77 research outputs found

    Evaluation of Adaptive FRIFS Method through Several Classification Comparisons

    Get PDF
    International audienceAn iterative method to select suitable features for pattern recognition context has been proposed (FRIFS). It combines a global feature selection method based on the Choquet integral and a fuzzy linguistic rule classifier. In this paper, enhancements of this method are presented. An automatic step has been added to make it adaptive to process numerous features. The experimental study, made in a wood defect recognition context, is based on several classifier result analysis. They show the relevancy of the remaining set of selected features. The recognition rates are also considered for each class separately, showing the good behavior of the proposed method

    Bridging the semantic gap in content-based image retrieval.

    Get PDF
    To manage large image databases, Content-Based Image Retrieval (CBIR) emerged as a new research subject. CBIR involves the development of automated methods to use visual features in searching and retrieving. Unfortunately, the performance of most CBIR systems is inherently constrained by the low-level visual features because they cannot adequately express the user\u27s high-level concepts. This is known as the semantic gap problem. This dissertation introduces a new approach to CBIR that attempts to bridge the semantic gap. Our approach includes four components. The first one learns a multi-modal thesaurus that associates low-level visual profiles with high-level keywords. This is accomplished through image segmentation, feature extraction, and clustering of image regions. The second component uses the thesaurus to annotate images in an unsupervised way. This is accomplished through fuzzy membership functions to label new regions based on their proximity to the profiles in the thesaurus. The third component consists of an efficient and effective method for fusing the retrieval results from the multi-modal features. Our method is based on learning and adapting fuzzy membership functions to the distribution of the features\u27 distances and assigning a degree of worthiness to each feature. The fourth component provides the user with the option to perform hybrid querying and query expansion. This allows the enrichment of a visual query with textual data extracted from the automatically labeled images in the database. The four components are integrated into a complete CBIR system that can run in three different and complementary modes. The first mode allows the user to query using an example image. The second mode allows the user to specify positive and/or negative sample regions that should or should not be included in the retrieved images. The third mode uses a Graphical Text Interface to allow the user to browse the database interactively using a combination of low-level features and high-level concepts. The proposed system and ail of its components and modes are implemented and validated using a large data collection for accuracy, performance, and improvement over traditional CBIR techniques

    A generic framework for context-dependent fusion with application to landmine detection.

    Get PDF
    For complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be a viable alternative to using a single classifier. Over the past few years, a variety of schemes have been proposed for combining multiple classifiers. Most of these were global as they assign a degree of worthiness to each classifier, that is averaged over the entire training data. This may not be the optimal way to combine the different experts since the behavior of each one may not be uniform over the different regions of the feature space. To overcome this issue, few local methods have been proposed in the last few years. Local fusion methods aim to adapt the classifiers\u27 worthiness to different regions of the feature space. First, they partition the input samples. Then, they identify the best classifier for each partition and designate it as the expert for that partition. Unfortunately, current local methods are either computationally expensive and/or perform these two tasks independently of each other. However, feature space partition and algorithm selection are not independent and their optimization should be simultaneous. In this dissertation, we introduce a new local fusion approach, called Context Extraction for Local Fusion (CELF). CELF was designed to adapt the fusion to different regions of the feature space. It takes advantage of the strength of the different experts and overcome their limitations. First, we describe the baseline CELF algorithm. We formulate a novel objective function that combines context identification and multi-algorithm fusion criteria into a joint objective function. The context identification component thrives to partition the input feature space into different clusters (called contexts), while the fusion component thrives to learn the optimal fusion parameters within each cluster. Second, we propose several variations of CELF to deal with different applications scenario. In particular, we propose an extension that includes a feature discrimination component (CELF-FD). This version is advantageous when dealing with high dimensional feature spaces and/or when the number of features extracted by the individual algorithms varies significantly. CELF-CA is another extension of CELF that adds a regularization term to the objective function to introduce competition among the clusters and to find the optimal number of clusters in an unsupervised way. CELF-CA starts by partitioning the data into a large number of small clusters. As the algorithm progresses, adjacent clusters compete for data points, and clusters that lose the competition gradually become depleted and vanish. Third, we propose CELF-M that generalizes CELF to support multiple classes data sets. The baseline CELF and its extensions were formulated to use linear aggregation to combine the output of the different algorithms within each context. For some applications, this can be too restrictive and non-linear fusion may be needed. To address this potential drawback, we propose two other variations of CELF that use non-linear aggregation. The first one is based on Neural Networks (CELF-NN) and the second one is based on Fuzzy Integrals (CELF-FI). The latter one has the desirable property of assigning weights to subsets of classifiers to take into account the interaction between them. To test a new signature using CELF (or its variants), each algorithm would extract its set of features and assigns a confidence value. Then, the features are used to identify the best context, and the fusion parameters of this context are used to fuse the individual confidence values. For each variation of CELF, we formulate an objective function, derive the necessary conditions to optimize it, and construct an iterative algorithm. Then we use examples to illustrate the behavior of the algorithm, compare it to global fusion, and highlight its advantages. We apply our proposed fusion methods to the problem of landmine detection. We use data collected using Ground Penetration Radar (GPR) and Wideband Electro -Magnetic Induction (WEMI) sensors. We show that CELF (and its variants) can identify meaningful and coherent contexts (e.g. mines of same type, mines buried at the same site, etc.) and that different expert algorithms can be identified for the different contexts. In addition to the land mine detection application, we apply our approaches to semantic video indexing, image database categorization, and phoneme recognition. In all applications, we compare the performance of CELF with standard fusion methods, and show that our approach outperforms all these methods

    Fuzzy Rule Iterative Feature Selection (FRIFS) with Respect to the Choquet Integral Apply to Fabric Defect Recognition

    Get PDF
    ISBN 0.7803.9489.5International audienceAn iterative method to select suitable features in an industrial fabric defect recognition context is proposed in this paper. It combines a global feature selection method based on the Choquet integral and a fuzzy linguistic rule classifier. The experimental study shows the wanted behaviour of this approach: the feature number decreases whereas the recognition rate increases. Thus, the number of generated fuzzy rules is reduced

    EXPLAINABLE FEATURE- AND DECISION-LEVEL FUSION

    Get PDF
    Information fusion is the process of aggregating knowledge from multiple data sources to produce more consistent, accurate, and useful information than any one individual source can provide. In general, there are three primary sources of data/information: humans, algorithms, and sensors. Typically, objective data---e.g., measurements---arise from sensors. Using these data sources, applications such as computer vision and remote sensing have long been applying fusion at different levels (signal, feature, decision, etc.). Furthermore, the daily advancement in engineering technologies like smart cars, which operate in complex and dynamic environments using multiple sensors, are raising both the demand for and complexity of fusion. There is a great need to discover new theories to combine and analyze heterogeneous data arising from one or more sources. The work collected in this dissertation addresses the problem of feature- and decision-level fusion. Specifically, this work focuses on fuzzy choquet integral (ChI)-based data fusion methods. Most mathematical approaches for data fusion have focused on combining inputs relative to the assumption of independence between them. However, often there are rich interactions (e.g., correlations) between inputs that should be exploited. The ChI is a powerful aggregation tool that is capable modeling these interactions. Consider the fusion of m sources, where there are 2m unique subsets (interactions); the ChI is capable of learning the worth of each of these possible source subsets. However, the complexity of fuzzy integral-based methods grows quickly, as the number of trainable parameters for the fusion of m sources scales as 2m. Hence, we require a large amount of training data to avoid the problem of over-fitting. This work addresses the over-fitting problem of ChI-based data fusion with novel regularization strategies. These regularization strategies alleviate the issue of over-fitting while training with limited data and also enable the user to consciously push the learned methods to take a predefined, or perhaps known, structure. Also, the existing methods for training the ChI for decision- and feature-level data fusion involve quadratic programming (QP). The QP-based learning approach for learning ChI-based data fusion solutions has a high space complexity. This has limited the practical application of ChI-based data fusion methods to six or fewer input sources. To address the space complexity issue, this work introduces an online training algorithm for learning ChI. The online method is an iterative gradient descent approach that processes one observation at a time, enabling the applicability of ChI-based data fusion on higher dimensional data sets. In many real-world data fusion applications, it is imperative to have an explanation or interpretation. This may include providing information on what was learned, what is the worth of individual sources, why a decision was reached, what evidence process(es) were used, and what confidence does the system have on its decision. However, most existing machine learning solutions for data fusion are black boxes, e.g., deep learning. In this work, we designed methods and metrics that help with answering these questions of interpretation, and we also developed visualization methods that help users better understand the machine learning solution and its behavior for different instances of data

    Feature and Decision Level Fusion Using Multiple Kernel Learning and Fuzzy Integrals

    Get PDF
    The work collected in this dissertation addresses the problem of data fusion. In other words, this is the problem of making decisions (also known as the problem of classification in the machine learning and statistics communities) when data from multiple sources are available, or when decisions/confidence levels from a panel of decision-makers are accessible. This problem has become increasingly important in recent years, especially with the ever-increasing popularity of autonomous systems outfitted with suites of sensors and the dawn of the ``age of big data.\u27\u27 While data fusion is a very broad topic, the work in this dissertation considers two very specific techniques: feature-level fusion and decision-level fusion. In general, the fusion methods proposed throughout this dissertation rely on kernel methods and fuzzy integrals. Both are very powerful tools, however, they also come with challenges, some of which are summarized below. I address these challenges in this dissertation. Kernel methods for classification is a well-studied area in which data are implicitly mapped from a lower-dimensional space to a higher-dimensional space to improve classification accuracy. However, for most kernel methods, one must still choose a kernel to use for the problem. Since there is, in general, no way of knowing which kernel is the best, multiple kernel learning (MKL) is a technique used to learn the aggregation of a set of valid kernels into a single (ideally) superior kernel. The aggregation can be done using weighted sums of the pre-computed kernels, but determining the summation weights is not a trivial task. Furthermore, MKL does not work well with large datasets because of limited storage space and prediction speed. These challenges are tackled by the introduction of many new algorithms in the following chapters. I also address MKL\u27s storage and speed drawbacks, allowing MKL-based techniques to be applied to big data efficiently. Some algorithms in this work are based on the Choquet fuzzy integral, a powerful nonlinear aggregation operator parameterized by the fuzzy measure (FM). These decision-level fusion algorithms learn a fuzzy measure by minimizing a sum of squared error (SSE) criterion based on a set of training data. The flexibility of the Choquet integral comes with a cost, however---given a set of N decision makers, the size of the FM the algorithm must learn is 2N. This means that the training data must be diverse enough to include 2N independent observations, though this is rarely encountered in practice. I address this in the following chapters via many different regularization functions, a popular technique in machine learning and statistics used to prevent overfitting and increase model generalization. Finally, it is worth noting that the aggregation behavior of the Choquet integral is not intuitive. I tackle this by proposing a quantitative visualization strategy allowing the FM and Choquet integral behavior to be shown simultaneously

    Preference mining techniques for customer behavior analysis

    Full text link
    The thesis has studied a number of critical problems in data mining for customer behavior analysis and has proposed novel techniques for better modeling of the customers’ decision making process, more efficient analysis of their travel behavior, and more effective identification of their emerging preference

    Development of Machine Learning Techniques for Diabetic Retinopathy Risk Estimation

    Get PDF
    La retinopatia diabètica (DR) és una malaltia crònica. És una de les principals complicacions de diabetis i una causa essencial de pèrdua de visió entre les persones que pateixen diabetis. Els pacients diabètics han de ser analitzats periòdicament per tal de detectar signes de desenvolupament de la retinopatia en una fase inicial. El cribratge precoç i freqüent disminueix el risc de pèrdua de visió i minimitza la càrrega als centres assistencials. El nombre dels pacients diabètics està en augment i creixements ràpids, de manera que el fa difícil que consumeix recursos per realitzar un cribatge anual a tots ells. L’objectiu principal d’aquest doctorat. la tesi consisteix en construir un sistema de suport de decisions clíniques (CDSS) basat en dades de registre de salut electrònic (EHR). S'utilitzarà aquest CDSS per estimar el risc de desenvolupar RD. En aquesta tesi doctoral s'estudien mètodes d'aprenentatge automàtic per constuir un CDSS basat en regles lingüístiques difuses. El coneixement expressat en aquest tipus de regles facilita que el metge sàpiga quines combindacions de les condicions són les poden provocar el risc de desenvolupar RD. En aquest treball, proposo un mètode per reduir la incertesa en la classificació dels pacients que utilitzen arbres de decisió difusos (FDT). A continuació es combinen diferents arbres, usant la tècnica de Fuzzy Random Forest per millorar la qualitat de la predicció. A continuació es proposen diverses tècniques d'agregació que millorin la fusió dels resultats que ens dóna cadascun dels arbres FDT. Per millorar la decisió final dels nostres models, proposo tres mesures difuses que s'utilitzen amb integrals de Choquet i Sugeno. La definició d’aquestes mesures difuses es basa en els valors de confiança de les regles. En particular, una d'elles és una mesura difusa que es troba en la qual l'estructura jeràrquica de la FDT és explotada per trobar els valors de la mesura difusa. El resultat final de la recerca feta ha donat lloc a un programari que es pot instal·lar en centres d’assistència primària i hospitals, i pot ser usat pels metges de capçalera per fer l'avaluació preventiva i el cribatge de la Retinopatia Diabètica.La retinopatía diabética (RD) es una enfermedad crónica. Es una de las principales complicaciones de diabetes y una causa esencial de pérdida de visión entre las personas que padecen diabetes. Los pacientes diabéticos deben ser examinados periódicamente para detectar signos de diabetes. desarrollo de retinopatía en una etapa temprana. La detección temprana y frecuente disminuye el riesgo de pérdida de visión y minimiza la carga en los centros de salud. El número de pacientes diabéticos es enorme y está aumentando rápidamente, lo que lo hace difícil y Consume recursos para realizar una evaluación anual para todos ellos. El objetivo principal de esta tesis es construir un sistema de apoyo a la decisión clínica (CDSS) basado en datos de registros de salud electrónicos (EHR). Este CDSS será utilizado para estimar el riesgo de desarrollar RD. En este tesis doctoral se estudian métodos de aprendizaje automático para construir un CDSS basado en reglas lingüísticas difusas. El conocimiento expresado en este tipo de reglas facilita que el médico pueda saber que combinaciones de las condiciones son las que pueden provocar el riesgo de desarrollar RD. En este trabajo propongo un método para reducir la incertidumbre en la clasificación de los pacientes que usan árboles de decisión difusos (FDT). A continuación se combinan diferentes árboles usando la técnica de Fuzzy Random Forest para mejorar la calidad de la predicción. Se proponen también varias políticas para fusionar los resultados de que nos da cada uno de los árboles (FDT). Para mejorar la decisión final propongo tres medidas difusas que se usan con las integrales Choquet y Sugeno. La definición de estas medidas difusas se basa en los valores de confianza de las reglas. En particular, uno de ellos es una medida difusa descomponible en la que se usa la estructura jerárquica del FDT para encontrar los valores de la medida difusa. Como resultado final de la investigación se ha construido un software que puede instalarse en centros de atención médica y hospitales, i que puede ser usado por los médicos de cabecera para hacer la evaluación preventiva y el cribado de la Retinopatía Diabética.Diabetic retinopathy (DR) is a chronic illness. It is one of the main complications of diabetes, and an essential cause of vision loss among people suffering from diabetes. Diabetic patients must be periodically screened in order to detect signs of diabetic retinopathy development in an early stage. Early and frequent screening decreases the risk of vision loss and minimizes the load on the health care centres. The number of the diabetic patients is huge and rapidly increasing so that makes it hard and resource-consuming to perform a yearly screening to all of them. The main goal of this Ph.D. thesis is to build a clinical decision support system (CDSS) based on electronic health record (EHR) data. This CDSS will be utilised to estimate the risk of developing RD. In this Ph.D. thesis, I focus on developing novel interpretable machine learning systems. Fuzzy based systems with linguistic terms are going to be proposed. The output of such systems makes the physician know what combinations of the features that can cause the risk of developing DR. In this work, I propose a method to reduce the uncertainty in classifying diabetic patients using fuzzy decision trees. A Fuzzy Random forest (FRF) approach is proposed as well to estimate the risk for developing DR. Several policies are going to be proposed to merge the classification results achieved by different Fuzzy Decision Trees (FDT) models to improve the quality of the final decision of our models, I propose three fuzzy measures that are used with Choquet and Sugeno integrals. The definition of these fuzzy measures is based on the confidence values of the rules. In particular, one of them is a decomposable fuzzy measure in which the hierarchical structure of the FDT is exploited to find the values of the fuzzy measure. Out of this Ph.D. work, we have built a CDSS software that may be installed in the health care centres and hospitals in order to evaluate and detect Diabetic Retinopathy at early stages

    Data fusion by using machine learning and computational intelligence techniques for medical image analysis and classification

    Get PDF
    Data fusion is the process of integrating information from multiple sources to produce specific, comprehensive, unified data about an entity. Data fusion is categorized as low level, feature level and decision level. This research is focused on both investigating and developing feature- and decision-level data fusion for automated image analysis and classification. The common procedure for solving these problems can be described as: 1) process image for region of interest\u27 detection, 2) extract features from the region of interest and 3) create learning model based on the feature data. Image processing techniques were performed using edge detection, a histogram threshold and a color drop algorithm to determine the region of interest. The extracted features were low-level features, including textual, color and symmetrical features. For image analysis and classification, feature- and decision-level data fusion techniques are investigated for model learning using and integrating computational intelligence and machine learning techniques. These techniques include artificial neural networks, evolutionary algorithms, particle swarm optimization, decision tree, clustering algorithms, fuzzy logic inference, and voting algorithms. This work presents both the investigation and development of data fusion techniques for the application areas of dermoscopy skin lesion discrimination, content-based image retrieval, and graphic image type classification --Abstract, page v
    corecore