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ABSTRACT 

 
 

Sodium channel distribution in the apical dendrites of pyramidal 

cells vary in the hindbrain of Apteronotus leptorhynchus. 
 

 

Sree Indrani Motipally 

 

Apteronotid weakly electric fish heavily rely on their electrosensory system for behaviors like 

spatial navigation, communication and prey capture. Since the behaviorally important information 

about their environment is contained in the spatial and temporal modulations of the electrosensory 

signal, efficient mechanisms to process this information with great fidelity are of the utmost 

importance. Efficient sensory processing often involves having multiple parallel processing 

streams so that each stream can specialize to treat signals with different properties. This strategy 

requires the response properties and neural dynamic to be adjusted in each pathway to implement 

different neural coding strategies. One of the neural coding strategies employed by the primary 

electrosensory area is to use bursts of spikes in response to specific temporal features of the signal 

- a coding strategy described as feature-extraction. Burst generation relies on dendritic voltage-

gated sodium channels (Nav channels) expressed on pyramidal cell apical dendrites to support the 

active backpropagation of somatic spikes and the generation of depolarizing after-potentials. The 

presence and role of these Nav channels is well documented but variation in their expression across 

processing stream has not been investigated. Considering that many of the other ion channels 

expressed in these cells show differences across pathways, we hypothesize that Nav expression 

varies across the 3 electrosensory lateral line segments (lateral, centro-lateral and centro-medial 

segments; LS, CLS, CMS respectively) representing different processing streams. We used 

immunocytochemistry and confocal imaging of hindbrain slices to quantify differences in density 

and distribution of Nav channels in the apical dendrites of pyramidal cells. The dendritic Nav 

channel distribution follows a mediolateral gradient with lateral segment of the ELL exhibiting the 

highest density. We also found that dendritic Nav channel densities remain fairly constant across 

the proximal and distal locations of the apical dendrites across maps with CMS showing slightly 

higher Nav density in distal regions. We argue that the differences we observed may contribute to 

shaping the response properties and the specialization of each processing stream thereby 

contributing to the efficiency of the sensory system.  
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CHAPTER 1: INTRODUCTION 

 

I. Intrinsic conductances shape firing dynamics  

Spike generation and spiking patterns are affected by many cellular parameters, such as 

morphology, subcellular distribution of ion channels and receptor channel composition, etc. 

Intrinsic properties of the neurons dictate to a large extent their functional dynamics. For example, 

cells can produce tonic or phasic responses depending on their intrinsic properties and variations 

in currents can generate different response (Llináis, 2014). Voltage gated sodium channels (Nav 

channels) are most famously involved in the generation of action potential in axons but many 

electrophysiological studies provide evidence for their localization on dendrites (Turner et al., 

1991). Their ability to promote retrograde conduction of a spike from soma to dendrite (Stuart and 

Sakmann, 1994), can underlie a distinct mode of spiking response called bursting. In these bursting 

neurons, the dendritic Nav channels have been localized to a specific compartment of the dendritic 

tree proximal to the soma. Our goal here is to characterize possible variations in Nav channel 

expression as a way to understand how neural properties are adjusted across segments. 

 

II. Bursts and bursting dynamics 

Many studies indicate that bursts play an important role in brain function as they carry 

precise stimulus related information. Sensory bursts are best characterized in relay neurons of the 

mammalian thalamus and in hindbrain pyramidal cells (PCs) in the electric fish electrosensory 

system. Bursts have been shown to be functional units of information and carry more information 

when compared to single spikes (Cattaneo et al., 1981). Bursts more reliably signal the presence 

of specific features of the stimulus (Guido et al., 1992, 1995; Mukherjee and Kaplan, 1995) and 

hence showcase a special role in neural signaling: supporting the detection of behaviorally 

important features. Furthermore, a single burst is capable and sufficient to bring about LTP and 

LDP (Huerta and Lisman, 1995) whereas a single spike cannot. This, once again, stresses its unique 

role in neural processing. The behavioral role of bursts differs in different systems while retaining 

a common feature-detection function. For example, high frequency bursting in the cricket auditory 

sensory neuron –AN2 reflects significant increases in the ultrasound amplitude and triggers 

avoidance steering to escape echolocating bats (Marsat and Pollack, 2006). The behavioral 
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relevance of stimulus features encoded via bursts has also been demonstrated in the Lateral 

Geniculate nucleus (Lesica and Stanley, 2004) where they signal sharp edges in contrast. In this 

system, the cellular properties supporting bursting and the way it responds and encodes stimuli is 

well understood: the low threshold and nonlinear amplification of the burst mechanism results in 

a large cortical response to a stimulus which otherwise would be insignificant to trigger a response 

(Lesica et al., 2006). 

 

III. Electrosensory system in Apteronotus leptorhynchus 

Another system where burst mechanism (Doiron et al., 2002; Turner et al., 1994) and its 

role is well understood is the Electrosensory Lateral Line lobe (ELL) of weakly electric fish. Since 

it is our model system, we first introduce it in the next paragraphs. 

The electrosensory system plays a crucial role in spatial navigation, prey capture and 

communication in electric fish. A specialized organ called the electric organ generates pulse or 

waveform electric organ discharge (EOD), which can be transiently modulated to produce chirps 

that help in communication. Apteronotus leptorhynchus has a quasi-sinusoidal EOD that ranges 

from 650 to 1000 Hz, with males having relatively higher EOD frequencies than females (Bastian 

and Nguyenkim, 2001). Objects and conspecifics in the vicinity of the fish affect the strength of 

the EOD locally thus creating “electrical shadows” and changes in amplitude of the EOD on 

corresponding portions of the skin (Nelson and Maciver, 1999). 

Electroreceptors distributed all over the fish’s body carry out both passive and active 

electroreception. They are classified into 2 major classes. Ampullary receptors that are tuned to 

exogenous low frequency electric fields thereby mediating passive electroreception. Tuberous 

receptors that are tuned to fish’s own EOD and implement active electroreception (Kawasaki, 

2005). Tuberous receptors are further categorized into P- and T-units based on their response to 

EOD. T-units are time coding and carry phase information about EOD cycles. The more abundant 

P-units fire probabilistically in response to the EOD and their firing rate correlates with stimulus 

amplitude (Nelson et al., 1997). P-units and their targets constitute the largest component of the 

electrosensory system; since we will focus on this pathway we will simply refer to P-units as 

“receptors”.  
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 Each receptor trifurcates terminating in three different segments of the ELL to form a 

distinct somatotopic map in each segment (Heiligenberg and Dye, 1982). Pyramidal cells (PCs) of 

the ELL project to higher brain regions namely, the nucleus praeminentialis (nP) and torus 

semicircularis (TS) in the midbrain. The 3 ELL segments of interest are named the centromedial 

(CMS), centrolateral (CLS) and lateral (LS) segments (Figure 1A). 

The ELL is a laminar structure with distinct layers and several subtypes of PCs. The deepest 

layer of the ELL consists of electroreceptor afferents and their terminal boutons that synapse onto 

both PCs and interneurons. The main populations of output neurons in the ELL are PCs, which are 

divided into basilar (ON-cell) and non-basilar (OFF-cell) subtypes encoding increases or decreases 

in amplitude of the EOD (Maler, 1979) analogous to ON cells and OFF cells of the visual system. 

ON and OFF-cells are found adjacent to each other in a columnar organization, processing the 

sensory input from the same patch of skin. They are further classified into superficial, intermediate 

and deep PCs based on the dorso-ventral position of their soma in the ELL layers (Bastian and 

Courtright, 1991). The 3 maps of the ELL differ in several ways (see Krahe and Maler, 2014 for a 

recent review and paragraph below). For example, the receptive field of the PCs vary from smaller 

(CMS) to larger (LS). Frequency tuning, particularly in ON cells, is low-pass in the CMS and high-

pass in LS. Neuromodulation affects LS more heavily than CLS. These property differences tunes 

them adequately to process different types of signals: spatially diffuse communication signals in 

LS and small localized prey-like objects in CMS (Marsat et al., 2009; Metzner et al., 1998). Most 

variations observed follow a medio-lateral gradient with CLS having properties intermediate 

between CMS and LS. 

 

IV. Burst mechanism 

Bursting follows a "ping-pong" mechanism in which spikes generated in the soma by a 

depolarizing current, propagate into the apical dendrites and activate dendritic Nav channels. 

These backpropagating dendritic sodium spikes cause the current to flow back electrotonically 

generating a depolarizing after potential (DAP) at the soma, which can bring the soma past 

threshold again thus leading to production of another spike with a short ISI (Figure 1B). Somatic 

spikes are followed by both fast and slow afterhyperpolarizations (AHPs). Increase in DAP 

amplitude due to repetitive spike discharge decreases the ability of somatic AHPs to hyperpolarize 
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the cell and thereby increases the frequency of spike discharge. The increased frequency of spike 

discharge triggers a high frequency doublet, which is followed by burst afterhyperpolarization 

(Lemon and Turner, 2000; Turner et al., 2002). High frequency doublets terminate bursts since 

dendritic backpropagation ceases when the somatic ISI falls within dendritic sodium channel 

refractory period (Fernandez et al., 2005). In vivo, the full burst cycle is often truncated leading to 

burst with more variable ISI structures and with typically less spikes (e.g. most in-vivo burst are 2 

or 3 spikes long), but the reason for this difference is still unknown. Various models of this burst 

dynamic have established the role of the ionic and morphological aspects at play (Noonan et al., 

2003). 

 

V. Role of bursts in electric fish neural coding  

Bursting is a dynamic process during which neuronal activity alternates between quiescent 

and repetitive spiking states. It plays an important role in communication between neurons which 

is essential for pattern generations and synchronization(Izhikevich, 2006). ELL PCs generate spike 

bursts which were found to be always biased towards low AM frequency events whereas isolated 

spikes code high frequency stimuli. Previous studies showed that the frequency selectivity across 

ELL maps correlates with the properties of spike bursts in vitro (Shumway, 1989; Turner et al., 

1996). Due to the bursting dynamic, bursts act as reliable feature detectors (Gabbiani et al., 1996; 

Lisman, 1997) and signal the presence of prey-like (CLS,CMS; Oswald et al., 2004) or chirp-like 

stimuli (LS; Marsat et al., 2009). However, bursts contribute less than single spikes to encode the 

detailed time course of the stimulus (Oswald et al., 2004). Burst coding varies across layers of the 

ELL due to the morphological differences of the PCs. Deep PCs have small apical dendrites and 

display a more tonic firing rate. They are very distinct from intermediate and superficial PCs 

because they project to a different part of a feedback loop-nP, rather than projecting upstream to 

the TS. Intermediate and superficial PCs also differ in their apical dendrite size and spiking pattern 

but with a less distinct division between the 2 sub-types. Despite these differences, the role of 

bursts in coding follows the same strategy in all of the PC subtypes. They signal the occurrence of 

specific stimulus features rather than encoding the detailed time-course of the signal.  

Oswald et al, (2007) studied the relationship between the DAP size, burst structure (i.e. the 

number and intervals between bursts) and the information carried by bursts. Specifically, they 
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show that interval between spikes in a burst are directly correlated with the slope and height of the 

peak in amplitude that triggered the burst. They demonstrated that burst ISIs should differ by a 

minimum of 2ms to efficiently encode the differences in stimulus intensity. They used LIF-DAP 

model that reproduces the in-vitro spiking characteristics of ELL PCs to broadband inputs and 

mimics the interval coding. Their modeling study showed that the moderate size of DAP promotes 

coding maximal information about stimulus intensity by the ISIs. Furthermore, it shows that 

optimal DAP size is inversely related to the variance of the stimulus (Doiron et al., 2007). While 

these studies point to the relevance of DAP size in shaping neural coding, we do not know if this 

parameter is in fact adjusted across PC subtypes to influence how each category of neurons 

processes information. 

 

VI. Known differences across the ELL  

Since the burst mechanism and DAP generation is so crucial to determining the exact 

nature of the neural code implemented by burst, any changes in response properties affecting this 

mechanism can alter the coding scheme used by the PCs. The ELL segments display several such 

differences that specializes each segment for different tasks. For example, PCs exhibit differences 

in their frequency tuning across maps (Mehaffey et al., 2008b). Frequency tuning of CLS and LS 

cells was observed to be dependent on the spatial extent of the stimulus whereas the tuning in CMS 

cells is independent of it. CMS ON-cells show low pass characteristics to both local and global 

stimulation whereas CLS ON-cells are low-pass filters for local but show high pass properties for 

global signals. Response characteristics of LS ON-cells depend on the type of stimulation. They 

display similar tuning properties as CMS ON-cells when stimulated with a sinusoidal AM, but 

show high frequency response for global random AM stimulus (Krahe et al., 2008). LS cells 

possess larger spatial receptive fields and show higher adaptation rate to step changes in amplitude 

when compared to other maps (Shumway, 1989). Map-specific frequency tuning is established in 

part by the variations in the intrinsic ion channels of ON and OFF-type PCs, where OFF-cells 

remain relatively constant across segments, but ON-cells differ in ion channel composition 

(Mehaffey et al., 2008a). Most notably, SK channels, which regulate the frequency selectivity and 

tuning, are highly expressed in LS cells when compared to CLS and CMS (Ellis et al., 2007b). The 

key role of dendritic Nav channels in burst generation leads us to wonder if their localization and 
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density on apical dendrites varies between segments thereby contributing to differences in 

response properties observed between them. Immunocytochemical localization of sodium 

channels using NaCh immunolabel has shown the active regions of dendrites (i.e. dendritic Nav) 

to be localized in patches, with intervening regions of relatively passive membrane (Turner et al., 

1994). The authors focused on the first ~200 μm of apical dendrites where backpropagating action 

potentials are observed, but they noted the presence of Nav channels  higher in the apical dendrites. 

The role of these channels in supporting the backpropagation of somatic spikes was confirmed by 

dendritic TTX ejections (Turner et al., 1994) and modeling. They did not provide a quantitative 

description of the distribution of Nav channels but unpublished observation (Maler, personal 

communication) suggest potential differences across segments. This observation would be in line 

with the other numerous cellular, coding and functional differences across segments.  

Based on the hypothesis that dendritic Nav channel distribution varies across segment, the 

goal of this thesis is to reveal how specialization of neurons across different sensory pathways can 

be achieved by adjusting the density in expression of a given channel. This thesis can thus serve 

to better understand the link between cellular/molecular properties and the neural basis of 

behavior. 
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         CHAPTER 2: DIFFERENCES IN SODIUM CHANNEL DENSITIES ACROSS      

           SEGMENTS IN THE APICAL DENDRITES OF ELL PYRAMIDAL CELLS 

 

A modified version of this article is published in the journal Frontiers in Neural Circuits: Motipally SI, 

Allen KM, Williamson DK & Marsat G. Differences in sodium channel densities in the apical dendrites of pyramidal 

cells of the electrosensory lateral line lobe. Frontiers in Neural Circuits. In Press (Accepted April 2019). 

Contributions: SIM designed the study, performed the immunocytochemistry and Western Blot, analyzed 

the data and wrote the paper. KMA performed a GABA labelling experiment (not presented in this thesis). DKW 

performed the neural recordings used for Fig 7. GM designed the study, analyzed the data and wrote the paper  

 

I. Abstract 

          Heterogeneity of neural properties within a given neural class is ubiquitous in the 

nervous system and permits different sub-classes of neurons to specialize for specific purposes. 

This principle has been thoroughly investigated in the hindbrain of the weakly electric fish A. 

leptorhynchus in the primary electrosensory area, the Electrosensory Lateral Line lobe (ELL). The 

ELL pyramidal cells that receive inputs from tuberous electroreceptors are organized in three 

maps. The properties of these ON-cells vary greatly across maps due to differences in connectivity, 

receptor expression, and ion channel composition. These ON-cells are a seminal example of 

bursting neurons and their bursting dynamic relies on the presence of voltage-gated Na+ channels 

in the extensive apical dendrites of the superficial pyramidal cells. Other ion channels can affect 

burst generation, for e.g., SK channels cause hyperpolarizing after-potentials and their expression 

varies across ELL neurons, yet bursting propensity is similar across segments. We question 

whether the depolarizing mechanism that generates the bursts presents quantitative differences 

across segments that could counterbalance other differences having the opposite effect. Although 

their presence and role are established, the distribution and density of the apical dendrites’ Na+ 

channels have not been quantified and compared across ELL maps. Therefore, we hypothesize that 

Na+ channel density will vary across segment and we test this by quantifying their distribution in 

the apical dendrites of immunolabeled ELL sections. We found the Na+ channels to be two-fold 

denser in the lateral map than in the centro-medial map, the centro-lateral map being intermediate.. 

Our results imply that this differential expression of voltage-gated Na+ channel could 

counterbalance or interact with other aspects of neuronal physiology that vary across segments 

(e.g. SK channels). We argue that burst coding of sensory signals, and the way the network 

regulates bursting, should be influenced by these variations in Na+ channel density.  
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II. Introduction  

Neurons possess a variety of ion channels and membrane proteins that shape their response 

properties, from the classical Na+ and K+ ion channels generating action potentials to G-protein 

coupled receptors (Duménieu et al., 2017). Heterogeneity in neuron’s physiology can be 

understood through two complementary principles. One perspective stresses that a given neural 

output can result from various composition of channels and proteins. This principle was most 

obviously demonstrated in the stomatogastric ganglion of crab where an identical motor output 

pattern could be generated using network that differed widely in their channel composition (Prinz 

et al., 2004). This work highlighted that a change in one element of the neuron’s physiology can 

be compensated by changes in another element.  

The other “non-exclusive” principle is also a basic concept in neuroscience. Specialization 

of neurons for different purposes and for performing different computations often involves 

changing the composition of their membrane proteins (Hille, 2001). An example of this principle, 

central to the subject of our study, comes from neurons that possesses specific ionic conductances 

responsible for generating burst of spikes (Krahe and Gabbiani, 2004). The neuron’s bursting 

dynamic could not be possible without these specific ion channels and their role in neural coding 

is thus changed by this bursting dynamic. 

Bursting is observed in various sensory systems and typically fulfils the same function: 

signaling the occurrence of specific spatio-temporal patterns of inputs (Gabbiani et al., 1996; 

Kepecs et al., 2002). In the visual system, bursts signal edges and sharp contrasts (Lesica and 

Stanley, 2004), in the cricket auditory system they signal salient ultrasound pulses typical of 

insectivorous bats (Marsat and Pollack, 2006, 2012) and in the electrosensory system they signal 

prey-like peaks in signal amplitude or aggressive communication signals (Gabbiani et al., 1996; 

Oswald et al., 2004). The presence of the bursting mechanism is thus key in shaping the neuron’s 

role in the sensory pathway. The present study focuses on this bursting property and investigates 

variations in the channels responsible for burst generation in the sensory system of weakly electric 

fish. 

The electrosensory lateral line lobe (ELL) is the primary sensory area in the hindbrain of 

gymnotid weakly electric fish and the main output neurons, pyramidal cells (PCs), possess a well 

characterized bursting mechanism (Doiron et al., 2002; Turner et al., 1994). PCs, particularly the 
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more superficial ones, have extensive apical dendrites dedicated to receiving feedback inputs but 

these dendrites also support the generation of bursts. These apical dendrites extend several hundred 

µm into the molecular layer (Figure 1A) dorsal to the pyramidal cell layer (PCL) (Bastian and 

Courtright, 1991). They contain TTX-sensitive voltage-gated sodium channels (Nav channels). 

When an action potential is initiated in the cell, the somatic potential backpropagates actively ~200 

µm up the apical dendrites due to the Nav conductance. Current from the backpropagating action 

potential then flows back down to the soma passively causing a depolarizing after-potential (DAP) 

after each spike (Figure 1B; Turner et al., 1994). In vitro and in models, this backpropagation 

mechanism can trigger a sequence of several spikes with increasingly shorter interspike intervals 

(ISIs). This stereotyped bursting dynamic, named ghostbursting (Doiron et al., 2002), might not 

unfold in the same way in vivo where bursts are typically truncated to be only a few spikes-long. 

Nevertheless, backpropagation and the DAP are an integral part of the bursting dynamic and thus 

shape burst-coding of sensory signals (Oswald et al., 2007). 

Response properties of ELL PCs are shaped by a variety of other factors that vary across 

cell subtypes (Maler, 2007). PCs are classified based on their location in the ELL layer. Superficial 

and intermediate PCs have extensive apical dendrites while deep PCs have short apical dendrites 

and fulfill a different role in the circuit (Bastian et al., 2004; Bastian and Nguyenkim, 2001). PCs 

receive inputs from receptors either directly through an inverting interneuron leading their 

response patterns to be typical of ON-cells and OFF-cells respectively (Maler, 1979); both types 

have the same burst dynamic. The ELL is organized in several topographic maps. While the map 

of the medial segment is driven by ampullary electroreceptors, the centro-medial, centro-lateral 

and lateral segments (CMS, CLS and LS respectively) receive inputs from the tuberous receptors 

sensitive to the fish’s self-generated electric signal (Kawasaki, 2005). In this study, we focus on 

the ELL maps responsible for processing this active electrosensory signal since it plays a key role 

in navigation, prey capture and communication.  

PCs from the 3 maps vary widely in their response properties. These differences are due to 

variations in network connectivity, ion channels composition, expression of neuromodulator 

receptors and more (Ellis et al., 2008; Krahe and Maler, 2014; Maler, 2009). These differences in 

properties allow the specialization of the three maps for different purposes: whereas the more 

medial segment is well suited for the localization of small near-by objects such as prey, the more 

lateral segments might specialize for processing communication signals (Marsat et al., 2009; 
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Metzner and Juranek, 1997) . Despite these differences in properties and function, all segments 

display similar bursting proportions (Krahe et al., 2008). Although small differences in burst 

patterns have been noted, e.g. some variations were observed in the ISIs occurring within bursts 

across segments with LS showing shortest ISIs. (Mehaffey et al., 2008b; Metzner et al., 1998; 

Turner et al., 1996), it is unclear to what extent burst propensity varies across segments and no 

fundamental differences have been documented in burst coding (Krahe et al., 2008; Oswald et al., 

2004).  

Large differences, particularly in bursting rates, could have been expected across different 

segments given the known differences in conductances affecting bursting. SK channels, which 

generate a hyperpolarizing after-potential, vary in expression across PCs subtypes. SK2 channels 

are particularly prevalent in the LS where they oppose the DAP-based burst generation mechanism 

(Ellis et al., 2007a, 2008). Serotonin receptors are also expressed differently, with LS cells 

expressing more and when activated, serotonergic inputs can enhance bursting propensity 

(Deemyad et al., 2011, 2013; Johnston et al., 1990). It is thus clear that many factors interact to 

shape bursting and it is possible that similarities in burst coding across PC subtypes and segments 

happens despite differences in intrinsic configurations rather than because they have identical 

physiology. 

Variation in one element central to the burst-generation mechanism has not been examined 

yet: Nav channel expression in the apical dendrites of PCs. Considering the differences related to 

the burst mechanism noted above, we hypothesize that variations in the expression of Nav channels 

will also be observed across segments. To test this hypothesis, we performed 

immunocytochemistry on ELL slice labelling Nav channels in the molecular layer of the 3 

segments of the ELL. We observed Nav expression throughout the molecular layer and we show 

that it is denser in LS than CMS. We argue that this differential expression should have functional 

consequences on response properties but that it is hard to determine how it interacts with the many 

other differences seen across segments. 
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Figure 1: Pyramidal cell and backpropagation.  

A. Transverse section through the electrosensory 

lateral line lobe (ELL). It’s the primary sensory area 

located in the hindbrain of gymnotid weakly electric 

fish. It’s a layered structure where the main output 

neurons-pyramidal cells (yellow schematic) are 

organized in several topographic maps: medial, 

centro-medial, centro-lateral and lateral segments 

(MS, CMS, CLS and LS respectively). The former 3 

segments receive inputs from tuberous 

electroreceptors. The pyramidal cell layer (PCL) 

contains the soma of these neurons whereas the 

ventral and dorsal molecular layers (VML and DML 

respectively) contain the extensive apical dendrites of 

the pyramidal cells. The tractus stratum fibrosum 

(tSF) is an easily identifiable band (see Fig. 2) 

separating the two.  

B. Backpropagation and bursting. The pyramidal cells 

possess a small basilar dendritic bush receiving 

feedforward inputs, extensive apical dendrites 

(particularly long in superficial PC) receiving 

feedback and an axon not depicted here. Apical 

dendrites contain Nav channels such that when a 

action potential is elicited in the soma (brown portion 

of the voltage schematic) it propagates up and back 

down the apical dendrites causing a depolarizing after 

potential (DAP; light blue) at the soma. The DAP 

increases the probability that subsequent APs are fired 

immediately after the first one thus leading to bursting 

 

 

III. Materials and methods 

Apteronotus brain cryosection preparation  

Apteronotus leptorhynchus fish used for experiments were wild-caught and purchased from 

a tropical fish supplier (Segrest Farms, FL, USA). Fish were maintained in home tanks 

(61×30.5×50.8 cm) at 26–27°C, 250–300 μS on inverted light cycles, fed ad libitum and were 

provided with environmental enrichment. Fish of either sex were anesthetized in tank water with 

MS-222 (3-amino benzoic acid ethyl ester) and respirated with oxygen bubbled MS-222 water 

during perfusion. All chemicals were obtained from Fisher scientific (Hampton, NH) unless 

 B 

A 
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otherwise noted. Heart was surgically exposed and intracardial perfusion was performed via the 

Conus arteriosus with 5 ml of cold 0.9% saline containing Heparin (# 9041-08-1), NaNO2 (# 

S25560) and NaCl (# 7647-14-5) which is followed by perfusion with 40 mL of cold 4% 

paraformaldehyde (Electron Microscopy Sciences, #RT-15714) in 1X-phosphate buffered saline 

(PBS), pH-7.3. Whole brains were surgically removed and post fixed in 4% paraformaldehyde 

(PFA) in 1X PBS for 4 hours at 4℃ and were washed three times for 15 minutes each in 1X PBS 

at 4℃. Brains were sequentially cryoprotected in 20% and 30% sucrose (# S25590) in 1X-PBS, 

pH-7.3 until they were completely saturated and later incubated in 1:1 mixture of 30% sucrose 

solution and optical cutting temperature (OCT) compound (Electron Microscopy Sciences, 

#62550-01) for 1-2 hours before embedding in OCT. Dry-ice chilled 100% ethanol was used to 

freeze the brain in OCT in a cryomold and the mold was incubated at -80℃ for 1-2 hours before 

sectioning. 15-20μm thick transverse brain sections were obtained using cryostat (Leica 1850) and 

the slides were stored at 4 ℃ for immediate processing or stored at -20℃ until use. 

Immunohistochemistry  

Brain sections were labelled for Nav in situ through the following procedure. Sections were 

washed 3 times with 1X-PBS, pH-7.3 for 5 minutes each and were blocked for 1 hour in 5% normal 

goat serum (# 005-000-121, Jackson Immuno Research) in PBSAT (1X PBS, 5mM sodium azide 

and 0.1% Triton X-100). Blocking was followed by 1-hour incubation with Anti-Pan Nav 

(Alomone labs, # ASC003) (1:50) and purified Mouse Anti-MAP II (BD biosciences, #556320) 

(1:400) primary antibodies in blocking buffer at room temperature. Later, brain sections were 

transferred to 4 ̊C for overnight incubation. Note that the MAP2 antibody used in the current study 

only stains the high molecular weight isoforms of MAP2 and does not recognize low molecular 

weight MAP2 isoforms or other microtubule proteins. In addition, MAP2 is mainly concentrated 

in the dendritic part of the nerve cells (Olesens, 1994), this might possibly explain the 

comparatively fainter MAP2 labelling observed in the cell bodies (Fig 3C). 
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Figure 2: Scanning and localization procedure.  

A. Scans arrangement. Each 105x105 µm scan is 

positioned relative to the transverse section of the 

ELL so that the first one of a series contains the tSF 

layer and subsequent ones overlap the previous and 

follow the orientation of dendrites in the molecular 

layer. Eight successive scan or more were 

performed to cover at least 600 µm of apical 

dendrites. 

B. A series of scans showing the extensive apical 

dendritic bush in the molecular layer. Although we 

did not attempt to reconstruct and isolate single 

pyramidal cell, our successive scans follow the 

apical dendrites of PCs. Red MAP2 labelling marks 

the inside of the dendrites and green labelling 

highlights the position of Nav channels. Since no 

distinction could be made between ON and OFF 

cells based on the immunolabelling used, all the 

dendrites quantified in the study are mixed, i.e. 

belong to either ON or OFF cell, also possibly 

VML and GC2 interneurons (although it is 

unknown if they express dendritic Nav).  

C. Dendrite selection and angle. Based solely on 

the MAP2 labelling (Nav labeling not displayed) 

we selected several clearly defined dendrites per 

scans for quantification (e.g. outlined with white 

dashes). Since dendrite orientation relative to the 

scan orientation is not orthogonal, we measured, in 

each scan, the average relative orientation of 

dendrites based on several dendrites per scan 

(yellow lines). This allowed us, using the position 

on the x-axis of the scan, the angle of dendrites and 

trigonometry, to determine a more accurate 

position of dendrites along the dendritic bush. 

D. Determination of tSF upper edge to set it as 

location “0 µm”. The stratum fibrosum tract is 

characterized by large circular areas without MAP2 

labelling between the large proximal apical 

dendrite shafts. We determined the dorsal edge of 

this layer by first highlighting the visible holes in    

  labelling (red in the top image) and constructing a pixel histogram (red curve, bottom plot) along the x-  

  axis based on the pixels outside these areas. Second, we used the raw pixel intensity values to build a  

  histogram along the x-axis and smoothed it by fitting a triple sinusoid function (black dashes, bottom plot).  

  Both histograms where normalized between 0 and 1 and we took the 0.9 mark of the rising slope to  

  determine the 0 µm location (dashed blue line). We confirmed both histograms gave similar results and  

  used the average of the two calculated values to set the 0-mark. 
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Sections were washed 4 times with 1X-PBST (1X PBS and 0.1% Triton X-100), pH-7.3 

for 15 minutes each and were incubated with Goat anti rabbit Alexa 488 (Life Technologies, #A-

11008) (1:500) and Goat anti Mouse Alexa 546 (Thermofisher, #A-11030) (1:500) secondary 

antibodies for 3 hours at room temperature in an enclosed moist chamber. Sections were washed 

4 times with 1X-PBS, pH-7.3 for 15 minutes each and were mounted in Vectashield (Vector 

Laboratories, # H-1000) and coverslipped. Selectivity of the labelling was confirmed with several 

controls: an absorption control where the Nav antibody is incubated with the immunogen (Figure 

3G-IA), a control with no primary antibody (Figure 3J) and a quantification of Nav labelling in 

regions where no Nav channels are expected to be found. For this last control, we selected 27 

different 10x10um areas in the gaps between dendrite in the tSF layer (where we do not expect 

Nav channels to be present) and compared the Nav labeling to 27 areas selected randomly on the 

same scans but in the middle of the dendritic arbors in the molecular layer. As expected, minimal 

staining was found (gaps in tSF: 0.009 puncta/µm2; molecular layer: 0.1 puncta/µm2; T-Test: p<10-

6) proving that puncta of labeling are not simply an artefact and randomly distributed on the tissue. 

Western blot verifying antibody specificity  

The specificity of polyclonal Anti Pan-Nav antibody was evaluated using western blot 

analysis (Figure 3F). Unperfused whole brain was surgically removed and frozen in liquid nitrogen 

and immediately homogenized with cold homogenization buffer containing 250mM Sucrose, 

1mM EDTA, 10mM Tris HCL and protease inhibitor cocktail (#4693132001, Sigma Aldrich), pH-

7.2, on pre-chilled mortar and pestle. Tissue sample was sonicated using two 10 second pulses 

with 30 second interval between each sonication. Sample was centrifuged at 500X g for 10 minutes 

to remove intact cells, nuclei and cell debris, and the supernatant was centrifuged at 100000 X g 

for 1 hr at 4 ℃. Supernatant was discarded, and the pellet was resuspended in homogenization 

buffer and centrifuged at 100000 X at 4 ℃ for 1 hour. Resultant supernatant was discarded and 

the pellet containing the membrane fractions was used to run western blot. 

For western blot, 1X LDS (#NP 0008, Thermofisher) was added to the protein samples and 

was heated for 10 min at 70℃. 5uL of the sample was loaded into 4-6% polyacrylamide gel along 

with Precision Plus Protein™ Dual Color Standard (#1610374S, Bio-Rad) and was run at 120 V. 

Transfer was done at 100mA for 22 hrs at 4 ℃ and the nitrocellulose membrane (# 162-0094, Bio-

Rad) was blocked for 1 hour with 5% BSA and 0.05% NaN 3 in 1X TBST (1X TBS, 0.1% Tween) 
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under agitation. Primary antibody diluted in the blocking buffer (1:200) was applied to the 

membrane and incubated overnight at 4 ℃ under gentle agitation. After incubation, membrane 

was washed 3 times with 1X TBST for 15 minutes each. HRP conjugated anti-rabbit secondary 

antibody (#A0545, Sigma) was applied at 1:10,000 dilution and agitated for 1 hour at room 

temperature, which was followed by three 15-minute washes with 1X TBST. ECL substrate 

(#RPN2109, GE Healthcare) was added and the membrane was imaged on FluorChemQ system 

(Protein Simple).  

Nav density quantification  

Scans were obtained on FV-1000 Fluoview confocal microscope and minor brightness 

adjustments were made using Fluoview software. All of the scans were imaged using 60X oil 

immersion lens at 2X digital zoom. Scan size X*Y is set at 105.4*105.4µm with Z at 0.5µm. 

Differences in the spatial distribution across the brain maps is assessed by quantitative image 

analysis using VAA-3D software. Image J software was used to perform image normalization. To 

measure the spatial distribution of dendritic Nav channels across different ELL maps (LS, CLS 

and CMS), the dorsal edge of the tSF layer is chosen as reference location (0 µm). Scans covered 

the first 600 to 800 µm of apical dendrites as they project dorsally through the VML and DML 

layers. 

In each scan, 2-4 portions of dendrites with clear MAP2 labeling were chosen prior to 

looking at the Nav labelling to prevent biased choice of dendrite based on expected channel 

density. Nav labeling was quantified by manually marking each puncta identified on the chosen 

dendrites. XY coordinates of each puncta and dendrites were stored for analysis. We were 

conservative in assigning a punctum as belonging to a dendrite and the numbers presented in this 

paper should be viewed as a lower-bound estimate. Note that any bias in quantifying puncta within 

a segment is also inherent to the quantifications done across segments, and therefore, the 

differences observed in Nav density across the segments are unlikely to be affected by such biases. 

To standardize the identification of the edge of the tSF layer (defined as location 0 µm) a 

Matlab (Mathworks, Natick, MA) program was created to plot the density profile of the gaps 

present in the tSF layer along with the pixel intensity profile of the scan (see Figure 2D and 

explanation in the legend).  
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A series of slightly overlapping scans of the entire extent of each map were obtained (Figure 2A) 

and the bleached area from the overlapped portion as well as a local landmark was used to obtain 

the start point x-coordinate of each subsequent scan of the map. This allowed us to determine the 

orthogonal distance of each scan, dendrite and puncta from the tSF edge. Since dendrites do not 

travel orthogonally to the tSF edge and the scan orientation (Figure 2B&C), we had to correct the 

distances using dendrites’ angles. To do so, in each scan we selected randomly 5 clear portions of 

dendrites and measured their angle relative to the scan’s frame (Figure 2C). Using the average 

angle of the selected dendrites in each scan and trigonometry, orthogonal distances could be 

converted into estimated distance (i.e. distances that take into account the general curvature of 

dendrites). This estimate is still an underestimation of actual distance along the dendritic tree since 

dendrites are often not completely straight over one scan, and also any z-plane curvature was 

ignored. Note that we sectioned the hindbrain in a “true-transverse” orientation minimizing the 

curvature of dendrites in the z-plane over the proximal apical dendrites. This underestimation does 

not affect our conclusions but should be noted.  Data analysis was performed with Matlab 

(Mathworks, Naticks, MA) and statistics with JMP (SAS Institute Inc, Cary, NC). 

Burst ISI characterization 

Fish were prepared for in vivo electrophysiological recordings as described in Marsat et 

al, (2009) where recording and analysis methods are also described in detail. Briefly, superficial 

ON and OFF-cells of the three segments were targeted and spontaneous activity was recorded for 

60 seconds. Recorded spike trains were binarized and burst identified by first constructing an ISI 

histogram of the entire spike train and identifying the upper interval limit characteristic of the 

cell’s burst ISIs (see Marsat and Pollack, 2012 for more details). Identified bursts were then used 

to calculate their ISI distribution. 
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Figure 3: Immunohistochemistry revealed a punctate expression 

of Nav channels on the apical dendrites. 

A. Confocal image of a 16 µm section of ELL showing Anti-MAP2 

labeled apical dendrites projecting through tSF and VML. Scalebar: 

20 µm. B. Nav channel punctate distribution (green dots), Nav label 

was also found on the surface membranes of interneurons (e.g. VML 

cells) where their distribution is more uniform. Two interneuron cell 

bodies are outlined with a dashed yellow line. C. Merged MAP2 and 

Nav labelling. Note that these images show the combined z-layers of 

the scan through the slice but that looking through the individual 

successive layers can help determine the proximity between MAP2 

and Nav labelling. D. Nav and MAP2 labeling in the distal portion of 
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VML(  ̴200 µm from tSF-PCL boundary). E. Enlarged view of one dendrite in the image displayed in D 

selected for quantification of Nav channels. The proximity between the labelled Nav channels and the 

labeled MAP2 inside dendrites allows us to confirm that the channels where in the membrane of a pyramidal 

cell dendrite. Note that the Nav and MAP2 labelling does not need to overlap directly since MAP2 is located 

inside the dendrite and Nav channels are in the membrane. We thus expect some of the puncta to be slightly 

separated (in the x-y plane or the z plane) from the MAP2 labelling. F. Western blot analysis of brain tissue 

demonstrating the specificity of Anti-pan Nav antibody. The Western Blot of the tissue processed along 

with a protein ladder displayed a single band at   ̴ 250 kDa. G,H,I. Absorption control: Confocal scan 

showing apical dendrites stained by Anti-MAP2(G) marker in the ELL-LS segment. Anti-pan Nav antibody 

was incubated with immunogen (peptide) in a 1:10 ratio overnight on a nutator at 4 degrees. Slide mounted 

ELL sections were incubated with pre-adsorbed Nav antibody along with Anti-MAP 2 primary antibody 

which was followed by incubation with their individual secondary antibodies. No Nav expression (H) was 

observed demonstrating the specificity of Nav antibody used. Scalebar – 20um. J. No primary antibody 

control: Anti-pan Nav and Anti MAP-II antibody used for labelling Nav and microtubules respectively 

were omitted from the IHC protocol as a control for non-specific binding of the secondary antibodies. 

Scalebar – 20um (1X Zoom). All scanning parameters were kept constant across treatment groups unless 

otherwise noted. 

 

IV. Results 

To study the distribution of Nav channels along the apical dendrites of PCs we used a pan-

Nav antibody known to bind selectively to these channels in other tissues of this species (Ban et 

al., 2015). We confirmed the selectivity of the antibody in brain tissue by performing a Western 

blot (Figure 3F). To identify the position of the labeled channels relative to the dendrites, we also 

used a MAP2 antibody that densely labels the microtubules inside dendrites (Deng, 2005). By 

using thin brain slices (15-20 µm) and high-resolution confocal scans we were able to precisely 

localize the labeled channels relative to PCs apical dendrites (Figure 3A-E). The pattern of 

expression of Nav channels in the dendrites followed a punctate fashion, as described previously 

(Turner et al., 1994), that is visibly different from the more uniform expression pattern in the soma 

of interneurons (Figure 3B) or in axons. Prior to visualizing the Nav labelling, we selected in each 

scan 2-4 portions of dendrites that are clearly delineated by the MAP2 labelling. We then 

visualized in 3D (moving through the z-plane with the scanning software) the position of each 

punctum in the vicinity of portion of dendrites selected for quantification. Since Nav channels are 

in the membrane of the dendrites and MAP2 proteins are inside the dendrite, Nav puncta were 

immediately adjacent (in the x-y plane or the z-plane) to the MAP2 labelling or overlapping. 

Our dataset is based on images from a total of 15 brain slices (5 slices each from 3 fish). 

In each slice, all three segments were scanned and quantified thereby assuring that differences in 

immunolabeling clarity from slice to slice could not cause a bias in quantification across segments. 
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Scans starting at the tSF layer and tiled to extend beyond 600 µm into the molecular layer (Figure 

4) allowed us to evaluate Nav expression as a function of segment and location along the ventral-

dorsal axis (i.e. proximal-distal to the soma). We localized and counted Nav puncta on 727 portions 

of dendrites representing over 21400 µm of dendrites (Figure 5). We found a large dendrite-to-

dendrite variability in puncta density with some long portions of dendrites containing no puncta 

and others being densely populated with puncta. This variability could be observed even between 

dendrites located side-by-side on the same scan precluding the possibility that variations in the 

immunolabeling process could account for this variability.   
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Figure 4: Examples of Nav-Map 2 expression in the ELL. Confocal images from 2 brains (top vs bottom 

rows for each map) taken at different distances from the tSF. The location of the distal edge of the image is 

specified in µm at the bottom right of each image. The white dashed lines indicate the edge of the previous 

-overlapping- scan and thus the pixels on the left of this line are bleached from the previous scan.   
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Figure 5: Schematic representation of the entire dataset. The position of each dendrite quantified is 

depicted by the horizontal colored lines. The position of each Nav puncta identified are marked by the 

vertical black lines. The vertical stacked arrangement of the dendrites loosely follows the order of 

processing and thus data from a given slice/brain are found in adjacent rows of the stack. We quantified 

727 dendrites in 15 brain slices, totaling >21400 µm of dendrite, and identified 2435 puncta of Nav labelling 

across segments/locations. 
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PCs can be classified in several subcategories (deep, intermediate or superficial PCs and 

basilar or non-basilar) organized in microcolumns and their apical dendrites can overlap at the 

same location in the molecular layer. Our method cannot determine which PC neuron a dendrite 

belongs to and thus we cannot determine to what extent the variability observed is due to variations 

across -vs. within- subcategories. 

The density of puncta per µm of dendrite was calculated for each of the ~250 dendrites per 

segment as a sum across all 15 sections and displayed, as a function of dendrite position along the 

molecular layer, in a 3D histogram (Figure 6A). The pattern of Nav expression clearly differs 

across segments. In LS, a large proportion of dendrites have a puncta density higher than 0.1 

puncta/µm whereas CMS dendrite have densities mostly below 0.1 puncta/µm. Our data also 

shows that density stay similar throughout the molecular layer up to -at least- 600 µm away for 

tSF. Our data beyond 600 µm are more sparse, nevertheless, the data we do have suggest that more 

distal dendrites express Nav channels with a density similar to more proximal dendrites (see Figure 

5 and 6A). Our data demonstrates that dendrites in the LS have Nav puncta densities about twice 

as high as CMS dendrites and 1.4 times higher than CLS dendrites (Figure 6B-C). The distribution 

of Nav puncta along the first 600 µm of dendrites (for which we have most data) was not very 

different across segments. Overall, we see similar densities over the length of the dendrites in LS 

and CLS but channel density increased slightly in CMS for dendrites located further from tSF 

(Figure 6D). Nevertheless, our data shows that, despite small differences across segments, we see 

a qualitatively similar distribution of Nav puncta over the entire length of dendrites considered 

here (0-600 µm from tSF dorsal edge; Figure 6E). 

The differences in Nav channels density across segment could have a significant impact on 

the neuron’s response properties. The impact on neural dynamic and sensory processing is hard to 

gauge because PCs differ in many aspects between segments. Differences in ion channels 

composition, tuning, connectivity and more, interacts intricately with the dynamics imposed by 

Nav channels. Even potential studies using modeling, where a single parameter can be altered (e.g. 

Nav channels density), presents important challenges since all the elements of the neurons and of 

the network known to influence the neuron’s response dynamic should be included to understand 

the effect of changing Nav density. Such modelling effort is beyond the scope of this manuscript.  
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Figure 6: Nav channel expression density differs across maps.  

A. Histogram of channel density per dendrite as a function of location. For each dendrite (LS, n=238; CLS, 

n=261; CMS, n=228) channel density (puncta/µm) was calculated. The z-axis (also color-mapped) show 

the proportion of dendrites in each location/density bin (i.e. sum of all bin heights is 1 in each panel). This 

data shows that densities in CMS are largely constrained to the 0-0.1 puncta/µm range whereas densities 

are equally distributed in the 0-0.1 and 0.1-0.2 range (and higher) for LS (see panels B-C). Also, the 

channels seem to be equally distributed along -at least- the first 600 µm of the molecular layer (see panels 

D-E). Note that overall height of the bins tend to decrease with increasing distance from tSF simply because 

less dendrites were quantified distally compared to proximal locations. B. Histogram of channel density 

across maps. The data displayed in A was collapsed across all location to show clearly the differences in 

puncta density across maps. LS clearly has a higher proportion of dendrites with high density (>0.1 

puncta/µm) compared with CMS and thus a lower proportion of dendrites with low density (<0.1 

puncta/µm). See panel C for a listing of statistical difference. C. Average puncta density is significantly 

different across segment and decreases from LS to CMS. Since the data is not normally distributed (see 

panel B) we tested pairwise differences using a Wilcoxon test: (1) p=0.000004; (2) p=0.0002; (3) p=10-15. 

D. Channel density is similar across location in the molecular layer. Average channel density was calculated 

for dendrite positioned at various distances for tSF. Location does not influence the observed puncta density 

in LS and CLS (One-way ANOVA: (1) p=0.82; (2) p=0.1) but density increases slightly with distance in 

CMS (One-way ANOVA: (3) p=0.005). The analysis shown in this panel and in panel E took in account 

dendrites located <600 µm only since our data for locations >600 µm is sparse. E. Nav channel distribution 

across the molecular layer is similar for all three maps. We calculated an average channel location across 

the 600 µm of the molecular layer considered here to compare the distribution of channels along the 

dendrites for the three maps. To do so, we normalized our puncta counts to account for the length of 

dendrites quantified in each location bin. Therefore, an average location of 300 µm indicates that channels 

are uniformly distributed across the dendritic length considered here. This average is similar for all three 

maps ranging from 294 µm to 323 µm but these small differences are statistically significant (Wilcoxon: 

(1) p=0.0001; (2) p=0.003; (3) p=10-11) 
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Figure 7: Inter-spike intervals (ISI) histogram for burst-spikes during spontaneous activity. Burst of 

spikes were identified as described in the methods and the interval between the spikes in each burst 

contributed to the histograms displayed. The average interval is shorter in LS than CMS with significant 

differences across all three segments (averages ± s.e.: LS= 3.2± 0.4; CLS= 4.6± 0.7; CMS=6.7± 0.6. 

Wilcoxon test: LS-CLS, p<0.00001; LS-CMS, p<10-11; CLS-CMS, p<10-9. n=13 to 19 neurons). 

 

Nevertheless, we suggest that looking at spontaneous activity of the neurons could give us useful 

insight into the effect of differences in Nav density. Interspike-intervals (ISIs) during spontaneous 

activity are largely determined by the neuron’s intrinsic mechanisms since synaptic inputs are 

weak and relatively constant. Furthermore, burst ISIs are heavily influenced by only a few ion 

channels, first and foremost the Nav channels in apical dendrites. Therefore, we investigated 

potential differences across segments in burst ISIs during spontaneous activity. Focusing on 

superficial pyramidal cells, we show that burst ISIs tend to be shorter in LS than in CMS (CLS 

being intermediate; Figure 7, Data obtained from Daniel Williamson). This trend is consistent with 

a previous observations (Mehaffey et al., 2008b; Turner et al., 1996) and could potentially be 

attributed in part to the higher density of Nav channels in LS (see discussion). 

 

V. Discussion 

Dendritic Nav channel expression and firing patterns 

The principle finding of the present experiment was that the lateral segment of the ELL 

exhibits the highest dendritic Nav channel density, followed by CLS and CMS. Nav channel 

densities remain relatively constant along the proximo-distal axes of the apical dendrites across 

segments with CMS showing slightly higher Nav density in the distal regions.  

Previous studies have established the subcellular distribution and function of TTX sensitive 

Nav channels using immunocytochemistry and electrophysiology techniques (Turner et al., 1994). 

LS CLS CMS 
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Punctate regions of Nav immunolabel were detected in pyramidal cell somata, basal and apical 

dendrites. Dendritic Nav channels allow the active propagation of an antidromic spike over around 

200 µm of proximal apical dendrite, resulting in a DAP at the soma after each somatic spike which 

underlies the production of burst discharge. Focal ejections of TTX inactivates Nav channels, 

decreasing spike frequency (Oswald et al., 2004; Turner et al., 1994). Higher conductance from 

Nav channels does not necessarily lead to higher firing rates. Decreased Na+ conductance in 

dendrites can increase excitability of the soma by delaying the DAP thereby enhancing the so-

called “ping-pong” dendro-somatic dynamics that underlies burst generation (Fernandez et al., 

2005). There is thus a non-monotonic relationship between Na+ conductance and cell excitability 

(Fernandez et al., 2005) or the amount of information carried by bursts (Doiron et al., 2007) with 

a maxima at intermediate values. Nevertheless, modelling studies indicate that an increase in 

dendritic conductance from Nav channels systematically causes increased burst rates (Doiron et 

al., 2007).  

 Backpropagation has been characterized as traveling up 200 µm before the active 

propagation is not detected. Our results, and the original study that identified the Nav channel’s 

presence in the dendrites (Turner et al., 1994), show that the channels are distributed along all -or 

most- of the dendritic tree. The role of these channels, past the 200 µm where backpropagation is 

evident, is unknown. One possibility is that they contribute to the DAP but the current they 

generate in the more distal dendrites is too small to be clearly identified. Another possibility 

involves an interaction between the channels and synaptic inputs. GABAergic inputs have been 

shown to influence the DAP generation (Mehaffey et al., 2005), it is therefore not unlikely that the 

Na+ current in the distal dendrites shapes and affects the dynamics of synaptic inputs. Given the 

important role of feedback inputs onto these apical dendrites the presence of the channels near 

these synapses could alter the neuron’s response properties significantly. 

Segment-specific regulation of bursting mechanisms 

The effect of variations in the DAP current are particularly hard to predict because several 

other currents overlap with the depolarization from dendritic Nav channels. Kv3.3 channels, 

muscarinic or 5HT receptors, M or A current and GABAergic inputs can influence the after-

potential (Marquez et al., 2013). In particular, somatic spikes are followed by both fast and slow 

AHPs that help repolarize the cell and lengthen the interval to the next spikes (Turner et al., 2002). 
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Therefore, the DAP and the AHP have opposite influences on bursting. ELL expresses 2 different 

subtypes of SK channels (SK1: dendrites; SK2: soma) that cause AHPs (Ellis et al., 2007b, 2008) 

following a gradient where LS has a denser distribution than CMS. The relatively short DAP (8-

10 ms) temporally overlaps with the longer AHP and their strength varies with cell subtype. It is 

possible that higher expression of dendritic Nav channels may partially compensate for higher 

hyperpolarizing currents and allow these currents to be modulated with different gains. 

Several mechanisms for external modulation of these hyperpolarizing and depolarizing 

currents have been characterized. Inhibitory interneurons are prevalent in the ELL (e.g. VML cells 

or granular cells) and synapse both on PC’s soma and dendritic arbor (Berman and Maler, 1999). 

Dendritic application of GABAA agonist can affect the dendritic leak conductance leading to a 

DAP reduction and thus have a divisive effect on the cell’s input-output relationship (Mehaffey et 

al., 2005). In contrast, somatic inhibition has a subtractive effect in suprathreshold regime and 

divisive in subthreshold regime since the reversal potential of GABAA channels is close to the 

neuron’s resting potential (Doiron et al., 2002). Therefore, somatic inhibition could also potential 

interact with the subthreshold dynamic influenced by the DAP and AHPs. Since somatic inhibition 

varies across segments (Hofmann and Chacron, 2017, Allen and Marsat, unpublished observation), 

GABAergic inhibition is another segment-specific factor that could interact with the current from 

dendritic Nav channels.    

5-HT is an important modulator of social behavior that is released during communication 

and LS shows the highest 5-HT innervation (Johnston et al., 1990). Interestingly, the innervation 

pattern is also layer specific across segments, where LS shows dense expression in PCL and VML. 

5-HT increases burst firing across segments with the greatest effect in the LS which is consistent 

with its expression density (Deemyad et al., 2011). These effects are mediated by 5-HT2 receptors 

(Larson et al., 2014) that increase PC excitability and bursting via downregulation of SK channel 

and M-type potassium channel currents that contribute to the AHP (Deemyad et al., 2013).  

Given that several factors affect the shape of spike’s after-potential and the bursting 

dynamic we cannot be certain that the shorter burst ISIs we observed in LS are due to the denser 

Nav expression but it is a plausible factor. A strong DAP, that peaks a few ms after the spike, could 

explain the relatively high probability of having 2-4 ms ISIs in LS whereas the longer-lasting AHPs 

strongly influencing LS ON-cells could lead to the relatively low probability of ISIs longer than 

5ms. The longer burst ISIs observed in CMS could result from the lower Nav current since it can 
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delay the DAP (Fernandez et al., 2005) and is not opposed by a strong AHP in superficial PCs. 

We therefore propose that differences in Nav channel expression interacts with other aspect of the 

neuron’s dynamic to influence the spiking patterns. 

Bursts and neural coding 

Bursts have a well-defined role in coding for specific temporal features of sensory signals. 

The relationship between patterns of spikes within a burst can further signal details about the 

feature that triggered the burst (Oswald et al., 2007). Specifically, the ISI within the burst is 

correlated with the amplitude and slope of the upstroke it signals. Studies in several sensory 

systems have shown that burst structure can carry information about the stimulus (Guido et al., 

1995; Lesica and Stanley, 2004) and that this information is behaviorally relevant (Marsat and 

Pollack, 2010). Our results point to the possibility that variations in Nav channels may influence 

the burst dynamic to adjust the correlation between burst ISI and stimulus features. By adjusting 

the range of ISI coding for specific portions of stimulus space, each ELL segment could have its 

burst-code adjusted for slightly different stimulus features. We already know that bursts are 

involved in processing different signals across segments since bursts signal the presence of certain 

types of chirps in LS but not the other segments (Marsat et al., 2009). Also, bursts in CLS and 

CMS might be more specifically dedicated to signaling prey-like stimuli (Nelson and Maciver, 

1999). Differences in Nav expression could thus contribute to these different roles of burst coding 

across segments. 

We started this chapter by pointing out two perspectives on neural heterogeneity. One 

highlights how similar neural outputs can arise from diverse combinations of neural properties. 

The other focuses on the need to vary neural physiology in order to adjust and specialize cells for 

different purposes. Our study does not determine what role the variability in dendritic Nav channel 

expression plays: compensating for other neural properties to keep burst coding functioning 

similarly across segments or on the contrary adjusting burst coding for specific roles. Since the 

two possibilities are not exclusive, we speculate that the difference we describe in our study could 

partly compensate for other variations in PCs properties while also influencing burst coding to 

improve the ability of the different segments to perform specific tasks. 
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CHAPTER 3: CONCLUSION AND FUTURE DIRECTIONS 

 

In the present study, we used immunohistochemical labeling and quantification to 

investigate the spatial distribution of Nav channels across the three electrosensory maps of the 

ELL of the fish Apteronotus leptorhynchus. We also investigated whether Nav channel density 

varies based on location of the dendrite from the pyramidal cell layer. We demonstrate that 

dendritic Nav channel expression in the ELL of A leptorhynchus exhibits a mediolateral gradient 

with lateral segment exhibiting the highest density (Fig 6B). Dendrites quantified in the LS show 

twice as high Nav puncta when compared to CMS, and 1.4 times as high as observed in CLS 

dendrites (Fig 6C). It suggests a potential role for this differential dendritic Nav channel expression 

in counteracting other ionic conductances at play  (for e.g., SK, Kv3.3; Marquez et al., 2013). 

However, since ON- and OFF-cells within each map are grouped together during Nav channel 

quantification in this study, it is unknown if the differences in Nav channel distribution patterns 

seen across maps hold true for both ON- and OFF-cells separately within each map. Therefore, we 

do not know if the mediolateral gradient seen in the dendritic Nav expression pattern arises from 

both cell types or is contributed by one of the two. There are no dendritic molecular markers which 

are specific to either of the cell types that would allow us to distinguish them apart. However, 

iontophoretic intracellular dye injections in single neurons coupled with immunohistochemistry 

(Lichtman and Conchello, 2005) can be used to further delineate dendritic Nav expression pattern 

between ON- and OFF-cells within maps.   

TTX-sensitive Nav channels are shown to support active backpropagation that underlies 

burst generation in this system (Turner et al., 1994). We presented a first step in clarifying the 

effect of Nav density on bursting and burst-coding by showing that neurons of different segments 

have different burst ISIs. We argue that this difference in burst ISIs could be due -at least partly- 

to the difference in Nav channel density and that it could impact the burst coding scheme, 

particularly the way burst ISI correlate with specific aspects of the stimulus. A full study of burst 

coding across segments could reveal interesting difference relatable to differences in Na+ currents. 

One complication however is that several factors can affect bursting and these factors are 

sometimes correlated with the differences in Nav channel expression. Therefore, it would be 

difficult to assign a causative relationship to any correlation we observe between Nav expression 

and burst coding. A more targeted approach would consist of filling with dye individual neurons 
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after they are probed for neural coding properties and assess their Nav expression with 

immunolabelling. By characterizing the correlation between Nav expression and coding in 

individual neurons of the same sub-type, we minimize the risk that another factor that co-varies 

across segments with Nav expression would be the cause of the observed correlation. Nevertheless, 

this approach can still not resolve a cause-effect relationship from a simple correlation. A useful 

complementary strategy to address this issue would be to use modelling. Detailed models of PCs 

already exist and could be supplemented/altered as necessary. The main difficulty with this 

approach is that it would require incorporating all the factors that vary across segments to account 

for the impact of Nav density. Nav density could then be altered in the model as the only 

independent variable and the impact on coding characterized. 

Ion channel composition of PCs is one of the factors that dictates the bursting patterns 

observed. In addition to Nav and SK channels, ELL of A. leptorhynchus expresses a wide range of 

other ion channels with varied kinetics and in different gradients across maps (Marquez et al., 

2013). One of them is the high-threshold potassium channel- Kv3.3 that is shown to regulate burst 

discharge and enable high frequency firing in PCs by decreasing accumulation of low-threshold 

potassium currents (Mehaffey et al., 2006). Dense Kv3.3 expression is seen in PCL, GCL and 

DNL with lower density expression in molecular layer across ELL maps.  PCs present in the deep, 

intermediate and superficial layers, all show Kv3.3 expression along the soma and both proximal 

and distal dendrites (Mehaffey et al., 2006; Rashid et al., 2001b). These TEA sensitive channels 

display a slow rate of inactivation in both somatic and dendritic compartments of PCs and play a 

role in repolarizing both backpropagating dendritic and somatic spikes (Rashid et al., 2001a, 

2001b). Since they differentially regulate burst output of the cell by regulating the extent of somatic 

re-excitation by backpropagating dendritic Na+ spikes (Noonan et al., 2003), determining the 

interplay of these currents with DAPs of different sizes could allow us to better understand the 

dynamic of burst generation and its regulation across segments.  

One of the principles of dendritic excitability is the non-uniform expression of voltage 

gated channels that likely have functional implication. For instance, Kv4 channel expression in 

CA1 PCs shows ~70% increase in density along the proximo-distal axis of apical dendrites (Kerti 

et al., 2012). In chapter 2, we show that dendritic Nav show a slight increase in their density on 

distal apical dendrites in CMS and no such increase in Nav density was observed along the 

proximo-distal axis for LS and CLS. As ON and OFF-cells within a map are pooled in this study, 
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we do not know if this expression is specific to one or constant across cell types in CMS. This 

difference could be further investigated by using iontophoretic lucifer yellow injections coupled 

with immunohistochemistry (Lichtman and Conchello, 2005). 

Furthermore, the role of Nav channels in the more distal parts of the apical dendrites is 

unknown. Active backpropagation mostly occurs in the 200 µm most proximal to the soma and it 

is unclear whether more distal Nav channel can contribute to the DAP. Both proximal and apical 

dendrites receive feedback inputs and inputs from inhibitory interneurons (Maler, 2007). We know 

that synaptic current can interact with the DAP generation through an effect on leak conductances 

(Mehaffey et al., 2005) or due to the shunting nature of GABAA inhibition (Doiron et al., 2002). 

Therefore, we suspect that Nav channels can shape synaptic inputs and thus influence the function 

of feedback inputs. Electrophysiological or functional imaging of dendrites could start to address 

this hypothesis. 

To conclude, in this study, we have investigated dendritic Nav expression density in 

pyramidal cell’s apical dendrites and showed they differ across ELL segments. By shaping the 

bursting dynamic, these differences could fine tune the coding properties of each segment to better 

match their role in electrosensory processing. Our results can thus help to link specific molecular 

mechanisms to sensory processing and perception. 
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