5,345 research outputs found

    A Linked Data Application for Harmonizing Heterogeneous Biomedical Information

    Get PDF
    In the biomedical field, there is an ever-increasing number of large, fragmented, and isolated data sources stored in databases and ontologies that use heterogeneous formats and poorly integrated schemes. Researchers and healthcare professionals find it extremely difficult to master this huge amount of data and extract relevant information. In this work, we propose a linked data approach, based on multilayer networks and semantic Web standards, capable of integrating and harmonizing several biomedical datasets with different schemas and semi-structured data through a multi-model database providing polyglot persistence. The domain chosen concerns the analysis and aggregation of available data on neuroendocrine neoplasms (NENs), a relatively rare type of neoplasm. Integrated information includes twelve public datasets available in heterogeneous schemas and formats including RDF, CSV, TSV, SQL, OWL, and OBO. The proposed integrated model consists of six interconnected layers representing, respectively, information on the disease, the related phenotypic alterations, the affected genes, the related biological processes, molecular functions, the involved human tissues, and drugs and compounds that show documented interactions with them. The defined scheme extends an existing three-layer model covering a subset of the mentioned aspects. A client–server application was also developed to browse and search for information on the integrated model. The main challenges of this work concern the complexity of the biomedical domain, the syntactic and semantic heterogeneity of the datasets, and the organization of the integrated model. Unlike related works, multilayer networks have been adopted to organize the model in a manageable and stratified structure, without the need to change the original datasets but by transforming their data “on the fly” to respond to user requests

    Clinical Bioinformatics: challenges and opportunities

    Get PDF
    Background: Network Tools and Applications in Biology (NETTAB) Workshops are a series of meetings focused on the most promising and innovative ICT tools and to their usefulness in Bioinformatics. The NETTAB 2011 workshop, held in Pavia, Italy, in October 2011 was aimed at presenting some of the most relevant methods, tools and infrastructures that are nowadays available for Clinical Bioinformatics (CBI), the research field that deals with clinical applications of bioinformatics. Methods: In this editorial, the viewpoints and opinions of three world CBI leaders, who have been invited to participate in a panel discussion of the NETTAB workshop on the next challenges and future opportunities of this field, are reported. These include the development of data warehouses and ICT infrastructures for data sharing, the definition of standards for sharing phenotypic data and the implementation of novel tools to implement efficient search computing solutions. Results: Some of the most important design features of a CBI-ICT infrastructure are presented, including data warehousing, modularity and flexibility, open-source development, semantic interoperability, integrated search and retrieval of –omics information. Conclusions: Clinical Bioinformatics goals are ambitious. Many factors, including the availability of high-throughput “-omics” technologies and equipment, the widespread availability of clinical data warehouses and the noteworthy increase in data storage and computational power of the most recent ICT systems, justify research and efforts in this domain, which promises to be a crucial leveraging factor for biomedical research

    The next frontier: Fostering innovation by improving health data access and utilization

    Get PDF
    Beneath most lively policy debates sit dry-as-dust theoretical and methodological discussions. Current disputes over the EU Adaptive Pathways initiative and the proposed US 21st Century Cures Act may ultimately rest on addressing arcane issues of data curation, standardization, and utilization. Improved extraction of inform ation on the safety and effectiveness of drugs-in-use must parallel adjustments in evidence requirements at the time of licensing. To do otherwise may compromise safety and efïŹcacy in the name of fostering innovation

    Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care

    Get PDF
    Medical Informatics (MI) and Bioinformatics (BI) are two interdisciplinary areas located at the intersection between computer science and medicine and biology, respectively. Historically, they have been separated and only occasionally have researchers of both disciplines collaborated. The completion of the Human Genome Project has brought about in this post genomic era the need for a synergy of these two disciplines to further advance in the study of diseases by correlating essential genotypic information with expressed phenotypic information. Biomedical Informatics (BMI) is the emerging technology that aims to put these two worlds together in the new rising genomic medicine. In this regard, institutions such as the European Commission have recently launched several initiatives to support a new combined research agenda, based on the potential for synergism of both disciplines. In this paper we review the results the BIOINFOMED study one of these projects funded by the E

    CrowdHEALTH: Holistic Health Records and Big Data Analytics for Health Policy Making and Personalized Health.

    Get PDF
    Today's rich digital information environment is characterized by the multitude of data sources providing information that has not yet reached its full potential in eHealth. The aim of the presented approach, namely CrowdHEALTH, is to introduce a new paradigm of Holistic Health Records (HHRs) that include all health determinants. HHRs are transformed into HHRs clusters capturing the clinical, social and human context of population segments and as a result collective knowledge for different factors. The proposed approach also seamlessly integrates big data technologies across the complete data path, providing of Data as a Service (DaaS) to the health ecosystem stakeholders, as well as to policy makers towards a "health in all policies" approach. Cross-domain co-creation of policies is feasible through a rich toolkit, being provided on top of the DaaS, incorporating mechanisms for causal and risk analysis, and for the compilation of predictions
    • 

    corecore