1,222 research outputs found

    Beta hebbian learning: definition and analysis of a new family of learning rules for exploratory projection pursuit

    Get PDF
    [EN] This thesis comprises an investigation into the derivation of learning rules in artificial neural networks from probabilistic criteria. •Beta Hebbian Learning (BHL). First of all, it is derived a new family of learning rules which are based on maximising the likelihood of the residual from a negative feedback network when such residual is deemed to come from the Beta Distribution, obtaining an algorithm called Beta Hebbian Learning, which outperforms current neural algorithms in Exploratory Projection Pursuit. • Beta-Scale Invariant Map (Beta-SIM). Secondly, Beta Hebbian Learning is applied to a well-known Topology Preserving Map algorithm called Scale Invariant Map (SIM) to design a new of its version called Beta-Scale Invariant Map (Beta-SIM). It is developed to facilitate the clustering and visualization of the internal structure of high dimensional complex datasets effectively and efficiently, specially those characterized by having internal radial distribution. The Beta-SIM behaviour is thoroughly analysed comparing its results, in terms performance quality measures with other well-known topology preserving models. • Weighted Voting Superposition Beta-Scale Invariant Map (WeVoS-Beta-SIM). Finally, the use of ensembles such as the Weighted Voting Superposition (WeVoS) is tested over the previous novel Beta-SIM algorithm, in order to improve its stability and to generate accurate topology maps when using complex datasets. Therefore, the WeVoS-Beta-Scale Invariant Map (WeVoS-Beta-SIM), is presented, analysed and compared with other well-known topology preserving models. All algorithms have been successfully tested using different artificial datasets to corroborate their properties and also with high-complex real datasets.[ES] Esta tesis abarca la investigación sobre la derivación de reglas de aprendizaje en redes neuronales artificiales a partir de criterios probabilísticos. • Beta Hebbian Learning (BHL). En primer lugar, se deriva una nueva familia de reglas de aprendizaje basadas en maximizar la probabilidad del residuo de una red con retroalimentación negativa cuando se considera que dicho residuo proviene de la Distribución Beta, obteniendo un algoritmo llamado Beta Hebbian Learning, que mejora a algoritmos neuronales actuales de búsqueda de proyecciones exploratorias. • Beta-Scale Invariant Map (Beta-SIM). En Segundo lugar, Beta Hebbian Learning se aplica a un conocido algoritmo de Mapa de Preservación de la Topología llamado Scale Invariant Map (SIM) para diseñar una nueva versión llamada Beta-Scale Invariant Map (Beta-SIM). Este nuevo algoritmo ha sido desarrollado para facilitar el agrupamiento y visualización de la estructura interna de conjuntos de datos complejos de alta dimensionalidad de manera eficaz y eficiente, especialmente aquellos caracterizados por tener una distribución radial interna. El comportamiento de Beta-SIM es analizado en profundidad comparando sus resultados, en términos de medidas de calidad de rendimiento con otros modelos bien conocidos de preservación de topología. • Weighted Voting Superposition Beta-Scale Invariant Map (WeVoS-Beta-SIM). Finalmente, el uso de ensembles como el Weighted Voting Superposition (WeVoS) sobre el algoritmo Beta-SIM es probado, con objeto de mejorar su estabilidad y generar mapas topológicos precisos cuando se utilizan conjuntos de datos complejos. Por lo tanto, se presenta, analiza y compara el WeVoS-Beta-Scale Invariant Map (WeVoS-Beta-SIM) con otros modelos bien conocidos de preservación de topología. Todos los algoritmos han sido probados con éxito sobre conjuntos de datos artificiales para corroborar sus propiedades, así como con conjuntos de datos reales de gran complejidad

    A novel ensemble Beta-scale invariant map algorithm

    Get PDF
    [Abstract]: This research presents a novel topology preserving map (TPM) called Weighted Voting Supervision -Beta-Scale Invariant Map (WeVoS-Beta-SIM), based on the application of the Weighted Voting Supervision (WeVoS) meta-algorithm to a novel family of learning rules called Beta-Scale Invariant Map (Beta-SIM). The aim of the novel TPM presented is to improve the original models (SIM and Beta-SIM) in terms of stability and topology preservation and at the same time to preserve their original features, especially in the case of radial datasets, where they all are designed to perform their best. These scale invariant TPM have been proved with very satisfactory results in previous researches. This is done by generating accurate topology maps in an effectively and efficiently way. WeVoS meta-algorithm is based on the training of an ensemble of networks and the combination of them to obtain a single one that includes the best features of each one of the networks in the ensemble. WeVoS-Beta-SIM is thoroughly analyzed and successfully demonstrated in this study over 14 diverse real benchmark datasets with diverse number of samples and features, using three different well-known quality measures. In order to present a complete study of its capabilities, results are compared with other topology preserving models such as Self Organizing Maps, Scale Invariant Map, Maximum Likelihood Hebbian Learning-SIM, Visualization Induced SOM, Growing Neural Gas and Beta- Scale Invariant Map. The results obtained confirm that the novel algorithm improves the quality of the single Beta-SIM algorithm in terms of topology preservation and stability without losing performance (where this algorithm has proved to overcome other well-known algorithms). This improvement is more remarkable when complexity of the datasets increases, in terms of number of features and samples and especially in the case of radial datasets improving the Topographic Error

    Factor analysis using delta-rule wake-sleep learning

    Get PDF
    We describe a linear network that models correlations between real-valued visible variables using one or more real-valued hidden variables — a factor analysis model. This model can be seen as a linear version of the “Helmholtz machine”, and its parameters can be learned using the “wake-sleep ” method, in which learning of the primary “generative” model is assisted by a “recognition ” model, whose role is to fill in the values of hidden variables based on the values of visible variables. The generative and recognition models are jointly learned in “wake ” and “sleep ” phases, using just the delta rule. This learning procedure is comparable in simplicity to Oja’s version of Hebbian learning, which produces a somewhat different representation of correlations in terms of principal components. We argue that the simplicity of wake-sleep learning makes factor analysis a plausible alternative to Hebbian learning as a model of activity-dependent cortical plasticity.

    Detection and classification of non-stationary signals using sparse representations in adaptive dictionaries

    Get PDF
    Automatic classification of non-stationary radio frequency (RF) signals is of particular interest in persistent surveillance and remote sensing applications. Such signals are often acquired in noisy, cluttered environments, and may be characterized by complex or unknown analytical models, making feature extraction and classification difficult. This thesis proposes an adaptive classification approach for poorly characterized targets and backgrounds based on sparse representations in non-analytical dictionaries learned from data. Conventional analytical orthogonal dictionaries, e.g., Short Time Fourier and Wavelet Transforms, can be suboptimal for classification of non-stationary signals, as they provide a rigid tiling of the time-frequency space, and are not specifically designed for a particular signal class. They generally do not lead to sparse decompositions (i.e., with very few non-zero coefficients), and use in classification requires separate feature selection algorithms. Pursuit-type decompositions in analytical overcomplete (non-orthogonal) dictionaries yield sparse representations, by design, and work well for signals that are similar to the dictionary elements. The pursuit search, however, has a high computational cost, and the method can perform poorly in the presence of realistic noise and clutter. One such overcomplete analytical dictionary method is also analyzed in this thesis for comparative purposes. The main thrust of the thesis is learning discriminative RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics. A pursuit search is used over the learned dictionaries to generate sparse classification features in order to identify time windows that contain a target pulse. Two state-of-the-art dictionary learning methods are compared, the K-SVD algorithm and Hebbian learning, in terms of their classification performance as a function of dictionary training parameters. Additionally, a novel hybrid dictionary algorithm is introduced, demonstrating better performance and higher robustness to noise. The issue of dictionary dimensionality is explored and this thesis demonstrates that undercomplete learned dictionaries are suitable for non-stationary RF classification. Results on simulated data sets with varying background clutter and noise levels are presented. Lastly, unsupervised classification with undercomplete learned dictionaries is also demonstrated in satellite imagery analysis

    Towards On-line Domain-Independent Big Data Learning: Novel Theories and Applications

    Get PDF
    Feature extraction is an extremely important pre-processing step to pattern recognition, and machine learning problems. This thesis highlights how one can best extract features from the data in an exhaustively online and purely adaptive manner. The solution to this problem is given for both labeled and unlabeled datasets, by presenting a number of novel on-line learning approaches. Specifically, the differential equation method for solving the generalized eigenvalue problem is used to derive a number of novel machine learning and feature extraction algorithms. The incremental eigen-solution method is used to derive a novel incremental extension of linear discriminant analysis (LDA). Further the proposed incremental version is combined with extreme learning machine (ELM) in which the ELM is used as a preprocessor before learning. In this first key contribution, the dynamic random expansion characteristic of ELM is combined with the proposed incremental LDA technique, and shown to offer a significant improvement in maximizing the discrimination between points in two different classes, while minimizing the distance within each class, in comparison with other standard state-of-the-art incremental and batch techniques. In the second contribution, the differential equation method for solving the generalized eigenvalue problem is used to derive a novel state-of-the-art purely incremental version of slow feature analysis (SLA) algorithm, termed the generalized eigenvalue based slow feature analysis (GENEIGSFA) technique. Further the time series expansion of echo state network (ESN) and radial basis functions (EBF) are used as a pre-processor before learning. In addition, the higher order derivatives are used as a smoothing constraint in the output signal. Finally, an online extension of the generalized eigenvalue problem, derived from James Stone’s criterion, is tested, evaluated and compared with the standard batch version of the slow feature analysis technique, to demonstrate its comparative effectiveness. In the third contribution, light-weight extensions of the statistical technique known as canonical correlation analysis (CCA) for both twinned and multiple data streams, are derived by using the same existing method of solving the generalized eigenvalue problem. Further the proposed method is enhanced by maximizing the covariance between data streams while simultaneously maximizing the rate of change of variances within each data stream. A recurrent set of connections used by ESN are used as a pre-processor between the inputs and the canonical projections in order to capture shared temporal information in two or more data streams. A solution to the problem of identifying a low dimensional manifold on a high dimensional dataspace is then presented in an incremental and adaptive manner. Finally, an online locally optimized extension of Laplacian Eigenmaps is derived termed the generalized incremental laplacian eigenmaps technique (GENILE). Apart from exploiting the benefit of the incremental nature of the proposed manifold based dimensionality reduction technique, most of the time the projections produced by this method are shown to produce a better classification accuracy in comparison with standard batch versions of these techniques - on both artificial and real datasets
    corecore