Michigan
Technological Michigan Technological University
1a8s] University Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2021

EXPLAINABLE FEATURE- AND DECISION-LEVEL FUSION

Siva Krishna Kakula
Michigan Technological University, skakula@mtu.edu

Copyright 2021 Siva Krishna Kakula

Recommended Citation

Kakula, Siva Krishna, "EXPLAINABLE FEATURE- AND DECISION-LEVEL FUSION", Open Access
Dissertation, Michigan Technological University, 2021.
https://doi.org/10.37099/mtu.dc.etdr/1185

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

b Part of the Data Science Commons, and the Theory and Algorithms Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1185
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1185&utm_medium=PDF&utm_campaign=PDFCoverPages

EXPLAINABLE FEATURE- AND DECISION-LEVEL FUSION

By

Kakula Siva Krishna

A DISSERTATION
Submitted in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2021

© 2021 Kakula Siva Krishna

This dissertation has been approved in partial fulfillment of the requirements for the Degree

of DOCTOR OF PHILOSOPHY in Computer Science.

Dissertation Advisor:

Committee Member:

Committee Member:

Committee Member:

Department Chair:

Department of Computer Science

Dr. Timothy Havens

Dr. Keith Vertanen

Dr. Laura Brown

Dr. Anthony Pinar

Dr. Linda Ott

Contents

Listof Figures Exil
Listof Tables xvil
List of Abbreviations [xix]
Preface ixxil
Abstract e
1 Imtroduction 1l
.1 Motivation
1.1.1 Explainability,

1.1.2 Learning with limited trainingdata

1.1.3 Leveraging rich interactions between sources 4l

1.2 Background
1.2.1 Fuzzy Integrals and Fuzzy Measures

122 Fuzzymeasures

1.2.3 Fuzzyintegrals, (7l

B3

1.2.4 Visualizingthe FI

1.3 The DeFIMKL Algorithm
1.4 Challenges with Chl-based aggregation methods
1.5 Dissertation Outline and Contributions [16]
1.6 List of Relevant Publications 18
Extended Linear Order Statistic (ELOS) Aggregation and Regression . . 21
2.1 Introduction 21l
2.2 Background 24
2.3 Problem Formulation

2.3.1 Linear Order Statistic (LOS) Regression 27
2.4 Extended Linear Order Statistic
2.5 Regularization 33

2.5.1 {5-regularization: Ridge regression

2.5.2 {y-regularization: Lasso regression B3]
2.6 EXperiments

2.6.1 ELOS versus linear regression

262 ELOSvs.LOS

2.6.3 Results on benchmark datasets B8]
2.7 Conclusionand future work,
Explainable Choquet Integral Ridge Regression and Visualization 43
3.1 Introduction 43

Vi

3.2 Choquet Integral Ridge Regression

33

3.2.1

3.2.2

3.2.3

324

325

3.2.6

Choquet Integral Regression

3.2.1.1 CIR formulation

32.1.2 CIRlearning

CIR with Ridge Regularization

Experiments

Impact of ridge regression on CIR methods

Performance of CIR methods

Conclusions and Future Work

Visualizationof the CIR

3.3.1

332

333

334

335

3.3.6

Visualizationof the BC

Shapley and interactionindices

33.2.1 Shapleyindex

3.3.2.2 Interactionindex

Visualization of Shapley index

Visualization of Interactionindex

Experiments

3.3.5.1 FishToxicitydataset.

3.3.5.2 RealEstatedataset.

3.3.5.3 Yachtdataset.

Conclusions

vii

>

=

o0
B

&

4 Online learning of the Fuzzy Choquet Integral for Feature-level fusion . .
4.1 Introduction
4.2 Online Learningof the CIR

4.2.1 [lyregularizedonline-CIR
4.2.2 (, regularized Online Learning of the CIR
4.3 Experiments e e e e e
4.3.1 Performance on low-dimensional datasets
4.3.2 Performance on high-dimensional datasets
433 Convergence time vt e
4.3.4 Impact of ¢, and ¢, regularization on online-CIR
4.3.5 Comparison with deep neural networks

4.4 Conclusion

5 Novel Regularization for Learning the Fuzzy Choquet Integral with Limited
TrainingData
5.1 Introduction
5.2 Goal-based regularization strategies for learning the Chl
5.2.1 Common aggregations via the Choquet FI
5.2.2 Training The DeFIMKL Algorithm
5.2.3 Learning the FM with insufficient training data
5.2.4 FM Learning with a Specified Goal

524.1 [{y-goalregularization

viii

E

4 BE g 8 B

—| — o
e I
HEEHEEEHE

—
—|
)

—
—
=2

5.2.4.2 [(i-goal regularization

5.2.4.3 Specific aggregation examples with goal regularization
525 Learningthe Goal 118]
5.2.5.1 Defining an FM fromanLOS
5.2.52 (y-LOS Regularization 121l
5253 ¢;-LOS Regularization
5.2.6 Synthetic Experiments 124
5.2.6.1 Learned FM performance
5262 F1SCOre . . oo
5263 Results 127
5.277 Real-World Experiments
5271 Results 131
Learning the ChlI in the Presence of Uncertainty Caused by Limited Train-
ing Data Volume and Variety
53.1 Introduction
53.2 Methodology
533 loregularizaiton
53.4 {yregularization
535 Typesof FMgoals
53.6 Degreeofdisparity
5.3.7 Layer-level degree of disparity 141

X

5.3.8 Visualization of datasupport

539 Experiments
539.1 Resultso oL

5.3.9.2 Comparison with deep neural networks

5.4 Conclusions and Future Work
5.5 Appendix ...
5.5.1 Tibshirani’s Lasso Algorithm

6 Online learning of the Fuzzy Choquet Integral for Decision-level fusion

6.1 Introduction

6.2 Online Learning Algorithm
6.2.1 Min-distance projection

6.2.2 Practical adjustment method

6.3 Synthetic Data Experiments

6.4 Experimentsonrealdata,
6.4.1 Results

6.5 Conclusions and Future Work L0

7 Conclusion
7.1 Futurework
References

—]
g
)

=
N
)

S EEHEEHdHEEBEH BEBEHEE

5 H B

[
<
fay

List of Figures

1.1

1.2

1.3

2.1

Lattice of FM elements for m = 3. Monotonicity (P5) is illustrated by the
size of each node, i.e., g({z1}) < g({x1,22}) as {z1} C {x1,22}. Note

that shorthand notation is used where g(1,3) is equivalent to g({z1, x3})

Path taken by the Choquet integral due to a single observation inducing the
permutation 7 = {2, 1,3}. Note that the FM was arbitrarily defined in this

example, and their distribution (ordering) follows that of Fig. Ce

Lattice of learned FM and paths for the training data from the wine data set
[33]] using m = 5. Note that there are a few unsupported nodes and their
learned values are driven by the constraints at (I.9). The arrangement of
the nodes follows that of Fig. [I.T| where each level in the lattice represents

all subsets of equal cardinality [99].

Transformation of an example 3-dimensional input vector x to its extended

X1

2.2

2.3

24

2.5

3.1

32

33

Comparison of learned parameters of ELOS and linear regression on Airfoil
data set. For each feature, ELOS has learned 5 weights, each corresponding
to sort position of that feature, whereas linear regression learns only one
weight per feature. ELOS was able to capture non-linearity in the input-
output relation, which is represented by the variation in the learned weights

foreach feature.

Comparison of learned parameters of ELOS and linear regression on Con-
crete data set. For each feature, ELOS has learned 8 weights, each corre-
sponding to sort position of that feature.

Comparison of learned parameters of ELOS and LOS on Airfoil data set.
For each sort position, ELOS has learned 5 weights, one for each feature,

where as the LOS has learned only one weight per sort position.

Comparison of learned parameters of ELOS and LOS on Concrete data set.
For each sort position, ELOS has learned 8 weights, one for each feature,

where as the LOS has learned only one weight per sort position

Impact of ridge regularization on the CIR(1) BC parameters learned on

Aquatic Toxicity dataset.

Impact of ridge regularization on the CIR(1) BC parameters learned on

Istanbul Stock Exchange dataset.

Lattice of BC elements for d = 3. Note that shorthand notation is used

where f(2,3) is equivalent to f({zs, xz3})[100]

Xii

39]

5

63]

34

3.5

3.6

3.7

3.8

39

3.10

3.11

3.12

3.13

Lattice of learned BC and paths for the training data from the Airfoil data
set [18]. The arrangement of the nodes follows that of Fig.[3.3] where each
level in the lattice represents all subsets of equal cardinality. The black

nodes in the lattice are positive values and the red nodes are negative. . .

BC lattice of the CIR trained on Airfoil data set. Here, black nodes are
positive values, while red are negative. The node sizes are scaled propor-
tional to the magnitude of BC values. Thin white in-circles present in some
of the nodes indicate the reduced magnitude of the node’s value on ap-

plication of /5 regularization—corresponding /5 regularization parameter

value=0.001.
Violin plot of CIR weights for the Airfoil dataset.
Heatmap of interaction indices for the Airfoil dataset.

BC lattice of the CIR model trained on the Fish Toxicity data—/, regular-

ization parameter value=0.001.
Violin plot CIR weights for the Fish Toxicity data.
Heatmap of interaction indices for the Fish Toxicity dataset.

BC lattice of the CIR model trained on the Real Estate data—/5 regulariza-

tion parameter value=0.1..
Violin plot CIR weights for the Real Estate dataset.
Heatmap of interaction indices for the Real Estate dataset.

Xiii

3.14

3.15

3.16

4.1

4.2

4.3

4.4

5.1

BC lattice of the CIR model trained on the Yacht data set—/5 regularization

parameter value=0.0001.
Violin plot CIR weights for the Yachtdataset.

Heatmap of interaction indices for the Yacht dataset.

CIR(1)-online vs. CIR(1) batch learning—Performance on RealEstate data
set (d = 5). The mean MSE observed over 100 experimental trials—online
method is trained for 100 epochs in each trial. The error bars indicate the

width of one standard deviation on both sides of the mean MSE.

CIR(1)-online vs. CIR(1) batch learning—Performance on Concrete data
set. The online method was trained using the original data set (d = 8), and

the batch method was trained using the PCA-reduced 6D-data set.

CIR(1)-online vs. CIR(1) batch learning—Performance on 6D-Concrete
data set. Both the online and the batch methods converged to the same

error rate when using the same PCA-reduced 6D-training data.

Number of epochs for convergence of the MSE of at least one of the online-

CIR(b) methods with Batch-CIR.

Learned FM where simulated data is restricted to just one path through the
lattice(no regularization). The gray lines represent all the possible paths
(sort orders), the dark line represents the single path to which the simulated

datawasrestricted. e

X1V

83

99

5.2

53

54

5.5

5.6

6.1

One example of a learned FM for the classification of the real-world breast
cancer data set with no regularization. 48 out of 64 nodes (75%) were data-
supported. As shown in Table [5.5] this algorithm achieved a mean F score

of 0.773 across the 100 trials.

One example of a learned FM for the classification of the real-world breast
cancer data set after applying ¢;-mean regularization, which increased the
mean [score to 0.779. With this regularization there is much less vari-

ability in the learned FM values across each level in the lattice.

Visualization of data-support of FM lattice trained on Vertebral data set.
Thickness of the lines is proportional to the frequency of data traversal, and

node sizes are scaled proportional to the data-support.

Support visualization for the Breast Cancer dataset.

Support visualization for the Ionosphere data set. This data set has a higher
degree of disparity, evident in the richer diversity of the paths traversed by

thedatasamples.

Performance of the online training algorithm on synthetic training data.
MSE is measured between the ground-truth target values of the synthetic

data and the values predicted by the FM learned using the online algo-

XV

130

5

6.2

6.3

6.4

Iterative comparison of the online method with the batch method on Iono-
sphere data set. The online method was initiated with a max aggregation

FM. Six SVM kernels were used for both the online and the batch meth-

Iterative comparison of the online method with the batch method on Mmass
data set. The online method was initiated with a mean aggregation FM. 10
SVM kernels were used for the online method while the batch method has
used 6 SVM kernels.o oo

Iterative comparison of the online method with the batch method on Verte-
bral data set. The online method was initiated with a max aggregation FM.

Six SVM kernels were used for both the online and the batch methods.

Xvi

165l

167/

List of Tables

2.1

22

3.1

3.2

33

34

3.5

4.1

4.2

5.1

5.2

ELOS Weight Matrix for 5-dimensional Data

MSE on Benchmark DataSets

Three Methods for Building Bias Vector 5
Regression Methods
Impact of ridge regression on CIR methods*
MSE on Benchmark Data Sets*

Weight assigned to source 1 for different sortorders

Three Methods for Building Bias Vector S [39].

MSE on Benchmark Data Sets*

Underlying and learned FMs. The learned FM terms marked with asterisks
are not supported by the training data. Regularization labels indicate the
type of norm employed and the aggregation goal.

Results of learning the fuzzy measure with synthetic data. The results pre-

sented in this table are the average [} scores from the 100 experiments

described in Section3.2.6.11

&

i

B @ B

H B

S

5.3

54

5.5

6.1

6.2

A.l

A2

Comparison of our proposed methods and other state-of-the-art algorithms
on real-world data using non-parametric evaluation methods.
Performance of our proposed method on real-world data.
Performance of our proposed methods and other state-of-the-art algorithms

onreal-worlddata.

Performance comparison of online and batch methods on real-world data
(6-SVM kernels). e
Performance of 10-SVM kernel online method vs. 6-SVM kernel batch

method onreal-worlddata.

Data sets used in the experimental evaluation

Data sets used in the experimental evaluation

xviii

List of Abbreviations

ChI
FM

CIR

FI
DeFIMKL
OWA
LOS
ELOS
MKL
SVM

BC

QP

SSE

MSE

Choquet Fuzzy Integral

Fuzzy Measure

Choquet Integral Regression
Fuzzy Integral

Decision-level Fuzzy Integral Multiple Kernel Learning
Ordered Weighted Average
Linear Order Statistic
Extended Linear Order Statistic
Multiple Kernel Learning
Support Vector Machine
Bounded Capacity

Quadratic Programming

Sum of Squared Error

Mean Squared Error

Xix

Preface

Some chapters of this dissertation contain published material. The following list indicates

which publications were used along with notes on author contributions.

Chapter 2

S.K. Kakula, A.J. Pinar, D.T. Anderson, and T.C. Havens (July 2020). “Extended Linear

Order Statistic,” IEEE International Conference on Fuzzy Systems.

S.K. Kakula is the leading researcher in this work and is the corresponding author. The
research was performed under the guidance of T.C. Havens and the ideas proposed in the

paper stemmed from conversations among all authors.

Chapter 3

S.K. Kakula, A.J. Pinar, D.T. Anderson, and T.C. Havens (July 2020). “Choquet Integral

Ridge Regression,” IEEE International Conference on Fuzzy Systems.

The ideas presented in this paper are the result of discussions between all listed authors.
S.K. Kakula is the corresponding author for this paper and generated the experimental

results. A.J. Pinar and T.C. Havens contributed to the theoretical background.

Xxi

S.K. Kakula, A.J. Pinar, D.T. Anderson, and T.C. Havens (Dec 2020). “Visualization and
Analysis Tools for Explainable Choquet Integral Regression,” IEEE Symposium Series on

Computational Intelligence.

S.K. Kakula is the leading researcher in this work and is the corresponding author. The
research was performed under the guidance of T.C. Havens, and the ideas proposed in the

paper stemmed from conversations among all authors.

Chapter 4

S.K. Kakula, A.J. Pinar, D.T. Anderson, and T.C. Havens (Sep 2020). “Online Learning of
the Fuzzy Choquet Integral,” IEEE International Conference on Systems, Man, and Cyber-

netics (SMC).

S.K. Kakula is the leading researcher in this work and is the corresponding author. The
research was performed under the guidance of T.C. Havens and the ideas proposed in the

paper stemmed from conversations among all listed authors.

Chapter 5

S.K. Kakula, A.J. Pinar, Muhammed A. Islam, D.T. Anderson, and T.C. Havens (2020).
“Novel Regularization for Learning the Fuzzy Choquet Integral with Limited Training

Data,” IEEE Transactions on Fuzzy Systems.

xxii

The ideas presented in this paper are the result of discussions between all listed authors.
S.K. Kakula is the corresponding author for this paper and generated the experimental

results. A.J. Pinar and T.C. Havens contributed to the theoretical background.

S.K. Kakula, T.C. Havens, A.J. Pinar, Muhammed A. Islam, D.T. Anderson, Andrew Buck,
and Tim Wilkin. “Learning the Fuzzy Choquet Integral in the Presence of Uncertainty
Caused by Limited Training Data Volume and Variety”” Under Review - IEEE International

Conference on Fuzzy Systems.

S.K. Kakula is the leading researcher in this work and is the corresponding author. The
research was performed under the guidance of T.C. Havens and the ideas proposed in the

paper stemmed from conversations among all listed authors.
Chapter 6

S.K. Kakula, T.C. Havens, and D.T. Anderson. “Online Sequential Learning of Monotonic
Fuzzy Measures in the Choquet Integral,” under review, IEEE International Conference on

Fuzzy Systems.

The ideas presented in this paper are the result of discussions between all listed authors.
S.K. Kakula is the corresponding author for this paper and generated the experimental

results. T.C. Havens and D.T. Anderson contributed to the theoretical background.

xxiii

Abstract

Information fusion is the process of aggregating knowledge from multiple data sources to
produce more consistent, accurate, and useful information than any one individual source
can provide. In general, there are three primary sources of data/information: humans, al-
gorithms, and sensors. Typically, objective data—e.g., measurements—arise from sensors.
Using these data sources, applications such as computer vision and remote sensing have
long been applying fusion at different “levels” (signal, feature, decision, etc.). Further-
more, the daily advancement in engineering technologies like smart cars, which operate in
complex and dynamic environments using multiple sensors, are raising both the demand
for and complexity of fusion. There is a great need to discover new theories to combine

and analyze heterogeneous data arising from one or more sources.

The work collected in this dissertation addresses the problem of feature- and decision-
level fusion. Specifically, this work focuses on fuzzy choquet integral (Chl)-based data
fusion methods. Most mathematical approaches for data fusion have focused on combining
inputs relative to the assumption of independence between them. However, often there
are rich interactions (e.g., correlations) between inputs that should be exploited. The Chl
is a powerful aggregation tool that is capable modeling these interactions. Consider the
fusion of m sources, where there are 2™ unique subsets (interactions); the Chl is capable

of learning the worth of each of these possible source subsets. However, the complexity of

XXV

fuzzy integral-based methods grows quickly, as the number of trainable parameters for the
fusion of m sources scales as 2. Hence, we require a large amount of training data to avoid
the problem of over-fitting. This work addresses the over-fitting problem of Chl-based data
fusion with novel regularization strategies. These regularization strategies alleviate the
issue of over-fitting while training with limited data and also enable the user to consciously
push the learned methods to take a predefined, or perhaps known, structure. Also, the
existing methods for training the Chl for decision- and feature-level data fusion involve
quadratic programming (QP). The QP-based learning approach for learning Chl-based data
fusion solutions has a high space complexity. This has limited the practical application
of Chl-based data fusion methods to six or fewer input sources. To address the space
complexity issue, this work introduces an online training algorithm for learning Chl. The
online method is an iterative gradient descent approach that processes one observation at a

time, enabling the applicability of Chl-based data fusion on higher dimensional data sets.

In many real-world data fusion applications, it is imperative to have an explanation or inter-
pretation. This may include providing information on what was learned, what is the worth
of individual sources, why a decision was reached, what evidence process(es) were used,
and what confidence does the system have on its decision. However, most existing machine
learning solutions for data fusion are “black boxes,” e.g., deep learning. In this work, we
designed methods and metrics that help with answering these questions of interpretation,
and we also developed visualization methods that help users better understand the machine

learning solution and its behavior for different instances of data.

XXVi

Chapter 1

Introduction

Information fusion is the process of aggregating knowledge from multiple data sources
to produce more consistent, accurate, and useful information than any of the individual
sources can provide. Humans are a great example of this process—we constantly fuse
the sensory information from sources such as vision, hearing, taste, smell, and touch to
perform the day to day tasks. Many important civilian and defense applications including
weather forecasting, transportation management, battlefield assessment, target identifica-
tion and classification are enhanced with the use of sensor and data fusion. One of the
most well-known data fusion classification systems provided by Dasarathy [32] comprises
five categories: i) raw data-level fusion: data in-data out (DAI-DAQO), fusion of raw data
from the sources to extract higher-level features; i1) data in-feature out (DAI-FEQO), fu-

sion of features to extract more consistent and informative features; iii) feature in-feature

out (FEI-FEO), fusion of features to produce an output decision; iv) feature in-decision
out (FEI-DEQ), fusion of decisions to obtain a new more useful and informed decision;
and v) decision in-decision out (DEI-DEO). In this work, we developed novel data fusion
methods for last two categories (FEI-DEO and DEI-DEO). This includes the development
of novel algorithms for feature and decision-level fusion, evaluation of the algorithms us-
ing real-world data sets, and comparison of performance with the existing state-of-the-art
algorithms. In addition to the improved performance, we also focus on trainability of algo-
rithms with a limited amount of training data, and the explainability of the learned model

as well as the output decisions.

1.1 Motivation

Typically, objective data—e.g., measurements—arise from sensors. These data may or
may not be associated with uncertainty (inherent or in terms of what the sensor records).
On the other hand, information, which could be objective or subjective, from humans is
often riddled with uncertainty. Common culprits include randomness, measurement error,
ambiguity, and vagueness, to name a few. In addition to this uncertainty, great complexity
and diversity exists in both single and multi-source environments. Heterogeneity manifests
itself in numerous ways, e.g., type and properties of uncertainty present and granularity

of the data/information provided. Using these data sources, applications such as computer

vision and remote sensing have long been applying fusion at different “levels” (signal, fea-
ture, decision etc.). Furthermore, the daily advancement in engineering technologies like
smart cars, which operate in complex and dynamic environments using multiple sensors,
are raising both the demand for and complexity of fusion. There is a great need to discover

new theories to combine and analyze heterogeneous data arising from one or more sources.

1.1.1 Explainability

To date, numerous ways have been created to learn a fusion solution from data. While this
has resulted in significant leaps in numerous applications, explainability has not witnessed
a similar growth. Most machine learning solutions for data fusion are “black boxes,” e.g.,
deep learning. In many real-world applications, it is imperative to have an explanation;
this may include providing information such as what was learned, what is the worth of
individual sources, why a decision was reached, what evidence process(es) were used, and
what confidence does the system have about its decision. This work introduces methods and
metrics that help with answering these questions, and visualization methods that help the
user better understand the machine learning solution and its behavior for different instances

of data.

1.1.2 Learning with limited training data

One problem with learning an aggregation solution from data is that it often results in
solutions that are overly complex and computationally expensive to implement. It also runs
the risk of over-fitting and the quality of that solution depends on the size and diversity of
the training data. The problem of over-fitting is more pronounced when the amount of
training data is limited. While we want to achieve the highest performance possible, we
also desire a simple solution—one that is more generalized to perform equally well on
unseen data. We also desire a solution that requires the fewest computational resources
(e.g., memory and processing), has the smallest form factor and energy consumption, etc.
In this work, for the newly proposed methods of data fusion, several novel regularization
strategies were introduced to alleviate the issue of over-fitting while training with limited

data.

1.1.3 Leveraging rich interactions between sources

To date, most mathematical approaches have focused on combining inputs relative to the
assumption of independence between them (which is advantageous tractability wise). How-
ever, often there are rich interactions (e.g., correlations) between inputs that should be ex-

ploited. But for m inputs, there are 2™ possible subsets of source combinations to consider.

This work, with effective regularization strategies and visualization methods, enhances the
fuzzy Choquet integral-based data fusion methods that enable us to leverage these interac-

tions between the sources.

1.2 Background

While there are many categories of data fusion, this work focuses on two classes—decision-
level fusion and feature-level fusion. Decision-level fusion methods aggregate the outputs
from multiple decision makers to produce an overall fused decision, whereas feature-level
fusion methods fuse multiple input features to produce a final output. Both these categories
of data fusion have found their application in a wide range of applications. This work pri-
marily focuses on fuzzy integral (FI)-based aggregation methods. Specifically, the choquet
fuzzy integral (Chl)-based decision- and feature-level fusion methods. The aggregation us-
ing Chl is parametrized using a fuzzy measure (FM). This section provides the relevant

background.

1.2.1 Fuzzy Integrals and Fuzzy Measures

FMs and Fls are used in several applications, e.g., classification [34, 35, 47, 55, 157, 180,

81, 182, 183, 86], pattern recognition [[14} 41, [73]], multicriteria decision making (MCDM)

[8, 19, 20, 25 45, 76, [79, [1177], forensic science [3]], regression [39, 114} [115], and other
applications [34, 66, [75]. One of the key challenges with using an FM is the assignment of
values for its variables. While we might manage to manually specify the FM values for a
small set of sources, since the number of trainable FM parameters scale as 2™, where m is
the number of input sources, it is virtually impossible to manually specify the FM values
for a large collection of sources. To address this problem, several automatic methods have
been proposed. The Sugeno A\-measure [49] and the S-decomposable measure [37] build
the measure from the densitie Methods that build the measure by using the training data
include genetic algorithms [7], Gibbs sampling [85]], guadratic programming (QP) [54],
gradient descent [72]], penalty/reward [71], and linear programming [12]. Other works
[60, |61, [124] have proposed learning FMs that reflect trends in the data and have been
specifically applied to crowd-sourcing, where the worth of individuals is not known and is

thus extracted from the data.

1.2.2 Fuzzy measures

Consider a measurable space as the tuple (X, €2), where X is a set (typically of information

sources or evidence [49]) and () is a o-algebra, such that

Pl. X € Q;

'The FM values of the singletons, g({x;}) = ¢' are commonly called the densities.

P2. For A C X, if A €), then A° € ;

P3. IfVAZ € Q, then U?il Az e Q.

An FM is a set-valued function, g : Q — [0, 1], with the following properties[112]:

P4. (Boundary conditions) g()) = 0 and g(X) = 1;

P5. (Monotonicity) If A, B € Qand A C B, g(A) < g(B).

There is an additional property that guarantees continuity for the case where (2 is an infinite
set, however, in practice, (2 is finite and thus this property is unnecessary. FMs provide us
with a convenient way to quantify the worth of combinations of sources, and FIs can be

applied over FMs to aggregate the information from these sources.

1.2.3 Fuzzy integrals

There are many forms of the FI; see [34) 49, 51] for a detailed discussion. Several pre-
vious works [[7, 10, 48, [70] have explored FIs as a tool for evidence fusion, and several
generalizations of Fls are proposed in [13} 20, 35, 78, 180, 81} 183, |87]. The FM provides
the expected worth of each subset of the sources, and the FIs use this to combine informa-
tion from the sources while accounting for both the support of the evidence as well as the

expected worth. In this dissertation, we focus on the Choquet fuzzy integral proposed by

Murofushi and Sugeno [27,91]]. Let h : X — R be a real-valued function that represents
the evidence or support of a particular hypothesisE] The discrete (finite {2) Choquet FI is

defined as

/C hog=Cylh) = D ea) l9(4) = 9(Ai 1), (1.1)

where m is the number of input sources, and 7 is a permutation of X, such that h(a:,r(l)) >
h(zr2) > .. 2 WZrw))s Ai = {&rq),- -, T}, and g(Ag) = 0 [54, [111]]. Detailed

treatments of the properties of FlIs can be found in [45, 154, [111].

1.2.4 Visualizing the FI

This section presents the visualization approach for FMs introduced in [100]. A convenient
method to visualize an FM is to represent it as a lattice (i.e., Hasse diagram); Figure [I.1]
shows the lattice of an FM for the case of three sources (n = 3). The size of individual
nodes (FM variables) in the FM lattice are scaled proportional to their FM values, and
the lattice demonstrates the monotonicity constraints since the nodes at higher levels are

larger—or at least as large—than those below.

The FM lattice is a great tool for visualization of the FM and it provides us with an intuition
on the worth of different combinations of sources. However, the lattice alone does not give

us the insight into how the Choquet integral at (I.1)) utilizes the lattice to combine the

2Generally, when dealing with an information fusion problems it is convenient to have h : X — [0, 1], where
each source is normalized to the unit-interval.

a(®)

Figure 1.1: Lattice of FM elements for m = 3. Monotonicity (P5) is illustrated by

the size of each node, i.e., g({z1}) < g({x1,22}) as {1} C {z1,z2}. Note that

shorthand notation is used where ¢(1, 3) is equivalent to g({x1, x3}) [99].
sources for a particular m-permutation. Aggregation of each permutation of inputs from
these three sources can be represented as a path through the FM lattice. For example,
consider a data sample x and evidence h that give rise to the permutation 7 = {2, 1, 3}.
The corresponding FM values we use in the aggregation operation are g(2), g(2, 1), and
g(2,1,3), in that order. Thus, the aggregation of this instance of data can be visualized as
the path shown in Fig. This visualization strategy allows us to summarize the FM as
well as the Choquet FI's paths. The lattice shown in Fig. [[.3]is the learned FM and paths
for the training data from the wine data set using m = 5. In this visualization, the lines
between nodes indicate the data support associated with each path. For the nodes that do

not have any lines passing through them, i.e., the unsupported nodes the learned values are

driven by the constraints at (1.9).

Figure 1.2: Path taken by the Choquet integral due to a single observation inducing
the permutation 7 = {2,1,3}. Note that the FM was arbitrarily defined in this
example, and their distribution (ordering) follows that of Fig.

1.3 The DeFIMKL Algorithm

The DeFIMKL algorithm is a method of decision level fusion introduced in [97]. This
algorithm uses the Choquet FI to non-linearly fuse the decisions from an ensemble of clas-
sifiers. Following is the mathematical description of the algorithm. Let x; be an input
feature vector and let fi(x;) be the decision-value produced by the kth classifier in an en-

semble; the set of decisions made by the ensemble comprise the evidence / for the Choquet

10

Figure 1.3: Lattice of learned FM and paths for the training data from the wine
data set [33]] using m = 5. Note that there are a few unsupported nodes and their
learned values are driven by the constraints at (1.9). The arrangement of the nodes
follows that of Fig.[I.T] where each level in the lattice represents all subsets of equal
cardinality [99].

integral. The relative worth of each classifier is encoded in the FM, g, which is used by
the Choquet FI to integrate the evidence. The result is the ensemble decision C,(x;) for

feature-vector x; with respect to the FM g,

Cy(x:) = Y friy(x:) [9(Ak) — g(Ara)] (1.2)

11

where A;, = {fﬁ(1)<xi>7 ceey fw(k) (Xi)}, such that fﬁ(l)(xi) > fﬁ(g) (X,) > ... fﬁ(m) (XZ)

Many previous works [[10}[113,[12511377] have explored this method as a generalized fusion

approach for classifiers.

The behavior of the Choquet FI is solely defined by the FM, thus specifying an appropriate

FM for a fusion problem is a key challenge. We employ a data-supported method to learn

the FM, g, through regularized sum-of-squared error (SSE) optimization [4]. This method

1s summarized next.

Let the SSE be defined as

n

E* =7 (Cylxs) =)

=1

It can be shown that (1.2)), as a Choquet integral, can be reformulated as

Cy(xi) = Z [fw(k:)(xz‘) - fTr(k—f—l)(Xi)] 9(A),

k=1

m

where fr(n+1) = 0 [L11]. We can then expand the SSE as

where u is the lexicographically ordered FM g,

12

(1.3)

(1.4)

(1.52)

1.e., u =

(9{1}), 9({za}), - g({wr, w2}), g({wn, ws}), - g({wn, @, 2 })), and

Hy, = ' , (1.5b)

f7r(m) (Xz> -0

where H,, is of size (2" —1) x 1 and contains all the difference terms [(x)(X;) — fr(r+1)(X:)
at the corresponding locations of Ay in u. Note that the vector Hy, when multiplied with
u, maps the difference terms in Hy, with the appropriate FM values in u; i.e., for each
instance of data fusion, depending on the sort order, the m difference terms in (1.4)) take
the appropriate positions in the vector [, while the rest remain as zero. There are only m

non-zero terms in the vector Hy,. Finally, folding out the squared term in (1.5a)) produces

E? = Z (UTHxinu — 2yiH£u + %2)

=1

= uTDu—l—fTu—l—ny, (1.6)

=1

D :iniH,{i, f=— zn:Qyini.
1=1 1=1

Since is a quadratic function, we can add constraints on u such that it represents an

FM, leading to a constrained QP. We can write the boundary and monotonicity constraints

13

on u (see properties P4 and P5) as C'u < 0, where

C=lol wi - W, o 0o (1.7)

and U7 is a vector representation of the monotonicity constraint, g{z1} — g{z1,r2} < 0.

Hence, C is simply a matrix of {0,1, —1} values of size (m(2™~! — 1)) x (2™ — 1) with

the form ~)
1 0 -1 0 0
1 0 - 0 =1 - v 0
C = . (1.8)
o 0 --- 0 o -~ 1 -1

Thus, the full QP to learn the FM u is
muino.5uTDu +fTu, Cu<o0, (0,1)"<u<i, (1.9)
where D = 2D. Note that an additional regularization term can be included in the QP as
m&nO.5uTl§u + fTu+ v, (), (1.10)

where) is the regularization weight and v, (+) is some regularization function. For example,
¢,-norm regularization is applied when v, (u) = ||u||,. ¢1 and ¢, regularization of this QP

were discussed in [4, [97]).

14

The QPs at (1.9)) and (1.10) provide a method to learn the FM u (i.e., g) from training data,

thus completing the requirements for calculating the Choquet integral at (1.2).

1.4 Challenges with Chl-based aggregation methods

Chl is a powerful aggregation operator capable of modeling the worth of all possible subsets
of input sources. However, the number of FM parameters for Chl scales as 2™ where m
is the number of input sources. Training so many FM parameters requires proportionally
large amount of training data, or this could lead to over-fit solutions. This work presents
novel regularization strategies to address the over-fitting problem of Chl-based data fusion.
The proposed goal-based regularization strategies allow the user to encode knowledge of

the underlying FM to the learning problem.

The boundary and monotonicity constraints of FM have limited the applicability of Chl-
based aggregation to decision-level fusion. These constrains on the FM were relaxed in [S9]]
to introduce a Chl-based regression method, choquet integral regression (CIR). This work
enhances CIR by applying /,-regularization to alleviate the problem of over-fitting. This
work also introduces visualization techniques and metrics to enhance the explainability of

the learned regression model as well as the model outputs.

As the number of FM parameters scales exponentially with the number of input sources,

15

the exhorbitant space complexity associated with the QP-based DeFIMKL algorithm has
limited the practical applicability of Chl-based aggregation to six or fewer input sources.
This work introduces an online learning method that addresses this limitation of the Chl.
The online method is a gradient descent approach that iteratively processes the training
data, one data point at a time, and therefore requires significantly less computation and
space at any time during the training. The online method enabled the applicability of Chl-

based data fusion methods on higher dimensional data sets.

1.5 Dissertation Outline and Contributions

This section outlines my work on feature- and decision-level fusion problems. A high-level

summary on each chapter along with corresponding novel contributions is presented.

Chapter 2 presents a novel aggregation method called the extended linear order statis-
tic (ELOS). Unlike the simpler aggregation method, the linear order statistic (LOS), which
parametrizes the aggregation of d features with d regression weights, the ELOS learns d pa-
rameters for each position in the sorted input vector, one for each input feature; thus, ELOS
learns a total of d* weights for the aggregation of d features. The increased number of pa-

rameters helps the algorithm improve its expressibility while maintaining interpretability.

Chapter 3 presents the CIR, and introduces a novel method to apply ¢>-regularization on

16

the CIR training algorithm. Application of /5-regularization has resulted in statistically sig-
nificant improvement in the performance of the algorithm in 73% of the experiments. The
visualization and analysis tools presented in this chapter further enhance the explainability

of the CIR models.

Chapter 4 addresses the limitation of the CIR models presented in Chapter 3 due to its
exorbitant space complexity. The online method introduced in this chapter applies an iter-
ative gradient descent method to train the CIR. This method processes one observation at a

time, enabling the applicability of CIR on higher dimensional data sets.

Chapter 5 reviews the data support-based training approaches for Chl-based decision fu-
sion, and introduces several novel regularization strategies to address the problem of over-
fitting. The goal-based regularization strategies presented in this chapter allow the user to
consciously push the learned FM towards a predefined structure; these regularization meth-
ods allow the user to encode knowledge or intuition of the underlying FM to the learning
problem. This chapter also proposes a novel approach that incorporates the data support
of the FM variables and the corresponding degree of disparity between sources (the rela-
tive support across all variables) in the learning algorithm. In this approach, the amount of
regularization is directly related to the degree of support, i.e.,variables with a strong data-
support will be regularized to a very low degree, while variables with limited support will
be regularized to a greater extent. This method has shown to improve the model quality by

explicitly considering the uncertainty due to limited training data volume and variety.

17

Chapter 6 introduces an online algorithm for training Chl-based decision fusion. This
iterative algorithm, in addition to minimizing the SSE, also ensures that the monotonicity
and boundary conditions of the FM are maintained. The online algorithm introduced in this
chapter enables the extension of the applicability of Chl-based decision fusion to higher

dimensional data sets.

Chapter 7 concludes this dissertation and discusses future work.

1.6 List of Relevant Publications

The work collected in this dissertation is based on the following publications:

S.K. Kakula, A.J. Pinar, D.T. Anderson, and T.C. Havens (July, 2020). “Extended Linear

Order Statistic,” IEEE International Conference on Fuzzy Systems.

S.K. Kakula, A.J. Pinar, D.T. Anderson, and T.C. Havens (July, 2020). “Choquet Integral

Ridge Regression,” IEEE International Conference on Fuzzy Systems.

S.K. Kakula, A.J. Pinar, D.T. Anderson, and T.C. Havens (Dec 2020). “Visualization and
Analysis Tools for Explainable Choquet Integral Regression,” IEEE Symposium Series on

Computational Intelligence.

S.K. Kakula, A.J. Pinar, Muhammed A. Islam, D.T. Anderson, and T.C. Havens (2020).

18

“Novel Regularization for Learning the Fuzzy Choquet Integral with Limited Training

Data,” IEEE Transactions on Fuzzy Systems.

S.K. Kakula, T.C. Havens, A.J. Pinar, Muhammed A. Islam, D.T. Anderson, Andrew Buck,
and Tim Wilkin. “Learning the Fuzzy Choquet Integral in the Presence of Uncertainty
Caused by Limited Training Data Volume and Variety”” Under Review - IEEE International

Conference on Fuzzy Systems.

S.K. Kakula, A.J. Pinar, D.T. Anderson, and T.C. Havens (Sep 2020). “Online Learning of
the Fuzzy Choquet Integral,” IEEE International Conference on Systems, Man, and Cyber-

netics (SMC).

S.K. Kakula, T.C. Havens, and D.T. Anderson. “Online Sequential Learning of Monotonic
Fuzzy Measures in the Choquet Integral,” under review, IEEE International Conference on

Fuzzy Systems.

19

Chapter 2

Extended Linear Order Statistic (ELOS)

Aggregation and Regression

2.1 Introduction

The ordered weighted average (OWA) aggregation operator was introduced by Yager in
1988 [127]]. It was primarily designed to aggregate the outputs from multiple decision
makers to produce an overall fused decision function. An OWA operator on d dimensional

data is a mapping F' : R? — R. Given an input vector X = (2,25, ...,24) and the

21

corresponding weight vector v, the OWA function is given by
d
OWA(x,v) = Zvix(i), (2.1)
i=1

where z(1) > T2y > -+ > 29, v; > 0,and > v; = L.

The OWA induces non-linearity in the solution by sorting the input vector prior to the ag-
gregation operation. It also limits the outputs of aggregation between the minimum and the
maximum values of the input sample x, and thus is best suited for decision-level fusion.
In Yager’s later work [129], he extended the application of OWA to regression problems.
This work introduced an OWA-based approach to evaluate the fitness of a solution to the
data, where, the weighting vector of the OWA operator controls the penalties for each
data point, based on the magnitude of the error measure (e.g. squared-error). Yager et al.
demonstrated that OWA-based regression provides a generic formulation of the regression
problem in which existing classical methods like least squares (LS) regression, least ab-
solute deviation (LAD) regression, and maximum likelihood (ML) estimators are special
cases. Also, the OWA-based regression solutions were found to be less sensitive to outliers

as compared to the traditional methods like LS, LAD, and ML-estimators.
The OWA function at (2.1)) can be modified to

d
> i1 ViT(i)

OWA,(x,Vv) = Zd —
i=1 Vi

2.2)

22

where (1) > x(2) > - -+ > T(q), and v; > 0. While this is equivalent to (2.1, as it implicitly
encodes the constraint on the weights on x to sum to 1, it does help with certain learning

problems. This form can be relaxed to the linear order statistic (LOS), which has the form
d
LOS(x, W) = > wiz), (2.3)
i=1

where the weights w are no longer constrained to sum to 1, and can also take negative
values. This enables the aggregation operation to behave more like a regression operator

that can map the input to any value on the set of reals.

An LOS for the aggregation of d sources is parameterized by d values, each representing the
weight corresponding to each position in the sorted input vector, X, = (z(1), Z(2), - - - , L(a))-
While having just d parameters makes the solution more explainable, since we have only a
single parameter for each sorted position, the LOS algorithm is quite limited in terms of the
amount of non-linear space it explores for an optimal solution—i.e., its “expressibility” is
limited. We propose a novel aggregation method called the Extended Linear Order Statistic
(ELOS), where the aggregation of d sources is parameterized by d? weights. For each
position in the sorted input vector we again have d weights, one for each source. The
increased number of parameters helps the algorithm improve its expressibility, but it still

maintains its interpretability.

The remainder of this chapter is organized as follows. Section [2.2| presents the background

23

on OWA operators and OWA-based regression, then Section discusses the problem
formulation and training process of LOS. In Section [2.4] we introduce ELOS and describe
the training process. Section [2.5|discusses the ¢;- and ¢5-regularization. We then compare
the performance of ELOS with linear regression and LOS in Section [2.6] Section

summarizes this work and discusses possible future work.

2.2 Background

The OWA has been used in many fields, such as decision making [88, |89, 104, [118]], risk
analysis [38, [105], environment assessment [103, [134]], and sports performance analysis
[2, 108]. Given the wide range of applications, several OWA-based aggregation operators
were proposed. Induced ordered weighted average (IOWA) by Yager et al. [130] intro-
duced a modified ordering approach where the ordering is induced by a variable called
the order inducing variable. Chiclana et al. [26] introduced the ordered weighted ge-
ometric (OWG) aggregation operator, a geometric mean-based OWA operator. Yager e?
al. [128] introduced continuous OWA (C-OWA) to aggregate continuous interval values.
While most of these developments were oriented towards OWA-based aggregation tools,
in 2009, Yager et al. [129] extended the application of OWA to regression problems and

demonstrated that OWA-based regression particularly outperforms traditional least-squares

24

and least-absolute-deviation methods when the data contains a significant portion of out-
liers. The ELOS regression approach we propose builds on these prior works and parame-
terizes the aggregation of d-dimensional inputs using d* parameters, wherein for each of the
d sorted positions in the input we again have d weights, each corresponding to individual

variables in the input vector—more details in Section [2.4]

2.3 Problem Formulation

Given a set of training data (y, X), where X = {x,X»,...,X,}, X; C R? (a set of feature
vectors) and y = (y1,¥s,...,yn)’ (a vector of outputsﬂ the classic regression problem
involves learning a function that maps the input data X to the output. Such function is a

parameterized model such that

y ~ f(xw),

where w is the set of learned parameters of the regression function f. During training, the
regression parameters w are optimized with respect to an error function, usually squared-

error,

w"* = arg min Z (f(xi, W) —y:)*. (2.4)
w =1

'Note that the output y could be extended to multiple outputs for each input vector without loss of generality.

25

Consider the prepended input x; = (2,0, Zi 1, Zi2, - - .xi’d)T, where ;o is defined as the
constant bias multiplier 1, and (z; 1, z; 2, . . ., a:i,d)T are the d-features of the input, the func-

tion f(x;, w) takes the form

d
T
f(Xi, W) = Z T jW; = W™ X, (25)
§=0
where w, is the bias term and each weight in (wy,wy, ... ,wd)T is the coefficient of the
corresponding variable in the input vector (z; 1, Z; 2, . . ., Z; 4). This is the well-known least-

squares problem with a closed-form solution for (2.4),

w = (XTX) ' XxTy, (2.6)
where -~ ~
1 xT
1 x7
Xt = (2.7)
1 xF

is the n X (d + 1) input matrix in which each row is an input vector (with the prepended
bias multiplier 1 in the first position), and y is the vector of outputs in the training set. For

more extensive details on regression, in general, we suggest [S8]].

26

2.3.1 Linear Order Statistic (LOS) Regression

The regression function for LOS takes the same form as (2.5]) except that the input vectors

x; are first sorted in descending order,

d
fros(xi, w) = Z(Xi)m(g‘)wj =W (Xi) i, (2.8)
—0

J

where 7 is a sorting function, such that (x;),1) > (Xi)m2) = -+ > (Xi)m(a)5 (Xi)m0) = 1
is defined so that w, represents the bias in the regression. Thus, w; corresponds to the
weight on the input variable with the highest magnitude, w, corresponds to the weight
on the next highest variable, and so on. The closed-form solution at (2.6)) also applies to

LOS-regression by simply forming the following sorted input data matrix,

1 (x)f
I (x2)f,

X = , (2.9)
1 (Xnﬂ;

where (x;),, is simply the sorted version of the ith input vector. Finally, the LOS weight

vector w that minimizes (2.4) can be calculated by

w* = (X7 X)Xy, (2.10)

27

2.4 Extended Linear Order Statistic

While the LOS-regression solution of a d-dimensional input comprises one weight each for
each position in the sorted input and an additional bias parameter, ELOS trains d weights for
each position in the sorted input, where each weight corresponds to an individual variable,

plus a bias parameter; i.e., the regression solution comprises d? + 1 weights.

Again, consider an input vector x; = (x;1,...,%;4)", where (z;1,%;9,...,T;q) are the

d-features of the input. The regression function for ELOS takes the form

d
JeLos(xi, w) = Z(Xi)m(j)wj,i + 5, (2.11)

j=1
where 7 is again a sorting function, such that (X;),1) > (Xi)m(2) = -+ = (Xi)r,(a)> and

here 3 is the bias term. The regression weights are now a d? matrix, as shown in Table
We first write the ELOS regression in this way for ease of understanding, but later we will

extend this formulation for ease of data-driven learning of 1/ and 5.

A graphical representation of the associated weights for each input is shown in Table [2.1
for a 5-dimensional input vector, x = (1.3,0.7,—0.2,2.1,1.6)7. The sorting function on
this vector would be 7 = (4, 5, 1, 2, 3); hence, the bold weights in the shown matrix would
be the weights applied to this input vector. Essentially, the ELOS combines the power of

linear regression with that of the LOS regression; each row of W is associated with each

28

Table 2.1
ELOS Weight Matrix for 5-dimensional Data

Input Sort Order, 7 (1)
Ti1 | Wi | W12 | W13 | W14 | Wips
Tio | Wa1 | W22 | W23 | W24 | Was
Ti3 | W31 | W32 | W33 | W34 | W35
Tia | Wq1 | Wa2 | Wa3 | Wasa | Waps

Tis | W51 | W52 | W53 | W54 | Wss

5 x 5 weight matrix W for ELOS regression of 5-dimensional data. The weights selected
for the aggregation of the example input vector x = (1.3,0.7,—0.2,2.1,1.6)T are marked
in bold font. Note that we will learn an additional bias weight 3, for a total of 5% + 1 = 26
parameters.

element of the input vector (like linear regression), and each column of W corresponds to

the sort of the input elements (like LOS regression).

The ELOS formulation at is good for illustrating how ELOS works, but this is prob-
lematic for data-driven learning of W and 3. Hence, we reform the input vectors x and the
weight matrix W as follows. It may help to examine Fig. as you read along with the
following mathematical explanation. First, consider the extension of the ith input vector
Xis

x¢ = (1, (x;)¢)7, (2.12)

where the first element of 1 is included so that the bias can be implicitly included in w*
(which we describe later). The vector (x;)¢ is a d*-length vector with only d non-zero

terms; this vector will enforce the sort, as indicated by 7. The vector (x;) has the form

(xi)%, = ((za)g)" (i)] (e)T (2.13)

29

Input x = (0.4, —0.1,0.7)7

04 iB,r(g) -0.1 fL’ﬂ-(g) 0.7 :E,r(l) ‘

RN

1.0 0 0.4 0 0 0 -0.1 | 0.7 0 0

Bias Extended
multiplier input x°

Figure 2.1: Transformation of an example 3-dimensional input vector x to its ex-
tended form.

Each of [(x; ;)¢] is simply a vector of zeroes, with each element of x; sorted into the cor-
responding spot in the sort. Figure illustrates the construction of (x)¢ for the example
input vector x = (0.4, —0.1,0.7)7, with sort 7(1) = 3,7(2) = 1,7(3) = 2. The first
element of (x)¢ is the bias multiplier. The blue chunk is (z;)¢, where x; has been sorted
into the second spot. The red chunk is (x)¢, where x5 has been sorted into the third spot.
And similarity for the green chunk, where x5 has been sorted into the first spot. While this
may seem complicated notation, it significantly simplifies the data-driven learning process.
Since each input vector Xx; is extended to (x;)5 , the weight matrix 1V must be correspond-

ingly extended.

Let the extended form of WW be

T
we = (57 W11, W1,25 -+, W1,d, W21, - - - awd,d)) (2.14)

where all we have done is take each row of I sequentially to form a long vector and

30

prepended the bias term as the first element of w*.

We can now rewrite (2.11)) as

frros(xi, w) = (w)7x¢, (2.15)

which you can see is most pleasing—we have essentially written ELOS regression as a

linear regression equation.

Finally, it is easy to see that ELOS can be solved much the same as linear and LOS regres-

sion were solved,

(W) = (X" X)X Ty, (2.16)
where))
(x§)"
. (x5)"
X7 = : (2.17)
I (x;)" |

Once the (d* + 1)-ELOS weight vector (w®)* is learned using a training data set, the ELOS
regression output for a new input x can be calculated using (2.15)). Example|l|demonstrates

the ELOS regression calculation in more detail.

31

Example 1. Consider the problem of learning an ELOS regression model on a 5-
dimensional training data set (y, X), where X = {x;,Xs,....,X,}, x;, C R°andy =
(y1,Y2, ..., yn)T. Consider the input vector x = (1.3,0.7,—0.2,2.1,1.6)Z. The sort order
of the variables in x are 7(1) = 4,7(2) = 5,7(3) = 1,7(4) = 2,7(5) = 3. Thus, the
weight applied to the fourth input x4 would be wy 1, the weight applied to the fifth element

Z5 18 ws 2, and so on as shown in Table @ Thus the output is calculated as

Yy = ﬁ + Wy, 14 + W5.2T5 + wW1,371 + W2, 472 + W3,573. (218)

Remark 1. It is easy to show that ELOS is equivalent to linear regression or LOS re-
gression when the weight matrix I/ takes a certain form. ELOS is equivalent to lin-
ear regression if the rows of W, illustrated in Table are constant-valued. That is if

Wi = W2 = ... = W4, V1.

Similarly, ELOS is equivalent to LOS regression if the columns are equal: w; ; = wy; =

...,de‘,Vj.

This Remark illustrates that ELOS can do everything both linear and LOS regression are
able to do. The only concern is whether ELOS will over-fit to training data. We now turn
to describing how we can apply regularization to the regression methods described in this

chapter.

32

2.5 Regularization

While increasing the number of learned parameters might improve the expressibility of
the algorithm, more parameters may sometimes capture the noise in the training data and
thereby result in an over-fit solution. Regularization allows us to restrict the size of the
learned parameters and thus discourages the algorithm from learning a solution that is more
complex than necessary. Experiments on ELOS and comparable regression methods pre-

sented in Section [2.6|explored the impact of /- and ¢5-regularization.

2.5.1 /s-regularization: Ridge regression

The SSE function at (2.4) can be modified to include the ¢,-regularization penalty to make

the /5-penalized-SSE function

n

d
SSE, =) (flxiw) =)+ A D jwj, A >0, (2.19)
j=1

=1

where A is the regularization parameter. Each of the regressions (linear, LOS, and ELOS)

at (2.3)), (2.8), and (2.13)) can be written in the form of a simple dot-product w’'x; hence,

33

(2.19) can be rewritten as

n

d
SSE, =Y (whxi—) + 2> w? (2.20)

i=1 j=1

Expanding (2.20) gives
T
SSE, = (W' X —y) (W' X —y) + Allwll (2.21)

By taking the derivative of (2.21) and setting to zero, it can be shown that SSE,, is mini-
mized when

w=(XTX +)Xy, (2.22)

which is the well-known ridge-regression solution. While (2.22) is notated for linear re-
gression, this can be applied to both LOS and ELOS by replacing X with X . or X and the
appropriate form of the weight vector w. For more extensive detail on /y-regularization,
in general, we suggest [58]. We used the Matlab’s fitrlinear function to apply (s-

regularization, which accounts for numerical issues that can occur with the closed-form

solution at (2.22]).

34

2.5.2 /;-regularization: Lasso regression

The SSE function at (2.4) can be modified to include the ¢;-regularization penalty as

n

d
SSE, =Y (f(xi,w) —y:)* + A [wl, (2.23)
j=1

=1

where) is again the regularization parameter. Unlike ridge regression, ¢;-regularization
does not have a closed-form solution. We used Matlab’s fitrlinear function to ap-
ply ¢;-regularization. Matlab implements the Alternating Direction Method of Multipliers
(ADMM) algorithm [[16]] to solve for the optimal weight vector w subject to ¢; regulariza-

tion.

2.6 Experiments

We tested the ELOS algorithm on real world data sets from the UCI machine learning
repository [33l]. Using mean squared error (MSE) as the performance measure, we com-
pared ELOS with linear regression and LOS regression on 10 benchmark data set We
also evaluated the impact of ¢;- and ¢5-regularization on each of these methods through a
grid search over a set of values for the regularization parameter A, ranging on a logarithmic

scale between 0.0001 and 1000. We reported the results with the best A. Each experiment

2See Table in Appendix |A|for details on the UCI regression data sets used in the experiments.

35

consisted of 100 randomized trials, where the result of each trial is the average MSE cal-
culated over a 10-fold cross validation. Table 4.2 presents the experimental results, where
the MSE reported in each cell is the average MSE of 100 experimental trials; its standard

deviation is presented in parentheses. All the experiments are implemented in Matlab.

2.6.1 ELOS versus linear regression

ELOS, unlike linear regression, learns a weight vector for each feature in the training data—
one for each sort position. Figures[2.2]and 2.3| compare the weights learned by ELOS and
linear regression on Airfoil and Concrete data sets, respectively. In both these figures, we
see that the ELOS weights for each feature are spread on either side of the linear regression
weights, thus allowing ELOS to treat the features differently depending on their sort order.
These figures show that the overall values of the weights of ELOS follow that of the linear

regression weights, which is intuitively pleasing.

2.6.2 ELOS vs. LOS

Figures [2.4] and [2.5] compare the learned parameters for ELOS and LOS on the Airfoil
and Concrete data sets, respectively. While the LOS has learned one weight for each sorted

position, ELOS learns a weight vector for each feature and applies weights according to the

36

M ELOS Coefficients

” K Linear Regression Coefficients
I=
Q
£ 0.5
@ |]
o
S !
o} | |
Clc)]
g Or Fj
() |]
: [|
S *
[}
E 0.5 ’ % %]
"é‘ -VU. % | |
2 .
>

1 | .\ | , | |

S N g % N %)
> > > > >
< < < < <
1% 1% & & 1%

Airfoil data model features

Figure 2.2: Comparison of learned parameters of ELOS and linear regression on
Airfoil data set. For each feature, ELOS has learned 5 weights, each corresponding
to sort position of that feature, whereas linear regression learns only one weight per
feature. ELOS was able to capture non-linearity in the input-output relation, which
is represented by the variation in the learned weights for each feature.

sort. In both Figures[2.4]and[2.3] the high variance of ELOS weights about the LOS weights
for each feature demonstrate the flexibility of ELOS to treat each feature differently based
on their sort position. Thus, linear regression and LOS are special cases within ELOS,
since ELOS, in addition to learning the weights for individual features, also explores the

non-linearity introduced by the sorting of input vector.

37

» HELOS Coefficients .
12 % >k Linear Regression Coefficients
: : :
3 0
£ 0.5 i «
8 |
o % i .
© | I
-z - « b=
g o ¥ - -
L = m =
© *
o .
o |
2-05¢
c
>
©
=
_1 | |

Concrete data model features

Figure 2.3: Comparison of learned parameters of ELOS and linear regression on
Concrete data set. For each feature, ELOS has learned 8 weights, each correspond-
ing to sort position of that feature.

2.6.3 Results on benchmark data sets

Table 4.2] shows the performance comparison of ELOS and the other competing methods
on real-world data sets. The MSE values presented in the table are the average values taken
over 100 randomized experimental trails, where the MSE of each trial is the mean MSE
over a 10-fold cross validation. The best algorithms on each of these data sets were marked

in bold font. We performed a two-sample t-test at a 5% significance level to determine

38

M ELOS Coefficients
0 K LOS Coefficients
I=
Q
& 05F
8]
o - -
8 * =
=
S or - *
= H i
o |]
) " * . *
ge} B u m
2-05+ n u
c | |
(@)]]
© n
=
"
_1 | | | | | |
& & & & . g L
& N & & N

Q° Q° Q° Q°
Airfoil data model features

Figure 2.4: Comparison of learned parameters of ELOS and LOS on Airfoil data
set. For each sort position, ELOS has learned 5 weights, one for each feature, where
as the LOS has learned only one weight per sort position.

the statistically best results—hence, more than one algorithm can be considered as best.
The last column in Table {.2] shows the total number of data sets on which the algorithm
produced the best results. Overall, ELOS performed better than Linear regression and LOS
in 8 out 10 instances. Regularization did not seem to have a strong impact on ELOS since
(1- and {5-regularized versions performed better than unregularized-ELOS only on two out

of 10 data sets.

39

= m
2 = - n
|]
o * - - |
-G | | [| u =
[} L] -]
o - |] | |
o m * [| * i *
o []
Q) | - I |] " %] " []
E] | | |
@ 0r [| ™ = -
() = u u
“— * & J - "
o
() -]
o
2-05-
c
o
©
= M ELOS Coefficients
L ¥LOS Coefficients
@\& . OQN o O& . Oorb . oob‘ . oéo . OQb . OQ/\ . OQQ)

QYT QY QY QY QY QU & °
Concrete data model features

Figure 2.5: Comparison of learned parameters of ELOS and LOS on Concrete
data set. For each sort position, ELOS has learned 8 weights, one for each feature,
where as the LOS has learned only one weight per sort position

2.7 Conclusion and future work

This chapter introduced ELOS, an OWA-based regression operator and demonstrated that
it is a significant improvement over simple linear and LOS regression. ELOS, by learning
a weight vector for each input feature—one weight for each sort position—treats each vari-

able independently and also enables the non-linearity introduced by the sorting process.

40

Table 2.2
MSE on Benchmark Data Sets

Method | Concrete | Real Fish Aquatic| Red White | ENB- | Yacht | Airfoil | ISE # of
Estate | Toxi- Toxi- Wine Wine 2 best
city city in-
stances
n 1,030 414 908 546 1599 4898 768 308 1503 536 -
d 8 5 6 8 11 11 8 6 5 7 -
ELOS 0.345 0.379 | 0.403 | 0.558 | 0.67 0.757 | 0.057 | 0332 | 0.392 | 0.506
(0.003) (0.006) | (0.004) | (0.012)| (0.003)| (0.001)| (0.001)| (0.011)| (0.002) | (0.008)| 7
ELOS-¢; 0.359 0.377 | 0.409 | 0.561 0.681 0.772 | 0.062 | 0.408 | 0.4 0.496
(0.004) (0.005) | (0.004)| (0.007)| (0.003)| (0.001)| (0.001)| (0.01) | (0.002)| (0.009)| 1
A =001 A= x = x =]lx =] x =|x =|x =|x =|x =
0.0001 0.001 0.01 0.001 0.001 0.0001 0.0001 0.001 0.001
ELOS-/45 0.362 0.374 | 0.408 | 0.567 | 0.678 | 0.773 | 0.059 | 0.398 | 0.401 0.497
(0.004) (0.005) | (0.004)| (0.01) | (0.004)| (0.001)| (0.001)| (0.011)| (0.002)| (0.009)| 1
A=0.01 A= x = x =]lx =|x =|x =|x =|x =|x =
0.01 0.01 0.01 0.01 0.001 0.001 0.0001 0.001 0.01
Linear 0.424 0.445 0.437 | 0.553 | 0.661 0.729 | 0.087 | 0.520 | 0.505 0.437 1
(0.002) (0.002) | (0.002)| (0.003)| (0.001)| (0.001)| (0.000)| (0.003)| (0.001)| (0.003)
Linear-£1 0.418 0.445 0.435 0.550 | 0.660 | 0.728 | 0.087 | 0.519 | 0.501 0.437 1
(0.003) (0.002) | (0.002)| (0.005)| (0.001)| (0.001)| (0.001)| (0.004)| (0.001)| (0.003)
A=0.01 A = A = A = A = A = A = A = A = A =
0.01 0.01 0.01 0.01 0.01 0.0001 0.0001 0.01 0.001
Linear-£2 0.411 0.445 0.434 | 0.552 | 0.658 | 0.728 | 0.087 | 0.519 | 0.493 0.437 1
(0.002) (0.002) | (0.002)| (0.004)| (0.001)| (0.001)| (0.001)| (0.004)| (0.001)| (0.003)
A=0.1 X = | x=01 X=0.1 A=0.1 A=0.1 A= X = =01 X =
0.01 0.0001 0.0001 0.001
LOS 0.708 0.727 | 0.718 | 0.940 | 0.996 | 0.977 | 0.758 1.086 | 0.797 | 0.508 | 0
(0.002) (0.005) | (0.003)| (0.007)| (0.002)| (0.001)| (0.003)| (0.009)| (0.001)| (0.008)
LOS-4¢ 0.707 0.727 | 0.709 | 0.934 | 0987 | 0977 | 0.754 1.088 | 0.797 | 0.509 | 0
(0.002) (0.007) | (0.002)| (0.007)| (0.011)| (0.001)| (0.003)| (0.006)| (0.002)| (0.006)
A =001 A =X =X =X =|Xx =|Xx =|x =|x =]2x=01
0.001 0.01 0.01 0.0001 0.0001 0.01 0.0001 0.01
LOS-45 0.704 0.723 0.716 | 0.935 0985 | 0977 | 0.748 1.086 | 0.790 | 0.505 0
(0.002) (0.006) | (0.003)| (0.005)| (0.012)| (0.001)| (0.004)| (0.007)| (0.001)| (0.004)
A =001 A = | X = | =01 A =X =X =X =] x=01 A=
0.01 0.01 0.0001 0.0001 0.01 0.0001 0.01

MSE values in the table are the average (and standard deviation) of 100 randomized experimental trails; the MSE of each trial is taken
over a 10-fold cross validation. Bold indicates the lowest MSE at a 5% statistical significance based on a two-sample t-test.
Thus, it combines the benefits of both linear regression as well as LOS regression. Experi-

ments on real-world benchmark data sets indicated the superior performance of ELOS over

linear and LOS regression. Furthermore, ELOS maintains the explainability of learned

solutions since we can tease apart the treatment of each feature based on its sort position.

Future work will extend the application of ELOS to decision fusion problems. We will also
explore the application of regularization strategies that force the learned weights of ELOS

towards predefined structures, which will enable us to identify data sets on which a simpler

41

model like an LOS or a linear regression may be a better fit. We will also explore how
ELOS can be instantiated in deep learning architectures, providing explainable layers for

deep networks.

42

Chapter 3

Explainable Choquet Integral Ridge

Regression and Visualization

3.1 Introduction

Regression approaches typically seek a function, f(-), that can transform or map an in-
dependent variable, x, to a dependent variable, ¥y, given a training set of d-dimensional
independent variables, x € R?, and 1-dimensional dependent variables, y € R. The rela-

tionship between x and y is a parameterized model (or function), such that

Y r~r(xa),

43

where « is the set of learned parameters of the regression function . A linear model is
a common choice for this function, 7(x,a) = w’x + 3, where w € R? and f3 is the
bias. Using basis functions, we can extend this linear model to learn non-linear relations,
r(x,a) = wl¢(x) + (3, where ¢ is a set of basis functions. Examples for basis functions
include quadratic, polynomial, and radial basis functions. Basis functions typically project
the input data x into a higher-dimensional space, which allows the regression function to
learn more complex non-linear relations (in the native space). However, inclusion of basis
functions often eliminates the interpretability of the results. This is because, without basis
functions, the learned parameter vector w directly indicates how each variable in the input
x affects the output, but when basis functions are included, the parameter vector w is not

as interpretable.

The regression parameters « are typically trained using a set of training data pairs (X,Y) =
{(x1,41),-- -, (Xn,yn)}. The training process optimizes the regression parameters o with

respect to an error function, usually squared-error:
n
. 2
o = arg min E (r(x;, a) — y;)
(03 .
i=1

This is the well-known least-squares problem. For more extensive details on regression, in

general, we suggest [38]].

In our recent previous work [39], we proposed a regression model based on the Chl with

44

respect to a BC [52]], where we demonstrated that Chl, in combination with an FM can pro-
duce a non-linear aggregation method, which essentially is a compressed parameterization
of a set of linear convex sums, one for each sort order of the input. Since the number of pa-
rameters in an FM scales as 2%, where d is the number of variables in the input, training the
ChI-FM regression model on a high-dimensional input data requires a large training data
set with enough rank-independent observations. However, many real-world data sets often
do not contain enough rank-independent observations; training on such data sets typically
results in an overfit model that does not generalize well on the unseen data. In this chapter,
we build on the prior work by addressing the overfitting problem of Chl-FM regression

methods by the introduction of /5-regularization in the training process.

Several previous works have explored regression using Chls [S0, [77, [116]]. Some works
explored certain types of FMs, such as Sugeno’s A-measure, P-measures, or L-measures,
e.g., [/7]. Different from these works, the learning approach of our method enables us
to learn any bounded capacity, which is more general than a parameterized FM. Grabisch
[SO] proposed a method to learn an FM using training data; however, since this approach
is limited to FMs, it has limited applicability. In addition, this approach used a single bias
value model (similar to our CIR(1) model proposed here), which limits the flexibility of
the method. Our method learns a more flexible bias model (up to one bias for each possible
sort). Chl was also applied to logistic regression by Tehrani et al. [116]; this approach also
included a single bias value (like our CIR(1) model). Our method could be used to extend

this logistic regression approach. Recently, Du and Zare [36] proposed a multiple instance

45

learning Chl regression, though a bias model was not included in this regression approach.

Our method [59] was a significant extension of these prior works as it used a bounded ca-
pacity and a bias model that allowed encoding of a linear model for each possible sort in
the input data. In [S9] our experimental results showed better performance than compa-
rable methods. Work presented in this chapter further improves our method by applying
ly-regularization. Experimental results show that the application of /5-regularization has

consistently improved the performance as compared to the unregularized version.

Chls with respect to non-monotonic measures have been discussed in [92, 94, 95, [123]].
These works provide a good basis for the development and application of Chls with respect
to non-monotonic measures. Our work here is a significant extension to these works to

enable a generalized Chl-based regression model along with regularization.

3.2 Choquet Integral Ridge Regression

An FM defined in |1.2.1} when used for aggregation with Chl, results in convex sums of
input variables that are bounded between maximum and minimum values of the input vari-
ables. To enable a continuous unbounded aggregation of outputs, we will relax the proper-

ties of the FM to a BC.

Definition 1. A BC is a set-valued function f : 2 — R, with the boundary property

46

~
—~~
=
S~—
I
)
=

The discrete (finite () Chl is defined as

d
/ hog=Cy(h) = ha [g(IL) — g(ILi_y)] (3.1a)
¢ i=1
=5 h,, (3.1b)
where 7 is a permutation of X, such that h.q1) > hre = ... = hga), I; =

{=q), .- Tz}, and g(Ilp) = 0 [53,[110]. In (3.Tb), we have simply reformulated (3.1a)

as the dot-product of the vectors v, and h,, where

hy = (B, he@ys - Baia) s (3.2)

e = (9(Ih), (9(Ts) = g(Th)), .., (1= g(I4-1)))" . (3.3)

The key insight from is that the ChI with respect to the FM is essentially a collection
of d! linear-order statistics on h, one for each possible sort order of the evidence hE] The
elements of v, are simply the weights of each evidence value, as represented by the gain
in the FM up through the lattice. More detail on the properties of fuzzy Chls and fuzzy

integrals in general can be found in [46] 153, [110]].

"With regard to Choquet integral regression, described in Section this boundary condition on f is
arbitrary. It can be shown that any constant bias applied to all values in f does not change the result of the
regression. This boundary condition can help with optimization from a practical computing standpoint.

21t can be further specified to say that the Chl is a collection of d! ordered weighted averages (OWA), as

Zi(’}/‘n)i =1

47

3.2.1 Choquet Integral Regression

3.2.1.1 CIR formulation

We can directly extend the ChI at (3.1) to CIR by integrating with respect to a BC f and

adding a bias term,

d
[B = Cyth) = B+ 3 ey [FT1) = £, (3.40)
=1

= Bx + pLh,, (3.4b)

where 7 and 11 are defined as in (3.1)), h, is defined at (3.3), 3, € R is a bias term’}, and

(F(X) ~ F(Ta) (35)

Inan FM ¢, f(0) and f(X) are assigned the static boundary values of 0 and 1, respectively.
We remove these boundary constraints in (3.3)) by including f(0) and f(X) in p,; see v,

at (3.3) for comparison.

How is the CIR formulation at (3.4) a regression? Consider the formulation of CIR at

3We choose to generalize the bias so that one could have up to d! different bias terms, one for each sort;
however, as we will explore in Section [3.2.1.2] this may be computationally intractable—d! can grow to be
a large number—and, hence, we will also develop solutions that use fewer bias terms.

48

(3.4b)—with 3, as the learned bias and p, as the learned weight vector, this clearly is in
the form of linear regression. In addtion, since we removed the boundary constraints, the
values in p, can take any value in the set of reals, R—see (3.5). This makes the CIR
a compressed parameterization of a set of linear convex sums. In other words, CIR is a
set of linear regressions, one for each of the d! possible sorts of h. The Chl, since it is an
aggregation operator, produces outputs that are bounded by the interval [min{h}, max{h}|;
while the CIR, by allowing the learned parameters in p, to take any value in R, enables the
mapping of inputs to anywhere in the set of reals, C's(h) € R, and is therefore a regression

operator.
3.2.1.2 CIR learning

Given a set of training data pairs {(hy,v1),...,(h,,yn)}, i € R, Vi, we would like to
learn a prediction function o such that o(h;) = y;. This is a standard regression problem. In
our prior work [, 6], we explored the approaches to train the Chl as a prediction function,
by minimizing the SSE between the true output and the prediction for a given set of training

data, i.e.,

g = argmin {Z (Cy(hy) — yf} . (3.6)

9 i=1

It can be shown that the solution to is the quadratic program (QP)

minu, Duy +t"u,, Cu, <0, (0,1)" <u, <1, (3.7)

Uy

49

where u, is the Ilexographically-ordered FM g, ie., u, =

(g({xl})vg({xQ})v"'79({x17x2})7g({x17x3}>7'"7 g<{x1>x27"'7xd})); the matri-

ces D and t are composed of the training data h and y; and the matrix C' enforces the
monotonicity property on the learned FM g. Our prior work [6]] contains the details on
the construction of these matrices and the implementation of the QP. Using this QP-based
learning approach, we applied Chl on many sensor fusion problems; however, the output
of Chl is limited to the interval between the maximum and the minimum of the inputs.

Hence, we explore next, the process to learn the CIR, which does not have such limitations.

This chapter focuses on the BC f and the CIR at (3.4)). Therefore, we would like to solve

the minimization problem

(f",B%) = ar%}glin {Z(Cf<hi) - yz’)Q} . (3.8)

=1

First, we will rewrite (3.4) as

Cr(h;) = Bx + Z S0 [(0)r) — (M) =) 5 (3.9)

where we define (h;).) = (hi)r@as1y = 0, Vi. Since f(Ily) = f(0) = 0, the
first summation term equals 0. However, if the user wants to set different bound-
ary conditions, or none at all, this term can be adjusted accordingly. To con-

tinue, f is then lexographically ordered, ie., uy = (f(0), f({z1}), f({x2}),...,

50

fxi,22}), f{zr,23}), - F{@1, 22, ..., 2a}))f| The SSE term (3.8) on expansion

gives

n n

E* = (Cr(h) —yi)* = (Hlus+ BB —y)’, (3.10)

i=1 i=1

where H; is a 27 x 1 vector that contains the difference terms in (3.9); B; is a b x 1 bit
vector that chooses (or computes) the bias from the vector § for a given training data pair

(more on that soon).

To transform (3.10) into a standard least-squares problem, we concatenate a variable vector

u = (uy,)7, and then build the vector

D;= (H!,Bl). (3.11)
Thus, (3.10) becomes
E* =) (Du—y), (3.12)
=1

“One could choose any ordering of f and derive the QP matrices appropri-
ately. For example, in our code library we use binary ordering, such that uy =

(f©@), F({z1}), f({z2}), f({wr, 22}), f({ws}), fF({z1, 23}), ., F(X)).

51

This has the standard least-squares solution of

u= (D"D)'D"y,

D,

Dy

(3.13a)

(3.13b)

This solution is satisfying as it further bolsters our claim that CIR is regression at its core.

We used the least-squares solver in Matlab for the results presented in this chapter. Prob-

lems such as singular matrices and underdetermined systems are automatically addressed

by the solver. Note that the least-squares solution at (3.13) is a mathematically correct so-

lution, but can be problematic due to its inverse; hence, least-square solvers are often more

stable in practice.

We now describe the process to build the matrices H; and B;. The approach for a simple

3-input case 1s show in Example 2| It may be useful to follow along with this example as

we describe the process in more detail.

The 2¢ x 1 H; matrix is designed to contain the (d + 1) difference terms,

52

[(hi)x(j) — (M) x(j+1)], in (B9). The rest of the elements of H; are all zero. That is,

0 — (hy)~()

Hi= 1" (h)rm) — i)z |- (3.14)

(h)r@ — 0

The B; matrix varies based on the user’s choice of the vector construction. Though one
could imagine numerous ways to learn the bias vector f3, in this chapter, we present three

possible choices:

1. Use a single scalar 3 value; thus, B; = 1, Vi. This is simplest and least computation-

ally expensive choice.

2. Pick the § value based on the first element in the sort order (1), i.e., 5 is only
dependent on the input with greatest magnitude. Thus, B; is d x 1 and takes the form

[Bilra) = 1, else [B;] = 0.

53

Table 3.1
Three Methods for Building Bias Vector

Name | Description B;
1-bias | One bias term B, =1,V:
d-bias | One term for each max-value in sort | [B;]q) =1
else [B;] =0
24-bias | Computed bias for each possible sort | See

3. The third method mimics the lattice of the BC and sets B; according to the non-zero

elements of H;. That is,

[Bi]; = (3.15)

In the third method, B; is a 2¢ x 1 matrix with d + 1 entries set to 1. Thus, for each sort
order, the bias value in the regression solution is the sum of d + 1 elements of the /3 vector.
In this way, the CIR can thus learn the 3 vector to produce a different bias for each sort
order, but encoding this bias with only 2¢ values (rather than d!). Table outlines the

three methods for learning the bias.

One could also imagine choosing a [value for each possible sort order; thus, B; is d! x 1
and has one entry that is set to 1 depending on the coding of the sort order. We view this

choice as intractable in practice, as d! can become very large, e.g., 10! = 3, 628, 800.

Example 2. For this example, we will use a 3 vector that is 2¢ x 1. Consider two training

54

data pairs (n = 2) with three inputs (d = 3) as follows:

(hla yl) = ((17 27 4)T7 8)7

(h27 y2> = ((47 —0, 1)T7 2)'

The sort order for data pair 1 is IT = (3,2, 1), and the sort order for data pair 2 is II =

(1,3,2). Thus, the QP sub-matrices for this example are

H, = (—4,0,0,2,0,0,1,1)7,
H2 - (_47 37 07 07 07 77 07 _6)T7
Bl = (17 07 07 17 07 07 17 1>T7

By =(1,1,0,0,0,1,0,1)".

For this example, the least-squares problem is underdetermined. Using Matlab’s solver,
the solution is u; = (—2,0,0,0,0,—0.86,0,0)7, and 3 = 0. We now extend CIR with

regularization to account for overfitting in learning.

3.2.2 CIR with Ridge Regularization

Recall the insight of (3.4) (or (3.1b)) where we observe that the Chl encodes d! regres-

sion models (or linear-order statistics), one for each of the d! possible sort orders. Let

55

us enumerate these sorting orders as my, 7o, ..., Tg, leading to the d! regression models,
Prvs Pras --os Py We then modify the SSE cost function in (3.12)) to include ¢5 (ridge) reg-

ularization terms for all d! models, yielding

n d!

Ef =Y D=y + 2> lpx 3 (3.16)

i=1 j=1

where) is the regularization parameter defining the weight of the regularizer—a user-tuned
quantity. To solve this, we must express the various regression models, p;, in terms of the
BC, u;. This is accomplished by defining a d x 2 matrix Ap,. tosift the regression model
from uy, i.e.,

P = Ay, y. (3.17)

Note the matrix Apm is mostly zeros, and each row has at-most two non-zero elements (one
+1 and one —1); this matrix-vector product produces the difference terms shown in (3.5)).
Also note that since the ridge regression term at is applied to the product 4,,_u, we
can interpret the term as a Tikhonov regularizer and the matrix A, can be thought of as a

Tikhonov matrix [121].

Each sort order will have its own A,_, thus there will be d! unique sifting matrices. We

56

now express (3.16) in terms of uy as

n d!
EfZ = (Diu—y)*+ XY plpn, (3.18a)
i=1 j=1
n d!
=Y (Du—y)+2Y u?AZWJ_ Ay, uy (3.18b)
i=1 Jj=1
= (D —y,)* + MGy, (3.18¢)
=1

5! T A . c o 0d g, od
where G, =) i1 (A o Apﬂj) . Note that GG, is a constant sparse matrix of size 2° x 2 and
only depends on d, thus it can be built offline. Finally, appending block matrices of zeros
to G , to make it compatible with the concatenated vector u allows the ridge cost function

to be written as

n

EL =) (Du—y)’ + MG, (3.19)
=1
G, 0
where G, = . Unfolding the squared term in (3.19), setting the gradient with
0 0

respect to u equal to zero, and solving for u gives the minimizer

iz = (D"D+AG,) " DTy. (3.20)

This solution is satisfying since its form is very similar to the well-known ridge regression

solutionE] Note that if G, = I, where [is the identity matrix, the solution matches that of

>The ridge regression minimizer, when learning regression weight vectors directly is Wgr =

57

ridge regression exactly. This is not surprising; because the fuzzy measure vector we are
learning here has a different structure than the typical regression weight vector, the regular-

ization matrix, G ,, must have a different structure than the identity matrix to compensate.

It is also interesting to note that since p,, is defined by a subset of uy, the objective func-
tion at (3.16)) is essentially group lasso performed on uy [136]. Furthermore, since each
individual element of u; appears in more than one p,,, it is the more general case of group

lasso with overlapping groups [67, [135].

3.2.3 Experiments

We evaluated the performance of our CIR methods and the impact of /5-regularization us-
ing real world data sets from the UCI Machine Learning repository [33]]. In addition, we
compared the performance with several other regression methods; Table presents the
details on methods used in our experiments. The methods Interactions, PureQuadratic,
and Quadratic use basis functions (indicated by ¢(h) in Table to project the input
data into a higher-dimensional space and thereby induce non-linearity into the regression
solutions. Note that these are not the only multivariate regression methods that exist; one
could choose from a whole host of basis functions, non-parametric predictors, etc. We

chose these methods since we consider them to be a fair comparison of “simple” regression

(XTX +) ~' XTy, where X is a data (or design) matrix, y is a vector of target outputs, and 7 is the
identity matrix [58]].

58

Table 3.2
Regression Methods

Name

Model

Model Dim.

Comments

Linear

Interact

PureQuad

Quad

LOS

CIR(D)

y=w h+p

y=w'¢(h)+p

y:WThW_Fﬁ

y = Cy(h)

d+1

d? +1

2d +1

d?> +2d+1

d+1

2¢ 4 p

Standard
method
Linear
plus pair-
products
(no square
terms)
Linear
plus square
terms (no
Interact
terms)
Linear
plus In-
teract and
PureQuad
terms
Sorts input
first

b indicates
bias model
{1,d,2%}

methods. We implemented these methods using the £1it 1m function in Matlab with corre-
sponding model specification: interactions, purequadratic, and quadratic,
respectively. To solve linear order statistic (LOS) regression [130], we first sort the inputs
and then apply a linear regression. The sorting process induces the non-linearity of LOS.
The CIR /8 model that is used is indicated by CIR(b) where b indicates the number of bias

terms {1, d, 2¢}—see Table

59

3.2.4 Impact of ridge regression on CIR methods

Using 10 real-world data sets from the UCI machine learning repository [33]], we compared
the performance of CIR methods with and without the application of ridge regression.
Table shows the performance of the CIR(b) methodf] and their corresponding ridge-
regularized methods. The MSE values presented in the table are the average values taken
over 100 experimental trails—MSE of each trial is taken over a 10-fold cross validation.
Based on a two-sample t-test, we identified the instances where the ridge regularization has
improved the performance at a 5% statistical significance level. Overall, the application of
ridge regression has improved the performance of CIR(1) in six out of ten instances, and
for both the CIR (d) and CIR(2¢) methods, we observed improved performance in eight out

of ten instances.

6Since the number of parameters in the BC for CIR methods scales as 24 where d is the number of features,
computation becomes intractable for larger values of d, e.g., 10!=3,628,800. Therefore, for the data sets
with more than six features, we applied principal component analysis (PCA) to reduce the dimensionality
to six features, and then applied the CIR methods.

60

*9ouoyTuSIS [BONISTRIS 96 B Je poyiaul Y1) Jey) Jo douewrofrad ayy parordwir sey uonezue[ngaI-2y ay) Jey) SeJedIpul pjog
"UOTIEPI[BA SSOID P[OJ-(] © JOAO UAYE) SI [BI) YOrD JO FSN—S[Ien [eiuawriadxa] Jo 95eIoAr o) oI d[qe)) Ul San[eA S«

10=X 1000 =X 1000=X 1000 =X Io=x 10=X Io=Y Io=x 10=X 100=X
010°0) (200°0) (810°0) (100°0) (200°0) (00°0) 010°0) (S00°0) (L00°0) ¥00°0)
7850 SI€0 SsT0 €500 12L°0 0L9°0 9bS°0 9¢¥°0 IF€°0 $62°0 | 93prd-(p2)AID
(120°0) (200°0) (1€0°0) ((@10) (200°0) (L00°0) (1o1°0) (110°0) (1100) (S00°0)
0£9°0 SI€0 681°0 70 ¥TL0 £89°0 008°0 970 85€°0 70€°0 (pe)dID
Io=x 10000 =X 10000 =X 10000 =X I'o=X Io=x I'o=x o=x I'o=x 100=X
(S00°0) (200°0) (800°0) (100°0) (100°0) (€00°0) (S00°0) (€00°0) %000 (€00°0)
L8O 9¢£°0 S¥1°0 $50°0 €TL0 $H9°0 SIS0 010 LYE0 LOE'0 | 98prd-(p)dID
(S10°0) (100°0) (S10°0) (1000) (200°0) (¥00°0) (T210) (S10°0) (L00°0) (+00°0)
TS0 9¢€°0 1ST°0 7500 STL0 $59°0 819°0 €TH0 S9€°0 11€°0 (P)Ad
10=X 1000 =X 10000 = X 1000 =X Io=Yx 10=X 1o=Y Io=x 10=Y 100=X
(900°0) (200°0) (900°0) (100°0) (100°0) ¥00°0) (¥00°0) ¥00°0) ¥00°0) (£00°0)
6L1°0 8¢€°0 0ST°0 $S0°0 9TL0 8+9°0 €150 01¥°0 SHE0 1I€°0 | 98pry-(1)AID
(¢100) (200°0) (1¥0°0) (100°0) (100°0) (#00°0) (€ec0) (L00°0) (800°0) (€00°0)
¥€5°0 8¢€°0 LST°0 950°0 62L°0 859°0 629°0 120 ¥9€°0 SIE0 (DA
L S 9 8 11 11 8 9 S 8 p
9¢¢ €051 80¢ 89L 8681 6651 9¥S 806 P1v 0€0°1 u
QUIM QUIM Kyorxoy, Korxoy, ey
dSI [1ojIry LIELIS C-ANH AMYM poy | onenby UsId | -SH [edY | Q1R1U0) POYIRIA

%SPOYISW Y[uo uoIssa13ar agpu Jo joedwy

€€ IqEL

61

o
&

o
6x] o
_IO o
o1
Mean squared error

Regression Model Weights

1
[REN
\
!
1
=

_1.5 1 1 1 1 1 1 1 1 _1.5
0 01 02 03 04 05 06 07 08 09

Ridge regularization parameter (\)

Figure 3.1: Impact of ridge regularization on the CIR(1) BC parameters learned
on Aquatic Toxicity data set.

We increased the ridge regularization parameter (\) in small steps and observed the MSE
as well as the shrinkage of the learned regression parameters (i.e., the regression models
sifted from the BC via (3.17)) for the CIR methods. The shrinkage plots in Figs. [3.1] and
demonstrate how the regularization restricted the magnitude of the parametersﬂ with
the increasing A values. In both the examples, the best MSE was observed between the A

values of 0.01 and 0.1.

"The data sets Aquatic Toxicity and Instanbul Stock Exchange have eight features and seven features respec-
tively. However, since we applied PCA to reduce the dimensionality to six features, the learned BCs for both
the data sets have 2=64 parameters. In Figs. and for demonstration purpose, we are showing the
trend of a randomly selected 12 out of the 64 BC parameters.

62

1.5

1
8
e
2 s
(] 05 £
= @
3 3
o
= 0o S
c 3
.% c
@
®©-05" 105 2
5 =
[}
(0
1r -1
-15 ! ‘ -1.5

0 01 02 03 04 05 06 07 08 09
Ridge regularization parameter (\)

Figure 3.2: Impact of ridge regularization on the CIR(1) BC parameters learned
on Istanbul Stock Exchange data set.

3.2.5 Performance of CIR methods

Table {.2] shows the regression results of the CIR methods and the comparison algorithms
for several real-world data sets. For each data set, the table shows the number of objects n
and the number of features d. The best algorithms for each data set are shown in bold font.
We performed a two-sample t-test at a 5% significance level to determine the statistically
best results; hence, more than one algorithm can be considered as best. Overall, CIR

methods produced best results on six out of 10 data sets, and CIR(1) with ridge regression

63

Table 3.4
MSE on Benchmark Data Sets*

Method Concrete | Real Fish Aquatic| Red White | ENB- | Yacht | Airfoil | ISE # of
Estate | Toxi- Toxi- Wine Wine 2 best
city city in-
stances
n 1,030 414 908 546 1599 4898 768 308 1503 536 -
d 8 5 6 8 11 11 8 6 5 7 -
Linear 0.424 0.445 0.437 0.553 | 0.661 0.729 | 0.087 | 0.520 | 0.505 | 0.437 1
(0.002) (0.002) | (0.002) (0.003)| (0.001)| (0.001)| (0.000)| (0.003)| (0.001)| (0.003)
Linear-¢1 0.418 0.445 0435 0550 | 0.660 | 0.728 | 0.087 | 0.519 | 0.501 0.437 1
(0.003) (0.002) | (0.002) (0.005)| (0.001)| (0.001)| (0.001)| (0.004)| (0.001)| (0.003)
A=0.01 A=A = x =|x =|x =|x =|x =|x =|x =
0.01 0.01 0.01 0.01 0.01 0.0001 0.0001 0.01 0.001
Linear-¢o 0.411 0.445 0434 0552 | 0.658 | 0.728 | 0.087 | 0.519 | 0.493 | 0.437 1
(0.002) (0.002) | (0.002) (0.004)| (0.001)| (0.001)| (0.001)| (0.004)| (0.001)| (0.003)
A=0.1 A = | a=01 a=o01 A=0.1 A=0.1 A o= | x = 2a=01 A=
0.01 0.0001 0.0001 0.001
Interactions 0.358 0.364 | 0417 0.764 | 0.658 | 0.763 0.053 0.409 | 0.371 0485 | 0O
(0.003) (0.004) | (0.004) (0.105)| (0.004)| (0.004)| (0.000) | (0.009)| (0.001)| (0.009)
Quadratic 0.229 0349 | 0424 0714 | 0.657 | 0.774 | 0.011 0.087 | 0.367 | 0.509 | 2

(0.001) (0.005) | (0.005) (0.141)| (0.005)| (0.007)| (0.000) | (0.002)| (0.002)| (0.010)
Pure Quadratic 0.264 0.367 | 0428 0552 | 0.665 | 0.758 | 0.078 | 0.080 | 0.454 | 0.462 1
(0.001) (0.004) | (0.003) (0.007)| (0.003)| (0.002)| (0.000)| (0.001) | (0.001)| (0.006)

LOS 0708 | 0.727 | 0.718 0940 | 0.996 | 0977 | 0.758 | 1.086 | 0.797 | 0508 | 0
(0.002) | (0.005)| (0.003) (0.007)| (0.002)| (0.001)| (0.003)| (0.009)| (0.001)| (0.008)
LOS-01 0707 | 0.727 | 0709 0934 | 0.987 | 0977 | 0.754 | 1.088 | 0.797 | 0509 | 0
(0.002) | (0.007)| (0.002) (0.007)| (0.011)| (0.001)| (0.003)| (0.006)| (0.002)| (0.006)
A =001 A= x = x = x =]l x =|x =|x =]x =]2xr=01
0.001 0.01 0.01 0.0001 0.0001 0.01 0.0001 0.01
LOS-(5 0704 | 0.723 | 0.716 0935 | 0.985 | 0977 | 0.748 | 1.086 | 0.790 | 0.505 | 0
(0.002) | (0.006)| (0.003) (0.005)| (0.012)| (0.001)| (0.004)| (0.007)| (0.001)| (0.004)
A=0.01 A=A = x=01 | A =] A =[x =|x =]2xa=01 | Ar =
0.01 0.01 0.0001 0.0001 0.01 0.0001 0.01
CIR(1) 0315 | 0364 | 0421 0.629 | 0658 | 0.729 | 0.056 | 0.157 | 0338 | 0.534 | 1
(0.003) | (0.008)| (0.007) (0.333)| (0.004)| (0.001)| (0.001)| (0.041)| (0.002)| (0.012)
CIR(d) 0311 | 0365 | 0423 0618 | 0.655 | 0725 | 0.052 | 0.I51 | 0.336 | 0542 | 0
(0.004) | (0.007)| (0.015) (0.122)| (0.004)| (0.002)| (0.001)| (0.015)| (0.001)| (0.015)
CIR(29) 0302 | 0358 | 0462 0.800 | 0.683 | 0724 | 0.222 | 0.189 | 0315 | 0.630 | 1

(0.005) (0.011)| (0.011) (0.101)| (0.007)| (0.002)| (0.412)| (0.031)| (0.002)| (0.021)
CIR(1)-Ridge 0.311 0345 | 0410 0.513 | 0.648 | 0.726 | 0.055 0.150 | 0.338 | 0479 | 4
(0.003) (0.004) | (0.004) (0.004) | (0.004)| (0.001)| (0.001)| (0.006)| (0.002)| (0.006)

A =001 A=0.1 A=01 A=01 A=0.1 A=0.1 A= | x =X =] 2x=01
0.001 0.0001 0.001
CIR(d)-Ridge 0.307 0347 | 0410 0515 | 0.645 | 0.723 | 0.055 | 0.145 | 0336 | 0487 | 3
(0.003) (0.004) | (0.003) (0.005) | (0.003)| (0.001)| (0.001)| (0.008)| (0.002)| (0.005)
A =001 A=0.1 A=0.1 A=0.1 A=0.1 A=0.1 A= | x =X =] 2x=01
0.0001 0.0001 0.0001

CIR(27)-Ridge 0.294 0.341 0436 0.546 | 0.670 | 0.721 0.053 0.152 | 0315 | 0.552 | 3
(0.004) (0.007) | (0.005) (0.010)| (0.005)| (0.002) | (0.001)| (0.018)| (0.002)| (0.010)

A=0.01 A=01 A=01 A=0.1 A=0.1 A=01 A = A = A = A=0.1
0.001 0.001 0.001

*MSE values in the table are the average of 100 experimental trails—MSE of each trial is taken over a 10-fold cross validation.
Bold indicates lowest MSE at a 5% statistical significance.
was the best algorithm with best results on four out of 10 data sets. Even for the cases

where the CIR methods were not the best, the ridge regularized CIR methods produced

good(-enough) results.

64

3.2.6 Conclusions and Future Work

We reviewed our previously developed method of learning regression models using the
Choquet fuzzy integral [59] and enhanced this method by applying /5 regularization. Ex-
perimental results with real-world data sets demonstrated that the introduction of regu-
larization significantly improved the performance of CIR methods in 22 out of 30 (73%)
instances. We then showed that /5 regularized CIR methods were superior to competing

regression models on real-world benchmark data.

Future work will include extending the CIR method to deep learning architectures. In a
recently published work [65] we show that the Choquet integral can be built using stan-
dard neural network operations and can thus be used to represent learned layers in deep
networks. We also will extend the explainable AI (XAl) approaches proposed in [93}102],

which allow interpretation of the result of the Choquet integral.

3.3 Visualization of the CIR

In this section, we extend our previously proposed method [100] for visualization of FMs
to that of BCs. Using an example data set, we then discuss the methods to visualize the

Shapley and interaction indices of a BC of a CIR model.

65

3.3.1 Visualization of the BC

A convenient method to visualize an FM—and, thus, a BC—is to represent it as a lattice
(i.e., Hasse diagram); Fig. @ shows the lattice of a BC, which also happens to be an FM,
for the case of three sources (d = 3). The size of individual nodes (BC variables) in the BC

lattice are scaled proportional to their values.

@) €@ e

a(®)

Figure 3.3: Lattice of BC elements for d = 3. Note that shorthand notation is used
where f(2,3) is equivalent to f({z2, z3})[100]

Fig. is a visualization of the BC lattice learned by CIR for the regression of the Airfoil
datzﬂ Here, the black colored nodes are positive values, while the red nodes are negative.
The thin white in-circles present in some of the nodes indicate the reduced magnitude of

the node’s value on application of /5 regularization.

8This is a NASA data set that comprises Airfoils of different sizes tested at various wind tunnel speeds and
angles of attack. The target feature is the output sound pressure level measured in decibels. For more details
on this regression problem, you can refer to [[18]

66

Figure 3.4: Lattice of learned BC and paths for the training data from the Airfoil
data set [18]. The arrangement of the nodes follows that of Fig. [3.3] where each
level in the lattice represents all subsets of equal cardinality. The black nodes in the
lattice are positive values and the red nodes are negative.

3.3.2 Shapley and interaction indices

The Chl (and CIR) is parameterized by the capacity. Specifically, the capacity encodes
the worth of all the individual subsets of sources and the Chl utilizes this information to
aggregate the inputs (the integrand, h). It is important to note that the Chl operates on a
weaker (and richer) premise than a great number of other aggregation operators that as-

sume additivity (a stronger property than monotonicity). However, the capacity has a large

67

22

Figure 3.5: BC lattice of the CIR trained on Airfoil data set. Here, black nodes are
positive values, while red are negative. The node sizes are scaled proportional to the
magnitude of BC values. Thin white in-circles present in some of the nodes indicate
the reduced magnitude of the node’s value on application of ¢y regularization—
corresponding ¢ regularization parameter value=0.001.

number of values; hence, it is not straightforward to interpret the Chl aggregation model,
or to assess the relative significance of an individual source in the model. Answers to these
complex questions are dispersed across the capacity; information theoretic indices aid us
in summarizing such information from a capacity. The Shapley index has been proposed to
summarize the worth of an individual source and the interaction index summarizes interac-

tions between different sources.

68

o = N W ENN ()]
T

Regression weights
AN

1 1 1 1 1

Varl Var2 Var3 Var4d Vars
Input variable

Figure 3.6: Violin plot of CIR weights for the Airfoil data set.

3.3.2.1 Shapley index

The Shapley values of an FM ¢ are

Ou(i) = Y Cxa(K)(g(K U{i}) - g(K)), (3.21)

(IX] = K] = DK

X7l (3.22)

Cxa(K) =

where K C X\{i} denotes all proper subsets from X that do not include source i. The

Shapley value of g is the vector @, = (®,(1), Dy(2), ..., 4(d)) and 3% (i) = 1. The

69

Shapley index can be interpreted as the average amount of contribution of source 7 across

all coalitions.

We can adapt this to a BC f simply by substituting f for ¢ in (3.21). In this case, the
Shapley index represents the average weight of a source across all d! possible sorts. The
possible weights in the CIR for a given source 7 are the terms f(K U {i}) — f(K), for all
possible K C X\ {i}. It can be shown that there are 247! possible values of f(K U {i}) —
f(K), which is simply the number of unique subsets in X\ {:}. However, each weight can
appear in the CIR for different numbers of possible sorts—Example [3| illustrates this idea

in detail.

Example 3. Shapley index calculation Consider three sources and focus on source 1. The
weight that source 1 sees in the CIR calculation is determined by its sort value. Table [3.5]
shows different weights assigned to source 1 depending on the sort order. We could notice
that the same weight (f({1}) — f({0})) was assigned to source 1 for the sorts 1,2,3 as well
as 1,3,2. Similarly, the weight (f({1,2,3}) — f({2,3})) was applied on source 1 for sorts
2,3,1 and 3,2,1. Thus, over 3! = 6 sort orders, source 1 was assigned only four distinct CIR

weights. Based on Table [3.5] we can calculate the Shapley index of source 1 as:

2% (S0 — FHOR) + & % (({1,2,3)) — F({2,3)))
o (FHL2)) — U2 + ¢ x (FULBY) — F((3)).

70

Table 3.5
Weight assigned to source 1 for different sort orders

Sort | CIR weight assigned to source 1

12,3
1,3,2 (F{1}) = F{0})

23,1
32.1 (f({1,2,3}) — f({2,3}))

2,1,3 (f({1,2}) = F({2}))
31,2 (f({1,3}) = fF({3})

Example [3] shows how CIR assigns multiple sort-based weights for each of the three

sources. We can assess how the feature variables affect the output by showing a violin
plot of the frequency of each of the unique weight values attributed to each feature vari-

able. Section [3.3]describes this visualization for a sample data set.

While the Shapley index—and the associated violin plot—is good for showing the contri-
bution of each individual feature variable in the model, this index fails to show how feature

variables interact. Hence, we now will describe the interaction index.

3.3.2.2 Interaction index

This index quantifies the complementary contributions of sets of sources [90]. While the

interaction index can be generalized to any set of sources, we will focus on pairs of sources.

71

The interaction index between sources ¢ and 7 is

L(i,j)= Y CxalK)(g(K U{i,j})

KCX\{ij}

—g(KU{i}) —g(KU{j}) +9(K)), i=1,2,...d,

(IX] - K] - 2)!|K!
(IXT - D)

(x2(K) = (3.23)
Like the Shapley index, we can adapt the interaction index to the BC by directly substituting
f for g. In this case, positive or negative values with larger relative magnitude imply a
strong complementary contribution between sources ¢ and 7, where as values closer to zero
would indicate redundancy. The reader can refer to Grabisch’s work [56] for further details
about the interaction index, its connections to game theory and interpretations. Next, we
describe how to use the Shapley and interaction indices to produce visualizations that offer

interpretation of the learned CIR model.

3.3.3 Visualization of Shapley index

The Shapley index and interaction indices provide good interpretability of the Chl with
respect to an FM [98]]. We can also use these to interpret the CIR model. The CIR is
parameterized by the 2¢ BC values for the aggregation of d features. Essentially, the CIR

parameterizes a piece-wise linear regression model for each sort of the d! possible sort

72

orders. Thus, a single trained BC enables learning a large number of weights for each
feature, resulting in a (possibly) non-linear regression model. However, the model for each
sort order still retains the interpretability of linear regression. The Shapley index at
provides a course interpretation of the average weight of each feature variable across all
possible sorts. Thus, for a given feature variable, the Shapley index is a measure of the
average regression weight of that feature across all possible sort orders. Hence, this index
is analogous to the feature’s coefficients in the linear regression models. While the Shapley
index for a feature indicates the dominant relation between a feature and the target variable,
we can analyze this relation at an even higher resolution by looking at the distribution of
the contributing weight values for each feature. These weight values are g(K U{i}) —g(K)

for all sets K C X\{i}.

Fig. [3.6 presents a violin plot of the weight values for each feature variable in the Airfoil
data set [18]. The vertical spread of the weight values of a feature indicates the diversity
in the sort order-based treatment of the variable. The average of these weight values is the
Shapley index, marked by the horizontal lines in the plot, which provides a rough indication
of the correlation of the features to the CIR output. For example, Var4 is predominantly
positively correlated with the output, while Var3 is negatively correlated. The long vertical
tails in the plot, e.g., seen in Var2, indicate the presence of a small number of observations
(sort orders) where the general regression weights of the feature were significantly different

from the Shapley index.

73

Varl

Var2

Var3

Input variable

Var4d

Varb

Varl Var2 Var3 Var4 Varb
Input variable

Figure 3.7: Heatmap of interaction indices for the Airfoil data set.

3.3.4 Visualization of Interaction index

The interaction index described in Section can be visualized as an d x d matrix,
where d is the number of input feature variables, and each cell (i, j) is the interact index
for the variable pair (7, 7). Fig. presents a 5 x 5 heatmap of the interaction indices
for the Aifoil data set. For a feature variable pair (i, 7). An interaction index with rela-
tively larger magnitude (postive/negative) represents a strong complementary contribution
between i and j, where as values closer to 0 would indicate redundancy. The d values along

the diagonal of these visualizations, i.e., interaction index of each input feature variable

74

with itself, are same as the Shapley indices, for those d input features, respectively. In this
heatmap, we could notice that the Shapley index of Var2 (cell (2,2)) is 0.01—indicating a
poor standalone impact on the regression output. However, Var2’s interaction indices with
Varl, Var3, and Var5 are -1.89, 0.98, and 1.15, respectively—indicating a strong comple-
mentary contribution of Var2. In this way, with the help of a heatmap visualization, we
could disentangle the contribution and relevance of each variable individually, and while
working in pairs with rest of the variables. Now, we apply these visualization methods on

CIR models trained on real-world data sets, and explain the models.

3.3.5 Experiments

We trained CIR using real-world data sets from the UCI Machine Learning repository [33].
We evaluated the learned BCs using the Shapley and interaction indices to evaluate the sig-
nificance of the contributing input feature variables. We visualized the BC lattices as Hasse
diagrams and inferred the impact of ridge regularization. In Section [3.3] we introduced
visualization methods using the regression model trained on the Airfoil data set. In this
section, we train CIR on three more regression data sets and explain the learned models.
Note that for each of these data sets, while training the CIR, we ran a grid search over the
{5 regularization parameter A—this section presents the best model (based on performance
on the testing data) for each data set. Furthermore, to enable a balanced distribution of all

possible sort orders, we z-normalized the data sets before splitting them into training and

75

testing portions, and corresponding target variables.

3.3.5.1 Fish Toxicity data set

This data set [21]] was used to develop quantitative structure—activity relationships (QSAR)
[21]] models to predict acute aquatic toxicity towards the Pimephales Promelas (fathead
minnow) fish. The data set comprises 6 real-valued features—the target feature is toxicity,
measured as concentration of LC50. For more details on this regression problem, you can

refer to [21]].

Fig.[3.8]is a visualization of the learned BC. The diversity of node sizes and the distribution
of black and red nodes is indicative of the variance in the sort order-based treatment of
observations. This lattice has a healthy amount of such diversity; thus, CIR is a good
choice for the regression of these data. It is also intuitively pleasing to see that the impact

of ridge regularization was more pronounced on the larger nodes.

The spread of the Shapley values in Fig. suggest that CIR is capturing a consider-
able amount additional non-linearity in the data compared to simpler methods like linear

regression. Thus, CIR is a good choice for this problem.

From the heatmap of the interaction indices in Fig. [3.10, we could notice that feature vari-

ables Var2 and Var6 with Shapley values of 0.39 and 0.41, respectively, are the strongest

76

Figure 3.8: BC lattice of the CIR model trained on the Fish Toxicity data—=/s
regularization parameter value= 0.001.

standalone contributors to the model. While Var5, with a shapley value of -0.04, though
is a relatively poor individual contributor, its strong interaction indices with Var3 and Var6

indicate a sizable complimentary contribution to the regression output.

3.3.5.2 Real Estate data set

This is market historical data set of real estate valuation. The data is collected from Sindian

Dist., New Taipei City, Taiwan. The regression problem is to predict the house price per

77

N
T

=
o
T

o
(63}
T

\\4
\;:/ \4\ _
- \A/

Regression weights
(@)

1
| -
T
=

=
(62}
T

1
N
T

Varl Var2 Var3 Var4d Varbs Var6
Input variable

Figure 3.9: Violin plot CIR weights for the Fish Toxicity data.
unit area, using the real-valued features that include the age of the house, distance to the
nearest MRT station, number of convenience stores nearby, and geographical coordinates.

For more details on this problem, you can refer to [132].

The lattice visualization in Fig. [3.T1] presents the BC trained for this CIR. While the node
sizes in the lattice are relatively less diverse, we could notice a healthy share of both red
and black nodes. On a portion of nodes, we could also notice the shrinkage of node values
due to {5 regularization. The heatmap of the interaction indices in Fig. [3.13] signify that
Var2 is the strongest individual contributor to the model output, while the variables Var3,

Var4 and Var5 have a considerable impact on the model output through the interactions

78

Varl

Var2

Var3

Input variable

Var4

Varb

V£l -0.22 -0.22 0.31 0.33

Varl Var2 Var3 Var4 Varb Var6
Input variable

Figure 3.10: Heatmap of interaction indices for the Fish Toxicity data set.
among themselves. The violin plot of regression weights in Fig. [3.12] displays a healthy
amount of vertical spread, indicating the diversity of the piece-wise linear regression mod-
els learned by the CIR. It is interesting to note that the violin plot of Var2 has two distinct
peaks—a simpler model like linear regression on this data would most likely learn the mean

regression weight for Var2, marked by the horizontal line, and thus a sub-optimal solution.

79

Figure 3.11: BC lattice of the CIR model trained on the Real Estate data—/s
regularization parameter value= 0.1.

3.3.5.3 Yacht data set

This data set comprises results from 308 experiments performed on 22 different hull forms.

Using the basic hull dimensions and the boat velocity as inputs, the regression problem is

to predict the residual resistance of sailing yachts. For more details on these experiments,

you can refer to [43].

The BC lattice trained on Yacht data in Fig. shows a good amount of diversity in both

the size of nodes as well as the distribution of red and black nodes. However, since the

80

1t m H
|

"l A
(1) u

Y

\l

o
ol
/

o

Regression weights
(@)

o
(03]
T

Varl Var2 Var3 Var4d Varbs
Input variable

Figure 3.12: Violin plot CIR weights for the Real Estate data set.
Yacht data has just 308 observations—which is less than 6!=720 possible sort orders for
a 6-dimensional data—the trained lattice did not cover all possible paths, and we could
notice several nodes that are not connected to the rest of the lattice. In this scenario of
limited training data, we could also notice that the ¢, regularization had a visible impact on

most of the larger nodes.

The heatmap of interaction indices and the violin plot of regression weights in Figures. [3.16|
and[3.15] respectively, reveal that only the variables Varl, Var3, and Var6 are the significant
contributors to the regression outputs, while the rest are indifferent. The violin plots of

the variables 2, 4, and 5 have a narrow vertical spread with a close-to-zero mean value.

81

Varl

Var2

Var3

Input variable

Var4d

Varb

Varl Var2 Var3 Var4 Varb
Input variable

Figure 3.13: Heatmap of interaction indices for the Real Estate data set.
Thus, making them inconsequential in the regression solution. With these insights from
the visualizations, for this data set, we could consider re-training the model using only the
variables 1, 3, and 6. By removing the redundant variables, the new BC lattice will now
have only 23=8 parameters—making it a more manageable learning problem with a limited

training data.

82

Figure 3.14: BC lattice of the CIR model trained on the Yacht data set—~/5 regu-
larization parameter value= 0.0001.

3.3.6 Conclusions

We reviewed our previously developed method of learning regression models using the
Choquet fuzzy integral [S9]. We then presented the evaluation indices that process the
learned BC to quantitatively summarize the significance of individual variables, and assess
the interactions between them. We presented visualization strategies to study the learned

BC lattice, to tease apart the interactions among the input variables, and to holistically

83

=
T

Regression weights
o

_4 = 1 1 1 1 1 1
Varl Var2 Var3 Var4d Vars Var6é

Input variable

Figure 3.15: Violin plot CIR weights for the Yacht data set.
examine the distribution of regression weights. We applied these strategies on four bench-
mark regression data sets, and demonstrated how they can be leveraged in explaining the

CIR model, and to make possible improvements to the models.

84

Input variable

Varl

Var2

Var3

Var4d

Varb

Var6

-0.98 -0.42

Varl Var2 Var3 Var4d Varb Var6
Input variable

Figure 3.16: Heatmap of interaction indices for the Yacht data set.

85

Chapter 4

Online learning of the Fuzzy Choquet

Integral for Feature-level fusion

4.1 Introduction

Chapter 3 presented a QP-based method (i.e., batch method) for learning the CIR. For
higher dimensional data sets, i.e., d > 6, where d is the number of input features, the space
complexity is so high that it becomes impractical to learn the CIR using the batch approach.
This has limited the practical applicability of our Chl-based regression models to data sets
with fewer dimensions. Alternatively, we applied dimensionality reduction methods like

PCA to reduce the data to a manageable number of dimensions before applying the batch

87

approach, which resulted in loss of information and possibly sub-optimal models. In this
chapter, we introduce an online learning algorithm to learn CIR models. This is a gradient
descent approach in which we sequentially process each observation in the training data and
adjust the parameters of the FM based on the gradient at that point. With this approach, we
were able to extend the application of CIR to data sets of much larger dimensionality. We
have also evaluated the application of ¢; and /5 [69] regularization on our online learning

method.

4.2 Online Learning of the CIR

Consider the minimization of the SSE presented at (3.12). This equation is the summation
of the squared error calculated over all the observations in the training data. The corre-

sponding squared error for a single data point (D;, y;) is

E2. = (Dyu—y)°. 4.1)

Differentiating (4.1)) with respect to u gives

Vu(E2) =2 (Dju—1y;) D 4.2)

88

Now we update the BC vector u as

u=u-v(Du—y) D! 4.3)

where 7 is the learning rate of the gradient descentﬂ The iterative algorithm for training

the BC vector u using the gradient descent approach is described in Algorithm T}

Algorithm 1: Online Learning of CIR

Data: (D, y,,n) - Training data, output vector, learning rate, and number of training
epochs

Result: u - Lexicographically ordered BC vector

Initiate the BC vector u with zeros.

for epochs 1 to n do

for each observation D; € D do
L Update the BC vector u as

u=u-—7vy(Du—y)D].

Output the learned BC vector u.

4.2.1 /5 regularized online-CIR

We modify the SSE cost function at (3.12)) to include the ¢, penalty on the magnitude of

the BC vector, yielding

n

Ef, =Y (Da—y)*+Nul3, A>0, (4.4)

=1

"Note that constant factor of 2 present in Equation (#.2)) was dropped in the update equation at (#.3).

89

where) is the regularization parameter defining the weight of the regularizer: a user-tuned

quantity. The corresponding squared error for a single data point (D;, y;) is

B, = (Diu—y;)* + Aulf3, (4.5)

The gradient of Ey, , is calculated by differentiating (4.5) with respect to u,

Vu(E}) =2 (D —y;) DI + 2. (4.6)

Thus the BC vector update equation for the ¢, regularized CIR is

u=u—((Du—vy) DI +). 4.7)

Because A > 0, at each iteration of the update equation at (4.7), in addition to adjusting the
BC vector u to minimize the error, it also decreases the magnitude of individual parameters
of the vector u by a small proportion. The iterative algorithm for training the ¢, regularized

BC vector u is presented in Algorithm 2]

90

Algorithm 2: Online Learning of the ¢, regularized CIR

Data: (D, y,y,n, \) - Training data, output vector, learning rate, number of training
epochs, and regularization parameter \

Result: u - Lexicographically ordered BC vector

Initiate the FM vector u with zeros.

for epochs 1 to n do

for each observation D; € D do
L Update the BC vector u as

u=u-—7((Du-—y)DI + u).

Output the learned BC vector u.

4.2.2 /; regularized Online Learning of the CIR

Applying the ¢; penalty on the SSE cost function at (3.12) yields

n

B} =Y (Du—y,)* + Aufls, A>0, (4.8)

=1

where A is the ¢; regularization parameter. For a single data point (D;, y;), the correspond-

ing ¢, regularized squared error is

Ep,, = (Diw—y;)* + Mulls, (4.9)

The gradient of the ¢, regularized squared error with respect to u is

Vu(E}) =2(Diu—y;) DI + Asgn(u), (4.10)

91

where the function sgn(u) returns the sign of the individual components of the vector u.

Using this gradient, the corresponding update equation for the ¢; regularized CIR is

u=u—((Dyu—y;) D] + Asgn(u)). (4.11)

Thus, with each iteration, in addition to adjusting the BC vector in favor of a lower SSE,
Equation (4.11) also reduces the magnitude of the individual components of the BC vector
u by the static value A\. The complete iterative algorithm for learning the ¢, regularized

CIR is presented in Algorithm

Algorithm 3: Online Learning of the ¢, regularized CIR

Data: (D, y,~,n, \) - Training data, output vector, learning rate, number of training
epochs, and regularization parameter \

Result: u - Lexicographically ordered BC vector

Initiate the BC vector u with zeros.

for epochs 1 to n do

for each observation D; € D do
L Update the BC vector u as

u=u—7((Dyu—y;)DF + Asgn(u)).

Output the learned BC vector u.

Table 4.1
Three Methods for Building Bias Vector 5 [59].

Name | Description B;

1-bias | One bias term B, =1,Vi

d-bias | One term for each | [B;|-(1) = 1 else [B;] = 0
max-value in sort

1 [H); >0,
2%-bias | Computed bias | [B;]; = { [
for each possible
sort

92

4.3 Experiments

We evaluated our online method for learning the CIR using real world data sets from the
UCI Machine Learning repository [33] and compared the performance with our previously
proposed QP-based CIR learning method (which we call batch-CIR). We performed 100
experimental trials on each method-data set pair—in each trial, a random permutation of
the data set is split into 75%/25% for training and testing, respectively. For the Online-CIR
method, the iterative training involved 100 epochﬂ We chose 100 since no significant
improvement in model performance was observed beyond 50 training epochs on most data
sets. We z-normalized all the features as well the target variable to have a zero mean and
a unit standard deviation prior to training the algorithms. We also tested the ¢; and /s
regularized online learning methods of CIR described in Algorithms [2 and |3] Table 4.2,
shows the performance comparison. The CIR § models are indicated by CIR(b), and the

CIR-online models are indicated by CIR(b)-online, where b indicates the number of bias

terms {1, d, 2¢}—see Table

2An epoch is a single cycle of training through all the observations in the training data.

93

—=—Online-CIR Testing MSE
—=— Batch-CIR Testing MSE

o
<o)
T

o
o
T

o
\l
I

o
N
T

o
=
T

0 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 /0 80 90 100

Training Epoch

Figure 4.1: CIR(1)-online vs. CIR(1) batch learning—Performance on RealEstate
data set (d = 5). The mean MSE observed over 100 experimental trials—online
method is trained for 100 epochs in each trial. The error bars indicate the width of
one standard deviation on both sides of the mean MSE.

4.3.1 Performance on low-dimensional data sets

Figure [4.1] shows the typical learning trend we observed on all the low-dimensional data
sets (d < 6). The MSE of online-CIR has matched the performance of the batch-CIR
within 40-50 epochs. In some cases, like the one shown in Figure .1} we noticed that the

error rate of online-CIR dipped slightly below that of batch-CIR initially, but converged to

94

the batch-CIR MSE after several more epochs of training.

4.3.2 Performance on high-dimensional data sets

The online-CIR method consistently outperformed batch-CIR on data sets with seven or
more dimensions. Among the 10 real-world data sets we used for testing, six had seven
or more dimensions. For these high-dimensional data sets, since it was computationally
impractical to directly apply our batch-CIR approach, we applied principal component
analysis (PCA) to reduce the dimensionality to 6-dimensions prior to training. For the
online-CIR method, we were able to use all the data sets without any dimensionality re-
duction. The online-CIR method achieved a significantly lower MSE on 5 of these 6 data
sets. Table {.2] shows the performance comparison. We performed a two-tailed t-test at a
5% statistical significance to identify the statistically best results on each data set. Except
for the Red wine data set, the online-CIR method showed superior performance on all the

high-dimensional data sets (d > 6).

Figure|4.2|compares the performance of our online-CIR method with the batch-CIR method
on the Concrete data set. The online-CIR method achieved a lower MSE than the batch-
method in just 20 epochs through the data. After 100 epochs, the MSE of the CIR(1)-online
was 0.199, significantly lower than the best MSE achieved from the batch method, CIR(d),

at 0.322. This trend was consistently observed on 5 out of the 6 high-dimensional data sets,

95

o
<o)
T

o
(00]
—

—=—Online-CIR Testing MSE
—=— Batch-CIR Testing MSE

T

0.1

1 1 1 1 1 1 1 1 1 |

10 20 30 40 50 60 70 80 90 100
Training Epoch

Figure 4.2: CIR(1)-online vs. CIR(1) batch learning—Performance on Concrete
data set. The online method was trained using the original data set (d = 8), and the
batch method was trained using the PCA-reduced 6D-data set.

where the online-methods outperformed the batch-methods.

Because we applied PCA to reduce the training data of batch-CIR methods for data sets

with 7 or more dimensions to 6D, we conjecture that the poorer performance of the batch-

CIR methods was likely due to the loss of information from the dimensionality reduction.

To test this, we ran the online-CIR method on the PCA-reduced data sets and compared the

results with the batch-CIR method. Figure 4.3]shows the performance comparison of the

online and the batch methods on the PCA-reduced 6D-Concrete data set. The MSE of the

96

online-CIR converged to equivalent performance as the batch-method after several training
epochs. This trend was consistently observed on all the data sets with 7 or more dimensions
on which the PCA-reduction was applied. While this indicates that the online-CIR method
does not provide any performance boost relative to the batch-CIR methods, this is still a
positive result, since the results of batch- and the online-CIR methods showed equivalent
performance when the same training data were used. However, the online-CIR method can
be used to extend the application of the CIR methods to higher-dimensional data sets with a
performance matching the hypothetical performance that batch-CIR method could achieve

(absent computational issues with high-dimensional data).

4.3.3 Convergence time

Our experimental results have demonstrated that both the online- and batch-CIR meth-
ods produce identical performance. However, since the training process of the online-CIR
method is iterative, we evaluated the time taken by the online-methods to converge with the
performance of the batch-methods. For a training data set, the online-CIR method is con-
sidered to have converged with the batch-method when the test-MSE of at least one of the
online-CIR (b) methods comes within 5% of the best MSE observed with the batch-CIR(b)
methods. Figure shows the number of epochs taken by the online-CIR(b) methods
to converge to the batch-CIR(b) methods on each data set. While one would expect the

high-dimensional data sets in general to take more epochs to converge, we have not noticed

97

—=—Online-CIR Testing MSE
0.9 ~ % Batch-CIR Testing MSE

1

o
N
T

o
=
T

0 | | | | | | | | | |
0 10 20 30 40 50 60 /0 80 90 100

Training Epoch

Figure 4.3: CIR(1)-online vs. CIR(1) batch learning—Performance on 6D-
Concrete data set. Both the online and the batch methods converged to the same
error rate when using the same PCA-reduced 6D-training data.

any such strong correlation. Seven of the 10 data sets showed convergence in less than 15
epochs, and the 3 data sets—ENB2 (d = 8), Yacht (d = 5) and Airfoil (d = 5)—that took
more than 40 epochs to converge are not particularly high-dimensional relative to the rest

of the data sets.

98

Number of epochs for convergence

Figure 4.4: Number of epochs for convergence of the MSE of at least one of the
online-CIR (b) methods with Batch-CIR.

4.3.4 Impact of /; and ¢, regularization on online-CIR

We trained the (5- and /;-regularized online-CIR (b) methods as per the Algorithms and
respectively. Though we observed some instances where a regularized online-CIR method
produced a slightly lower MSE compared to the base online-CIR methods, the improve-
ment was not statistically significant. On all the data sets with a regularized online-CIR

algorithm among statistically-best performing methods, we also have a base online-CIR

99

algorithm (with no regularization) with a statistically similar performance as identified by
the two-tailed t-test at a 5% significance level. In other words, regularization did not show

statisitcally significant performance enhancement in these experiments.

4.3.5 Comparison with deep neural networks

To compare the performance of CIR methods with deep neural networks (DNNs), we built
3-hidden layer DNNs on the UCI regression data sets. Each hidden layer comprised 256
nodes. We performed 10 experimental trials—in each trial, a random permutation of the
data set is split into 75%/25% for training and testing, respectively. The DNNs were trained
for 40 epochs in each experiment. The performance of DNNG is presented in Table [4.2]
On 7 out of 10 data sets, the DNN model has either matched or outperformed the CIR
methods. While this indicates the superior performance of DNNs, a DNN model for a 6-
dimensional data set comprises 132,864 learned weights, making it impractical to explain
what was learned by the model or the outputs it produces. In contrast, the CIR model for a
6-dimensional data set comprises just 64 trainable parameters. In addition, the visualization
methods and evaluation metrics introduced in this chapter enable the explainability of the
model and the results produced. So the choice of using DNNs vs. CIR methods depend on
requirements of the user. For situations where explainability of the solutions is important,
the CIR models provide it with a relatively minimal loss in performance compared to the

DNN:E.

100

Table 4.2
MSE on Benchmark Data Sets*

Method Concrete | Real Fish Aquatic| Red White | ENB- | Yacht | Airfoil | ISE # of
Estate | Toxi- Toxi- Wine Wine 2 best
city city in-
stances

n 1,030 414 908 546 1599 4898 768 308 1503 536 -
d 8 5 6 8 11 11 8 6 5 7 -
CIR(1) 0.322 0.365 0426 | 0.636 | 0.665 | 0.792 | 0.055 0.155 0.357 0.546

(0.034) (0.144) | (0.061) | (0.115)| (0.060) | (0.067)| (0.007)| (0.034)| (0.037)| (0.081)| 4
CIR(d) 0.312 0.367 0.429 | 0.625 0.7 0.801 0.052 | 0.157 0.342 | 0.560

(0.032) (0.135) | (0.056) | (0.109)| (0.070)| (0.089)| (0.005)| (0.038)| (0.037)| (0.071)| 5
CIR(29) 0.324 0.349 | 0.493 0.906 | 0.737 0.809 | 0.095 0.224 0.315 | 0.680

(0.033) (0.123) | (0.086) | (0.383)| (0.066)| (0.072)| (0.422)| (0.105)| (0.031) | (0.094)| 3
CIR(1)-online 0.199 0.368 | 0.436 | 0.521 0.679 | 0.709 | 0.047 | 0.170 | 0.360 | 0.479
(0.021) (0.149) | (0.056) | (0.072) | (0.061)| (0.052) | (0.007)| (0.040)| (0.030)| (0.062) | 8
CIR(d)-online 0.199 0.379 | 0451 | 0.537 | 0.703 | 0.797 | 0.045 | 0.185 | 0.357 0.481
(0.021) (0.144) | (0.065) | (0.082) | (0.075)| (0.075)| (0.007)| (0.056)| (0.034)| (0.062)| 7

CIR(29)- 0.217 0.363 0474 | 0.809 1.376 1.487 0.019 0.167 0.345 0.584
online
(0.030) (0.145) | (0.061) | (0.152)| (0.159)| (0.144)| (0.004)| (0.045)| (0.036) | (0.075)| 5
CIR(1)- 0.201 0.345 0.424 0.518 0.671 0.740 0.047 0.157 0.366 0.459
online-£1
(0.021) (0.138) | (0.061) | (0.085)| (0.063)| (0.069)| (0.008)| (0.037)| (0.037)| (0.064)
A=0.00001 | XA=001 | A A=l by A=l A=001 | A by A=0.1 8
=0.0001 =0.0001 =0.001 =0.001
CIR(d)- 0.191 0.357 0.431 0.513 0.707 0.737 0.045 0.174 0.357 0.476
online-¢1
(0.023) (0.143) | (0.058) | (0.078)| (0.069)| (0.074)| (0.007)| (0.044) | (0.035)| (0.065)
X =0.0001 =1 A =1 A=0.1 A A A A A 8
=0.001 =0.0001 | =0.001 =0.0001 | =0.00001 | =0.001
CIR(29)- 0.206 0.332 0.462 0.563 0.846 0.777 0.018 0.163 0.331 0.525
online-¢1
(0.021) (0.134) | (0.060) | (0.081)| (0.097)| (0.072)| (0.004)| (0.046) | (0.038) | (0.068)
=1 =1 =1 A=l =1 =1 A=0.1 A A =1 7
=0.00001 | =0.001
CIR(1)- 0.195 0.345 0.432 0.515 0.677 0.695 0.047 0.162 0.349 0.467
online-£o
(0.023) (0.144) | (0.059) | (0.072)| (0.058)| (0.052)| (0.006)| (0.039)| (0.030)| (0.061)
A =0.0001 A=l A A=0.1 A=0.1 A=0.1 A A=001 | A=l A=l 8
=0.001 =0.00001
CIR(d)- 0.195 0.350 0.440 0.521 0.667 0.773 0.046 0.177 0.351 0.473
online-¢o
(0.019) (0.129) | (0.060) | (0.082) | (0.061)| (0.074)| (0.007)| (0.043) | (0.034)| (0.063)
X =0.01 A=l by A A by by by by A =0.1 7
=0.001 =0.0001 | =0.0001 | =0.001 =0.0001 | =0.001 =0.001
CIR(29)- 0.201 0.345 0.468 0.640 0.902 0.944 0.019 0.168 0.338 0.545
online-{2

(0.021) (0.138) | (0.060) | (0.094)| (0.080)| (0.082)| (0.003)| (0.049) | (0.038) | (0.070)

=1 =1 A=l A=l =1 =1 A=l A =0.01 A A=l 6
=0.00001

Deep_learning**| 0.139 0.395 0.416 0.488 0.689 0.772 0.043 0.031 0.17 0.491
(132,864 pa-
rameters)

(0.018) (0.145) | (0.041)| (0.059)| (0.089)| (0.084)| (0.012)| (0.013)| (0.027)| (0.049)| 7

*MSE values in the table are the average testing MSE of 100 experimental trails. The corresponding standard deviation is enclosed in
parentheses. **Deep learning model comprised of 3 hidden layers with 256 nodes each. Cells marked in bold-italic indicate data
instances for which the deep learning model has either matched or outperformed the Chl-based models.

Bold (non-italicized) indicates lowest MSE at a 5% statistical significance.

101

4.4 Conclusion

This chapter introduced an online method for learning the CIR. The online method has
relaxed the space complexity problem of our previously proposed QP-based batch learn-
ing method. The experimental evaluation on real-world data sets demonstrated that our
online-CIR method outperformed the batch-method on high-dimensional data sets (since
it does not require dimensionality reduction), and matches the performance on the low-

dimensional data sets.

102

Chapter 5

Novel Regularization for Learning the
Fuzzy Choquet Integral with Limited

Training Data

5.1 Introduction

Classification problems generally seek a function, f(-), that can transform or map an obser-
vation, X, to a prediction or decision, y = f(x). Machine learning is often utilized to deter-
mine a suitable function f(-) from a set of training data (y, X), where y = (y1, Y2, ..., Yn)"

(a vector of labels) and X = {xy,Xg,...,X,} C R? (a set of feature vectors). Learning the

103

prediction function f typically involves solving an optimization problem that minimizes the

error between the true labels of the training data and the labels predicted by the function f.

Linear classifiers are a commonly used classification approach where a classification de-
cision is made based on a linear combination of the input feature-vector data. For binary
classification, this is equivalent to finding a hyperplane in the feature-space that separates
the two classes of training data with minimal error; this hyperplane is also known as the
decision boundary. There are many linear classifiers that all differ in the way they iden-
tify the decision boundary, however, work presented in this chapter utilizes support vector

machines (SVMs) [29]].

SVMs are popular hyperplane classifiers that are easy to train and computationally effi-
cient. However, SVMs (and other linear classifiers) require the data to be linearly separa-
ble: a property that is not frequently encountered with real data. The kernel-based vari-
ants of SVMs work around this problem by projecting the data into a higher-dimensional
space where the data are linearly separable. While this seems to solve the problem of non-
separable data, we are still faced with the problem of identifying the appropriate kernel

function that yields the desired projection, which is not trivial.

Multiple kernel learning (MKL) solves this problem by learning a new kernel as a
combination of predetermined base kernels while maintaining the necessary proper-

ties of a kernel (positive-semidefiniteness). This approach is discussed in many works

104

(28,164} 74,197,101, [126]. MKL combines different “perpectives” of the data (each repre-
sented by a separate kernel) into a single classifier to determine the predicted class label. A
different MKL method uses multiple kernel-based classifiers wherein each uses a different
kernel, and an aggregation function combines the outputs of the individual classifiers. In
the DeFIMKL approach introduced in [97], the aggregation is performed using the Chl
with respect to an FM. This method, however, still presents a challenge: how do we specify

the FM?

This chapter addresses the open issue of specifying the FM. In particular, we focus on
learning parts of the FM that are not learned from training data. As we will illuminate later,
learning the entire FM in a data-supported manner is typically impossible with real data
sets; only a subset of the FM is accurately learned from the training data. Therefore when
given a new instance to classify (a testing datum) the model runs the risk of using parts of

the FM that are not data-supported, possibly leading to an erroneous prediction.

In previous work [99] we proposed a regularization-based method that allows the user to
specify a goal for the learned FM such that parts of the learned FM that are not data-
supported are assigned reasonable values. The goals we previously explored were mini-
mum, maximum, and mean, that is, using a regularization function we pushed the learned
FM towards a min-like FM, max-like FM, or mean-like FM. These regularizations were
implemented using /5-norms. The work presented in this chapter builds upon this prior

work by extending these regularizers to the ¢;-norm case and present algorithms for their

105

solutions. Furthermore, this chapter extends the concept of pushing the learned FM to a
goal, where the goal is not known a priori. This extension can also be interpreted as con-
straining the learned FM to achieve a particular structure; here, we constrain the learned

FM to resemble an ordered weighted average (OWA).

Finally, an additional contribution of this work is the exploration of the algorithms’ utility
across a more comprehensive set of experiments using both synthetic and real-world data
sets. The novel algorithms’ performance is compared against each other as well as against

other state-of-the-art classification algorithms.

5.2 Goal-based regularization strategies for learning the

Chl

5.2.1 Common aggregations via the Choquet FI

The Chl is capable of representing many aggregation functions [113]. For example, the
Choquet integral acts as a minimum operator when the FM g is all Os (except g(X) = 1,
due to boundary constraints), the mean operator when g(A;) = |A;|/m, VA; C X, and the

maximum operator when the FM is all 1s (except g(()) = 0, due to boundary constraints).

106

5.2.2 Training The DeFIMKL Algorithm

The DeFIMKL algorithm is a method of decision level fusion introduced in [97]. This
algorithm uses the Choquet FI to non-linearly fuse the decisions from an ensemble of clas-
sifiers. The mathematical description of this algorithm was presented in Section of

Chapter I.

The QPs at (I.9) and (I.10) provide a method to learn the FM u (i.e., ¢g) from training
data. We now review how to use a kernel classifier to determine the decision-value f(x;).

Specifically, we will show how to use the SVM with this algorithm.

Suppose that each learner fj(x;) is a kernel SVM, each trained on a separate kernel K.

The k' SVM classifier’s decision value is

M (x) = Z aikYitis(Xi; X) — by, (5.1)
i=1

which is interpreted as the signed distance of x from the hyperplane defined by the learned
SVM model parameters, o and by [1S, 30]. The class label is typically computed as
sgn{ng(x)} which could be used as the training input to the FM learning at (1.6)); however,

we remap 7(x) onto the interval [—1,+1] via the sigmoid function to create inputs for

'Note that the sgn(-) function discards information about how well the kernel separates the classes of data.

107

learning as

fr(x) =) (5.2)

V14 i)
Thus, the training data for DeFIMKL are ({K) = [xi(x;,x;)],f(X)}y), k£ =
1,...,m, where K} are the kernel matrices for each kernel function k., fi(X) =
(fr(x1), ..., fe(x,))T are the remapped SVM decision values, and y = (v, ...,y,) are
the ground-truth labels of X = (x,...,x,), respectively; the output of the QP learner is

the FM, g. Algorithm | summarizes the training process. After training, a new feature vec-

tor x—from a test data set—can be classified via the procedure summarized in Algorithm

&

Algorithm 4: DeFIMKL Classifier Training [99]]
Data: (x;, y;) - feature vector and label pairs; K}, - kernel matrices
Result: u - Lexicographically ordered FM vector

for each kernel matrix do
L Compute the kernel SVM classifier decision values, 7y, as in (5.1)).

Remap the decision values onto the interval [—1, +1] as f using (5.2).
Solve the minimization problem in (3.7) for the FM u.

Algorithm 5: DeFIMKL Classifier Prediction [99]
Data: x - feature vector; K, - kernel matrices; u - learned fuzzy measure vector
Result: y - Predicted class label

Compute the SVM decision values fi(x) by using (5.1) and (5.2).
Apply the Choquet integral at (1.2)) with respect to the learned FM u.
Compute the class label as y = sgn{C,(x)}.

108

5.2.3 Learning the FM with insufficient training data

The DeFIMKL classifier for m classifiers would require an FM with 2™ (or 2™ — 2, ob-
serving the boundary conditions in property P4) variables. Therefore, we at least need as
many observations to train such an FM. Since the real-world data sets are not very likely
to be comprised of so many unique sort orders, there will likely be values of the FM that
are not data-supported. The values for such nodes are set based on the monotonicity con-
straints in the QP, the type of initialization used in the QP solver, and the choice of the
regularization used. It is therefore highly likely that the learned values do not accurately
represent the underlying FM, and when a new data point that uses one or more of such
untouched nodes is fused using Algorithm [5] the prediction accuracy will suffer. The be-
havior of the /5-regularized DeFIMKL algorithm when presented with insufficient training

data is demonstrated in the following contrived example.

Example 4. Learning an Underdetermined FM via (s-regularized DeFIMKL [99]. We
trained an /y-regularized DeFIMKL algorithm with three-SVMs (i.e., m = 3, however,
without loss of generality these results are also indicative of the behavior when m > 3).
Using the underlying FM (FM was arbitrarily assigned) shown in Table we generated
a synthetic training data set that purposefully avoids two nodes in the fuzzy lattice. The
DeFIMKL algorithm learned the FM using this synthetic data; Table shows the FM

learned for different regularization choices with A = 1. Note that two nodes in the lattice,

109

g({x2}) and g({z1,x2}), are not data-supported and thus are driven by the monotonicity

constraints and the regularization choice.

In Table the third column corresponds to /,-min regularization—here, we see that the
nodes that are touched by the training data (i.e., nodes traversed by the Choquet integral) are
learned successfully with minimal error (less than 5%). However for the two nodes that are
untouched by the training data, since the values are driven by the monotonicity constraints,
the node g({x2}) gets a value of essentially 0, satisfying the monotonicity constraint that
g({0}) < g({z2}) < min{g({x1,72}),9({x2, z3})}, and the node g({x1,z2}) gets a value
of 0.14 to satisfy the constraint max{g({x1}), g({z2})} < g({z1,22}) < g({X}). In both
of these cases, the learned FM value is essentially the minimum value permitted by the

monotonicity constraints. This is due to the ¢5-regularization of the DeFIMKL algorithm.

As highlighted by Table the nodes that are frequently visited by the training data obtain
values that are relatively stable, independent of the type of regularization. More specif-
ically, these nodes directly contribute towards the squared error calculated as per (1.5a)).
Thus, the error minimization method fits the values of these nodes more in alignment with
the training data. On the other hand, the nodes that are not supported by the training data do
not significantly contribute towards the squared error and thus have the flexibility to vary,
as long as they obey the monotonicity constraints of the FM. This phenomenon is discussed

in more detail in Sections[3.2.4] and 5.2.3

110

Tnfly = (n)*a “o1Apoa11p 103094 N Y3 U0 uonezLre[n3al-1y o3 jusfeamby
Z|nf]y = (m)*a o1 ‘APoA1Ip 10J09A A Y UO UONeZLIR[NSdI-Z) 0} Jud[eAInby |

lcszs | [zsTy lTyTs| l1v'Ts 1U0N3S 3G
98°0 98°0 80 98°0 $8°0 L8O €60 €80 98°0 ({Ez ‘cx})b
1L°0 1L°0 L0 1L°0 1L°0 1L°0 1L°0 690 1L°0 ({Ez‘Tx})b
690 8L0 L9°0 I z10 L9°0 I ¥1°0 LSO « ({22 Ta})b
€70 €70 €70 €70 €70 vr0 50 €70 €70 ({gx})b
zT0 620 €€°0 98°0 6-9L'8 €€°0 €6'0 | L1000°0 620 «({22})b
¥1°0 S1°0 S1°0 ¥1°0 [0 S1°0 61°0 ¥1°0 v1°0 ({te})b

SOT-'7 | SOT-¢) | ueaw-1) | xew-1ly HEELN uedw-¢) | Xew-<y +EE.NN Suif[rpun UL, JNA

uonezien3dY [eoo

‘[e03 uone3ai33e ay) pue pakojduro

wou Jo 2d&) oy 9yeorpur s[oqe| uonezie[n3ay “eiep Jururen ay) Aq pauoddns

10U QI SYSIIAISE Y)IM POIRW SWLIS) JAL] PouIed] oy], ‘SN paured] pue Sulkropun

1°S 3qBL

111

5.2.4 FM Learning with a Specified Goal

The standard DeFIMKL algorithm discussed in the previous section assumes that the struc-
ture of the underlying FM is not known, and thus no information regarding the underlying
FM is encoded in the QP. If, however, the FM is partially known, the QP at (1.10) should

include that information. To this end, we propose the regularization function
ve(u) = AfJu — gl|,, (5.3)

where g represents a goal of what we expect the underlying FM to look like and p defines
the norm type. The following sections describe the solution to the regularized problem with

{5- and {;-regularization.

5.2.4.1 /5-goal regularization

Including the regularization function from (5.3) in the QP with p = 2 give

min 0.5u” Du + fFu+ \||Ju — g||2, (5.4)

“Note that we square the regularization term in this case for mathematical convenience; the problem remains
convex.

112

and the QP then also simultaneously minimizes the Euclidean distance between the learned

FM u and the goal g. Expanding the regularization term in (5.4) leads to
min 0.5u” (D + 2M> u+t (f—2)g)"u, (5.5)

showing that the inclusion of this regularization function still results in a valid QP, though
this comes as no surprise since the regularization function in (5.3) is quadratic in u; the

minimization problem at (5.5]) can be solved by a QP solver.
5.2.4.2 /,-goal regularization

The regularization function at (5.3) with p = 1 forces u to lie close to the goal g in the

¢1-sense. Including this regularization function in the QP gives
min 0.5u” Du + ffu + A|lu — g, (5.6)
u

however, this formulation cannot simply be reduced or combined in the objective function
any further as done in the previous case of ¢y-regularization; the difference within the norm
will not, in general, be non-negative. To address this, we move the regularization term to
the constraints through the use of Tibshirani’s iterative lasso algorithm; see Appendix [5.3]
for a brief description of the method. Algorithm [6] describes the process in terms of this

problem.

113

This algorithm solves the unregularized problem while iteratively updating its constraints
to enforce sparsity in the difference (u — g); although, the problem in (5.32) must be
reformulated as follows. Let us first lump u and g into a single long vector w as w =

[u” g7 € R*""'~2. The unregularized QP in (3.7) can then be rewritten as

min O.5WTDWW + fVTVw, Coww <0, b <w<b,, 5.7
where
) D 0
Dy, = , fo=[T0")", O, =][Co0],
0O o0 (5.8)

b, = [(Ov 1)T gT]T7 b, = [1 gT]T'

Denote the vector of the sign of the differences at the :th iteration as

d; = sign(u; — g), (5.9)

and the matrix including all ds from iteration 0 as

so" 8"
6" =6

G = , (5.10)
&7 —o7

114

such that multiplication of Gﬁ, the ith row of G°, with the vector w represents an /-

summation, e.g.,

Giwi = |[wi — g1, (5.11)

7

where u; is the learned FM from the 7th iteration of the algorithm. Note the regularization
parameter is ¢ o< 1/, and the vectorized version is denoted as t = ¢1. The iterative lasso

algorithm for this problem is given in Algorithm[6] which follows the notation presented in

(-35-6G.37).

Algorithm 6: /,-Goal Regularization via Tibshirani’s Lasso Algorithm
Data: The QP at (5.33) and regularization parameter ¢.
Result: u - Lexicographically ordered fuzzy measure vector (recovered from w).
1= 0;
W < solve the unregularized QP in (5.33));
0o < find the sign vector of (5.35);
G « add &y to G as shown in (5.36));
while Giw; > t do
1 1+1
w; < solve the QP in with the additional constraint G*~'w,_; < t.
d; < find the sign vector of (5.35).
G? + add §; to G as shown in (5.36).

Recover u from w; as u = [I O] w;, where I is the identity matrix.

5.2.4.3 Specific aggregation examples with goal regularization

Examples of the various (5-goal regularizers were presented in [99]]. In this chapter, we
extend these examples to include the ¢;-regularizers, the results of which are reported in
Table[5.1} The following sections describe specific aggregation examples using both ¢;- and

l5-goal regularizations. The value of the regularization parameter for ¢;-goal regularization

115

(t) 1s given in each of the following subsections, and unless explicitly stated otherwise

A = 1 for each /5-goal regularization experiment that followsﬂ

Example 5. Minimum aggregation When we set the goal g = 0, it reduces the regular-
ization function in to /,-norm regularization of the FM. The effect of this can be
observed in Example] where the FM values of the untouched nodes were set to values
close to the lowest end of the allowable range based on the monotonicity constraints. In the
¢,-min columns of Table the values of untouched nodes are forced close to zero with
our choice of /,-norm regularization. Comparing this with the aggregation operators dis-
cussed in Section [5.2.1] we notice that when the goal g is set to zero, the Choquet integral

is forced to behave like a minimum operator. For the /;- regularized example ¢t = 3.23.

Example 6. Maximum aggregation When we define the goal FM as all 1s, it results in the
FM values of untouched nodes to default to the maximum end of their permissible range
based on the monotonicity constraints. This essentially tunes the behaviour of the Choquet
integral closer to the maximum aggregation (see Section [5.2.1). The effects of application
of this goal on the example in Section [5.2.3] can be observed in Table [5.I] Here, in the
columns corresponding to the /;-max and the /5-max goal, it is apparent that the untouched
nodes are assigned the values closer to the maximum permitted based on the monotonicity
constraints. In Table [5.1, we notice a perceptible effect of /5-goal regularization even

on the data-supported nodes (g({x1}), g({z3}), ({1, x3}), and g({z2, x3})), while they

SExperiments have shown that the behavior of ¢;-goal regularization is much more sensitive to ¢ than that of
{5-goal regularization to A.

116

are pushed slightly farther from the underlying FM, the effect of regularization is milder
compared to the untouched nodes. The degree to which ¢5-goal regularization pushes the
FM values closer to the goal depends on the choice of \; a larger value of A\ forces the
learned FM to look like the goal g, and in the process it may even force the data-supported
nodes farther from the underlying values. As previously mentioned, for these experiments

A was arbitrarily set to 1 for ¢5-goal regularization; ¢ = 2 for ¢;-goal regularization.

Example 7. Mean aggregation In this example, we define the goal of the FM to be that
of mean aggregation as explained in Section The learned FMs for this goal are
presented in the columns labelled as ¢;-mean and /,-mean in Table We observe that
the FMs learned with the mean aggregation regularizers are more accurate than the FMs
learned with the maximum aggregation regularizers. We attribute this improvement to
the fact that the mean aggregation goal is more similar to the underlying FM than the
maximum aggregation goal. In essence, the mean aggregation splits the difference between
the extreme max and min aggregations. Finally, we note the results of both ¢;- and ¢5-goal
regularized experiments are almost identical, where ¢ = 0.5 for the ¢;-goal regularized

experiment.

Remark 2. It is worth noting that while we are trying to address the data-unsupported FM
variables by adding regularization to the QP as shown in (I.10), regularization will affect
all FM variables. However, the effect will be most pronounced on the data-unsupported

FM variables. Furthermore, if an FM variable is supported by numerous observations in

117

the training data then the SSE term in (1.10)) will dominate and thus the regularization term
will not contribute significantly to the learned value. This behavior is observed in Table[5.1]
where we see approximately constant values learned for data-supported variables despite
changing the regularization functions; the values learned for the data-unsupported variables

vary widely based on the regularization function used.

5.2.5 Learning the Goal

The previous section described a strategy for learning an FM when knowledge of the un-
derlying FM is known and can be encoded in the QP; however, information regarding the
underlying FM is rarely available in real-world problems. This section presents a method
for addressing this issue by simultaneously learning the FM at data-supported nodes and
learning an appropriate goal for the remaining nodes. This method can also be used to
enforce certain structure of the FM, which we demonstrate by restricting the number of
degrees of freedom the FM takes. Specifically, we assume the underlying FM can be ap-
proximated by a linear order statistic (LOS)—to be precise, an ordered weighted average

(OWA)[130]—which is a special case of the Choquet integral.

It is important to note that when we identify a much simpler model, like the OWA, as the
goal structure for the FM, the algorithm does not strictly enforce the FM to take the form

of an OWA. The degree to which the FM variables are pushed towards an OWA structure is

118

based on the trade-off between the regularization parameter, A, and the variables’ support in
the training data. For a moderate A value, when nodes are frequently visited by the training
data, the SSE term in the objective function at (I.10) dominates and the regularization term
has little effect. These nodes effectively learn the input-output relationship of the train-
ing data. However, the regularization term will dominate for nodes that are not frequently
visited (i.e., not data-supported) and so these FM values will be more significantly pushed
toward the goal FM. Thus, our goal-based approach learns the (potentially non-linear) ag-
gregation relation through the parts of the FM that are data-supported, and defaults to the
simpler OWA (or any other simpler goal) on the parts of the FM that lack support in the
data. This approach combines the benefits of both the nonlinear FM aggregation as well as

the simpler goal.

5.2.5.1 Defining an FM from an LOS

A normalizecﬂ LOS for a sample x = (1, g, ..., %) iS
Ly(x) = Z VT () = vlx, (5.12)
i=1

where z(1) > o) = -+ = T(m), v; 2> 0, and Zﬁl v; = 1. Note that the ordering of the

elements is similar to that of the Choquet integral; thus, it should come as no surprise that

4The generalized LOS is % but we adapt the constraint » ,7;1 v; = 1 in our formulation, constrain-
i=1 Y1
ing the LOS to be an OWA.

119

the normalized LOS can be represented by a Choquet integral with respect to a symmetric

FMEL

Let the vector v. € R™ now represent the LOS weight vector we wish to learn. We
define the matrix A € RE"~DX™ to map the LOS weight vector v into the do-
main of the FM u. Then, for any v we can form an equivalent FM as i = Av.
For example, consider the LOS v € R3 and the FM vector has the ordering i =

(9({z1}), 9({z2}), g({zs}), 9({z1, 22}), g({z1, 23}),

g({x2,23}), g({x1,x2,23})). Then A is defined as

1 0 O
1 0 0
1 0 0
A= 1o 1 o], (5.13)
0 1 0
0 1 0
0 0 1

where each row sifts an LOS weight from g and assigns it to its corresponding FM term in

a.

5An FM is symmetric if V| A| = |B|, g(A) = g(B).

120

5.2.5.2 /5-LOS Regularization

Define the ¢,-LOS regularization function as

v, (u) = A|ju — Ag|3. (5.14)

Similar to our regularizers presented in Section this regularizer serves to push the
solution of u towards the LOS represented by g—however, here the matrix A is mapping
the m-length LOS g to a symmetric FM Ag. Allowing g to be a learned variable (i.e., a

learned LOS), this regularization function is minimized when

g=(ATA)'ATu = A'u, (5.15)

where A' is the pseudo-inverse of A. Substituting (5.13) into (5.14) give the final form of

the ¢5-LLOS regularization function,

v, (1) = AJu — AATu||2 = M|(I — AANul2. (5.16)

121

It can be shown that (I — AAT) isa (2™ — 1) x (2™ — 1) block-diagonal matrix,

B 0 0
0 By - 0
(I - AAT) = : (5.17)
0o 0 0
0 0 By,

where the ith block B; is an (") x (') centering matrix,

1
Bi=1- mllT. (5.18)
Hence, we have a closed form solution for the block-diagonal matrix at ((5.17)); no inverses
needed. The regularizer at (5.16) can simply be substituted into (I.10) and solved in the

Same manner.

Remark 3. The regularizer at is a Tikhonov regularization, where the Tikhonov
matrix is I' = (I — AAT) [121]. This regularizer can be further explained by examining
how the block-diagonal form at interacts with the FM u. Essentially, each block
of (I — AAT) centers—i.e., removes the mean—of the respective components in u. The
components of u for each B; are the FM values in the ith level of the lattice. That is, B,
interacts with the densities, By interacts with the duos, etc. Hence, this regularizer seeks

FMs where the values at each level of the lattice are the same, i.e., symmetric FMs.

122

5.2.5.3 ¢,-LOS Regularization

Now consider the ¢,-LOS regularization function as

v,(u) = \|(I— AADu|, = AT, (5.19)

where I' = I — AAT. Similar to Section |5.2.4.2) we move the regularization term to the
constraints and use Tibshirani’s iterative lasso algorithm. We first define a vector of signs

of the function within the ¢; norm as

d; = sign (F'y;), (5.20)

allowing us to calculate the /; norm as 5?Fui. Next we define the matrix including all Js
from iteration O as
' T
G'= o o7 ... 4T (5.21)
and denote its jth row as G; Using this notation, Algorithm [7| describes the process of

solving the ¢;-L.OS regularized QP.

Example 8. LOS aggregation. Applying ¢1- and ¢5-LOS regularization (A = t = 1) to
our example in Section leads to the learned FMs in Table Similar to the pre-

vious methods, the FM of the data-supported nodes is learned with high accuracy in both

123

Algorithm 7: /;-LOS Regularization via Tibshirani’s Lasso Algorithm
Data: The QP at and regularization parameter ¢.

Result: u - Lexicographically ordered FM vector.

1= 0;

Uy < solve the unregularized QP in (3.7);

G" + calculate §; and form the matrix in (3.21));

while Gi ,I'a > ¢ do

11+ 1;

1, < solve the QP in (3.7)) with the additional constraint(s) G*~'I'ty; < t;
G' + calculate §; and append to G*~! as shown in (3.21));

u < ﬁl

cases. What is noteworthy, however, is how the nodes untouched by the training data are
learned; the learned FM assigned to these untouched nodes is essentially the mean of the

touched nodes at the same level in the lattice (touched nodes with the same cardinality). In

other Words’ g({xQ}) — w and g({ﬁl, mQ}) — 9({$1,$3});g({1‘271‘3})_ Note that for

this particular example, it is only a coincidence that the learned FM term g({x2}) exactly
matches the underlying FM for /,-LOS regularization. The LOS-based regularization es-
sentially encodes the knowledge that FM terms representing similar-sized sets should have

approximately the same value.

5.2.6 Synthetic Experiments

The contrived examples in Table [5.1] showed that the underlying FM is accurately learned
for data-supported terms in the FM. In this section, we design a synthetic data-based ex-
periment to evaluate the ability of the learning algorithm to accurately learn the FM from

training data. For each experiment, we randomly generated a ground-truth-FM (GT-FM)

124

using the node-wise algorithm presented in [62]]. A synthetic 6-dimensional data set (six
data columns of random real numbers generated from a normal distribution with zero-mean
and unit standard deviation) was aggregated through this GT-FM to produce an output rep-
resenting the target value. This output, when less than zero, is tagged as belonging to the
—1-class, and the rest are tagged as the +1-class, which generates the ground-truth out-
put labels. This 6-dimensional data set and corresponding ground-truth labels were used
for training and testing a new FM. We trained the new FM using 80% of the total (1,000)
observations, and evaluated its performance using the remaining 20%. Essentially, this
experiment tests the ability of our learning algorithm to accurately learn the FM that orig-
inally produced the training data; hence, we expect very good performance (assuming our

algorithm is good).

5.2.6.1 Learned FM performance

Since the path that an observation in the data set takes during the aggregation through the
FM depends on its sort order, we have 6! = 720 such unique paths for the 6-dimensional
data. This number explodes quickly with additional dimensions in the data set. Thus, very
frequently, we might not have an adequate number of observations in the data set to cover
all possible paths in the FM lattice. In order to evaluate the ability to learn an FM in situa-
tions where the data are restricted to a small number of lattice paths, we artificially arranged

our synthetic training data to take only a specific number of paths in our experiments (that

125

Table 5.2
Results of learning the fuzzy measure with synthetic data. The results presented in
this table are the average F scores from the 100 experiments described in Section
2.6.1

Number of Training Paths
Algorithm | 1-path | 1% 5% | 10%
None | 0.847 | 0.936 | 0.991 | 0.996
¢;-min* | 0.328 | 0.830 | 0.986 | 0.995
(o-min’ | 0.329 | 0.830 | 0.986 | 0.995
¢1-max | 0.847 | 0.937 | 0.991 | 0.996
l5-max | 0.839 | 0.913 | 0.989 | 0.995
¢;-mean | 0.847 | 0.936 | 0.991 | 0.996
f/5-mean | 0.818 | 0.919 | 0.988 | 0.995
¢1-LOS | 0.847 | 0.937 | 0.990 | 0.996
l5-LOS | 0.886 | 0.948 | 0.990 | 0.996

*Equivalent to #;-regularization directly on the FM, i.e., v, (u) = A|lul|;.
TEquivalent to £-regularization directly on the FM, i.e., v, (u) = A|lul|2.

is, a limited number of sort orders). Note, however, the testing data (200 observations)
were perhaps more diverse than the training data since they were not constrained to follow

the same paths as the training data; the testing data paths were chosen randomly.

One hundred trials of each experiment were run. The results presented are the classification
performances measured using F} scores, defined in Section[5.2.6.2] The averages of the F;
scores from the 100 trials are reported in Table[5.2}; the columns in the table show the results

of these experiments on 1-path, 1% of paths, 5% of paths, and 10% of paths, respectively.

126

5.2.6.2 F; Score

The F} score is a measure of classification accuracy. It considers both the Precision and
Recall, which are calculated using four parameters: true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN). For example, an instance of a model
prediction is considered as a TP when the predicted label as well as the actual label are

both +1. Using these parameters, Precision and Recall are calculated as follows:

TP
Precision = ————: 5.22
recision = T (5.22)
TP
Recall = ——. 5.23
T TP AN (5.23)
The F; score is the harmonic mean of Precision and Recall,
2 x (Recall x Precisi
F score — x (Recall x Precision) (5.24)

Recall + Precision

5.2.6.3 Results

For the aggregation of 6-dimensional data, though we have 6! = 720 unique sort orders, the
results from our synthetic data experiments indicated that we can accurately learn a new
FM by using training data comprising just 10% of the total possible sort orders. Even with

1% of paths (7 out of 720 sort orders), we were able to achieve F} scores greater than 0.90.

127

Figure compares the GT-FM with the learned FM trained using just one sort order,
which is analogous to 1-path through the FM latticeﬂ Here we note that the nodes lying
on the training path are essentially perfectly learned, while many others have a visually
perceptible mismatch with respect to the GT-FM. Regularization had no positive effect on
cases where the FM was trained with at least 5% of the sort orders (36 out of 720). For the
case with 1-path and the 1% of paths (7 out of 720), the ¢5-LOS regularization improved
the F} score by 4.5% and 1.0%, respectively. Hence, this presents evidence that the LOS
l5-LOS regularization is effective for imputing the untouched FM values when learning

with insufficient training data.

5.2.7 Real-World Experiments

We ran experiments with real world data from the UCI Machine Learning repository [33]]

using our novel regularization functions summarized in Sections [5.2.4] and [5.2.5] as well

as the unregularized objective at (3.7). We chose 14 classification data sets that cover
a wide range of decision problems including the areas of health care, biology, material

science, environmental science, and physics. Also, the selected data sets vary widely in the

®In Figure each dark node corresponds to an FM value in the GT-FM, and the size of each node is scaled
proportional to its value. The learned FM lattice was overlaid on top of this GT-FM lattice, and is marked
in gray. So, for nodes where the learned FM-value was larger than the GT-FM value, the gray circle extends
beyond the darker GT-FM node, representing the mismatch. When the learned FM-value is less than the
GT-FM value, the dark node will have an inner thin circle marked by a white edge. When both the GT-FM
value and the learned value exactly match, you only see the dark node. The line segments connecting the

nodes represent the FM lattice path corresponding to the single sort order of the data used for training the
FM.

128

00%0\00\
0000000000000 00

[)

00000000000000000000

00 00000O0COCODO®OGEOSOEOO

Figure 5.1: Learned FM where simulated data is restricted to just one path through
the latticd® (no regularization). The gray lines represent all the possible paths (sort
orders), the dark line represents the single path to which the simulated data was

number of features and the number of observations, adding to the diversity. The details on
each of these data sets are summarized in Table [A.2]in Appendix [A] In addition, we also
compared the performance of our Choquet integral-based aggregation method with several
ensemble methods: AdaBoostM1 [39], LogitBoost [40], RUS-Boost [[106], Subspace [11],
Bagging [17], and MKLGL [126]. All the ensemble methods, except for MKLGL were
implemented using the MATLAB’s Statistics and Machine Learning Toolbox [84]]. Note
that MKLGL is not a decision-level fusion approach and is specific to multiple-kernel SVM
learning; it learns a single unified kernel space by combining together base kernels. We
include it, however, as it is one of the leading approaches for fusing multiple kernel SVMs.

Experiments utilizing support vector machines, including the MKLGL experiments, used

129

Figure 5.2: One example of a learned FM for the classification of the real-world
breast cancer data set with no regularization. 48 out of 64 nodes (75%) were data-
supported. As shown in Table[5.5|this algorithm achieved a mean F score of 0.773
across the 100 trials.

the popular SVM library, LIBSVM [24]. Each experiment consists of 100 trials, where in
each trial a random partition of 80% of the data is used for training and the remaining data
are sequestered for testing; the results we report comprise the mean and standard deviation
of F} score on the testing data. Finally, for the regularized learning algorithms, we vary the
regularization parameter, A, to explore its effect on the F score, and the results with the
best As are reported (i.e., a grid search). Essentially, we are comparing the best score from

each algorithm.

130

Figure 5.3: One example of a learned FM for the classification of the real-world
breast cancer data set after applying ¢;-mean regularization, which increased the
mean F} score to 0.779. With this regularization there is much less variability in
the learned FM values across each level in the lattice.

5.2.7.1 Results

Table [5.5] available in Appendix [5.5] summarizes the results of these experiments. The
results in Table [5.5] were used to detect statistically significant differences among meth-
ods. Specifically, we performed an n X n pairwise comparison of our proposed methods
and the other state-of-the-art algorithms using the non-parametric statistical procedure rec-
ommended by Garcia et al. [42]]. The p-values calculated for the comparison of each pair
of methods are adjusted using the Nemenyi (NM)[96], Holm (HM) [63]], and the Shaffer
(SH)[107]] methods. Table summarizes the results of this comparison where we see that

by using the unadjusted p-value, both mean regularizations (¢; and /¢5) are considered best,

131

Table 5.3
Comparison of our proposed methods and other state-of-the-art algorithms on
real-world data using non-parametric evaluation methods.

of instances of best performance based on each evaluation method
Non-parametric methods
v.(u) || Unadjusted” | NM [96] | HM [63] SH [107]]

None 3 0 0 1
/1-min 3 1 1 1
{5-min 5 1 1 2
/1-max 10 3 3 3
{5-max 7 3 3 3
{1-mean 11 3 3 3
/>-mean 11 3 3 3
¢,1-LOS 3 0 0 1
{5-LOS 7 3 3 3
Simple-min 0 0 0 0
Simple-max 2 0 0 0
Simple-mean 3 1 1 1
AdaBoostM1 1 0 0 0
LogitBoost 1 0 0 0
GentleBoost 1 0 0 0
RUS-Boost 0 0 0 0
Subspace 0 0 0 0
Bag 1 0 0 0
MKLGL 7 3 3 3

tNon-parametric p-value calculated as per Garcia et al. [42]]. We considered an initial & = 0.05 and adjusted
it using the Nemenyi (NM)[96]], Holm (HM) [63]], and the Shaffer (SH)[107/] methods.

each with 11 instances of superior performance.

The three adjusted p-value approaches tell a slightly different, but consistent story. Since
we are comparing (129) = 171 pairs, the adjusted p-values are quite conservative, and the
best performing mean regularizations are now considered to have only 3 instances of su-
perior performance for each adjustment method (NM, HM, and SH). Furthermore, other
regularizations and algorithms are also achieving “equivalent” results when analyzed using
these adjusted p-value methods. The adjusted p-value analysis shows that the mean, max,

and /»-LOS regularizations, as well as the MKLGL algorithm all achieve superior results.

132

5.3 Learning the ChI in the Presence of Uncertainty
Caused by Limited Training Data Volume and Vari-

ety

5.3.1 Introduction

The regularization-based approach for training the Chl presented in this chapter addresses
the issue of limited training data support by applying a form of Tikohonv regularization that
regularizes the learned model to a prototype model or model-type, e.g., an OWA operator.
The regularization implicitly sets the values for data-unsupported variables, thus eliminat-
ing the bias of initialization. However, this goal-based regularization approach uniformly

regularizes all the FM values of Chl, irrespective of the corresponding data-support.

In this section, we incorporate the data support of a variable and the degree of disparity be-
tween sources (the relative support across all variables) to develop a method that produces
good FM solutions that explicitly consider the uncertainty due to limited training data vol-
ume and variety during the training process. In this approach, the amount of regularization
is directly related to the degree of support, i.e., variables with a strong data-support will be

regularized to a very low degree, while variables with limited support will be regularized

133

to a greater extent.

5.3.2 Methodology

The full form of QP to learn the FM u for fusion of m classifiers is
min 0.5u” Du+fTu, Cu<0, (0,1)"<u<i, (5.25)

where C'is the (m(2™~! — 1)) x (2™ — 1) constraint matrix of {0, 1, —1} values,

1 0 -1 0 0
1 0 - 0 =1 - - 0

C= . (5.26)
0 O 0 0 1 -1

Adding the regularization term proposed (5.3) to (5.25) gives

min 0.5u” Du + ffu+ Aju—g|,, Cu<o0, (0,1)" <u<1, (5.27)

We propose a regularization approach that explicitly takes into consideration the data

support during the training process. Let the degree of support for variables u be d =

134

(dyyy duy, - - -, dyy), where each element of d is a quantification of the data support for re-
spective FM variable. We express d as support measure relative to the expected ideal data
support. Each layer of the FM has (T) nodes, where [is the number of members in the set
represented by the FM nodes. For example, [= 2 for u({x, z2}). The data support vector
d is thus calculated as the number of training data visits to an FM node during training,
which we denote as k;, divided by the expected frequency of data visits, (Tl) In the ChI at

(1.4)), this calculation is ﬁ
1|

Consider an example where there are m = 4 sources, with K = 100 training data examples.
The ideal data support for each FM node that represents the singletons—e.g., u({z1})—

would be % = 25 training examples. The FM nodes that represent the duets of sources—
1

e.g., n({x1,x2})—should be supported by % ~ 17 training examples. Thus, FM nodes
2

that are supported more than expected have a higher than expected data support, and vice

versa for those that are supported less. The form of the data support vector is thus

m
di:ki<) i=1,...,2m—1, (5.28)
|Si]

where k; is the number of times the training data support the ith FM variable, out of a
possible K training examples, and |.S;] is the cardinality of the set of sources that the FM

variable represents.

135

Given a data support vector d, we can now apply regularization to the FM learning accord-

ingly. Let the optimization at (5.4)) be extended as

minu’ Du + fTu+ \jeg o (u — g)||,, (5.29)

where eq = (e 7% /2 ¢70%s/2 e =0dux/2)T 5 attenuates the effect of the data support
regularization, and g is an FM goal, e.g., a min, max, or mean FM. Large o will result in
less regularization on highly supported FM variables (i.e., large values of d), while small

o allows more regularization on supported FM variables.

5.3.3 /5 regularizaiton

For p = 2, the regularizer in (5.29) can be reduced to

Nlea o (u - g)|s =A[u’diag(ef)u — 2" diag(e})u+

g’ diag(e?)g], (5.30)

136

where diag(e?) = diag(eq o eq) and is the diagonal matrix,

e odu 0 0
0 e~ duz 0
diag(e3) =
0 0 0
0 0 e o%x

Hence, it is easy to see that this new optimization can be solved by a QP with new Hessian

and linear terms,
D = D + Mdiag(e3), f=f—2\g"diag(e?). (5.31)

This regularizer is equivalent to an equal-error elliptical regularizer surface centered at g

with axes lengths determined by the data support.

5.3.4 /, regularization

The optimization at (5.29) with p = 1 yields

min 0.5u” Du + f7u + A > l(ea)i(ui — gi)l; (5.32)

137

however, this regularizer cannot be reduced or combined into the objective function as was
done with /5-regularization. This is because the difference term within the absolute value
will not always be non-negative. To address this, we move the regularization term to the
constraints through the use of Tibshirani’s iterative lasso algorithm; see [119] for a brief

description.

This algorithm solves the unregularized problem while iteratively updating the constraints
to enforce sparsity in the difference term (eq o (u — g)); although, the problem in (5.32)
must be reformulated as follows. Let us first lump (eq o u) and (eq © g) into a single long
vectorwasw = [(egou)” (eqog)’]” € R*"" 2. The unregularized QP at can

then be rewritten as

min 0.5WTDWW + fVva, Cow <0, b <w<b,, (5.33)
where
) D o
Dy, = , fuo=[f"0")", C,=][Co0],
0 O (5.34)

b, =[(0,1)" g")", b,=[1g"]".

Denote the vector of the sign of the differences at the ith iteration as

d; = sign(u; — g), (5.35)

138

and the matrix including all s from iteration 0 as

8T —bo"

&t —aT
G = , (5.36)

-

such that multiplication of Gj-, the jth row of G, with the vector w represents an /-

summation, e.g.,

lel = Heds ¢) (ul — g)H17 (537)

J

where u; is the learned FM from the th iteration of the algorithm. Note the regularization
parameter is t oc 1/, and the vectorized version is denoted as t = t1. See [68] for a
detailed description of the iterative lasso algorithm for this problem, which follows the
same notation presented in (5.35)—(5.37). The only change from [68] is the calculation of

Gj-wi which here includes the application of support-based attenuation vector eq.

5.3.5 Types of FM goals

The vector g in (5.29)) and rest of the Section [5.3.2]represents a goal of what we expect the
underlying FM to look like for a particular aggregation problem, while the regularization

parameters A and o define the degree to which the regularization is enforced by the training

139

algorithm. When g = 0, the regularization function in (5.29) is reduced to ¢,-norm regu-
larization of the FM, which pushes the FM towards a minimum aggregation operator, i.e.,
¢,-min regularization. Similarly, when we define the goal g as all 1s, it tunes the behaviour
of the Choquet integral to the maximum aggregation, i.e., £,-max regularization. When we
define g as g(A4;) = |A;|/n, VA, C X, it acts as {,-mean regularization. See [68] for more

details on types of regularization goals for FM.

5.3.6 Degree of disparity

To provide a quantitative measure of how well a training data set supports the learning of
an FM, we propose a simple method to compute degree of disparity. If a training data set
is equally distributed across the FM lattice; i.e., each path from x(() to (X) is traversed an
equal number of times, then the expected visits to each node is (TK), where K is the number
l
of training examples, m is the number of sources, and [is the cardinality of the set that the
FM node represents, i.e., | = |S;|. Hence, we can use the data support vector to directly
compute a degree of disparity. Using d, calculated by (5.28]), we normalize to
&=
el
The vector d now represents a distribution of the training examples across the FM with

respect to the ideal expected data support.

140

We then calculate the degree of disparity (as the entropy of this normalized support

(= Z d; log(d;), (5.38)

10g

where m is the number of sources.

5.3.7 Layer-level degree of disparity

While (5.38) provides us with a single degree of disparity for the entire FM lattice, we
can calculate layer-level degree-of-disparity (.- for individual FM lattice layers. (iqyer
provides us with a higher-resolution view of disparity of the data. We know that each
training example can be represented as a path from u(()) to p(X); thus, all K training
examples have to pass through each of the FM layers. As described in Subsection [5.3.6]
for a uniformly distributed training data set, we expect % visits to each node where m is
the number of sources, and [is the cardinality of the set that the FM node represents, i.e.,

[= |S;|. We calculate the layer-level degree of disparity for a layer j as

Clayerj =

Ji @
log () % log (M) , (5.39)

where £;, is the number of times the training data support the «th FM variable in layer j,

out of a possible A training examples.

141

5.3.8 Visualization of data support

A convenient method to visualize an FM is to represent it as a lattice (i.e., Hasse diagram).
In [100] we presented an approach to visualize the FM and the aggregation process of Chl.
With this method, the aggregation of each permutation of source inputs can be represented

as a path through the FM lattice.

Herein, we extend this method to visually present and evaluate the degree of disparity.
Fig. shows the visualization of the data-support on the FM lattice trained on the Ver-
tebral [33] data set. The layer entropy shown on the left of the lattice is calculated using
(5.39), and the net entropy is calculated using (5.38). Notice that only a small number of
possible paths through the lattice were traversed, resulting in low entropy values, indicating

a relatively low-support training data set.

5.3.9 Experiments

We evaluated our support-based regularization methods and the visualization approach
summarized in section[5.3.2on real world data sets from the UCI Machine Learning reposi-
tory [33]]. We chose 12 classification data sets that cover a wide range of decision problems.
These data sets include the areas of health care, biology, material science, environmental

science, and physics. Also, the selected data sets vary widely in the number of features

142

Dataset: vertebral
Observations: 307

0.674

0.653

0.542

0.577

0.721

Layer Entropy Net Entropy: 0.737

Figure 5.4: Visualization of data-support of FM lattice trained on Vertebral data
set. Thickness of the lines is proportional to the frequency of data traversal, and
node sizes are scaled proportional to the data-support.

and the number of observations, adding to the diversity. Each experiment consists of 10
random cross-fold trials, where in each trial a random partition of 80% of the data is used
for training and the remaining data are used for testing. The classification performance
was measured using the F7 score. Fj score is the harmonic mean of precision and recall.
See [[109] for more details on F} score. The results we report comprise the mean and stan-
dard deviation of F} score on the testing data. For the regularized learning algorithms, we
vary both the regularization parameter,)\, and the data-support-attenuation parameter o to

explore their effect on the I score, and the best results with corresponding A and o are

143

reported based on a grid search.

For each data set, we calculated the degree of disparity presented in sections [5.3.6) and
and visualized the diversity of the data according to the approach presented in section
[5.3.8] We analyzed the performance gains from our proposed regularization methods in

correspondence with the data diversity visualizations.

5.3.9.1 Results

Table [5.4] summarizes the results of our experimental analysis to compare the performance
of our regularization methods. We performed two-tailed t-tests to identify the regularization
methods that outperformed the non-regularized algorithms at a 5% significance level, and
such better performers were marked in bold in Table @ For 10 out of 12 data sets, at
least one our new regularization methods have significantly improved the performance.
Specifically, /1 — max and ¢, — max are the best performers with 6 best instances each.
Also, among all the best instances (marked bold), 50% (15 out of 30) had a non-zero
data-support-attenuation parameter o, indicating a substantial supportive role played by
our novel data-support-based attenuation approach in the performance of the regularization

methods.

We visualized the degree of data disparity of the data sets to assess its relation with the

performance gains achieved through our regularization methods. For data sets like Breast

144

Cancer and Heart, where the regularization has resulted in remarkable gains, we noticed the
degree of data disparity to be relatively low. This is evident in Fig.[5.5] where only a small
proportion of the possible data paths were traversed by the data samples, and the layer-
level entropies were also relatively low. On the other hand, for data sets like Ionosphere
and Ecoli, where none of the regularized methods have yielded any significant performance
gain, we noticed a high degree of disparity, which can be observed in Fig. [5.6, where the
layer-level entropy values are higher and data path diversity is richer relative to the Breast
Cancer data set in Fig.[5.5] The results in Table and the data-support visualizations of
data sets reinforce our hypothesis that introducing a data-support-based sensitivity to our
goal-based regularization methods improves the performance, particularly on the data sets

with a lower degree of data-disparity.

5.3.9.2 Comparison with deep neural networks

To compare the performance of Chl-based decision fusion methods with DNNs, we built
3-hidden layer DNNs on the UCI classification data sets. Each hidden lay