

93
.9

2
±

0.
55

95
.0

9
±

0.
26

W
in

/
T

ie
/
L

o
ss

-
-

11
/3

/1
14

/1
/0

15
/0

/0
11

/4
/0

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 164

5.6.3 Nonlinear Features

So far we have demonstrated how MBA can achieve better performance than its

competitors; however we focused on learning a linear ranking function. As mentioned

in Section 5.3, MBA can easily be extended to nonlinear feature spaces; in this case

we first perform the feature transformation and apply the algorithm to this new set of

features. Here we show an application using three datasets from the previous section:

german, mnist, and svmguide3. Our baseline will be the best values obtained by

the linear MBA (LIN) from Table 5.3. We obtain nonlinear features using a variety

of methods: random thresholds to obtain binary features (RT) [94], random Fourier

features (RFF) [93] which approximate kernel machines, random neural networks

(RNN) where the weights are obtained via randomization, and finally a single layer

binary classification network (NN) which is learned from the training data. Note that

in the latter case we can also use the network itself to get scores, however we instead

feed the representations in the hidden layer to MBA, for demonstration purposes.

For the german and svmguide datasets we use 500 random features, whereas mnist

uses 1000 as it has higher dimensionality. For the NN the hidden layer number is half

of the input dimension, and both RNN and NN use hyperbolic tangent activation

function. NN is trained using Adam optimizer [68]. Given the nonlinear features all

the ranking functions are learned with MBA-L2.

We report the test AUC values in Figure 5.3. For the german dataset we see that

the linear model has the best performance, and applying a nonlinear feature trans-

form actually degrades performance. This is a common theme in learning nonlinear

features; in general there is no principled way of selecting the right feature transform,

and in our case the approaches we consider fail to find a better representation. In fact,

for many datasets it may be difficult to find a nonlinearity that would perform better,

and consequently linear models remain highly practical. For the mnist dataset, we

see that while RT does not provide an improvement, RFF, RNN, and NN all yield

substantially higher AUC. This dataset is a widely used benchmark for training neural

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 165

german mnist svmguide3
50

60

70

80

90

100

110

AU
C

 (%
)

LIN
RT
RFF
RNN
NN

Figure 5.3: AUC performance of four nonlinear feature generation methods, compared

to the linear case. All of the training is done via MBA-L2.

networks [105] and the features learned by neural nets are highly effective. The best

performance in this case is given by NN, which shows that learning representations in

a data-dependent manner is the best choice here. Finally, for the svmguide3 dataset

we see that the best performance is given by RT. While RFF and NN also provide

improvement, RT has a clear edge here. This reinforces our previous claim that there

is not a one-shot solution to the feature engineering problem and it is rather a process

of trial and error.

5.6.4 Large-scale Web Click Data

For this last part of experiments we use large scale datasets where the task is Click

Through Rate (CTR) prediction. Estimating user clicks in web advertising is one of

the premier areas of AUC optimization. As the number of users who click a given

ad is typically low, the task naturally manifests itself as distinguishing click from

non-click. The datasets used come from Avazu and Criteo, available at LIBSVM—

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 166

Avazu Site Dataset

1e-10/1e-6 1e-9/1e-5 1e-8/1e-4 1e-7/1e-3 1e-6/1e-2
L1/L2

50

55

60

65

70

75

80

AU
C

 (%
)

Avazu App Dataset

1e-10/1e-6 1e-9/1e-5 1e-8/1e-4 1e-7/1e-3 1e-6/1e-2
L1/L2

50

55

60

65

70

75

80

AU
C

 (%
)

Criteo Dataset

1e-10/1e-6 1e-9/1e-5 1e-8/1e-4 1e-7/1e-3 1e-6/1e-2
L1/L2

50

55

60

65

70

75

80

AU
C

 (%
)

OLR
SOLR MBA-L1

MBA-L2

MBA-EL

MB-PHL
MB-PSL

Figure 5.4: AUC achieved by all algorithms on the Avazu App, Avazu Site, and Criteo

datasets. Here the performance is plotted as a function of regularization parameters.

The elastic net uses one half of `1-penalty for both `1 and `2 regularization.

summarized at the end of Table 5.1. It is worthwhile to note that these datasets

are an order of magnitude larger than the ones used in previous studies, showing the

scaling benefits of MBA. This time we shuffle and split the entire dataset into chunks

of 100 (Avazu App) and 200 (Avazu Site and Criteo). We then make a single pass over

these chunks with randomized sampling and report the results. For these datasets the

variation across different runs is very small, as the inputs are very uniform. Therefore

we do not show the confidence intervals in the bar charts, but note that all results

are statistically significant. For the CTR problem, a 0.1% improvement in AUC is

considered significant, whereas an increase of 0.5% results in noticable revenue gain.

In Figure 5.4 we show the AUC performance of seven algorithms. For the Avazu

App data, MBA-`2 gives the best results while for Avazu Site and Criteo all MBA

algorithms give similar results. Comparing the proposed MBA with the best non-

MBA algorithm, the performance improvements are 1.20%, 0.43% and 0.54%. The

mini-batch gradient descent algorithms do not perform that well, especially when the

regularization parameter is small, and they get better as this parameter increases.

For these experiments the step size is O(1/
√
t), and while logistic regression has good

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 167

Avazu App Avazu Site Criteo
0

5

10

15

20

25

30

35

40

R
un

 ti
m

e
(m

in
)

MBA-L1
MBA-L2

MBA-EL

MB-PHL
MB-PSL

Figure 5.5: Runtime comparison of MBA with MB-PSL and MB-PHL. As the latter

two only require a gradient computation they are faster than MBA, but with signif-

icantly reduced performance. On the other hand, MBA can process tens of millions

of samples under an hour, showing the scalability of this approach.

performance with this choice, optimizing pairwise losses seems less robust. As the

regularization increases the variation in the gradients decreases, which helps improve

the AUC scores. We also experimented with a small constant step size, which yielded

similar results. On the other hand MBA does not require this parameter, making it

a better choice.

Another important concern is the running time. Here, we do not make a relative

comparison, instead we state how much time it takes to find the result. This is

because, comparing the running time to logistic regression is not very informative; if

a sequential logistic regression is implemented in Python script, then the mini-batch

algorithm is roughly 10 times faster, as sequential processing is slow. However, if

an optimized package is used, then it can be 100 times faster than MBA, as the

underlying code is optimized. For this reason we show the running time of the vanilla

implementation of MBA in Figure 5.5. As it can be seen, even for the Criteo dataset,

which contains the largest number of instances, the runtime is under an hour. As we

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 168

briefly mentioned in Section 5.3, the mini-batch portion of MBA can be distributed

without loss of accuracy, therefore using cluster computing, MBA can easily scale to

billion-sample datasets, which are several orders of magnitude larger than the datasets

that can be handled by sequential methods.

5.7 Conclusion

In this chapter we have introduced a fast algorithm to maximize the AUC metric. Our

proposed approach, called MBA, uses the specific structure of the squared pairwise

surrogate loss function. In particular, it is shown that one can approximate the global

risk minimization problem simply by approximating the first and second moments of

pairwise differences of positive and negative inputs. This suggests an efficient mini-

batch scheme, where the moments are estimated by U-statistics. MBA comes with

theoretical guarantees, and importantly the number of samples required for good

performance is independent of the number of pairs present, which is typically a very

large number. Our experiments demonstrate the advantages of MBA in terms of speed

and performance. MBA would be particularly useful for applications where AUC is

the prime metric, and the data size is massive and parallel processing is necessary.

5.8 Appendix to Chapter 5

5.8.1 AUC Maximization in Signal Detection

In this section we discuss the connection of AUC maximization to the signal detection

framework. This framework is concerned with a probabilistic setup, where the optimal

solution with maximum AUC can be obtained in analytical form. This is in contrast

to the statistical learning setup which assumes that the probability distributions

generating the observations are unknown to the modeler.

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 169

In binary signal detection we have two hypotheses

H+ : X ∼ P+ , H− : X ∼ P− (5.35)

This setting arises frequently in many different applications, such as radar systems

and communication channels [92]. In this setup, it is commonly assumed that the

generating distributions P+ and P− are known (c.f. Eq. (5.1)). For our purposes

we consider the Neyman-Pearson (NP) hypothesis testing scenario, where neither the

priors for hypotheses are known, nor the costs of making a wrong decision. In this

case the optimal detector is designed based on the following two metrics: detection

and false alarm, defined for a fixed decision rule as

Detection: PD(Γ) =

∫
Γ(x) p+(x) dx

False Alarm: PF (Γ) =

∫
Γ(x) p−(x) dx (5.36)

Two immediate observations follow: (i) The metrics measure the performance of the

rule itself, so they are a function of Γ. (ii) The detector Γ(x), in turn, is a mapping

from the observed signal x to the hypotheses. As the names imply, detection is

the probability of correctly choosing the positive hypothesis, whereas false alarm is

incorrectly doing so. In general, the positive hypothesis corresponds to the presence

of a target/message, whereas the negative one indicates absence, hence the names.

In NP hypothesis testing, the optimal detector is the solution to the optimization

Γ′(x) := arg max
Γ

PD(Γ) s.t. PF (Γ) ≤ α . (5.37)

We therefore seek the detector with highest detection probability while setting a limit

on the false alarm rate (0 ≤ α ≤ 1). Note that, without this limit (i.e. α = 1) we

can use a trivial decision rule that maps all observations to positive hypothesis and

obtain PD(Γ) = 1. The solution is given by the following.

Lemma 1 (Neyman-Pearson, [92]): For α, let Γ be any decision rule with

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 170

Positive
Samples

Negative
Samples

Linear
Ranking

Positive

Negative
Likelihood
Ratio

Detection Theoretic
Framework

Statistical Learning
Framework

Figure 5.6: A cartoon illustration of the signal detection (left) and statistical learning

(right) frameworks for AUC maximization.

PD(Γ) ≤ α and let Γ′ be the decision rule of form

Γ′(x) =

1 if p1(x) > η p0(x)

γ(x) if p1(x) = η p0(x)

0 if p1(x) < η p0(x)

(5.38)

where η ≥ 0 and 0 ≤ γ(x) ≤ 1 are chosen such that PF (Γ′) = α. Then PD(Γ′) ≥

PD(Γ).

We note that a decision rule that is optimal in the NP sense satisfies the false

alarm inequality on the boundary. The structure in Eq. (5.38) reveals that, for any

given input x this rule computes a score based on the likelihood ratio p1(x)/p0(x)

and compares it to a threshold. Since the ROC curve is the plot of detection vs false

alarm, when P+ and P− are known, the likelihood ratio function can be used to

obtain scores with maximum AUC.

The framework outlined in this section is displayed in Figure 5.6, left panel. In

general, the likelihood ratio test would yield non-linear decision boundaries. On the

CHAPTER 5. MINI-BATCH AUC MAXIMIZATION 171

other hand, the right panel of Figure 5.6 displays the statistical learning approach to

AUC optimization, where the φ-risk is minimized under the linear classifier assump-

tion, i.e. this is what the MBA does. In contrast to the signal detection problem of

left panel, here we only have access to samples, instead of the class-conditional den-

sities. As the figure suggests, the linear scoring function assumption is meaningful

when the two classes are linearly separable.

CHAPTER 6. CONCLUSION 172

Chapter 6

Conclusion

In this thesis I have investigated the problem of dynamic machine learning. Dynamic

machine learning is concerned with learning from data, where the data exhibits de-

pendence on time. Such data naturally arises in most settings such as stock prices

or item purchases. However, the definition is broad and virtually contains all data,

as data collection is done over time. On the other hand, increasing data size and

streaming data motivates online learning algorithms. In the online setting, the input

is processed as a stream, in a single pass. Once again, there are many applications of

this, such as real time prediction for target tracking or financial forecasting.

In Part I of this thesis we considered dynamic matrix factorization. This extends

the widely adopted matrix factorization methodology to time varying data. In Sec-

tion 2 we considered dyadic data, where each observation is a result of an interaction

between two entities. When the observation matrix is sparse, low rank matrix fac-

torization is an effective method for handling missing data. Furthermore, the factors

can be assigned Brownian motion priors; coupled with Gaussian likelihood functions,

the posterior distribution can be approximated by mean-field variational inference,

where the posterior distributions are conjugate to the priors. This leads to an efficient

online learning algorithm that can learn dynamically changing factors. In Section 3,

the dynamic matrix factorization approach is extended to forecasting future values of

CHAPTER 6. CONCLUSION 173

high dimensional time series with missing observations. Here the dynamic model is

enhanced by using a vector autoregressive model for the low rank time series factor.

The coefficients of this model can then be learned in closed form, and recursively, using

minimum mean square error estimator. This model notably preserves the forecasting

accuracy, even when the percentage of missing values is very high.

In Part II we consider the problem of nonlinear Kalman filtering. The problem

arises frequently, when the state-space equations contain nonlinear terms. The model

of Section 2—Collaborative Kalman Filter—is an instance where the likelihood term

contains an inner product between two hidden state vectors. While in that case varia-

tional inference gives closed form updates, for the nonlinear Kalman filtering problem

this is not the case in general. We tackle the problem from the lens of divergence

minimization; in particular we consider the forward and backward Kullback-Leibler

divergences and the alpha divergence. The forward KL divergence is linked to varia-

tional inference, which is leveraged to make connections to well established filtering

algorithms such as the Extended Kalman Filter. The reverse KL divergence, on the

other hand, is linked to expectation propagation, where the posterior is simply ob-

tained by moment matching procedure. Finally, the alpha divergence minimization

approach gives a generalized moment matching procedure. The resulting filters im-

prove significantly upon their competitors in literature, and the alpha divergence filter

is quite robust to measurement noise and model uncertainties.

In Part III the problem setting is changed to batch, where the aim is to learn

ranking from binary labeled data, also known as the bipartite ranking problem. The

problem frequently arises in imbalanced and cost-sensitive learning problems, where

learning to correctly label is crucial. Interestingly, the problem is rooted in signal

detection theory, where for known generating distributions the Neyman-Pearson de-

tector is optimal. Since in many practical cases we cannot compute this detector, a

learning approach is taken. In particular we considered a linear model with pairwise

squared loss function, where we proved that our algorithm can return a good solu-

CHAPTER 6. CONCLUSION 174

tion with high probability, using a very low fraction of available samples. This is an

important result, as for this problem the sample size is quadratic in the number of

positive and negative instances. Experiments show equal or better area under curve

values compared to state-of-the-art methods on various datasets. It also scales well

for very large datasets.

As mentioned in the introduction, throughout the chapters, a unifying theme was

the least squares loss function as the objective. Taking a closer look, we note that

the least square cost manifests itself in the likelihood terms: In Part I this is for the

sparse matrix or vector observation, in Part II for nonlinear measurement equation,

and in Part III for observed pairs. The least squares loss brings many benefits; in

Part I it allows for closed form optimization, in Part II it yields Gaussian approximate

posteriors which can be computed efficiently, and in Part III it is leveraged to obtain

a learning-rate free, distributed, and asynchronous algorithm.

The ideas explored in this thesis can lead to a multitude of avenues for future re-

search. As the datasets grow in size and the demand for real-time solutions increases,

dynamic machine learning will remain a useful tool. The dynamic matrix factorization

models of Part I can be applied to other types of data, such as speech, and e-commerce

records. The application of dynamic matrix factorization for time series forecasting is

a promising are, and extensions to our linear predictor in Section 3 are possible. For

Part II, an important extension to divergence minimization-based nonlinear Kalman

filtering would be to incorporate multimodal densities which frequently arise in appli-

cations; such densities are also useful for nonparametric inference. Finally for Part III,

nonlinear extensions to the proposed AUC maximization framework are promising,

and could be an alternative to some of the widely used nonlinear prediction models

which do not scale well with data size.

BIBLIOGRAPHY 175

Bibliography

[1] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Com-

putation, 10(2):251–276, February 1998.

[2] Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. Online learning for

time series prediction. In Conference on Learning Theory, 2013.

[3] Oren Anava, Elad Hazan, and Assaf Zeevi. Online time series prediction with

missing data. In International Conference on Machine Learning, 2015.

[4] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I. Jordan.

An introduction to mcmc for machine learning. Machine learning, 50(1-2):5–43,

2003.

[5] Aleksandr Y. Aravkin, James V. Burke, and Gianluigi Pillonetto. Optimiza-

tion viewpoint on kalman smoothing with applications to robust and sparse

estimation. In Compressed Sensing & Sparse Filtering. Springer, 2014.

[6] Aleksandr Y. Aravkin, Kush R. Varshney, and Dmitry M. Malioutov. A ro-

bust nonlinear kalman smoothing approach for dynamic matrix factorization.

Technical report, IBM Thomas J. Watson Research Center, 2015.

[7] Aleksandr Y. Aravkin, Kush R. Varshney, and Liu Yang. Dynamic matrix

factorization with social influence. In IEEE International Workshop on Machine

Learning for Signal Processing, 2016.

BIBLIOGRAPHY 176

[8] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A

tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking.

IEEE Transactions on Signal Processing, 50(2):174–188, Feb 2002.

[9] Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, clas-

sification, and risk bounds. Journal of the American Statistical Association,

2006.

[10] Suat Bayram, San Gultekin, and Sinan Gezici. Noise enhanced hypothesis test-

ing according to restricted neyman pearson criterion. Digital Signal Processing,

2014.

[11] Matthew J. Beal. Variational Algorithms for Approximate Bayesian Inference.

PhD thesis, University of London, 2003.

[12] David Belanger and Sham Kakade. A linear dynamical system model for text.

In International Conference on Machine Learning, 2015.

[13] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-

Verlag New York, Inc., 2006.

[14] David M. Blei and John D. Lafferty. Dynamic topic models. In International

Conference on Machine Learning, 2006.

[15] Azzedine Boukerche, Horacio A.B. Oliveira, Eduardo F. Nakamura, and An-

tonio A.F. Loureiro. Localization systems for wireless sensor networks. IEEE

Wireless Communications, 2007.

[16] Stephen Boyd and Lieven Vanderberghe. Convex Optimization. Cambridge

University Press, 2004.

[17] Ulf Brefeld and Tobias Scheffer. Auc maximizing support vector learning. In

ICML Workshop on ROC Analysis in Machine Learning, 2005.

BIBLIOGRAPHY 177

[18] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and

Forecasting. Springer, 2016.

[19] Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson, and

Michael Jordan. Streaming variational bayes. In Advances in Neural Infor-

mation Processing Systems, 2013.

[20] Emmanuel J. Candes and Benjamin Recht. Exact matrix completion via convex

optimization. Foundations of Computational Mathematics, 2009.

[21] Emmanuel J. Candes and Terence Tao. The power of convex relaxation: Near-

optimal matrix completion. IEEE Transactions on Information Theory, 2010.

[22] Cristiano L. Castro and Antonio P. Braga. Novel cost-sensitive approach to

improve the multilayer perceptron performance on imbalanced data. IEEE

Transactions on Neural Networks and Learning Systems, 2013.

[23] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games. Cam-

bridge University Press, 2006.

[24] Hao Chen, Pramod K. Varshney, Steven M. Kay, and James H. Michels. Theory

of the stochastic resonance effect in signal detection: Part I - Fixed detectors.

IEEE Transactions on Signal Processing, 2007.

[25] Hao Chen, Pramod K. Varshney, Steven M. Kay, and James H. Michels. The-

ory of the stochastic resonance effect in signal detection: Part II - Variable

detectors. IEEE Transactions on Signal Processing, 2008.

[26] Jianshu Chen, Zaid J. Towfic, and Ali H. Sayed. Dictionary learning over

distributed models. IEEE Transactions on Signal Processing, 2015.

[27] Chee Y. Chong and Srikanta P. Kumar. Sensor networks: Evolution, opportu-

nities, and challenges. Proceedings of the IEEE, 2003.

BIBLIOGRAPHY 178

[28] Miew K. Choong, Maurice Charbit, and Hong Yan. Autoregressive-model-

based missing value estimation for dna microarray time series data. IEEE

Transactions on Information Technology in Biomedicine, 2009.

[29] Erhan Cinlar. Probability and Stochastics. Springer, 2011.

[30] Stephan Clemencon, Gabor Lugosi, and Nicolas Vayatis. Ranking and empirical

minimization of u-statistics. The Annals of Statistics, 2008.

[31] Yi Ding, Chenghao Liu, Peilin Zhao, and Steven C.H. Hoi. Large scale kernel

methods for online auc maximization. In International Conference on Data

Mining (ICDM), 2017.

[32] Yi Ding, Peilin Zhao, Steven C. H. Hoi, and Yew Soon Ong. An adaptive

gradient method for online auc maximization. In Association for Advancement

of Artificial Intelligence (AAAI), 2015.

[33] William Dunsmuir and Peter R. Robinson. Estimation of time series models in

the presence of missing data. Journal of the American Statistical Association,

1981.

[34] Geir Evensen. The ensemble kalman filter: Theoretical formulation and practi-

cal implementation. Ocean dynamics, 2003.

[35] Moein Falahatgar, Mesrob I. Ohannessian, and Alon Orlitsky. Near-optimal

smoothing of structured conditional probability matrices. In Advances in Neural

Information Processing Systems, 2016.

[36] Jiashi Feng, Huan Xu, and Shuicheng Yan. Online robust pca via stochastic

optimization. In Advances in Neural Information Processing Systems, 2013.

[37] Cesar Ferri, Peter Flach, and Jose Hernandez-Orallo. Learning decision trees

using the area under the roc curve. In International Conference on Machine

Learning (ICML), 2012.

BIBLIOGRAPHY 179

[38] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient

boosting algorithm for combining preferences. Journal of Machine Learning

Research, 2003.

[39] Wei Gao, Rong Jin, Shenghuo Zhu, and Zhi-Hua Zhou. One-pass AUC opti-

mization. In International Conference on Machine Learning (ICML), 2013.

[40] Wei Gao and Zhi-Hua Zhou. On the consistency of AUC pairwise optimization.

In International Joint Conference on Artificial Intelligence (IJCAI), 2015.

[41] James E. Gentle. Matrix Algebra: Theory, Computations, and Applications in

Statistics. Springer, 2007.

[42] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016.

[43] Neil Gordon, David Salmond, and Adrian Smith. Novel approach to

nonlinear/non-gaussian bayesian state estimation. IEE Proceedings, 1993.

[44] William Greene. Econometric Analysis. Prentice Hall, 2011.

[45] San Gultekin and John Paisley. A collaborative kalman filter for time-evolving

dyadic processes. In 2014 IEEE International Conference on Data Mining,

pages 140–149, Dec 2014.

[46] Dong Guo and Xiaodong Wang. Quasi-monte carlo filtering in nonlinear dy-

namic systems. IEEE Transactions on Signal Processing, 2006.

[47] Han Guo, Chenlu Qiu, and Namrata Vaswani. An online algorithm for sep-

arating sparse and low-dimensional signal sequences from their sum. IEEE

Transactions on Signal Processing, 2014.

[48] James D. Hamilton. Time Series Analysis. Princeton University Press, 1994.

BIBLIOGRAPHY 180

[49] Fang Han and Han Liu. Transition matrix estimation in high dimensional time

series. In International Conference on Machine Learning, 2013.

[50] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of

Statistical Learning. Springer, 2009.

[51] Simon Haykin. Communication Systems. John Wiley & Sons, 2008.

[52] Jun He, Laura Balzano, and Arthur Szlam. Incremental gradient on the grass-

mannian for online foreground and background separation in subsampled video.

In IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[53] Jose M. Hernandez-Lobato, Yingzhen Li, Mark Rowland, Daniel Hernandez-

Lobato, Thang D. Bui, and Richard E. Turner. Black box alpha divergence

minimization. In International Conference on Machine Learning, 2016.

[54] Tom Heskes and Onno Zoeter. Expectation propagation for approximate in-

ference in dynamic bayesian networks. In Uncertainty in Artificial Infelligence,

2002.

[55] Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley.

Stochastic variational inference. The Journal of Machine Learning Research,

14(1):1303–1347, 2013.

[56] Xia Hong, Sheng Chen, and Chris J. Harris. A kernel-based two-class classifier

for imbalanced data sets. IEEE Transactions on Neural Networks, 2007.

[57] Roger A. Horn and Charles B. Johnson. Matrix Analysis. Cambridge University

Press, 2012.

[58] Junjie Hu, Haikin Yang, Michael Lyu, Irwin King, and Anthony So. Kernelized

online imbalanced learning with fixed budgets. In Association for Advancement

of Artificial Intelligence (AAAI), 2015.

BIBLIOGRAPHY 181

[59] Junjie Hu, Haikin Yang, Michael Lyu, Irwin King, and Anthony So. Online

nonlinear auc maximization for imbalanced data sets. IEEE Transactions on

Neural Networks and Learning Systems, 2016.

[60] John C. Hull. Options, futures, and other derivatives. Pearson, Prentice Hall,

2006.

[61] Kazufumi Ito and Kaiqi Xiong. Gaussian filters for nonlinear filtering problems.

IEEE Transactions on Automatic Control, 2000.

[62] Satish G. Iyengar, Pramod K. Varshney, and Thyagaraju Damarla. A paramet-

ric copula-based framework for hypothesis testing using heterogeneous data.

IEEE Transactions on Signal Processing, 2011.

[63] Bin Jia, Ming Xin, and Yang Cheng. High-degree cubature kalman filter. Au-

tomatica, 2013.

[64] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K.

Saul. An introduction to variational methods for graphical models. Machine

Learning, 1999.

[65] Simon K. Julier and Jeffrey K. Uhlmann. Unscented filtering and nonlinear

estimation. Proceedings of the IEEE, 2004.

[66] Rudolph Emil Kalman. A new approach to linear filtering and prediction

problems. Transactions of the ASME–Journal of Basic Engineering, 82(Series

D):35–45, 1960.

[67] Majdi Khalid, Indrakshi Ray, and Hamidreza Chitsaz. Confidence-weighted

bipartite ranking. In Advanced Data Mining and Applications, 2016.

[68] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. In International Conference on Learning Representations (ICLR), 2014.

BIBLIOGRAPHY 182

[69] Wouter M. Koolen, Alan Malek, Peter L. Bartlett, and Abbasi-Yadkori Yasin.

Minimax time series prediction. In Advances in Neural Information Processing

Systems, 2015.

[70] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques

for recommender systems. Computer, 42(8):30–37, Aug 2009.

[71] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix

factorization. In Advances in Neural Information Processing Systems, 2001.

[72] Augustin Lefevre, Francis Bach, and Cedric Fevotte. Online algorithms for

nonnegative matrix factorization with the itakura-saito divergence. In IEEE

Workshop on Applications of Signal Processing to Audio and Acoustics, 2011.

[73] Xiao Rong Li and Vesselin P. Jilkov. Survey of maneuvering target tracking:

III. measurement models. In International Symposium on Optical Science and

Technology, 2001.

[74] Xiao Rong Li and Vesselin P. Jilkov. Survey of maneuvering target tracking. part

i. dynamic models. IEEE Transactions on Aerospace and Electronic Systems,

2003.

[75] Xiao Rong Li and Vesselin P. Jilkov. Survey of maneuvering target tracking. part

v. multiple model methods. IEEE Transactions on Aerospace and Electronic

Systems, 2005.

[76] Minlong Lin, Ke Tang, and Xin Yao. Dynamic sampling approach to training

neural networks for multiclass imbalance classification. In IEEE Transactions

on Neural Networks and Learning Systems, 2013.

[77] Daniel J. Lingenfelter, Jeffrey A. Fessler, Clayton D. Scott, and Zhong He.

Asymptotic source detection performance of gamma-ray imaging systems under

model mismatch. IEEE Transactions on Signal Processing, 2011.

BIBLIOGRAPHY 183

[78] Chenghao Liu, Steven C. H. Hoi, Peilin Zhao, and Jianling Sun. Online arima

algorithms for time series prediction. In Association for the Advancement of

Artificial Intelligence, 2016.

[79] Lester Mackey, David Weiss, and Michael I. Jordan. Mixed membership matrix

factorization. In International Conference on Machine learning, 2010.

[80] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learn-

ing for matrix factorization and sparse coding. Journal of Machine Learning

Research, 2010.

[81] Peter S. Maybeck. Stochastic models, estimation, and control. Academic Press

Inc., 1982.

[82] H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner,

Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat

Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Bou-

los, and Jeremy Kubica. Ad click prediction: a view from the trenches. In

Conference on Knowledge Discovery and Data Mining (KDD), 2013.

[83] Jiali Mei, Yohann De Castro, Yannig Goude, and Georges Hebrail. Nonnegative

matrix factorization for time series recovery from a few temporal aggregates. In

International Conference on Machine Learning, 2017.

[84] Thomas P. Minka. Expectation propagation for approximate bayesian inference.

In Uncertainty in Artificial Intelligence, 2001.

[85] Thomas P. Minka. Power ep. Technical report, 2004.

[86] Naseer Mohammadiha, Paris Smaragdis, Ghazaleh Panahandeh, and Simon

Doclo. A state-space approach to dynamic nonnegative matrix factorization.

IEEE Transactions on Signal Processing, 2015.

BIBLIOGRAPHY 184

[87] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of

machine learning. MIT Press, 2012.

[88] Mahesan Niranjan. Sequential tracking in pricing financial options using model

based and neural network approaches. In Neural Information Processing Sys-

tems, 1997.

[89] John Paisley, David M. Blei, and Michael I. Jordan. Variational bayesian infer-

ence with stochastic search. In International Conference on Machine Learning,

2012.

[90] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:

Global vectors for word representation. In Empirical Methods in Natural Lan-

guage Processing, 2014.

[91] Mert Pilanci and Martin J. Wainwright. Iterative hessian sketch: Fast and accu-

rate solution approximation for constrained least-squares. Journal of Machine

Learning Research, 2016.

[92] H. Vincent Poor. An Introduction to Signal Detection and Estimation. Springer,

1998.

[93] Ali Rahimi and Ben Recht. Random features for large scale kernel machines.

In Advances in Neural Information Processing Systems (NIPS), 2007.

[94] Ali Rahimi and Ben Recht. Weighted sums of random kitchen sinks: Replacing

minimization with randomization in learning. In Advances in Neural Informa-

tion Processing Systems (NIPS), 2008.

[95] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-

rank solutions of linear matrix equations via nuclear norm minimization. SIAM

Review, 2010.

BIBLIOGRAPHY 185

[96] Christian Robert and George Casella. Monte Carlo statistical methods. Springer

Science & Business Media, 2013.

[97] Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian

models. Neural Computation, 1999.

[98] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In

Advances in Neural Information Processing Systems, 2007.

[99] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix fac-

torization using Markov Chain Monte Carlo. In International Conference on

Machine Learning, 2008.

[100] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based

collaborative filtering recommendation algorithms. In International Conference

on World Wide Web, 2001.

[101] Robert H. Shumway and David S. Stoffer. An approach to time series smoothing

and forecasting using the EM algorithm. Journal of Time Series Analysis, 1982.

[102] Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla,

Michael I. Jordan, and Shankar S. Sastry. Kalman filtering with intermittent

observations. IEEE transactions on Automatic Control, 2004.

[103] John Sun, Dhruv Parthasarathy, and Kush Varshney. Collaborative kalman

filtering for dynamic matrix factorization. IEEE Transactions on Signal Pro-

cessing, 62(14):3499–3509, 2014.

[104] John Sun, Kush Varshney, and Karthik Subbian. Dynamic matrix factorization:

A state space approach. In IEEE International Conference on Acoustics, Speech

and Signal Processing, 2012.

BIBLIOGRAPHY 186

[105] Jiexiong Tang, Chenwei Deng, and Guang-Bin Huang. Extreme learning ma-

chine for multilayer perceptron. IEEE Transactions on Neural Networks and

Learning Systems, 2016.

[106] Jing Teng, Hichem Snoussi, Cedric Richard, and Rong Zhou. Distributed varia-

tional filtering for simultaneous sensor localization and target tracking in wire-

less sensor networks. IEEE Transactions on Vehicular Technology, 2012.

[107] Joel Tropp. An introduction to matrix concentration inequalities. Foundations

and Trends in Machine Learning, 2015.

[108] Malik Tubaishat and Sanjay Madria. Sensor networks: An overview. IEEE

Potentials, 2003.

[109] Rudolph van der Merwe, Arnaud Doucet, Nando de Freitas, and Eric Wan. The

unscented particle filter. In Neural Information Processing Systems, 2000.

[110] Aad W. Van der Vaart. Asymptotic Statistics. Cambridge University Press,

1998.

[111] Jaco Vermaak, Neil D. Lawrence, and Patrick Perez. Variational inference for

visual tracking. In Computer Vision and Pattern Recognition, 2003.

[112] Martin Wainwright and Michael Jordan. Graphical models, exponential fami-

lies, and variational inference. Foundations and Trends in Machine Learning,

1(1-2), 2008.

[113] Greg Welch and Gary Bishop. An introduction to the Kalman filter. Technical

report, Chapel Hill, NC, US, 1995.

[114] Liangbei Xu and Mark A. Davenport. Dynamic matrix recovery from incom-

plete observations under an exact low-rank constraint. In Advances in Neural

Information Processing Systems, 2016.

BIBLIOGRAPHY 187

[115] Sun Yi, Daan Wiestra, Tom Schaul, and Jurgen Schmidhuber. Stochastic search

using the natural gradient. In International Conference on Machine Learning,

2009.

[116] Hsiang-Fu Yu, Nikhil Rao, and Inderjit S. Dhillon. Temporal regularized matrix

factorization for high-dimensional time series prediction. In Advances in Neural

Information Processing Systems, 2016.

[117] Tong Zhang. Solving large scale linear prediction problems using stochastic

gradient descent algorithms. In International Conference on Machine Learning

(ICML), 2004.

[118] Peilin Zhao, Steven C. H. Hoi, Rong Jin, and Tianbao Yang. Online AUC

maximization. In International Conference on Machine Learning (ICML), 2011.

[119] Renbo Zhao, Vincent Y. F. Tan, and Huan Xu. Online nonnegative matrix

factorization with general divergences. In International Conference on Artificial

Intelligence and Statistics, 2016.

[120] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic

net. Journal of the Royal Statistical Society: Series B (Statistical Methodology,

2005.

