46 research outputs found

    osmAG: Hierarchical Semantic Topometric Area Graph Maps in the OSM Format for Mobile Robotics

    Full text link
    Maps are essential to mobile robotics tasks like localization and planning. We propose the open street map (osm) XML based Area Graph file format to store hierarchical, topometric semantic multi-floor maps of indoor and outdoor environments, since currently no such format is popular within the robotics community. Building on-top of osm we leverage the available open source editing tools and libraries of osm, while adding the needed mobile robotics aspect with building-level obstacle representation yet very compact, topometric data that facilitates planning algorithms. Through the use of common osm keys as well as custom ones we leverage the power of semantic annotation to enable various applications. For example, we support planning based on robot capabilities, to take the locomotion mode and attributes in conjunction with the environment information into account. The provided C++ library is integrated into ROS. We evaluate the performance of osmAG using real data in a global path planning application on a very big osmAG map, demonstrating its convenience and effectiveness for mobile robots.Comment: 7 page

    Incremental Topological Modeling using Sonar Gridmap in Home Environment

    Get PDF
    Abstract-This paper presents a method of topological modeling in home environments using only low-cost sonar sensors. The proposed method constructs a topological model using sonar gridmap by extracting subregions incrementally. A confidence for each occupied grid is evaluated to obtain reliable regions in a local gridmap, and a convexity measure is used to extract subregions automatically. Through these processes, the topological model is constructed without predefining the number of subregions in advance and the extracted subregions are guaranteed the convexity. Experimental results verify the performance of proposed method in real home environment

    Multi-LiDAR Mapping for Scene Segmentation in Indoor Environments for Mobile Robots

    Get PDF
    Nowadays, most mobile robot applications use two-dimensional LiDAR for indoor mapping, navigation, and low-level scene segmentation. However, single data type maps are not enough in a six degree of freedom world. Multi-LiDAR sensor fusion increments the capability of robots to map on different levels the surrounding environment. It exploits the benefits of several data types, counteracting the cons of each of the sensors. This research introduces several techniques to achieve mapping and navigation through indoor environments. First, a scan matching algorithm based on ICP with distance threshold association counter is used as a multi-objective-like fitness function. Then, with Harmony Search, results are optimized without any previous initial guess or odometry. A global map is then built during SLAM, reducing the accumulated error and demonstrating better results than solo odometry LiDAR matching. As a novelty, both algorithms are implemented in 2D and 3D mapping, overlapping the resulting maps to fuse geometrical information at different heights. Finally, a room segmentation procedure is proposed by analyzing this information, avoiding occlusions that appear in 2D maps, and proving the benefits by implementing a door recognition system. Experiments are conducted in both simulated and real scenarios, proving the performance of the proposed algorithms.This work was supported by the funding from HEROITEA: Heterogeneous Intelligent Multi-Robot Team for Assistance of Elderly People (RTI2018-095599-B-C21), funded by Spanish Ministerio de Economia y Competitividad, RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, funded by “Programas de Actividades I+D en la Comunidad de Madrid” and cofunded by Structural Funds of the EU. We acknowledge the R&D&I project PLEC2021-007819 funded by MCIN/AEI/ 10.13039/501100011033 and by the European Union NextGenerationEU/PRTR and the Comunidad de Madrid (Spain) under the multiannual agreement with Universidad Carlos III de Madrid (“Excelencia para el Profesorado Universitario’—EPUC3M18) part of the fifth regional research plan 2016–2020

    Mapping beyond what you can see: Predicting the layout of rooms behind closed doors

    Get PDF
    The availability of maps of indoor environments is often fundamental for autonomous mobile robots to efficiently operate in industrial, office, and domestic applications. When robots build such maps, some areas of interest could be inaccessible, for instance, due to closed doors. As a consequence, these areas are not represented in the maps, possibly causing limitations in robot localization and navigation. In this paper, we provide a method that completes 2D grid maps by adding the predicted layout of the rooms behind closed doors. The main idea of our approach is to exploit the underlying geometrical structure of indoor environments to estimate the shape of unobserved rooms. Results show that our method is accurate in completing maps also when large portions of environments cannot be accessed by the robot during map building. We experimentally validate the quality of the completed maps by using them to perform path planning tasks.(c) 2022 Elsevier B.V. All rights reserved

    Swarm Robotics: An Extensive Research Review

    Get PDF

    CES-515 Towards Localization and Mapping of Autonomous Underwater Vehicles: A Survey

    Get PDF
    Autonomous Underwater Vehicles (AUVs) have been used for a huge number of tasks ranging from commercial, military and research areas etc, while the fundamental function of a successful AUV is its localization and mapping ability. This report aims to review the relevant elements of localization and mapping for AUVs. First, a brief introduction of the concept and the historical development of AUVs is given; then a relatively detailed description of the sensor system used for AUV navigation is provided. As the main part of the report, a comprehensive investigation of the simultaneous localization and mapping (SLAM) for AUVs are conducted, including its application examples. Finally a brief conclusion is summarized
    corecore