104 research outputs found

    Encoding and processing of sensory information in neuronal spike trains

    Get PDF
    Recently, a statistical signal-processing technique has allowed the information carried by single spike trains of sensory neurons on time-varying stimuli to be characterized quantitatively in a variety of preparations. In weakly electric fish, its application to first-order sensory neurons encoding electric field amplitude (P-receptor afferents) showed that they convey accurate information on temporal modulations in a behaviorally relevant frequency range (<80 Hz). At the next stage of the electrosensory pathway (the electrosensory lateral line lobe, ELL), the information sampled by first-order neurons is used to extract upstrokes and downstrokes in the amplitude modulation waveform. By using signal-detection techniques, we determined that these temporal features are explicitly represented by short spike bursts of second-order neurons (ELL pyramidal cells). Our results suggest that the biophysical mechanism underlying this computation is of dendritic origin. We also investigated the accuracy with which upstrokes and downstrokes are encoded across two of the three somatotopic body maps of the ELL (centromedial and lateral). Pyramidal cells of the centromedial map, in particular I-cells, encode up- and downstrokes more reliably than those of the lateral map. This result correlates well with the significance of these temporal features for a particular behavior (the jamming avoidance response) as assessed by lesion experiments of the centromedial map

    The Spatial Structure of Stimuli Shapes the Timescale of Correlations in Population Spiking Activity

    Get PDF
    Throughout the central nervous system, the timescale over which pairs of neural spike trains are correlated is shaped by stimulus structure and behavioral context. Such shaping is thought to underlie important changes in the neural code, but the neural circuitry responsible is largely unknown. In this study, we investigate a stimulus-induced shaping of pairwise spike train correlations in the electrosensory system of weakly electric fish. Simultaneous single unit recordings of principal electrosensory cells show that an increase in the spatial extent of stimuli increases correlations at short (~10 ms) timescales while simultaneously reducing correlations at long (~100 ms) timescales. A spiking network model of the first two stages of electrosensory processing replicates this correlation shaping, under the assumptions that spatially broad stimuli both saturate feedforward afferent input and recruit an open-loop inhibitory feedback pathway. Our model predictions are experimentally verified using both the natural heterogeneity of the electrosensory system and pharmacological blockade of descending feedback projections. For weak stimuli, linear response analysis of the spiking network shows that the reduction of long timescale correlation for spatially broad stimuli is similar to correlation cancellation mechanisms previously suggested to be operative in mammalian cortex. The mechanism for correlation shaping supports population-level filtering of irrelevant distractor stimuli, thereby enhancing the population response to relevant prey and conspecific communication inputs. © 2012 Litwin-Kumar et al

    Spatial Acuity and Prey Detection in Weakly Electric Fish

    Get PDF
    It is well-known that weakly electric fish can exhibit extreme temporal acuity at the behavioral level, discriminating time intervals in the submicrosecond range. However, relatively little is known about the spatial acuity of the electrosense. Here we use a recently developed model of the electric field generated by Apteronotus leptorhynchus to study spatial acuity and small signal extraction. We show that the quality of sensory information available on the lateral body surface is highest for objects close to the fish's midbody, suggesting that spatial acuity should be highest at this location. Overall, however, this information is relatively blurry and the electrosense exhibits relatively poor acuity. Despite this apparent limitation, weakly electric fish are able to extract the minute signals generated by small prey, even in the presence of large background signals. In fact, we show that the fish's poor spatial acuity may actually enhance prey detection under some conditions. This occurs because the electric image produced by a spatially dense background is relatively “blurred” or spatially uniform. Hence, the small spatially localized prey signal “pops out” when fish motion is simulated. This shows explicitly how the back-and-forth swimming, characteristic of these fish, can be used to generate motion cues that, as in other animals, assist in the extraction of sensory information when signal-to-noise ratios are low. Our study also reveals the importance of the structure of complex electrosensory backgrounds. Whereas large-object spacing is favorable for discriminating the individual elements of a scene, small spacing can increase the fish's ability to resolve a single target object against this background

    Stimulus Encoding and Feature Extraction by Multiple Sensory Neurons

    Get PDF
    Neighboring cells in topographical sensory maps may transmit similar information to the next higher level of processing. How information transmission by groups of nearby neurons compares with the performance of single cells is a very important question for understanding the functioning of the nervous system. To tackle this problem, we quantified stimulus-encoding and feature extraction performance by pairs of simultaneously recorded electrosensory pyramidal cells in the hindbrain of weakly electric fish. These cells constitute the output neurons of the first central nervous stage of electrosensory processing. Using random amplitude modulations (RAMs) of a mimic of the fish’s own electric field within behaviorally relevant frequency bands, we found that pyramidal cells with overlapping receptive fields exhibit strong stimulus-induced correlations. To quantify the encoding of the RAM time course, we estimated the stimuli from simultaneously recorded spike trains and found significant improvements over single spike trains. The quality of stimulus reconstruction, however, was still inferior to the one measured for single primary sensory afferents. In an analysis of feature extraction, we found that spikes of pyramidal cell pairs coinciding within a time window of a few milliseconds performed significantly better at detecting upstrokes and downstrokes of the stimulus compared with isolated spikes and even spike bursts of single cells. Coincident spikes can thus be considered “distributed bursts.” Our results suggest that stimulus encoding by primary sensory afferents is transformed into feature extraction at the next processing stage. There, stimulus-induced coincident activity can improve the extraction of behaviorally relevant features from the stimulus

    Deciphering the brain's codes

    Get PDF
    The two sensory systems discussed use similar algorithms for the synthesis of the neuronal selectivity for the stimulus that releases a particular behavior, although the neural circuits, the brain sites involved, and even the species are different. This stimulus selectivity emerges gradually in a neural network organized according to parallel and hierarchical design principles. The parallel channels contain lower order stations with special circuits for the creation of neuronal selectivities for different features of the stimulus. Convergence of the parallel pathways brings these selectivities together at a higher order station for the eventual synthesis of the selectivity for the whole stimulus pattern. The neurons that are selective for the stimulus are at the top of the hierarchy, and they form the interface between the sensory and motor systems or between sensory systems of different modalities. The similarities of these two systems at the level of algorithms suggest the existence of rules of signal processing that transcend different sensory systems and species of animals

    Spatial processing of conspecific signals in weakly electric fish: from sensory image to neural population coding

    Get PDF
    In this dissertation, I examine how an animal’s nervous system encodes spatially realistic conspecific signals in their environment and how the encoding mechanisms support behavioral sensitivity. I begin by modeling changes in the electrosensory signals exchanged by weakly electric fish in a social context. During this behavior, I estimate how the spatial structure of conspecific stimuli influences sensory responses at the electroreceptive periphery. I then quantify how space is represented in the hindbrain, specifically in the primary sensory area called the electrosensory lateral line lobe. I show that behavioral sensitivity is influenced by the heterogeneous properties of the pyramidal cell population. I further demonstrate that this heterogeneity serves to start segregating spatial and temporal information early in the sensory pathway. Lastly, I characterize the accuracy of spatial coding in this network and predict the role of network elements, such as correlated noise and feedback, in shaping the spatial information. My research provides a comprehensive understanding of spatial coding in the first stages of sensory processing in this system and allows us to better understand how network dynamics shape coding accuracy

    Sodium channel distribution in the apical dendrites of pyramidal cells vary in the hindbrain of Apteronotus leptorhynchus.

    Get PDF
    Apteronotid weakly electric fish heavily rely on their electrosensory system for behaviors like spatial navigation, communication and prey capture. Since the behaviorally important information about their environment is contained in the spatial and temporal modulations of the electrosensory signal, efficient mechanisms to process this information with great fidelity are of the utmost importance. Efficient sensory processing often involves having multiple parallel processing streams so that each stream can specialize to treat signals with different properties. This strategy requires the response properties and neural dynamic to be adjusted in each pathway to implement different neural coding strategies. One of the neural coding strategies employed by the primary electrosensory area is to use bursts of spikes in response to specific temporal features of the signal - a coding strategy described as feature-extraction. Burst generation relies on dendritic voltage-gated sodium channels (Nav channels) expressed on pyramidal cell apical dendrites to support the active backpropagation of somatic spikes and the generation of depolarizing after-potentials. The presence and role of these Nav channels is well documented but variation in their expression across processing stream has not been investigated. Considering that many of the other ion channels expressed in these cells show differences across pathways, we hypothesize that Nav expression varies across the 3 electrosensory lateral line segments (lateral, centro-lateral and centro-medial segments; LS, CLS, CMS respectively) representing different processing streams. We used immunocytochemistry and confocal imaging of hindbrain slices to quantify differences in density and distribution of Nav channels in the apical dendrites of pyramidal cells. The dendritic Nav channel distribution follows a mediolateral gradient with lateral segment of the ELL exhibiting the highest density. We also found that dendritic Nav channel densities remain fairly constant across the proximal and distal locations of the apical dendrites across maps with CMS showing slightly higher Nav density in distal regions. We argue that the differences we observed may contribute to shaping the response properties and the specialization of each processing stream thereby contributing to the efficiency of the sensory system

    Amazon Nights II: Electric Boogaloo-Neural Adaptations for Communication in Three Species of Weakly Electric FIsh

    Get PDF
    Sensory systems have to extract useful information from environments awash in noise and confounding input. Studying how salient signals are encoded and filtered from these natural backgrounds is a key problem in neuroscience. Communication is a particularly tractable tool for studying this problem, as it is a ubiquitous task that all organisms must accomplish, easily compared across species, and is of significant ethological relevance. In this chapter I describe the current knowledge of what is both known and still unknown about how sensory systems are adapted for the challenges of encoding conspecific signals, particularly in environments complicated by conspecific-generated noise. The second half of this chapter describes why weakly electric fish are particularly suited to investigating how communication can shape the nervous system to accomplish this task
    corecore