157 research outputs found

    Towards generation of as-damaged BIM models using laser-scanning and as-built BIM: First estimate of as-damaged locations of reinforced concrete frame members in masonry infill structures

    Get PDF
    After an earthquake, Terrestrial Laser Scanning (TLS) can capture point clouds of the damaged state of building facades rapidly, remotely and accurately. A long-term research effort aims to develop applications that can reconstruct ‘as-damaged’ BIM models of reinforced concrete (RC) framed buildings based on their ‘as-built’ BIM models and scans of their ‘as-damaged’ states. This paper focuses on a crucial step: generating an initial ‘best-guess’ for the new locations of the façade structural members. The output serves as the seed for a recursive process in which the location and damage to each object is refined in turn. Locating the ‘as-built’ structural members in the ‘as-damaged’ scan is challenging because each member may have different displacement and damage. An algorithm was developed and tested for the case of reinforced concrete frames with masonry infill walls. It exploits the topology of the frames to map the original structural grid onto the damaged façade. The tests used synthetic datasets prepared from records of two earthquake-damaged buildings. In both cases, the results were sufficiently accurate to allow progress to the following step, assessment of the individual structural members

    Lidar data analyses for assessing the conservation status of the so-called baths-church in hierapolis of phrygia (TR)

    Get PDF
    The LiDAR technology has aroused considerable interest in the field of structural study of historical buildings, aimed at the structural assessment in the presence of different states of stresses and at the evaluation of the health status. The interest is due mostly by the ability of generating models of the built structures being able to predetermine different levels of schematization, two-dimensional and three-dimensional, in order to be able to perform evaluation processes assigning simplified geometric contents that correspond to the physical reality of the artefacts. This paper intends to report some results of these experiences applied in archaeological domain, to the so-called Baths-Church at Hierapolis in Phrygia (Pamukkale, TR). In particular, the generation of accurate models from dense clouds and their reduction to models with simplified geometries too, is explored, with the further aim of testing automated strategies for features detection and editing process that leads to appropriate models for visual and analytical structural assessment. The accuracy and density parameters of the LiDAR clouds will be analysed to derive orthophotos and continuous mesh models, both to obtain the best results from the application of research algorithms such as region growing to detect blocks, and to allow visual analysis on digital models and not on site. The ability to determine with high accuracy both the size and the anomalies of the wall systems (out of plumb and other rotation or local mechanisms of collapse), together with the possibility of identifying the lay of the individual drywall blocks and also the signs of cracks and collapses, allow deriving suitable models both for FE (Finite Elements) analysis and DE (Discrete Elements) analysis, as well as analytical ones

    Integrated HBIM-GIS Models for Multi-Scale Seismic Vulnerability Assessment of Historical Buildings

    Get PDF
    The complexity of historical urban centres progressively needs a strategic improvement in methods and the scale of knowledge concerning the vulnerability aspect of seismic risk. A geographical multi-scale point of view is increasingly preferred in the scientific literature and in Italian regulation policies, that considers systemic behaviors of damage and vulnerability assessment from an urban perspective according to the scale of the data, rather than single building damage analysis. In this sense, a geospatial data sciences approach can contribute towards generating, integrating, and making virtuous relations between urban databases and emergency-related data, in order to constitute a multi-scale 3D database supporting strategies for conservation and risk assessment scenarios. The proposed approach developed a vulnerability-oriented GIS/HBIM integration in an urban 3D geodatabase, based on multi-scale data derived from urban cartography and emergency mapping 3D data. Integrated geometric and semantic information related to historical masonry buildings (specifically the churches) and structural data about architectural elements and damage were integrated in the approach. This contribution aimed to answer the research question supporting levels of knowledge required by directives and vulnerability assessment studies, both about the generative workflow phase, the role of HBIM models in GIS environments and toward user-oriented webGIS solutions for sharing and public use fruition, exploiting the database for expert operators involved in heritage preservation

    Building Cultural Heritage Resilience through Remote Sensing: An Integrated Approach Using Multi-Temporal Site Monitoring, Datafication, and Web-GL Visualization

    Get PDF
    In the American West, wildfires and earthquakes are increasingly threatening the archaeological, historical, and tribal resources that define the collective identity and connection with the past for millions of Americans. The loss of said resources diminishes societal understanding of the role cultural heritage plays in shaping our present and future. This paper examines the viability of employing stationary and SLAM-based terrestrial laser scanning, close-range photogrammetry, automated surface change detection, GIS, and WebGL visualization techniques to enhance the preservation of cultural resources in California. Our datafication approach combines multi-temporal remote sensing monitoring of historic features with legacy data and collaborative visualization to document and evaluate how environmental threats affect built heritage. We tested our methodology in response to recent environmental threats from wildfire and earthquakes at Bodie, an iconic Gold Rush-era boom town located on the California and Nevada border. Our multi-scale results show that the proposed approach effectively integrates highly accurate 3D snapshots of Bodie’s historic buildings before/after disturbance, or post-restoration, with surface change detection and online collaborative visualization of 3D geospatial data to monitor and preserve important cultural resources at the site. This study concludes that the proposed workflow enhances the monitoring of at-risk California’s cultural heritage and makes a call to action to employ remote sensing as a pathway to advanced planning. View Full-Tex

    Surveying and Three-Dimensional Modeling for Preservation and Structural Analysis of Cultural Heritage

    Get PDF
    Dense point clouds can be used for three important steps in structural analysis, in the field of cultural heritage, regardless of which instrument it was used for acquisition data. Firstly, they allow deriving the geometric part of a finite element (FE) model automatically or semi-automatically. User input is mainly required to complement invisible parts and boundaries of the structure, and to assign meaningful approximate physical parameters. Secondly, FE model obtained from point clouds can be used to estimate better and more precise parameters of the structural analysis, i.e., to train the FE model. Finally, the definition of a correct Level of Detail about the three-dimensional model, deriving from the initial point cloud, can be used to define the limit beyond which the structural analysis is compromised, or anyway less precise. In this work of research, this will be demonstrated using three different case studies of buildings, consisting mainly of masonry, measured through terrestrial laser scanning and photogrammetric acquisitions. This approach is not a typical study for geomatics analysis, but its challenges allow studying benefits and limitations. The results and the proposed approaches could represent a step towards a multidisciplinary approach where Geomatics can play a critical role in the monitoring and civil engineering field. Furthermore, through a geometrical reconstruction, different analyses and comparisons are possible, in order to evaluate how the numerical model is accurate. In fact, the discrepancies between the different results allow to evaluate how, from a geometric and simplified modeling, important details can be lost. This causes, for example, modifications in terms of mass and volume of the structure

    Integration of a wearable mobile mapping solution and advance numerical simulations for the structural analysis of historical constructions: a case of study in San Pedro church (Palencia, Spain)

    Get PDF
    This work aims at enhancing the current methodologies used for generating as-built CAD models suitable for advanced numerical simulations. To this end, this paper proposes the use of a wearable mobile mapping system that allows one to improve the digitalization stage in terms of flexibility and time required. The noise showed by the resulting point cloud, based on the simultaneous location and mapping (SLAM) solution, demands a post-processing stage that introduces the use of a parameter-free noise reduction filter. This filter improves the quality of the point cloud, allowing for the adjustment of surfaces by means of parametric and non-parametric shapes. These shapes are created by using reverse engineering procedures. The results showed during this investigation highlight a novel application of this sensor: the creation of as-built CAD models for advanced numerical simulations. The results of this investigation are complemented by a valuable contribution with respect to the use of an advanced restoration solution, by means of textile reinforced mortar. To this end, the CAD model is used as the geometrical base for several numerical simulations by means of the finite element method. All this procedure is applied in a construction with structural problems.European Commission | Ref. SOE1 / P5 / P0258Junta de Castilla y LeĂłn | Ref. SA075P17Junta de Castilla y LeĂłn | Ref. EDU / 1100/2017European Commission | Ref. H2020-MSCA-IF-2019, n. 679 894785; proyecto AVATA

    Synergistic exploitation of geoinformation methods for post-earthquake 3D mapping of Vrisa traditional settlement, Lesvos Island, Greece

    Get PDF
    The aim of this paper is to present the methodology followed and the results obtained by the synergistic exploitation of geo-information methods towards 3D mapping of the impact of the catastrophic earthquake of June 12th 2017 on the traditional settlement of Vrisa on the island of Lesvos, Greece. A campaign took place for collecting: a) more than 150 ground control points using an RTK system, b) more than 20.000 high-resolution terrestrial and aerial images using cameras and Unmanned Aircraft Systems and c) 140 point clouds by a 3D Terrestrial Laser Scanner. The Structure from Motion method has been applied on the high-resolution terrestrial and aerial photographs, for producing accurate and very detailed 3D models of the damaged buildings of the Vrisa settlement. Additionally, two Orthophoto maps and Digital Surface Models have been created, with a spatial resolution of 5cm and 3cm, respectively. The first orthophoto map has been created just one day after the earthquake, while the second one, a month later. In parallel, 3D laser scanning data have been exploited in order to validate the accuracy of the 3D models and the RTK measurements used for the geo-registration of all the above-mentioned datasets. The significant advantages of the proposed methodology are: a) the coverage of large scale areas; b) the production of 3D models having very high spatial resolution and c) the support of post-earthquake management and reconstruction processes of the Vrisa village, since such 3D information can serve all stakeholders, be it national and/or local organizations

    Numerical modelling-based damage diagnostics in cultural heritage structures

    Get PDF
    In this paper, a numerical modelling-based damage diagnostics methodology is proposed for cultural heritage structures (CHSs) made of masonry. Firstly, an integration of 3D documentation data (i.e. point clouds and virtual tours) is developed for the rapid numerical model generation of CHSs. This allows to directly exploit non-comprehensive point clouds (e.g., associated to outer surfaces only) for the solid finite element model generation, where the lacking information is merged with off-site interactive and immersive frameworks. Secondly, a number of nonlinear static and dynamic analyses are conducted on the generated solid model to account for various load scenarios (e.g., earthquakes, soil settlements, etc.), considering a nonlinear continuum constitutive law. Thirdly, a crack pattern matching indicator is introduced to quantitatively identify the most likely load scenario which originated the damage pattern present in the CHS, by comparing numerical and actual crack patterns. The proposed methodology allows to rapidly generate and extract the numerical model that reflects the current (damaged) state of the CHS. This also allows to identify the parts of the CHS susceptible to further damage. The effectiveness of the proposed methodology is promisingly assessed on an actual historical masonry structure, the Morris Island lighthouse in South Carolina (USA)
    • 

    corecore