1,827 research outputs found

    Mathematical tools for identifying the fetal response to physical exercise during pregnancy

    Get PDF
    In the applied mathematics literature there exist a significant number of tools that can reveal the interaction between mother and fetus during rest and also during and after exercise. These tools are based on techniques from a number of areas such as signal processing, time series analysis, neural networks, heart rate variability as well as dynamical systems and chaos. We will briefly review here some of these methods, concentrating on a method of extracting the fetal heart rate from the mixed maternal-fetal heart rate signal, that is based on phase space reconstructio

    Efficient fetal-maternal ECG signal separation from two channel maternal abdominal ECG via diffusion-based channel selection

    Full text link
    There is a need for affordable, widely deployable maternal-fetal ECG monitors to improve maternal and fetal health during pregnancy and delivery. Based on the diffusion-based channel selection, here we present the mathematical formalism and clinical validation of an algorithm capable of accurate separation of maternal and fetal ECG from a two channel signal acquired over maternal abdomen

    Estimation and processing of fetal heart rate from phonocardiographic signals

    Get PDF

    Fetal ECG extraction from maternal abdominal ECG using neural network

    Get PDF
    FECG (Fetal ECG) signal contains potentially precise information that could assist clinicians in making more appro-priate and timely decisions during pregnancy and labor. The extraction and detection of the FECG signal from com-posite maternal abdominal signals with powerful and advance methodologies is becoming a very important requirement in fetal monitoring. The purpose of this paper is to illustrate the developed algorithms on FECG signal extraction from the abdominal ECG signal using Neural Network approach to provide efficient and effective ways of separating and understanding the FECG signal and its nature. The FECG signal was isolated from the abdominal signal by neural network approach with different learning constant value and momentum as well so that acceptable signal can be con-sidered. According to the output it can be said that the algorithm is working satisfactory on high learning rate and low momentum value. The method appears to be exceedingly robust, correctly isolate the FECG signal from abdominal ECG

    Constrained independent component analysis for non-obtrusive pulse rate measurements using a webcam

    Get PDF
    Assessment of cardiac function of a patient is very important for understanding a patient\u27s physiological state. Remote measurements of the cardiac pulse can provide comfortable physiological assessment by minimizing the amount of wires and cables and allowing for near continuous measurements. It has been found that state-of-the-art algorithms based on independent component analysis (ICA) suffer from a sorting problem which hinders their performance. This effect is demonstrated in this work. The automated pulse detection techniques are applied to RGB color video recordings of the facial region of a person being monitored for cardiac function in a remote sensing environment. Automated face tracking is employed to locate the region of interest and address motion artefacts. This work proposed and evaluates a novel algorithm based on constrained source separation, aka, constrained independent source separation (cICA) to accurately estimate the pulse rate of a patient by solving the sorting problem observed in the ICA based approach. The constrained optimization problem incorporates prior information and additional requirements in the form of constraints. A reference signal with a single tone frequency corresponding to a possible heart rate is fed to the cICA algorithm. This forces the output signal to match the reference signal embodying prior knowledge about an underlying IC. It is also shown that with this algorithm a near photoplethysmography (PPG) signal corresponding to the variations in blood volume in the body can be extracted. An IRB approved study encompassing 45 subjects resulted in Bland-Altman analysis with an FDA-approved finger blood volume pulse (BVP) sensor demonstrating that the proposed algorithm provides significantly improved accuracy

    Frame rate required for speckle tracking echocardiography: A quantitative clinical study with open-source, vendor-independent software

    Get PDF
    Background Assessing left ventricular function with speckle tracking is useful in patient diagnosis but requires a temporal resolution that can follow myocardial motion. In this study we investigated the effect of different frame rates on the accuracy of speckle tracking results, highlighting the temporal resolution where reliable results can be obtained. Material and methods 27 patients were scanned at two different frame rates at their resting heart rate. From all acquired loops, lower temporal resolution image sequences were generated by dropping frames, decreasing the frame rate by up to 10-fold. Results Tissue velocities were estimated by automated speckle tracking. Above 40 frames/s the peak velocity was reliably measured. When frame rate was lower, the inter-frame interval containing the instant of highest velocity also contained lower velocities, and therefore the average velocity in that interval was an underestimate of the clinically desired instantaneous maximum velocity. Conclusions The higher the frame rate, the more accurately maximum velocities are identified by speckle tracking, until the frame rate drops below 40 frames/s, beyond which there is little increase in peak velocity. We provide in an online supplement the vendor-independent software we used for automatic speckle-tracked velocity assessment to help others working in this field

    Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    Get PDF
    Fetal electrocardiogram (FECG) signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system

    A New Approach to Extract Fetal Electrocardiogram Using Affine Combination of Adaptive Filters

    Full text link
    The detection of abnormal fetal heartbeats during pregnancy is important for monitoring the health conditions of the fetus. While adult ECG has made several advances in modern medicine, noninvasive fetal electrocardiography (FECG) remains a great challenge. In this paper, we introduce a new method based on affine combinations of adaptive filters to extract FECG signals. The affine combination of multiple filters is able to precisely fit the reference signal, and thus obtain more accurate FECGs. We proposed a method to combine the Least Mean Square (LMS) and Recursive Least Squares (RLS) filters. Our approach found that the Combined Recursive Least Squares (CRLS) filter achieves the best performance among all proposed combinations. In addition, we found that CRLS is more advantageous in extracting FECG from abdominal electrocardiograms (AECG) with a small signal-to-noise ratio (SNR). Compared with the state-of-the-art MSF-ANC method, CRLS shows improved performance. The sensitivity, accuracy and F1 score are improved by 3.58%, 2.39% and 1.36%, respectively.Comment: 5 pages, 4 figures, 3 table
    corecore